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ABSTRACT 

 

Water resource is essential for humans and many places on the earth, and there needs to solve 

freshwater shortage caused by water pollution by industrial and farming activities. Nanofiltration (NF) 

technique has been attracted a lot during past decades, because of its unique characteristics which are 

utillizing separation mechanisms of both solution diffusion (as in reverse osmosis) and sieving (as in 

ultrafiltration), resulting to obtain high rejection of divalent salts and organic molecules with low 

molecular weight (Mw from 200 to 1000) at low operating pressure. Currently, commercial NF 

polyamide (PA) thin-film composite (TFC) membranes have been generally produced by interfacial 

polymerization method using piperazine (aliphatic amine monomer) or m-phenylenediamine (MPD, 

aromatic amine monomer) reacting with trimesoyl chloride (TMC, acyl chloride monomer). The 

interfacial polymerization methods using piperazine/MPD and TMC are one of the most effective 

methods to fabricate TFC NF membranes, because the thin/dense polyamide selective layer can make 

high water flux at low driving-pressure, and the permeable properties can be optimized by several 

fabrication factors (e.g., monomer concentrations, effective additives, reaction times, and curing 

time/temperature for post-treatment). 

The NF technique has been broadly applied to treatment/recycle of the target compounds in 

acidic conditions: (I) exclusion of heavy metals and sulfate ions in the mining and metal industry, (II) 

recycling of phosphorus in sewage sludge, (III) treatment of nitric acids in the picture tube production, 

(IV) regeneration of acidic effluents in dairy cleaning-in-place processes, (V) purification of acidic 

effluents in the pulp and paper industry, and (VI) separation of plentiful acids such as HBF4, HCl, HNO3, 

H2SO4, H3BO3 in effluents from rinsing, fermentation, and extraction processes. Additionally, NF 

technique can be applied to wastewater containing HCl, HBr and HI from semiconductor’s etching 

process. Acid-stable NF membranes are needed to apply above processes which operate with acidic 

condition. However, high performance commercial NF semi/full-aromatic PA membranes, which are 

fabricated by piperazine/MPD with TMC, are limited in the range of pH 2 to 11 in accordance with 

suppliers. 

The previous studies were mainly investigated to effect of acidic conditions on PA membranes 

in the view of permeability. However, both changes of physical and chemical properties by degradation 

mechanism have not been systematically discussed for semi/full-aromatic membranes after exposure to 

various acidic conditions up to now. Therefore, a detailed research needs to elucidate effect of acidic 

degradation on physical and chemical properties of PA membranes using various analytical tools and 

computational calculation methods.  
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The overall objectives of this work is to systematically examine the effect of the acidic 

conditions on semi/full-aromatic PA membranes in terms of changes of physical/chemical properties, 

and to suggest mechanism to explain changed the properties as well as applications for practical fields 

via various analytical tools: Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-

Fourier Transform Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Time-

of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), contact angle analyzer, electrophoretic light 

scattering spectrophotometer, filtration tests, and density functional theory (DFT) computational 

calculations. 

Experimental results from degradation by acid showed different tendency between semi and 

full-aromatic PA membrane using acidic aqueous solution (15wt% sulfuric acid). According to analyses 

of the membrane’s physical and chemical properties (e.g., SEM, ATR-FTIR, XPS, and filtration tests), 

full-aromatic PA membrane had relatively higher acid-stability than semi-aromatic PA membrane. 

These degradations by acid cause conversion of an amide group to carboxyl and amine groups measured 

by ToF-SIMS results. Furthermore, these converted carboxyl and amine groups decreased the contact 

angle and increased the absolute value of the zeta potential semi-aromatic PA membranes. These 

difference of acid-stability between semi and full-aromatic PA membrane is resulted from relatively 

lower energy barrier of semi-aromatic PA membrane in the RDS step. These energy barrier results in 

the RDS had a close relationship with protonated amides’ twist angle (τD), which shows representative 

and quantitative value for resonance of amide group. However, full-aromatic PA membrane with 

relatively higher acid-stability were also severely degraded when it exposed to pH 0 acidic solution 

containing hydrogen halides. For example, in ATR-FTIR results, amide II band (N-H) in 1541 cm-1 and 

amide I band (C=O) in 1663 cm-1 after degradation by hydrogen halides tended to decrease due to 

halogenation reacted with halogens generated by oxidation of hydrogen halides. In addition, water flux 

after exposure to hydrogen halides tended to severely decrease with increasing exposure time, resulted 

from broken hydrogen bonding due to halogenation. 

Meanwhile, acid-catalyzed hydrolysis, which causes conversion amide group into amine and 

carboxyl group, were applied to post-treatment of semi-aromatic PA membrane in terms of practical 

applications (e.g., water softening and enrichment of antibiotics). Post-treatment by sulfuric acid in the 

range of pH 0 to 2 increased membrane’s hydrophilicity, pore size, and absolute value of surface charge. 

In accordance with change of surface characteristics, mixture selectivity (Na+/Mg2+) for water softening 

was improved about 2.6 times in acidic conditions. Optimized post-treatment membranes were applied 

to the enrichment of antibiotics as well, and the membrane had higher water flux and competitive 

antibiotics rejection compared to other commercial or fabricated membranes. That is, operation time of 

optimized membrane was improved about 2 to 3 times than virgin semi-aromatic membrane.  
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1.1 Problem statement and significance 

 

Water is important resource for humans and many places on the earth, and it is needed to solve 

fresh water shortage due to water pollution by industrial and farming activities. There are various 

methods that have been researched and applied to treat water such as chemical process using OH radical 

oxidation [1], biological process by aeration [2], and physical process through membrane technology. 

Above all, membrane technology is one of the promising methods to obtain drinking water by 

desalination/treatment of sea/brackish/waste water [3] due to lower operation and maintenance cost as 

well as less land space requirement, resulting from improvements of the membrane technology [4]. 

Membrane processes can be categorized by the pore size. Nanofiltration (NF) membrane, which has 0.5 

to 2.0 nm of pore diameters, has been rapidly attracted during last decades because of its high rejection 

for divalent salts or organic molecules (Mw ~ 200 to 1000 g mol-1) under low operating pressure [5]. 

These high rejection can be explained by both solution diffusion mechanism and steric/electrostatic 

sieving mechanism [6]. Currently, commercial NF polyamide (PA) thin-film composite (TFC) 

membranes have been widely fabricated by interfacial polymerization method using piperazine 

(aliphatic amine monomer) or m-phenylenediamine (MPD, aromatic amine monomer) reacting with 

trimesoyl chloride (TMC, acyl chloride monomer) [7, 8] as shown in Fig. 1.1. These IP technique is a 

good method to obtain TFC NF membranes, because the thin/dense PA active layer makes high water 

flux and salt rejection under low operating pressure, and the membrane performance can be optimized 

by numerous fabrication factors such as monomer/additives concentrations, reaction times, and post-

treatment time/temperature (e.g., curing process) [9]. 

 

 

Figure 1.1 The reaction scheme and procedure most commonly used for TFC NF membranes [10]. 
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Several application using NF membrane in terms of industrial effluent has been studied for 

removing or recycling of abundant acids like hydrochloric acid, sulfuric acid, fluoroboric acid, nitric 

acid, boric acid, and other valuable metals [11]. Potentially applicable examples are summarized as 

follows: purification of phosphoric and nitric acids [12, 13], purification of diluted acidic streams in 

dairy cleaning-in-place processes (CIP) [14], treatment of effluents in the pulp and paper industry [15], 

recovery of phosphorus from sewage sludge [16, 17], the removal of metals (e.g., copper or gold) with 

a high sulfuric acid concentration [18], removal of sulfate ions from industrial effluents in the mining 

and metal industry [19], and the treatment of wastewater containing HCl, HBr and HI from etching 

process for semiconductors [20-22]. These acidic industrial effluents which contains low pH condition 

can be potentially removed and recycled through NF process [23], therefore, there needs NF membranes 

to tolerate low pH condition during the application. However, high performance commercial NF PA 

TFC membranes fabricated by piperazine/MPD and TMC limits to use application in industrial effluent, 

because NF membrane manufacturers limits to pH in the range of 2 - 11 by relatively low chemical 

stability [24]. Therefore, consideration for degradation of semi and full-aromatic PA membranes by acid 

is needed to apply above processes which have less than pH 2 acidic condition. 

Recently, several studies have been conducted to investigate the change of PA membranes’ 

permeability properties due to degradation by acidic conditions. Liu et al. [25] studied effect of 0.5 M 

HCl on lab-made full-aromatic PA membrane, and it was hydrolyzed after 30 Days filtration, resulting 

to increase permeations of water and salt. Tanninen et al. [26] performed acid-stability of semi-aromatic 

PA membranes (The Desal-5 DK and the NF 270 membrane) by filtration test using 8 wt% H2SO4 at 

40°C for 2 months, and salt rejection was not maintained due to their insufficient acid-resistance during 

operation. These semi-aromatic PA membranes were also analyzed in the range of pH 1 to 13 by 

adjusting HCl and NaOH, and the results were that effect of membrane permeability at acidic condition 

(pH 1) was relatively lower than alkaline condition (pH 13) [27]. Another semi-aromatic PA membrane 

(the NF-45 membrane) showed acid-catalyzed hydrolysis, resulting from severely decreased sucrose 

retention when the membrane exposed to 20 wt% H2SO4 at 80°C for only 1 month [18]. Evidence for 

degradation of PA membranes by acid has been suggested by severely increased water flux and 

decreased salt/target rejection. 

The previous studies were mainly investigated to effect of acid on PA membranes in terms of 

permeability, however, both changes of physico-chemical properties and degradation mechanism of 

semi/full-aromatic membranes after exposure to acidic conditions have not been systematically 

discussed to date. Therefore, an in-depth research needs to explain effect of acidic conditions on 

physical and chemical properties of PA membranes using various analytical tools and computational 

calculation methods.  
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1.2 Objectives of this work 

 

The overall objectives of this work is to systematically investigate the effect of the acidic 

conditions on semi/full-aromatic PA membranes in terms of changes of physico-chemical properties, 

and to suggest mechanism to explain changed the properties using various analytical tools and 

computational calculation methods. The more specific objective is as follows: 

1. To systematically assess changes of physico-chemical properties of semi/full-aromatic PA 

membranes after exposure to various solution pH and acids.  

2. To identify and suggest the mechanism of changed surface characterization and permeability 

of semi/full-aromatic PA membranes due to acidic degradation. 

3. To utilize degradation phenomenon on semi-aromatic PA membranes in the view of practical 

applications.    

 

1.3 Scope of this work 

 

 This study consists of (1) characterization of semi/full-aromatic PA membranes, (2) acidic 

degradation experiments, (3) investigation of acidic degradation on semi/full-aromatic PA membranes 

in terms of physico-chemical properties, (4) explanation of the acidic degradation mechanism, and (5) 

utilization of acidic degradation on semi-aromatic PA membranes in the view of practical applications. 

The scope of this work is described in Fig 1.2. Commercially available NF PA membranes, 

Toray Chemical Korea© piperazine (PIP)-based NE40/70 membranes and m-phenylene diamine 

(MPD)-based NE90 membrane, were systematically investigated to explain effect of acidic degradation 

on physico-chemical properties of PA membranes. A series of acidic degradation experiments were 

performed under 2 different conditions which are in the range of H2SO4 pH 0 to 2, and various acids 

containing H2SO4 and hydrogen halides (HCl, HBr, and HI). Physico-chemical properties of the 

membranes were studied before and after exposure to acidic conditions using various analytical tools: 

Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared 

spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Time-of-Flight Secondary Ion 

Mass Spectrometry (ToF-SIMS), contact angle analyzer, electrophoretic light scattering 

spectrophotometer, and filtration tests. Density functional theory (DFT) calculation was also conducted 
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to reveal the different acid-resistance between the piperazine-based and MPD-based polyamide 

membranes in terms of reaction energies and twist angles. Acidic degradation mechanism on PA 

membranes were investigated using the experimental/DFT calculation analyses, and comparison of the 

physico-chemical properties between virgin and degraded membranes. 

 

 

Figure 1.2 Schematic diagram of research scope. 
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1.4 Outline of this work 

 

 This thesis consists of six chapters. Chapter 1, 2 and 6 are the introduction, background and 

related research, and summary and conclusions, respectively. Research contents and explanation are 

presented in Chapter 3, 4, and 5. Chapter 5 was already published in Chemical Engineering Journal 

(Chemical Engineering Journal 332 (2018) 419–430). 

Chapter 3 studied that two commercially available NF polyamide TFC membranes fabricated 

by two amine monomers (piperazine or MPD) with acyl chloride (TMC) as representative polyamide 

NF membranes. The effect of acidic aqueous solution (15wt% sulfuric acid) on the membrane’s 

physico-chemical properties were systemically investigated. 

 Chapter 4 conducted that systematical physical and chemical characterization to explain the 

effect of degradation by sulfuric acid in the range of pH 0 to 2 as well as hydrogen halides at pH 0 on 

MPD-based full-aromatic membrane. The importance of halogenation caused by oxidation of hydrogen 

halides on full-aromatic membrane was discussed in detail. 

 Chapter 5 investigated surface characterization and permeability of a commercial NF semi-

aromatic polyamide TFC membrane during the post-treatment of the membrane via acid-catalyzed 

hydrolysis under various acidic conditions. The hydrolysis condition was optimized based on the 

characterization study, and the membrane was modified for use in water softening and antibiotics 

enrichment processes. 

 Last part is the appendix which gives list of abbreviations and symbols used in this thesis, then 

references subsequently followed.  
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This chapter introduces background and related research on classification of membrane, 

pressure-driven process, chemical properties of amide bond, basic principles of analytical tools, acidic 

degradation of amide group and PA membranes.  

 

2.1  Classification of membrane 

 

The important factor of membrane process depends on membrane. Membrane exists naturally 

(biological membrane) or made by synthesis using chemical compounds (synthetic membrane). These 

membranes play the role as a barrier between two phases. Synthetic membrane can be divided by pore 

size, structure, and materials. A brief summary of each membrane is as follows [28, 29] (Table 2.1). 

 

Table 2.1 Categorization of membranes (bold type will be mainly discussed in this work). 

Biological 

membrane 

Living membrane (ex. Living cell membranes where the energy is provided by ATP) 

Non-living membrane (ex. Liposomes and vesicles from phospholipids) 

Synthetic 

membrane 

Pore size 

Microfiltration: 0.05 – 5 µm 

Separation principle: size exclusion 

Ultrafiltration: 1 – 100 nm 

Nanofiltration: ~ 1 – 10 nm Separation principle: solution-

diffusion 
Reverse osmosis: < 2 nm 

Structure 

Symmetric membrane  

(Cylindrical) porous membrane 

Nonporous (homogeneous) 

membrane 

Asymmetric membrane: 

(Integrally) asymmetric membranes 

Thin film composite membranes 

Material Organic 

Liquid membrane (ex. Carrier-mediated transport) 

Synthetic 

polymeric 

membrane 

Relatively Hydrophilic  

Cellulose esters 

Polycarbonate (PC) 
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Polysulfone/poly(ether sulfone) (PSf/PES) 

Polyimide/poly(ether imide) (PI/PEI) 

Polyamide (PA) 

Polyetheretherketone (PEEK) 

Relatively Hydrophobic  

Polytetrafluoroethylene (PTFE, Teflon) 

Poly(vinylidene fluoride) (PVDF) 

Polypropylene (PP) 

Polyethylene (PE) 

Polysulfone (PSf) 

Inorganic  

Ceramic membrane: alumina (Al2O3), zirconia (ZrO2), titania 

(TiO2) silicium carbide (SiC) 

Metal membrane: stainless steel, palladium, tungsten, silver 

 

2.2 Pressure-driven process 

 

The principle of membrane process is allowing pure water to transport through the membrane but 

exclude most of the solutes or macromolecules in the solution. Pressure-driven membranes can be 

categorized by their physical properties in water treatment processes, and they are consisted of 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO) processes along the 

pore size and applied pressure. A detailed explanation of each process is as follows: [29] 

 

1) Microfiltration: a pressure-driven process which operates at low applied pressure (0.1 – 

2 bar) to filtrate large particles (with pore size from 50nm to 5 µm), proteins, and bacteria 

(size > 0.1 µm). Separation mechanism is size exclusion. MF is mostly applied in 

analytical applications, sterilization for food, pharmaceuticals, ultrapure water for 

semiconductors, clarification for beverages, cell harvesting membrane bioreactor, and 

water treatment. 
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2) Ultrafiltration:  a pressure-driven process (1 – 10 bar) of which membrane pore size (1 

– 100 nm) is between MF membrane and NF membrane to filtrate finer particles and 

molecules of molecular weight above about 10,000. Separation mechanism is also size 

exclusion. Main application of UF is separating macromolecules and colloids from a 

solution, such as dairy, food, metallurgy for oil-water emulsions and electropaint recovery, 

textile, pharmaceutical for enzymes, antibiotics and pyrogens, automotive for electropaint, 

and water treatment. 

3) Nanofiltration: a pressure-driven process (10 – 25 bar) of which membrane pore size (1 

– 10 nm) is between UF membrane and RO membrane to filtrate permeation of low 

molecular weight (200 - 20,000 daltons) substances. Separation principle of NF is 

solution-diffusion. NF is applied to separate desalination of brackish water, removal of 

micropollutants, water softening, waste water treatment, retention of dyes for textile 

industry.   

4) Reverse osmosis: a pressure-driven process which operated at 15 – 25 bar for brackish 

water and 40 – 80 bar for seawater. RO membrane has less than 2 nm pore size. Separation 

principle of RO is similar with NF, which operates under solution-diffusion mechanism. 

RO is used to separate single charge ion like sodium, chloride ion in desalination process. 

Main applications of RO are desalination of brackish and seawater, production of 

ultrapure water in electronic industry, and concentration of food juice, sugars, and dairy 

industry. 

 

Flow directions or filtration methods affect a high influence on separation performances during 

operation. Figure 2.1 shows two types of flow filtration which are (a) cross flow and (b) dead–end 

filtration. The feed stream is applied tangential direction to the membrane as shown in Fig. 2.1 (a), 

resulting to minimize membrane fouling and maintain a high water flux and recovery [30]. When the 

feed solution is applied perpendicular direction to the membrane, it enables rapid separation of target 

compounds as shown in Fig. 2.1 (b). However, dead–end filtration results in a easily build–up of fouling 

phenomenon on the membrane surface, resulting to severely decrease water flux [30]. Therefore, NF or 

RO processes which need high applied pressure are typically operated by cross flow filtration method. 

In order to measure water flux (Jw) and salt rejection (R) of membranes, which are one of the 

main parameters to assess membrane performance, following equation (2.1 and 2.2) has been widely 

used [29].  
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𝐽𝑤 =  
∆ weight

∆ time × effective membrane area × water density
 (

L

m2h
 or LMH)                    (2.1) 

𝑅 = (1 −
[Salt]permeate

[Salt]feed
 ) × 100 (%)                                                                               (2.2) 

 

 

Figure 2.1 Schematic diagram of (a) cross flow filtration and (b) dead–end filtration [30] 

 

2.3 Polyamide (PA) membrane 

 

A supreme membrane condition to apply separation process is that the membrane has high 

chemical, thermal, and mechanical durability as well as low cost for fabrication. Polyamide structure 

has been widely used as commercial NF membranes due to its high permeability, selectivity and stability 

[31]. 
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 There has been much research on amide because proteins are consist of amide groups, and 

they play an important role in biological processes [32]. Amide group means the organic compound 

which contain –CONH- group. The chemical stability of amide bond comes from inherent three main 

Lewis resonance structure as described in Fig 2.2. In other words, left and right structure of Fig 2.2 

shows sp3 and sp2 hybridization of the nitrogen, respectively, resulting to a partial double bond 

characteristic of the C-N bond. Therefore, these resonance structures explain amide’s planarity and their 

natural stability. 

 

Figure 2.2 The three main Lewis structure of amide group using resonance model [33]. 

 

 As described above paragraph, amide bond’s stability is affected by its partial double bond 

delocalization between the nitrogen lone pair of amide and the carbonyl πCO bond [34]. These amount 

of delocalization can be quantitatively calculated by twist angle (τ) as shown in Fig. 2.3, and the angle 

means between C1-C2-O plane and lone pair of nitrogen atom. These twist angle, amount of distortion 

of C-N amide bond, have been calculated by computational modeling method [35-39]. That is, lower 

twist angle value is close to planar structure, resulting to increase chemical stability due to higher 

resonance structure. It is good agreement to previous studies which explain increasing hydrolytic rate 

of amide bond in acid and base with increasing distortion of C-N bond (twist angle) [34-36, 40]. 

 

Figure 2.3 Schematization for twist angle (τ) [41]. 
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 As a result of its chemical properties of amide bond, PA structure has been broadly utilized in 

NF membranes. Detail explanation of the PA membrane such as cross-sectional structure, fabrication 

method, and characterization methods are summarized below section (2.3.1 to 2.3.3). 

 

2.3.1 Cross-sectional structures of TFC PA membrane 

 

An ideal conditions of membrane in the separation process are high water flux and salt 

rejection in terms of production cost. Therefore, asymmetric TFC membrane which consisted of ultra-

thin selective layer and porous support layer have dominated in the NF/RO commercial membrane 

market from 1980’s. General structure of TFC membrane is described in Fig. 2.4, and porous PSf 

support layer (Fig. 2.5), which has good thermal and chemical stability [42], is fabricated on reinforcing 

polyester fabric due to mechanical strength.  

 

Figure 2.4 Schematic illustration of a TFC membrane. A crosslinked PA selective (active) layer is 

supported on a porous PSf membrane cast on a polyester fabric [10]. 

 

 

 

Figure 2.5 Chemical structure of polysulfone. 
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2.3.2 Interfacial polymerization  

 

Interfacial polymerization (IP) is the most famous method for fabrication of commercial TFC 

PA membranes, and it has been tremendously developed after firstly suggested by Mogan in 1965 [43]. 

Interfacial polymerization technique in optimizing independently the properties of active layer and 

support layer, various kinds of TFC membranes have been widely and successfully developed [43]. The 

several factors such as solvent type, concentration of monomers, reaction time, and post-treatment 

conditions can affect the membrane performance by different structural morphology and composition 

of the selective layer [44]. Most of PA NF membranes have been produced by piperazine (aliphatic 

amine monomer) or m-phenylenediamine (MPD, aromatic amine monomer) reacting with trimesoyl 

chloride (TMC, acyl chloride monomer) [7, 8] as already explained in section 1.1, because both 

polymerization and cross-linking during IP are fast even though low concentration of acyl halide is used 

[45].  

The process of IP is summarized as follows: (1) a porous support membrane is soaked in an 

aqueous solution which contains amine monomers to saturate porous support membrane before reaction 

with TMC. (2) excess amine aqueous solution on the surface of support membrane is removed by a 

rolling machine or air knife for reacting with TMC. (3) the amine saturated support membrane is soaked 

in a water-immiscible organic solvent solution which contains aromatic acyl halide. (4) when the amine-

saturated support membrane is soaked in the aromatic acyl halide solution, a thin and densely cross-

linked active layer is fabricated on the interfacial layer between organic phase and aqueous phase during 

IP. The process of above-mentioned interfacial polymerization is described in Fig 2.6. 
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Figure 2.6 (A) Schematic description of the process during interfacial polymerization. Reactant 

A (initially dissolved in the aqueous phase, piperazine or MPD in this case) and reactant B 

(dissolved in the organic phase, TMC in this case) diffuses toward each other and reacts to form 

polymer film C (PA in this case). (B) The TEM image shows the structure of ridge and valley by 

a PA layer. The boundary between the dark parts (right of the micrograph) and bright parts (left 

of the micrograph) of the film represents the densely cross-linked active layer. The black spot at 

the bottom of the micrograph shows part of the film-supporting structure [46]. 

 

The chair structure of the piperazine amine molecule in its lowest energy state makes the thin 

active layer difficult to compact, providing a large free volume inside the active layer and high 

permeability of water molecules through the thin layer [47]. Meanwhile, the membrane fabricated by 

MPD and TMC has a very unique surface characteristic which has a ridge and valley structure rather 

than smooth surface by piperazine amine. Kwak et al. [48] proved that this rough ridge and valley 

structure increased effective surface area, resulting higher water transport and thus water flux. The 

reason why formation of ridge and valley structure will be explained followed paragraph based on IP 

process.  

Polyamide film of formation on the support membrane surface is initiated by volcano-like 

reaction where the amine monomers erupt from surface pores of the support layer during the IP, because 

the amine monomer continuously can diffuse into organic solvent contrasting the acyl halide unable to 

diffuse into aqueous solution [49]. After eruption of the amine monomers, the amine monomers also 

can diffuse sideways continuously, resulting integral polyamide film is formed [49]. As a result, the 

initial polyamide tufts reaching earlier a high molecular weight than the laterally smooth base film 

develops into ridges, and the lateral film linking the initial tufts becomes valleys [49]. This ridge and 

valley structure of the surface appears in full-aromatic PA membrane prepared by MPD and TMC, on 

the other hand, other TFC membranes fabricated by aliphatic amines (e.g., piperazine) have smoother 

surface due to relatively low solubility and diffusivity of amine monomer in organic solvent [49]. Figure 

2.7 shows structural differences between active layers prepared by semi-aromatic poly(piperazinamide) 

membrane (Figure 2. 7 (c) to (f)) and MPD/TMC based fully aromatic membrane (Figure 2. 7 (a) and 

(b)) [50]. 

Further enhancement of membrane performance has been achieved by addition of effective 

additives. Amhed et al. [51] investigated the effect of trimethylamine (TEA) added as an acid acceptor 

during IP, and reported that the TEA can not only prevent protonation of amine monomer, but also keep 

reactivity of amine monomer, causing enhanced amount of cross-linking and a subsequent increase in 

salt rejection. The addition of TEA dosed with camphorsulfonic acid (CSA) was also reported to form 

thinner and smoother surfaces with 30% enhancement of water flux [9]. Mansourpanah et al. [52] 

studied the additive effect of cationic surfactant on membrane performance and showed that 



16 

 

cetyltrimethyl ammonium bromide (CTAB) increases water flux without loss of salt rejection because 

of the enlarged free-volume in the active layer. 

 

 

 

Figure 2.7 AFM images of different commercial PA membranes’ active layers. (a) LE, (b) 

SW30HR, (c) HL, (d) NTR729HF, (e) DK and (f) SG. (a) and (b) were made from MPD and TMC. 

Others were fabricated using piprazine and TMC [50]. 
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2.3.3 Characterizations of polyamide membrane 

 

Membrane performance (water flux and salt rejection) is directly related with combination of 

pore size and distribution, thickness, and surface area/hydrophilicity/charge. Each physical/chemical 

characteristic of PA membrane can be characterized by numerous analytical tools. Table 2.2  

summarizes membrane characteristics and several analytical equipment [53-55]. 

Table 2.2 Physical/chemical characterization of membranes using various analytical tools  

(bold type will be mainly discussed in this work). 

Membrane characteristics Analytical tools 

Pore size and distribution 
Thermoporometry, Permporometry,  

Mercury intrusion test 

Mechanical properties Universal Testing Machine (UTM) 

Thickness 

Scanning Electron Microscope (SEM) 

Time-of-Flight Secondary Ion Mass Spectrometry 

(TOF-SIMS) 

Surface and cross section images 
Scanning Electron Microscope (SEM) 

Transmittance Electron Microscopy (TEM) 

Surface conductive and roughness 

(topography) 
Atomic Force Microscope (AFM) 

Membrane hydrophilicity Contact angle instrument 

Membrane zeta potential Zeta potential analyzer 

Elemental composition 

X-ray photoelectron spectroscopy (XPS) 

Energy-dispersive X-ray spectroscopy (EDX) 

Time-of-Flight Secondary Ion Mass Spectrometry 

(TOF-SIMS) 

Transmittance of functional groups 
Fourier transform infrared spectroscopy (FTIR) 

Raman spectroscopy 

  

The following section explains the basic principles and analytical methods of these equipment 

(bold type) to investigate physico-chemical characteristics of PA membranes. In addition, some of the 

previous studies are suggested to interpret specific phenomenon (e.g., fouling) using their 

characteristics. 
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2.3.3.1 Scanning electron microscopy (SEM) 

 

Scanning electron microscopy (SEM) has been widely applied to analyze membrane because 

of (1) the relatively high resolution surface as well as cross-sectional images, (2) fast measurement 

times rather than AFM, and (3) easy preparation of measuring sample compared to TEM [56].  

There are many previous researches to utilize SEM equipment as measurement of polymer’s 

surface and cross-sectional images. For instance, Galiano et al. [57] characterized the their developed 

membranes, and the membranes were fabricated by addition of a polymerizable bi-continuous 

microemulsion (PBM) layer on a scaffold PES UF membrane. These surface and cross-sectional images 

of developed membranes with homeomorphic structure are clearly measured by SEM as shown in Fig. 

2.8. The PBM layer consists of randomly distributed water channels (dark space in Fig. 2.8) and 

polymer channels (white space in Fig. 2.8) on top-surface of the membrane, and the width of water 

channels are also clearly measured (about 30 to 50 nm). In addition, effect of PBM coating on thickness 

of the developed membrane was clearly investigated as described in Fig. 2.8 (about 1 μm thickness). 

Therefore, surface topography or cross-sectional images from measurement of SEM equipment are 

suitable to obtain effect of post-treatment or additional coating on morphology structure of the 

membrane.  

The brief process of SEM measurement is scanning the surface of sample using a focused 

electrons beam. That is, ejected secondary electrons and backscattered electrons from the sample 

surface are collected by the specific detector, and subsequently produced sample’s morphology using 

the SEM software [56]. Working principle of SEM equipment is summarized in following paragraph. 

Figure 2.9 shows a schematic illustration of the main working principle for SEM equipment 

[58]. Firstly, an electron gun discharges the electrons. Secondly, the electrons penetrate the 

condenser/objective lens with acceleration voltage, resulting to produce the electrons from specimen 

(about nanoscale diameter). These phenomenon happens due to bombardments by interaction between 

the electron beam and surface of specimen. Thirdly, when the electron beam in a straight line scans over 

the surface of specimen, specific detector simultaneously measures the electron signals. Finally, the 

signals are altered to the brightness at corresponding spots in accordance with the amount of detected 

electrons, so the corresponding electron images can be obtained from a video screen as shown in Fig. 

2.9. Through this principle of the SEM equipment, it is utilized to measure clear membrane surface as 

well as cross-sectional images. 
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Figure. 2.8 SEM surface (a) and cross-sectional (b–d) images of polymerizable bi-continuous 

microemulsion membrane with magnification from 10k to 40k [57]. 

 

Figure. 2.9 Working principle of the SEM using schematic illustration [58]. 
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2.3.3.2 Attenuated total reflectance-Fourier transform infrared spectroscopy 

(ATR-FTIR) 

 

An attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) has been 

applied to measure functional groups of membrane surface, and the FTIR based equipment is a great 

tool to perform functionality of the membrane surface such as polyamide membrane, modified 

membrane, and so on. That is, FTIR spectroscopic technique is the one of the most widely used 

measurement method to study chemical functional groups of membrane surface [56]. 

The main principle of FTIR technique is examination related to the molecular vibrations which 

overlap with frequencies of IR range from 1012 to 1014 Hz. A molecular vibration is the atoms’ motion 

within a molecule when the whole molecule has constant rotational/translational motion. That is, normal 

modes of vibration are occurred when the IR frequency is equal to a specific molecular vibration, and 

the normal modes consists of symmetric/asymmetric stretching and in plane/out of plane bending [56]. 

The highlight to measure FTIR is interferogram, which utilizes different optical paths between 

spitted two beams from a single source. In other words, difference between the former and the latter 

beam is a signal produced by the difference of path length due to refractive index changes and 

irregularities of surface. These differences between two beams’ distance and frequency can be converted 

into an actual spectrum using the mathematical Fourier transformation method [59].  

Depends on specimen analyzing technique, there are popular FTIR instruments subdivided by 

transmission, diffuse reflectance spectroscopy (DRIFTS), ATR, and specular reflectance/reflection-

absorption [56]. Above all, ATR is powerful tool to assess the surfaces of membrane compared to bulk 

chemical compounds, so it has been utilized to measure amount of chemical modification in 

contradistinction to virgin membrane surfaces. This tool usually connects to the FTIR instrument as an 

additional accessory. Figure 2.10 shows schematic illustration for the horizontal ATR accessory, and 

several crystal materials with a high refractive index can be used as an ATR accessory during ATR-

FTIR operation. Penetration depth can be calculated using Eq. 2-5, and this value is affected by 

wavenumber, incident beam angle, and refractive index of used crystals [60]. The several crystal 

materials and their properties are summarized in Table 2.3. Numerous internal IR beam’s reflections 

create an evanescent wave (in Fig. 2.10), and they interact with the surface of sample. That is, before 

the beam goes to the detector through the crystal, the evanescent wave is attenuated by the absorption 

of sample surface [56]. Lastly, the presence of particular absorption bands is used to match the 

corresponding functional groups of sample surface. These ATR-FTIR measurement can be conducted 

to measure functionality of membrane surface. 
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𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ (𝑑𝑝) =  
1

2𝜋𝑊𝑛1(𝑠𝑖𝑛2𝜃 −  𝑛21
2 )

1
2

                             (2 − 3) 

where 𝑊 is the wavenumber, n1 is the ATR crystal’s refractive index, 𝜃 is the incidence angle, n2 is 

refractive index of sample, and n21 is the ratio of n2 to n1 (n2/n1). 

Figure 2.10 Schematic illustration for the horizontal ATR accessory and formula to calculate 

penetration depth [59]. 

 

Table 2.3 Example of the common ATR crystals and their properties [59]. 

 

Material Refractive index Wavenumber range (cm-1) dp (μm) 

Diamond 2.4 45000-2500 1.35-1.66 

Germanium (Ge) 4 5500–870 0.65–0.73 

Zinc Selenide (ZnSe) 2.41 20000–650 1.22–1.66 

AMTIR (As/Ge/Se glass) 2.5 11000–750 1.46 

Silicon (Si) 3.4 - 0.84–1.17 

Thallium bromoiodide (KRS-5) 2.37 20000–250 1.22–1.73 

Cd telluride (CdTe) 2.67 10000–450 - 

Saphire (Al2O3) 1.74 25000–1800 - 

Zinc Sulfide (ZnS) 2.2 17000–950 2.34 

Cubic Zirconia (ZrO2) 2.15 25000–1800 - 
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2.3.3.3 X-ray photoelectron spectroscopy (XPS) 

 

X-ray photon spectroscopy (XPS) is utilized to analyze quantitative elemental information on 

surface of sample. Principle of XPS is measurement of photo-emission phenomenon. When the atoms 

on sample surface obtain a sufficient electromagnetic energy by X-ray bombardment, the specific 

electrons can be ejected from the atoms [61]. That is, kinetic energy of the specific electrons is the same 

with the difference between the absorbed energy on photon and the binding energy of the specific 

electron at its orbital [56]. One of the example for photoionization of an atom which is ejected from 1s 

orbital electron is schematically described in Fig. 2.11 to explain the process of photo-emission [61]. 

 

Figure 2.11 Schematic illustration for the XPS process, which shows photoionization of an atom 

from a 1s electron [61]. 



23 

 

Detection of ejected electrons is XPS’s main principle using the specific kinetic energy. XPS’s 

data is usually plotted using the intensity on the y-axis versus binding energy, which is in the range of 

1200 to 0 eV, on the x-axis as shown in Fig. 2.12. A particular element can be detected at the specific 

binding energy, however, overlap of peak shape can be also occurred when the analyses of sample 

surface containing mixture or complex materials. In some cases, the specific atoms within the bulk 

chemical compound are not able to detect due to attenuation by impacts of other atoms’ emission at that 

spot. These disadvantages of XPS technique should be considered before measurement of the membrane 

sample which contains complex/bulk chemical compound. 

Another characteristic of XPS measurement is occurrence of the multiplet peaks. Because s 

orbitals have only single peaks, the ejected electrons from s orbital are relatively easy to analyze. 

However, the ejected electrons from p, d and f orbitals can have multiplet peaks, and these multiplet 

peaks are able to be happened by coupling effect between the occupied outer shell’s unpaired electron 

and unoccupied core orbital after photoionization. Figure 2.12 shows example of XPS survey spectrum 

from tin (Sn), which shows multiplet splitting peaks in p and d orbitals [61].  

 

Figure 2.12 Example of XPS survey spectrum from tin (Sn), which shows multiplet splitting peaks 

in p and d orbitals [61]. 
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The representative XPS instrumentation is made up an X-ray anode, an electron energy 

analyzer, an ultrahigh vacuum system, and data acquisition/analyses system as schematic described in 

Fig. 2.13. The measuring sample is mounted on sample stage in the preparation chamber with ultrahigh 

vacuum to irradiate by photons using X-ray. These X-rays are produced using impaction by electron 

gun onto an anode (e.g., Al or Mg), and the anodes are chilled with water due to heat converted from 

electron energy during the XPS measurement. The X-rays generated by anode material are utilized to 

XPS technique, and the photon energy of Al or Mg is 1486.6 eV or 1253.6 eV, respectively. After 

bombardment of the X-rays on a sample surface, the photoelectrons emitted from the sample surface 

are separated into the vacuum chamber and then counted by the hemispherical energy analyzer. Finally, 

the counted data by energy analyzer are examined by the XPS software [62]. Therefore, these XPS 

measurement is applied to analyze atomic information on membrane surface. 

 

Figure 2.13 Schematic diagram of the XPS instrumentation [62]. 
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2.3.3.4 Contact angle 

 

Surface properties such as hydrophilic or hydrophobic and surface charge can affect the 

membrane performance in the pressure-driven process. The common method to measure hydrophilicity 

of the membrane is based on measurement of a contact angle value by (1) captive bubble method which 

uses air bubble onto the immersed membrane, and (2) sessile drop method which measures deposition 

of a liquid droplet on the membrane surface [63]. Figure 2.14 represents schematic diagram for 

measurement of contact angle value. According to Young's Law, the air–water (γaw), air–solid (γas), and 

water–solid (γsw) free energies to the contact angle satisfy followed equation γas-γsw = γaw cosθc, and the 

law allows inferences about the relative hydrophilicity of different surface chemistries [64]. Thus, a 

hydrophobic surface (e.g., θc > 90˚) is less wettable as a result of the higher free energy of its water–

solid interface (γas-γsw<0) compared to a hydrophilic surface (e.g., θc<90˚ and γas-γsw>0) [64]. Values for 

contact angle of the membrane closely related with its surface features/functional group, for example, -

OH, NH2 group increases hydrophilicity of the membrane surface [44].  

Hydrophilicity affects not only performance of the membrane but also less fouling in the 

pressure-driven process. The increase of hydrophilicity of the membrane surface can improve the 

permeate flux/rejection in pressure-driven process. Yu et al. [65] studied that interfacially synthesized 

thin film composite RO membrane was modified by poly(N-isopropylacrylamide-co-acrylamide). In 

this research, modified RO membrane showed that the membrane surface with high hydrophilicity 

enhanced about 20% of the water permeability without loss of rejection. The membrane surface of 

hydrophilic/hydrophobic is also an important factor in solute rejection during membrane applications. 

Kiso et al. [66] published that the rejection of hydrophobic molecules such as alkyl phthalates and 

mono-substituted benzenes by NF membranes has linear correlation between affinity of the solute and 

surface of the membrane expressed as the octanol/water partition coefficient (log P). Therefore, 

hydrophobic interactions between the solute and surface of the membrane are the dominant mechanism 

for rejection of hydrophobic compounds. 

Membrane surface property coated by hydrophilic polymer is a one of the method to improve 

hydrophilicity of the membrane surface as well as water flux/membrane fouling. Due et al. studied that 

a polyvinylidene fluoride (PVDF) membrane was modified by surface coating using a polyvinyl alcohol 

(PVA) aqueous solution followed by solid-vapor interfacial crosslinking to improve hydrophilicity [67]. 

The research was shown that the flux of the modified PVA/PVDF membrane was 14% higher than the 

unmodified PVDF membrane after 4 h filtration test and 95% higher after 18 h of filtration test when 

feed solution is surface water containing total organic carbon of 7 mg/l. Additionally, the hydrophilicity 
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of membrane surface by modified polysulfone [68] and thermo-responsive polymer [65] also improved 

fouling problem occurred by hydrophobic foulants such as organic pollutants and bovine serum albumin. 

The reason for improving fouling problem in the case of hydrophilic membrane is that hydrogen 

bonding interaction between membrane surface and water molecules makes thin water boundary which 

can prevent the approach of hydrophobic foulants on membrane surface [69]. However, in the case of 

hydrophobic membrane, the repulsion of water molecules from the hydrophobic membrane surface is a 

natural process due to increasing entropy and thus hydrophobic foulant molecules have an affinity to 

absorb onto membrane surface and dominate the boundary layer [44]. Therefore, improvement related 

to hydrophilicity of the membrane surface is important parameter to reducing membrane fouling with 

hydrophobic colloids and organic pollutants. Therefore, measurement of contact angle is important to 

investigate effect of hydrophilicity on membrane performance and fouling phenomenon. 

 

Figure 2.14 The method for measurement of contact angle (a) sessile drop method, (b) captive 

bubble method, respectively. 
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2.3.3.5 Zeta potential (ζ) 

 

 Polymeric filtration membranes (e.g., polyamide membrane) or ion-exchange membranes 

naturally are ionizable characteristics at the membrane surface. Consequently, the sign 

(negative/positive) and amount of charge on membrane surface depends on condition of aqueous feed 

solutions such as ionic concentration and solution’s pH. Feed solutions are normally complex mixtures 

which contains charge carrying substances such as surfactants, polyelectrolytes, ions, and 

macromolecules. The membrane’s surface charge can be changed by complexation/interaction between 

charge carrying chemicals and the membrane surface. Because the complexation/interaction between 

membrane surfaces and these species in aqueous phase determines the membrane’s surface charge, 

measurement of the zeta potential of the membrane is important parameter to explain membrane 

performances or fouling phenomenon. 

The structure, charged species which near to the surface of membrane, is known as the 

electrical double layer (EDL) [56]. Charge spreading of the EDL is most concentrated at closest to the 

surface of membrane, and its potential decreases in accordance with increasing distance from the surface 

of membrane as shown in Fig. 2.15. Ions near to the surface of membrane are existed in the immobile 

Stern layer. This layer can be subdivided into the inner Helmholtz layer: (1) the layer containing partly 

dehydrated ions attached to the membrane surface electrostatically between the surface of membrane 

and the inner Helmholtz plane (IHP in Fig. 2.15), and (2) the outer Helmholtz layer containing fully 

hydrated ions which are counter-ions to the inner Helmholtz ions between the inner and outer Helmholtz 

planes (OHP in Fig. 2.15). In the immobile Stern layer, the charge spreading and electrical potential are 

measured by interactions between ions/dipoles and the surface of membrane. Ions can freely move by 

thermal driven motion where beyond the immobile Stern layer which is called by the diffuse Gouy-

Chapman layer.  

There are various methods to measure electrokinetic properties such as streaming potential, 

electro-osmosis, electrophoresis, and sedimentation potential. Because this work was conducted by 

electrophoresis method, only electrophoresis method is briefly summarized as follows: The ζ potential 

values of the membrane surface is measured by electrophoresis method using a quartz cell. When 

electric field exists in the electrophoresis chamber, an asymmetric electroosmotic flow happens through 

the membrane surface. Because of the amassment of the cations from the electrolyte solution, this 

electroosmotic flow allows to move the monitoring particles on the membrane surface. Then, the ζ 

potential values on the membrane surface can be calculated using the Smoluchowski equation (2-4) 

which uses electrophoretic mobility of the monitoring particles [70]. 
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ζ =
4πηU

εrε0
                                                                                                             (2 − 4) 

 

where ζ is the ζ potential measured by electrophoresis method (mV), η is the viscosity of liquid 

medium (0.89× 10−3 Pa s), U is the monitoring particle’s electrophoretic mobility (cm2 V−1 s−1), εr 

and ε0 are permittivity of the liquid medium (78.38) and vacuum (8.854 × 10−12 s m−1), respectively. 

 

 

Figure. 2.15 Schematic illustration for charge spreading of the ionic species which near to the 

membrane surface (the electrical double layer) and the resultant zeta potential with increasing 

distance from the membrane surface [56]. 
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Surface charge of membrane affects not only rejection of the charged organic/inorganic matters 

by the membrane but also different fouling tendency in the pressure-driven process.  

Firstly, electrostatic interactions between charged organic solutes and a surface charge of 

membrane have often been published to be a rejection mechanism significantly [71]. Hu et al. studied 

that charged organics had higher rejections than neutral organics by negative charge of membrane 

surface because of electrostatic repulsion between charged of solute molecules and membrane surface 

[72]. The membrane surface of RO, NF and UF membranes frequently has a negative charge to increase 

the rejection of negatively charged natural organic matters by donnan exclusion effect [73]. Negative 

surface charge of the membranes are increased by increasing the pH of feed solutions due to a 

dissociation of carboxylic and sulfonic functional groups on membrane surface [44, 74], resulting 

increase rejection of negatively charged organic/inorganic matters.  

Secondly, the electrostatic charge of membrane surface is a mainly important consideration for 

the decrease of membrane fouling when feed solution contains charged foulants. When surface of the 

membrane and the foulant have same charge, electrostatic repulsion forces between surface of the 

membrane and the foulants prevent the foulant deposition on the membrane surface thereby reducing 

the fouling [75]. For example, humic materials in aquatic environments are took into account to be the 

major element of natural organic matter (NOM), are refractory anionic macromolecules with 

low/moderate molecular weight [75]. Humic material contains both aromatic and aliphatic components 

with primarily carboxylic/phenolic functional groups [75]. Consequently, humic materials mostly are 

negatively charged in the pH range of natural waters [76]. Mika et al. showed that at pH 4–5 the 

membrane (NTR-7450 from Nitto Denko and Desal-5 from Osmonics/Desal company) has slightly 

negative charge and humic acid are almost uncharged thereby promoted fouling at pH 4-5 condition 

[77]. To solve this issue, polyvinyl alcohol (PVA) coated the membrane with highly negatively charged 

may show stable flux because of the strong electrostatic repulsion between membrane surface and 

negatively charged NOM [50]. Therefore, measurement of zeta potential is important to investigate 

effect of surface charge on membrane performance and fouling phenomenon.  
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2.3.3.6 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

 

 TOF-SIMS is a kinds of mass spectrometry technique to analyze chemical information such 

as elements and lower molecular weight compound using the detection of secondary ions (SIs). These 

SIs are generated from a target surface (e.g., membrane surface) under vacuum state, and it is 

bombarded by a primary ion beam. To measure SIs for analyzing chemical information, the SIs, which 

generated from bombardment of primary ions on the sample’s surface, are then extracted, and 

subsequently collected into a mass spectrometer.  

Several processes are needed to measure SIMS. Firstly, the primary ion beam with high energy 

collimated on sample surface. Secondly, the primary ions with high energy collide with sample surface 

(described in grey circles in Fig. 2.16), and elastic/inelastic collisions transfers from partial primary 

ion’s energy to the particles on sample surface. Thirdly, an atom/molecules, which received from partial 

primary energy during the ion bombardment, can be higher than the surface binding forces, then they 

are ejected from the sample surface (depicted in green circle in Fig. 2.16). Then, chemical information 

can be analyzed by these SIs. Total processes are well explained in Fig. 2.17 using schematic illustration. 

 

 

Figure. 2.16 Schematic representation of a collision event that can lead to the formation of 

liberated SI capable of being captured in a detector. Primary ion (red) impacts upon sample 

surface (grey), thereby transferring energy to the sample, which is then distributed through 

different atoms (grey lines). This process can lead to the ejection of SI from close to the surface 

(green), which is then possible to observe with an analyzer [78]. 
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Figure. 2.17 Total processes to analyze mass spectra of sample surface. (a) primary ion beam 

collimates on sample surface and occurs SIs, (b) extraction of secondary ions, (c) repeated process 

for specified area, and (d) produced mass spectra using detection of ejected SIs [78].  

 

When ejected SIs have the same kinetic energy and they are collected to a flight tube before 

entering a detector as shown in Fig. 2.18. These SIs’ mass analysis is obtained by time-of-flight (ToF) 

method, and heavier masses needs more time to enter the detector compared to the lighter masses. The 

ratio of mass to charge (m/z) of the SIs is calculated by following the equation (2-5). Lastly, the SIs 

enter to detector which is a microchannel plate, giving the final signal output (Fig. 2.18). 

 

𝑚

𝑧
=  

2𝑣𝑡2

𝐿2
                                                                  (2 − 5) 

 

where 𝑣 is the accelerating potential, 𝑡 is the ToF of the SIs, and 𝐿 is the flight tube’s length.  
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Figure. 2.18 Schematic illustration of ToF analysis [78]. 

 

Therefore, ToF-SIMS equipment has been utilized when biological or chemical samples are 

investigated to study detailed elemental and molecular information on the surface of samples. A 

schematic diagram of whole processes related to ToF-SIMS instrument are explained in Fig. 2.19. 

 

Figure. 2.19 Schematic diagram of dual beam ToF-SIMS equipment. The SIs are ejected from 

surface of sample by a primary ion gun. Ejected SIs are collected by the flight tube, and 

subsequently detected at a microchannel plate. Mass spectra to analyze chemical information on 

the surface of sample can be measured by depending on instrumental operation mode [78]. 
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2.4 Acid-catalyzed hydrolysis of amide group 

 

 Amide hydrolysis has been studied significantly due to the biological importance of proteolytic 

reactions [32]. The amide hydrolysis reactions conducted under acidic conditions can be subdivided 

into four reaction steps [32, 79-81]. Figure 2.20 shows the scheme for reaction pathways of the acid-

catalyzed hydrolysis reaction of piperazine-amide, which is one of the example for amide group. The 

piperzine-amide hydrolysis is initiated by either an O-protonated or N-protonated pathway under acidic 

conditions. In the first step, the two pathways are in competition and protonation of the oxygen or 

nitrogen in the amide group, and thus the dominant pathway for the subsequent reaction, is determined 

based on activation energy [81]. The second step of the piperazine-amide hydrolysis reaction occurs by 

nucleophilic attack of first water molecular to carbon at carbonyl bond of piperazine-amide group, 

followed by formation of a dihydroxy tetrahedral intermediate and removal of one proton at attached 

first water molecule by a second water molecule [79]. Thirdly, nitrogen for amide or oxygen of carbonyl 

group additionally reacts with a proton in the case of O- and N- protonation, respectively [80, 81]. At 

last, the C-N piperazine-amide bond breaks, causing depolymerization of the amide group into carboxyl 

and amine groups [32, 79-81]. 

 

 

Figure. 2.20 Reaction pathways of the piperazine-amide hydrolysis reaction under acidic 

conditions initiated from (a) O-protonation and (b) N-protonation. 
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Meanwhile, according to Ma et al. [81], the second and third steps of the hydrolysis 

reaction were combined into the same transition state for calculating the polyacrylamide 

polymer using density functional theory (DFT) computational modeling method (Fig. 2.21). 

 

Figure. 2.21 Reaction pathways of polyacrylamide polymer under acid-catalyzed hydrolysis 

initiated (a) O-protonation and (b) N-protonation with combining second and third parts as 

explained in Fig. 2.20 [81]. 
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2.5 Acidic degradation of PA membranes  

 

 Recently, numerous studies have been performed to investigate acidic degradation on PA 

membranes’ physico-chemical properties. Liu et al. [25] investigated effect of coating by N-

isopropylacrylamide-co-acrylamide copolymers on virgin full-aromatic PA membrane in terms of long-

term acid stability using filtration of 0.5 M HCl. Figure 2.22 shows that 0.5 M HCl acidic condition 

affected hydrolysis of full-aromatic PA membrane after 30 Days filtration, resulting to decrease salt 

rejection. However, the author did not explain amide functionalities of degraded membrane (e.g., amide 

I band in 1663 cm-1 (C=O stretching) or amide II band in 1541 cm-1 (N-H bending motion)) by ATR-

FTIR technique. In summary, filtration property of full-aromatic PA membrane is deteriorated when the 

membrane is exposed to extreme acidic condition. 

 

Figure. 2.22 Salt rejection of the full-aromatic virgin (■) and modified (coated) (▲) membranes 

with increasing filtration times until 2 months with aqueous acidic solution containing 0.5 M HCl 

and 2,000 ppm NaCl. The operating condition is 1.5 MPa pressure and room temperature [25]. 
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In the case of semi-aromatic PA membrane, Tanninen et al. [26] studied acid-stability of semi-

aromatic PA membranes (The Desal-5 DK and the NF 270 membrane) using filtration test containing 8 

wt% H2SO4 and 25g/L CuSO4 at 40°C during 2 months. Figure 2.23 explains 8 wt% H2SO4 acidic 

condition affected hydrolysis of semi-aromatic PA membranes after about 25 Days filtration, resulting 

to decrease copper rejection, on the other hand, acid-resistant NF membranes were almost maintained 

during operation. In this paper, the author did not also explain chemical analyses of amide group (e.g., 

ATR-FTIR or XPS measurement).  

 

 

Figure. 2.23 Copper rejections of NF membranes (BPT-NF-2, BPT-NF-1, and Desal KH as acid-

resistant NF membranes with Desal-5 DK and NF 270 as semi-aromatic PA membranes) during 

2 months’ filtration times. Feed solution contains 8 wt% H2SO4 and 25g/L CuSO4. Operating 

pressure and temperature are 30 bar and 40°C, respectively. [26]. 
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Moreover, another semi-aromatic PA membrane (the NF-45 membrane) showed similar results 

which are severely decreased sucrose/glucose retention due to acid-catalyzed hydrolysis when the 

membrane exposed to 5 wt% HNO3 or 20 wt% H2SO4 at 80°C for only 1 month as shown in Table 2.4 

[18]. Evidence for hydrolysis of PA membranes by acid was suggested by severely increased water flux 

and decreased sucrose and glucose rejection. 

 

Table 2.4 Permeability after exposure to various acidic conditions  

during 0 to 4 months for NF-45 membranes [18]. 

 

 

To sum up, filtration property of semi/full-aromatic PA membranes are deteriorated when the 

membrane is exposed to extreme acidic condition. The previous studies were mainly investigated to 

effect of acid on PA membranes in the view of permeability, however, both changes of physico-chemical 

properties as well as degradation mechanism of semi/full-aromatic membranes after exposure to 

extreme acidic conditions have not been systematically discussed up to now. Hence, a detailed research 

needs to explain effect of severe acidic conditions on physical and chemical properties of PA membranes 

using various analytical tools (e.g., ATR-FTIR, XPS, Zeta potential, and ToF-SIMS) and computational 

calculation methods.  
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Abstract 

 

We systematically investigated the effects of acidic aqueous solution (15wt% sulfuric acid) on 

the physical and chemical properties of commercially available nanofiltration (NF) polyamide 

membranes, using piperazine (PIP)-based NE40/70 membranes and m-phenylene diamine (MPD)-

based NE90 membrane. Surface properties of the membranes were studied before and after exposure to 

strong acid using various analytical tools: Scanning Electron Microscopy (SEM), Attenuated Total 

Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy 

(XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), contact angle analyzer, and 

electrophoretic light scattering spectrophotometer. The characterization and permeation results showed 

piperazine-based NE40/70 membranes have relatively lower acid-resistance than MPD-based NE90 

membrane. We also conducted density functional theory (DFT) calculation to reveal the different acid-

tolerances between the piperazine-based and MPD-based polyamide membranes. The easiest 

protonation was found to be the protonation of oxygen in piperazine-based monomer, and the N-

protonation of the monomer had the lowest energy barrier in the rate determining step (RDS). The 

calculations were well compatible with the surface characterization results. In addition, the energy 

barrier in RDS is highly correlated with the twist angle (τD), which determines the delocalization of 

electrons between the carbonyl πCO bond and nitrogen lone pair, and the tendency of the twist angle was 

also maintained in longer molecules (dimer and trimer). This study clearly explained why the semi-

aromatic membrane (NE40/70) is chemically less stable than the aromatic membrane (NE90) given the 

surface characterizations and DFT calculation results.  
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3.1 Introduction 

 

Nanofiltration (NF) technology utillizing separation mechanisms of both solution diffusion (as 

in reverse osmosis) and sieving (as in ultrafiltration) has attracted lots of attention during past decades 

because of its high rejection of divalent salts and organic molecules with low molecular weight (200 – 

1000 Mw) at low operating pressure [82, 83]. Currently, commercial NF polyamide thin-film composite 

(TFC) membranes have been widely fabricated by interfacial polymerization method using piperazine 

(aliphatic amine monomer) or m-phenylenediamine (MPD, aromatic amine monomer) reacting with 

trimesoyl chloride (TMC, acyl chloride monomer) [7, 8]. The interfacial polymerization using amine 

monomer (e.g., piperazine or MPD) and acyl chloride monomer (e.g., TMC) is one of the most effective 

methods to fabricate TFC NF membranes [84], since the thin/dense polyamide selective layer can make 

high water flux at low driving-pressure [85] and the selective performance can be optimized by several 

factors of fabrication such as monomer concentrations, effective additives, reaction times, and curing 

time/temperature for post-treatment [9]. 

The NF process has been applied to the purify phosphoric and nitric acids [12, 13], as well as 

diluted acidic streams in dairy cleaning-in-place processes (CIP) [14], to treat effluents in the pulp and 

paper industry [15], recover phosphorus from sewage sludge [16, 17], remove metals (e.g., copper or 

gold) with a high sulfuric acid concentration [18], and sulfate ions from industrial effluents in the mining 

and metal industry [6, 19]. Furthermore, the application includes the removal or recycling of abundant 

acids like hydrochloric acid, sulfuric acid, fluoroboric acid, nitric acid, boric acid, and other valuable 

chemicals (copper or gold) [11, 23]. There has been a demand for acid-resistant NF membranes which 

have tolerate at low pH condition during the application. However, high performance commercial NF 

polyamide TFC membranes fabricated by piperazine or MPD with TMC are recommended for use only 

in the range of pH 2 to 11 [24]. 

There has been much research on hydrolysis of amide because of the great biological 

importance of proteolytic reactions [32]. An amide bond’s stability is attributed to its partial double-

bond character, which is affected by the delocalization of electrons between the carbonyl πCO bond and 

the nitrogen lone pair of amide [34, 37, 39]. The amide bonds with rigid planar conformation have a 

short length of C-N bond [34], lowering the reactivity of nucleophilic attacks of water molecule toward 

the carbon of the carbonyl group and shifting the basicity of the amine’s nitrogen. [86]. Acid-catalyzed 

hydrolysis reactions of amide may be subdivided into three or four reactions, depending on the 

combination of second and third reactions. For the hydrolysis reaction, protonation of oxygen (O) or 

nitrogen (N) occurs. The first reaction may involve N-protonation, which forms a tetrahedral 
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intermediate at the nitrogen in amide. The N-protonation in the amide group destabilizes the amide C-

N bond by reducing delocalization of the lone-pair electrons of N or O of the carbonyl group, resulting 

in an increase in C-N bond length [38]. For example, in the twisted lactams case, N-protonation of the 

amide bond increases the distortion and length of the C-N bond [40], causing destabilization of the bond 

[34]. Another initial reaction of the amide hydrolysis reaction may involve O-protonation. The O- or N-

protonation pathways were found to compete with each other [81]. That is, the amide hydrolysis reaction 

of the first step may proceed by either an O-protonated or N-protonated pathway, depending on the 

kinds of amide (undistorted amides are highly protonated at the oxygen) [38]. The protonation by acidic 

media twists the C-N bond to lose the resonance between nitrogen lone-pair electrons and carbonyl π 

bonds and consequently accelerates the rate of amide’s hydrolysis [38, 39, 81]. In the second reaction 

of amide hydrolysis, nucleophilic attack by a water molecular on the carbon backbone is activated to 

form a dihydroxy tetrahedral intermediate, followed by the loss of a proton to a second water molecule 

[79]. This second step of the amide hydrolysis reaction is known as the rate determining step (RDS) for 

the acid-catalyzed hydrolysis [39]. Thus, solvent water plays an important role in acid-catalyzed 

hydrolysis reactions [79]. The third reaction is the protonation of basic intermediate (nitrogen of amide 

bond in O-protonation case or oxygen of carbonyl group in N-protonation) [80, 81]. According to Ma 

et al. [81], the second and third steps of the reaction were combined into the same transition state for 

calculating the polyacrylamide polymer. Finally, the last part is breaking of the C-N amide bond by 

transferring a proton from the hydroxyl group to the leaving nitrogen [32, 79-81, 87, 88].  

 As described above, the stability of the amide bond is influenced by the resonance between 

the nitrogen lone-pair electrons and carbonyl πCO bond electrons [34]. That is, the distortion degree of 

the C-N amide bond is closely related to the rate of the amide’s hydrolysis. The degree of the twist angle 

(τ) has been calculated by computational modeling method and reported by several researchers [35-39]. 

Wang et al. showed [35] that the most distorted C-N amide bond, among the several kinds of bicyclic 

anilides, underwent 11 orders of magnitude of the rate enhancement for acid-catalyzed hydrolysis due 

to high rate constant for H2O attack on the protonated amide bond (RDS step) compared to relatively 

planar C-N amide bonds. That is, the most distorted bicyclic anilide was kinetically reactive in acid-

catalyzed hydrolysis due to distortion of a C-N amide bond destabilized by loss of the resonance [35, 

36]. Mujaka et al. [38] also reported that amides’ hydrolysis rate was accelerated when the C-N bond is 

extremely twisted due to the orthogonality of the carbonyl π orbital and the lone pair of the nitrogen. 

Chemical stability in acid-catalyzed hydrolysis reaction can be relatively evaluated by calculation of 

the twist angle (shown destabilization by loss of the resonance) of protonated amide as the reactant in 

the RDS step [34-36, 40]. 
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 In this work, two commercially available NF polyamide TFC membranes fabricated by two 

amine monomers (piperazine or MPD) with acyl chloride (TMC) were chosen as representative 

polyamide NF membranes and the effect of acidic aqueous solution (15wt% sulfuric acid) on the 

membrane’s physical and chemical properties were systemically investigated. Membrane acid-soaking 

tests were conducted by following the method reported by other researchers for membrane acid-stability 

characterization [11, 89], and the surface property changes were evaluated using SEM (scanning 

electron microscopy) as an observation of surface morphology, ATR-FTIR (attenuated total reflectance 

Fourier transform infrared spectroscopy) as a measurement of the chemical properties of the membrane 

surface, XPS (X-ray photoelectron spectroscopy) as a confirmation of atomic percentages’ change, 

contact angle for surface’s hydrophilicity, ToF-SIMS (Time-of-Flight Secondary Ion Mass 

Spectrometry) as a measurement of hydrolyzed functional group (carboxyl and amine group), and 

permeation experiments. To the best of our knowledge, this is the first study to use ToF-SIMS to 

evaluate changes in membrane properties after hydrolysis by acid. Furthermore, using  density 

functional theory (DFT) calculation, we investigated the acid-catalyzed hydrolysis rate between 

piperazine-based polyamide membrane with MPD-based polyamide in terms of (1) calculation of 

reaction/transition-state energy during the acid-catalyzed hydrolysis, and (2) O/N- protonated twist 

angle (τ) of amide monomer, dimer, and trimer to study the effect of length of molecules on the twist 

angle. 
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3.2 Materials and methods 

 

3.2.1 Chemicals and materials  

Commercially available NE40, 70, and 90 thin-film composite (TFC) NF membranes were 

obtained from Toray Chemical Korea Inc (Korea) and used as a representative piperazine-based TFC 

NF polyamide membrane (NE40/70) and MPD-based TFC NF polyamide membrane (NE90). The base 

polysulfone (PSf) UF membrane used for comparison with the acid-hydrolyzed NF membrane was 

supplied by the Toray Chemical Korea Inc (Korea).  

The following reagents were used without further purification: Sulfuric acid was purchased 

from DaeJung Chemicals (Korea) and the purity was 95%. Sodium chloride (NaCl) was obtained from 

Samchun Chemicals (Seoul, Korea), and magnesium sulfate (MgSO4·7H2O) was purchased from 

Sigma-Aldrich for preparation of the permeation experiment. Milli-Q water (18 M resistivity, 

Millipore®, Merck Millipore, Germany) was used as the solvent for soaking and rinsing the membrane 

samples as well as for preparing aqueous solutions. 

 

3.2.2 Characterization of membranes  

The membranes were exposed to the acid solution by to the methods reported by other 

researchers who conducted acid-resistance tests of membranes [11, 89]. The acid-soaking tests were 

conducted in Pyrex glass bottles with PTFE (polytetrafluoroethylene) cover. The TFC NF and UF 

membranes’ coupons (10 × 15 cm2) were immersed in 1L of 15% (w/v) H2SO4 aqueous solution at 

25 °C for 3, 7, 14, 28, and 63 Days. After that, the membrane samples were taken from the 15% sulfuric 

acid solution and rinsed thoroughly with de-ionized water, and then stored in Milli-Q water at room 

temperature until characterizations. Membrane samples for the analysis using SEM, ATR-FTIR, XPS, 

ToF-SIMS and goniometer were freeze-dried for at least 48 hrs in a vacuum freeze dryer (Biocryos, 

Korea); in contrast, wet membranes stored in Milli-Q water were used for measuring surface zeta 

potential and filtration performance. 

 

3.2.2.1 Scanning electron microscopy (SEM) 

Top surface images of the membranes were observed using Scanning Electron Microscopy 

(SEM) (Quanta 200, FEI, Hillsboro, OR, USA) to investigate the effect of acid- soaking on the surface 
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morphology of the membrane. The dried membrane was tightly mounted on a specimen by a carbon 

tape, then all samples were platinum coated at 20 mA and 2 ×  10-3 mbar for 1 min in a Turbo Pumped 

High-Resolution Chromium Sputter Coater (K575X, EMITECH, Lohmar, Germany) to reduce image 

artifacts produced by electrostatic charge. 

 

3.2.2.2 Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was used to 

analyze the effect of acid-soaking on the chemical properties of the membrane surface using a Nicolet 

6700 spectrometer (Thermo Scientific, Waltham, MA, USA) containing a flat plate germanium ATR 

crystal with an incident angle of 42° [90, 91]. OMNIC 8.1 software was used to apply the FTIR spectra, 

correct their baselines, and normalize the spectra. Dried membrane samples were scanned with nitrogen 

gas for purging continuously, and 64 scans of average spectra were calculated at wave numbers from 

1000 to 4000 cm-1 with a resolution of 4 cm-1 for C=O stretching of both MPD-based amide and 

piperazine-based amide (1663 and 1634 cm-1 respectively). 

 

3.2.2.3 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron Spectroscopy (XPS) (K Alpha, Thermo Scientific, USA) was applied to 

investigate the effect of acid-soaking on the change in the percentages of atoms in TFC NF membrane; 

these consisted of carbon (C), oxygen (O), nitrogen (N), and sulfur (S). Survey XPS spectra were 

measured by a sweeping range from 0 to 1000 eV of electron binding energy with a resolution of 1 eV. 

The X-ray beam penetrated about 5 ~ 10 nm from the membrane surface for analysis of the elemental 

composition. In this work, the binding energy of C1s, O1s, N1s, S2s, and S2p was detected at 285, 531, 

399, 231, and 167 eV, respectively [92].  

 

3.2.2.4 Contact angle 

Contact angle value of a membrane surface was confirmed to investigate effect of acid- 

soaking on surface’s hydrophilicity by goniometer (Phoenix 300Plus, Surface & Electro Optics Co. Ltd., 

Korea). Contact angle of the membrane surface was measured by using sessile drops method. To obtain 

representative contact angles, 15 contact angle measurements were conducted on three separately 

prepared membranes coupons. All membrane samples were vacuum dried simultaneously during 48 hrs 

for same condition.  
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3.2.2.5 Zeta potential 

Electrophoresis was performed to study the influence of acid-catalyzed hydrolysis on 

membrane surface charge according to the method published in our previous work [93]. Wet membrane 

samples kept in Milli-Q water over 1 Day were attached to a plate sample cell, then surface zeta potential 

of the membranes was measured using a 10mM NaCl electrolyte solution with polystyrene latex 

particles (diameter: 520 nm) (Otsuka Electronics, Osaka, Japan) from pH 3 to 9. The acidic or basic pH 

values were adjusted using 1N HCl or NaOH, respectively. The membranes’ surface zeta potentials 

were measured three times by an electrophoretic light- scattering spectrophotometer (ELS-8000, Photal, 

Otsuka Electronics, Japan). 

 

3.2.2.6 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

Fragments of the polymer before and after the acid-soaking test were detected by Time-of-

Flight Secondary Ion Mass Spectrometry (ToF-SIMS) (TOF.SIM5, ION-TOF GmbH, Germany) in both 

positive-charge and negative-charge modes with a Bismuth gun (Bi+). Analysis was performed under 

static conditions with a Bismuth (Bi+) gun of 1 pA ion current and an energy of 25 keV. The ToF-SIMS 

spectra of the secondary ions were measured over mass ions (m/z) range from 0 to 100 or 120 in positive 

and negative mode, respectively. These lower masses range ions are much more matched exactly in ion 

abundance than higher masses [94]. The peak intensities of the secondary ions were normalized by total 

ion intensities detected in the spectrum to conduct qualitative comparison. Positive and negative mode 

was used to analyze the amine group and carboxyl group, respectively, because the amide group 

hydrolyzed to carboxyl and amine group through acid-catalyzed hydrolysis reaction as reported in 

already published research [79, 80, 87]. Table 3.2 shows the list of low-mass ions of elements and 

fragments, including carboxyl and amine groups that were detected by ToF-SIMS from the outermost 

surface of NE70/90 virgin and NE70 7 Days/NE90 63 Days membranes. Raw data for ToF-SIMS was 

sorted by Table 3.2 and reflected in Fig. 3.4 to compare the hydrolyzed amide groups in both NE70 and 

90 membranes. 

 

3.2.3 Permeation experiments of membrane soaked in acid  

The TFC virgin NF membrane (NE40, 70, and 90) and acid-soaked membranes (3, 7, 14, 28, 

and 63 Days) were investigated to observe the effect of acid-soaking using a permeating test cells as 

described in another research [4]. Three membranes with 19.6 cm2 effective area were tested at 1 L/min 

flow rates with 2,000 ppm concentration of NaCl or MgSO4 as a feed single solution at room 
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temperature. The operating pressure for the permeation test was set to 150 psi for compaction during 1 

hr, and then 75 psi for the performance test. The permeate water flux (Jw (L m-2h-1 or LMH)) was 

measured after a 1 hr compaction step by mass change of the collected permeate sample in a Falcon 

tube at 25 °C per unit of effective membrane area and per unit time as shown in Eq. (3.1). The rejection, 

R (%), was calculated using single feed solution of 2,000 ppm NaCl or MgSO4 (Eq. (3.2)). Rejection 

of ionic NaCl and MgSO4 was determined based on the measurement of conductivity of the collected 

permeate and feed solution by a calibrated conductivity meter (Ultrameter IITM, Myron L Company, 

USA).  

𝐽𝑤 =  
∆ weight

∆ time × effective membrane area × water density
 (

L

m2h
 or LMH)             (3.1) 

𝑅 = (1 −
[NaCl or MgSO4]permeate

[NaCl or MgSO4]feed
 ) × 100 (%)                                                             (3.2) 

 

3.2.4 Computational calculation methods 

3.2.4.1 Calculation details 

The density functional theory (DFT) calculation was performed to elucidate the degradation 

mechanism of NE70 and NE90 polymer filters. All calculations were performed with the Dmol3 

program, using the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) 

functional to describe exchange-correlation energy [95-97]. All electron relativistic core treatment and 

4.4 version of double numerical plus polarization (DNP) basis set were adopted to treat unreactive core-

electron and atomic orbital basis sets, respectively. Spin polarized calculations were performed with the 

smearing value of 0.005 Ha. The convergence criteria for energy, force, and displacement were set to 

be 1.0×10-5 Ha, 0.002 Ha/Å, and 0.005 Å, respectively. The conductor-like screening model (COSMO) 

was implemented to every systems for the solution effect of water by applying the dielectric constant 

of 78.36 [98, 99]. 

Transition states (TS) of each reaction were found by complete single linear synchronous 

transit (LST) and quadratic synchronous transit (QST) methods [93, 100]. The LST method finds a 

transition state by linear interpolation of geometries between reactant and product to obtain an 

intermediate geometry having maximum energy. Subsequently, the energy minimization was followed 

in directions conjugate to the reaction pathway. The QST method, then, uses the intermediate geometry 

found by the LST method with three-point interpolation: an intermediate geometry, reactant, and 

product. These points were used for QST maximization, which was also followed by another energy 

minimization. This procedure continued until a stable point was located. In these calculations, the 
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threshold for the root mean square (RMS) forces on the atoms was set to be 0.01 Ha/Å. To confirm the 

transition state energy, TS optimization was repeated until only one imaginary vibrational mode was 

sought. 

 

3.2.4.2 Model systems 

The initial structures of monomers, dimers, and trimers of NE70 and NE90 were constructed 

by Conformers module in Materials Studio with the version of 2017R2 (Fig. 3.9) [101, 102]. COMPASS 

forcefield was adopted in this optimization, where the van der Waals and Coulomb interactions were 

treated using an atom-based cutoff distance of 12.5 Å [103, 104]. After initial molecular structures were 

constructed, the geometry optimization was performed by DFT calculations. 

 

3.2.4.3 Out-of-plane deformation and energy calculations 

To investigate the planarity of the amide bond, the degree of out-of-plane deformations (τD), 

where a smaller value represents a more stable resonance structure, was defined by following equation, 

 
 D ABCD A'BCD' / 2τ Tor. Tor. 

 
(3.3)

 

where Tor.ABCD and Tor.A ' BCD '  are the torsion angles of the set of atoms (i.e., C1-N-C3-O and C2-N-

C3-C4 for NE70, C1-N-C3-O and H-N-C3-C4 for NE90 in Fig. 3.10). Note that the term τD is often 

used to indicate the stability of molecules containing an amide bond [37, 38]. 

The degradation reactions of NE70 and NE90 were studied by calculating the changes of 

energy (ΔE) and Gibbs free energy (ΔG). ΔE represents the energy difference between the energy of the 

system at each step and that of Step 1 (Fig. 3.8 (a)), which we took as a reference value of the 

degradation mechanism, as shown below, 

 
Step 1E E E  

 
(3.4)

 

ΔG of each system at T = 25 °C was calculated as follows, 

 

25 C 25 C 25 CG H T S      
 

(3.5)
 

where ΔH25 °C and ΔS25 °C indicate the changes of enthalpy and entropy from Step 1, respectively. Thus, 

in an extended version, ΔG25 °C can be expressed by 
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25 C 25 C 25 C 25 C 25 C

Step 1 Step 1

25 C 25 C 25 C 25 C

Step 1Step 1
           

G H H T S S

U PV U PV T S S

    

   

    

       
(3.6)

 

where U is the molar internal energy, P is the pressure, V is the molar volume, and S is the molar entropy. 

By defining U '  with motional degrees of freedom (i.e., vibration (vib.), rotation (rot.), and translation 

(trans.)), the equation (3.6) can be rewritten as follows, 

 
     

25 C 25 C25 C 25 C 25 C

Step 1Step 1
' 'G E U PV U PV T S S

           
 

(3.7)
 

where U '  = Evib. + Erot. + Etrans. Note that all terms are calculated once the system is optimized to the 

ground state. 
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3.3 Results and discussion 

 

3.3.1 Characterization of membrane soaked in acid 

3.3.1.1 Effect of sulfuric acid on morphology (SEM) 

The surface morphological structures of NF membranes at various exposure time in aqueous 

acid were characterized by SEM images. Representative SEM images of the NF membranes are 

provided in Fig. 3.1, which shows that, the surface feature of the MPD-based NF virgin membrane 

appears to be the ridge-and-valley structure as general polyamide membrane [105]. Piperazine-based 

NE40/70 membranes were either smoother or grainier than the MPD-based NE90 membrane [105], 

because roughness has a strong correlation with amine monomer’s solubility and slightly diffusivity [9], 

and the piperazine used in NF 40/70 has a low solubility/diffusivity in the organic solution (TMC). 

Compared to the MPD-based NE90 membrane, piperazine-based NE40/70 membranes’ surface peeled 

off from the support layer after soaking in acid for 14 Days. These SEM images show that the MPD-

based NE90 membrane has better acid-stability than the piperazine-based NE40/70 membranes.  

 

Figure 3.1 Surface morphology observed by SEM for NF membranes versus exposed time in 

aqueous acid solution.  
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3.3.1.2. Chemical surface property change of polyamide NF membrane by sulfuric acid  

ATR-FTIR spectra were measured for investigation of the effect of acid solution on NF 

membranes. Figure 3.2 shows spectra of (a) NE40, (b) NE70, and (c) NE90 NF polyamide membrane 

from 1000 cm-1 to 4000 cm-1, where related to the membrane polyamide active layer as well as the 

underlying PSf support layer as a result of the relatively large penetration depth of the IR [106]. 

Absorbance peaks at wavenumbers 1634 and 1663 cm-1 are attributed to the amide (I) band of 

poly(piperazineamide) and fully aromatic polyamide NF membrane, respectively [92]. PSf peaks at 

1587 and 1488 cm-1 were measured in all NF virgin membrane [107], which clearly proved that PSf 

was used as a support layer for the NE40, 70, and 90 membranes. Furthermore, in the case of NE40/70 

membranes, decreasing C=O stretching amide bond peak with increasing acid-soaking time supports 

that MPD-based NE90 membrane has better acid-stability than piperazine-based NE40/70 membrane 

as correlated results to surface morphology result in section 3.3.1.1.  
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Figure 3.2 ATR-FTIR spectra of virgin and acid hydrolyzed membranes: (a) NE40, (b) NE70, and 

(c) NE90 NF polyamide membrane from 1000 cm-1 to 4000 cm-1. Absorbance was normalized to 

compare intensity for investigation of effect of acid solution on NF membranes. 
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Figure 3.3: XPS spectra of (a) NE40, (b) NE70, and (c) NE90 NF polyamide membrane with 

increasing acid-soaking time. 
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XPS spectra were measured to investigate the percentages’ change of atoms in TFC NF 

membranes (i.e., carbon (C), oxygen (O), nitrogen (N), and sulfur (S)) resulted from the exposure of 

the membranes to acid. Hydrogen (H) was not included in the XPS result, because XPS is not suitable 

for analyzing hydrogen atoms. Figure 3.3 contains XPS spectra versus binding energy of (a) NE40, (b) 

NE70, and (c) NE90 NF polyamide membranes in the range of 0 to 1,000 (eV) at various acid-soaking 

times. The binding energy of C1s, O1s, N1s, S2s, and S2p was detected at 285, 531, 399, 231, and 167 

eV, respectively [92]. XPS peaks at binding energy 231 and 167 eV are attributed to the sulfur atoms, 

and these sulfur peaks were measured only in piperazine-based membranes (NE40/70) after soaking in 

acid for 28 Days. As ATR-FTIR results, these sulfur peaks were from the PSf support layer of the 

membrane, showing the peeling-off of the active layer on NF40/70 and proving better chemical stability 

in MPD-based polyamide membrane (NE90) than piperazine-based polyamide membranes. Table 3.1 

summarizes quantitative values of the relative atomic concentrations (C, O, N, and S) as well as the 

composition ratios of polyamide NF membranes (virgin versus 63 Days soaking in acid). The molecular 

formulas of fully crossed-linked or fully linear MPD-based polyamide are C21H16O3N4 and C15H10O4N2, 

respectively. Thus, theoretical C/O and N/O atomic ratios should exist in the range of 3.75~7 or 0.5~1.33 

for C/O and N/O, respectively. For the piperazine-based fully aromatic polyamide, the molecular 

formula of fully crossed-linked or fully linear polyamides are C17H19O3N4 and C12H12O4N2, respectively. 

Hence, theoretical C/O and N/O atomic ratios should exist in the range of 3~5.67 and 0.5~1.33 for C/O 

and N/O, respectively. As shown in Table 3.1, all virgin NF membranes exist between theoretical fully 

crossed-linked and fully linear polyamides. However, NE40/70 63 Days sample of C/O atomic ratio is 

6.6 and 6.5, respectively, and the range beyond the theoretical value resulted from PSf support layer. As 

explained in section 3.3.1.1 and the ATR-FTIR results, these C/O atomic ratios showed almost the same 

values as the PSf’s monomer, which has a C27H20O4S formula with 6.75 C/O atomic ratio. 

 

Table 3.1 Relative atomic concentrations (C, N, O, and S) and composition ratios  

of polyamide NF membranes (virgin versus 63 Days soaking in acid) 

Membrane 
Carbon 

(atomic %) 

Oxygen 

(atomic %) 

Nitrogen 

(atomic %) 

Sulfur 

(atomic %) 
C/O N/O 

NE40, virgin 73.0 15.3 11.7 ~0 4.8 0.76 

NE40, 63 Days 82.2 12.4 1.4 4.0 6.6 0.11 

NE70, virgin 72.7 16.0 11.3 ~0 4.5 0.71 
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Surface morphology (SEM images), ATR-FTIR, and XPS results supported that piperazine-

based NE40/70 membrane has less chemical stability than MPD-based NE90 membrane. A ToF-SIMS 

experiment was, also, conducted to explain acid-catalyzed hydrolysis of the polyamide bond. An amide 

bond can be hydrolyzed to carboxyl and amine groups through acid-catalyzed hydrolysis reaction [79, 

80, 87]. Table 3.2 shows a list of fragments which were detected by ToF-SIMS from the outermost 

surface of virgin and hydrolyzed NE70 and NE90 membranes in both negative ((I) for carboxyl group)) 

and positive ((II) and (III) for amine group) mode. The hydrolyzed NE70 membrane was exposed to 

the sulfuric acid for 7 Days, on the other hand, NE90 membrane was soaked in the acid solution for 63 

Days. 

 

Table 3.2 List of fragments which were detected by ToF-SIMS  

from the outermost surface of virgin and hydrolyzed membranes of NE70 and NE90  

in negative (I) and positive mode (II and III). 

(I) Carboxyl group-related fragments from virgin and hydrolyzed membranes of NE70/90 

(NE70 and NE90 were exposed to acid for 7 Days and 63 Days, respectively) 

OH- 

C3O2
- 

C4H2O2
- 

C5H3O2
- 

C7O2
- 

CHO- 

C3HO2
- 

C4H3O2
- 

C6O2
- 

C7HO2
- 

CHO2
- 

C3H2O2
- 

C5O2
- 

C6HO2
- 

C7H2O2
- 

C2O2
- 

C4O2
- 

C5HO2
- 

C6H2O2
- 

C7H3O2
- 

C2HO2
- 

C4HO2
- 

C5H2O2
- 

C6H3O2
- 

C7H4O2
- 

(II) Amine group-related fragments from both virgin and hydrolyzed NE70 

(NE70 was exposed to acid for 7 Days) 

NH+ 

C2N
+ 

CN+ 

C2HN+ 

CHN+ 

C2H2N
+ 

CH2N
+ 

C2H3N
+ 

CH3N
+ 

C2H4N
+ 

NE70, 63 Days 82.2 12.6 1.8 3.4 6.5 0.14 

NE90, virgin 74.7 14.4 10.9 ~0 5.2 0.76 

NE90, 63 Days 74.6 15.1 10.3 ~0 4.9 0.68 
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C2H5N
+ 

C3H4N
+ 

C4HN+ 

C4H6N
+ 

C4HN2
+ 

C4H6N2
+ 

 

C3N
+ 

C3H5N
+ 

C4H2N
+ 

C4H7N
+ 

C4H2N2
+ 

C4H7N2
+ 

 

C3HN+ 

C3H6N
+ 

C4H3N
+ 

C4H8N
+ 

C4H3N2
+ 

C4H8N2
+ 

 

C3H2N
+ 

C3H7N
+ 

C4H4N
+ 

C4H9N
+ 

C4H4N2
+ 

C4H9N2
+ 

 

C3H3N
+ 

C4N
+ 

C4H5N
+ 

C4N2
+ 

C4H5N2
+ 

 

 

(III) Amine group-related fragments from both virgin and hydrolyzed NE90 

(NE90 was exposed to acid for 63 Days) 

NH+ 

C2N
+ 

C3HN+ 

C4HN+ 

C5N
+ 

C5H5N
+ 

C6H4N
+ 

 

NH2
+ 

C2HN+ 

C3H2N
+ 

C4H2N
+ 

C5H1N
+ 

C6N
+ 

C6H5N
+ 

 

CN+ 

C2H2N
+ 

C3H3N
+ 

C4H3N
+ 

C5H2N
+ 

C6HN+ 

C6H6N
+ 

 

CHN+ 

C2H3N
+ 

C3H4N
+ 

C4H4N
+ 

C5H3N
+ 

C6H2N
+ 

 

CH2N
+ 

C3N
+ 

C4N
+ 

C4H5N
+ 

C5H4N
+ 

C6H3N
+ 

 

 

Figure 3.4 summarizes the ToF-SIMS spectra of virgin and hydrolyzed NE70 and NE90 

membranes in terms of mass to charge ratio (m/z) from 0 to 100 or 120 in positive and negative mode, 

respectively, because the lower masses range ions is well-matched in ion abundance than higher masses 

[94]. Figure 3.4 (a) and (c) shows the results in positive mode and Fig. 3.4 (b) and (d) in negative mode. 

More fragments could be detected if the polymer contains more of the specific molecule on the its 

outermost surface. Here, the NE70 membrane sample which was hydrolyzed by acid for 7 Days was 

investigated in ToF-Sims study as a representative hydrolyzed NE70 membrane, since further exposure 

for more than 7 Days makes the active skin polyamide layer of the NE70 peel off, as already observed 

by SEM, ATR-FTIR, and XPS study. When NE70 virgin membrane was compared with NE70 7 Days 

membrane in positive and negative mode (Fig. 3.4 (a) and (b)), the peak of 32 fragments out of a total 

of 39 fragments related to an amine group and 24 fragments out of a total of 25 fragments related to a 

carboxyl group increased. 56 fragments out of a total of 64 (about 88%) related to amine and carboxyl 

groups increased their intensities after exposure of the NE70 membrane to sulfuric acid for 7 Days. This 
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means that there is high possibility of increased number of amine and carboxyl groups by acid-catalyzed 

hydrolysis and the results are in good agreement with other researches [79, 80, 87]. However, when 

NE90 virgin membrane was compared with the membrane hydrolyzed for 63 Days in positive and 

negative mode (Fig. 3.4 (c) and (d)), the secondary ions’ peak of 16 fragments out of 33 total fragments 

related to the amine group and 12 fragments out of 25 total fragments related to the carboxyl group 

increased. Hence, 28 fragments out of a total of 58 related to both amine/carboxyl group (about 48%) 

increased after soaking in acid for 63 Days. The NE90 membrane soaked for 63 Days in acid did not 

show the symptom of increased number of amine and carboxyl groups that resulted from acid-catalyzed 

hydrolysis. The NE90 membrane showed greater chemical stability than the NE70 membranes. 

  

Figure 3.4 The ToF-SIMS spectra of virgin NE70 and NE90 membranes, hydrolyzed NE70 for 7 

Days and hydrolyzed NE90 for 63 Days.  
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3.3.1.3 Effect of sulfuric acid on hydrophilicity and surface charge of polyamide NF membranes 

The contact angle value of an NF membranes’ surface was investigated to observe the effect of 

acid-soaking on the hydrophilicity of the membrane surface (Fig. 3.5). There was no observed influence 

of acid aqueous solution on the hydrophilicity of the MPD-based polyamide NE90 membrane, and this 

results are well compatible with the results showing high chemical stability of the membrane in sections 

3.3.1.1 and 3.3.1.2. However, in the case of piperazine-based NE40 and NE70 membranes, the contact 

angle value slightly decreased until soaking time of 14 or 28 Days in acid and then increased until 

soaking time of 63 Days in acid. According to another research that reported the effect of charge on 

hydrophilicity [108], the hydrophilicity of the membranes increases (contact angle decreases) when the 

membranes are positively or negatively charged. The phenomenon, the more charged forms of the 

carboxylic acid or amine functional group is on the surface of the membrane the more hydrophilic the 

membrane become, the more hydrophilic than the neutral form, were also used to measure pKa of 

membrane surface using contact angle titration [109]. Wamser, C.C. et. al [109] reported the pKa value 

of surface carboxyl and amine functional groups was 6.8 and 9.3, respectively. Likewise, the contact 

angle value of NE40 and NE70 membrane sample monotonically decreased with soaking in acid until 

14 or 28 Days, because the number of amine and carboxyl groups increased by acid-catalyzed 

hydrolysis of the amide bond, as shown in the ToF-SIMS result (Fig. 3.4). The contact angle value of 

the NE40/70 membranes continuously increased with increasing soaking time in acid from 14 or 28 

Days to 63 Days due to hydrophobic PSf UF membrane (~ 68°) [110] as was already explained in the 

SEM, ATR-FTIR, and XPS results. 

Electrophoresis zeta potential was measured to prove the change of membrane surface charge 

by acid-catalyzed hydrolysis. Figure 3.6 shows surface zeta potential of the (a) NE70 virgin and NE70 

7 Days, and (b) NE90 virgin and NE90 63 Days. The surface of the NE70 PA membrane became more 

negative below the isoelectric point (IEP, ~ pH 4) and positive above IEP due to the protonation or 

deprotonation of the carboxyl group and amine group of piperazine, respectively [111]. The absolute 

value of the zeta potential increased after acid-catalyzed hydrolysis (with maintained IEP), because the 

acid-catalyzed hydrolysis of amides produced more positive charge of the amine groups and more 

negative charge of the carboxyl groups on the membrane surface. This result is in good agreement with 

the contact angle results (Fig. 3.5). 
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Figure 3.5 Comparison of measured surface contact angles of NF membranes along with 

increasing acid-soaking time. 
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Figure 3.6 Zeta potential of the (a) NE70 virgin and NE70 7 Days, and (b) NE90 virgin and NE90 

63 Days. 
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3.3.2 Permeation of the virgin and hydrolyzed membranes 

The performance of TFC virgin NF membranes (NE40, 70, and 90) and acid-soaked 

membranes (3, 7, 14, 28, and 63 Days) were investigated in order to study the effect of acidic soaking 

on the membrane performance. Permeation properties (water flux and rejection) of NF membranes at 

various exposure times to acid are shown in Fig. 3.7. Water flux of piperazine-based NE40 and NE70 

membranes dramatically increased with increasing exposure to acid in the case of both NaCl and MgSO4 

feed solutions (Fig. 3.7 (a) and (b)). The rejection of NaCl and MgSO4 became close to 0% after only 

exposed to 7 Days in acid (Fig. 3.7 (c) and (d)). On the other hand, MPD-based NE90 membrane 

maintained both water flux and salt rejection (Fig. 3.7 (a) ~ (d)). The permeation properties of the PSf 

support layer are hardly affected by acid due to its high chemical stability [42], as shown in Table 3.3. 

In other words, hydrolyzed NE40/70 membrane’s water flux was close to the support layer’s water flux 

with increasing exposure time in acid (Fig. 3.7). The permeation properties in Fig. 3.7 proved MPD-

based NE90 membrane has higher chemical stability than piperazine-based NE40 or NE70. Different 

chemical stability between piperazine-based and MPD-based NF membranes was investigated in 

section 3.3.3 using computational analysis in terms of both reaction energy and twist angle. 

Figure 3.7 Permeation properties (water flux and rejection) of NF membranes with increasing 

acid-soaking time (tested at 75 psi, using 2,000 ppm NaCl or MgSO4 single solution).  
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Table 3.3 Permeation properties (water flux and rejection)  

of polysulfone support layer UF membranes with increasing acid-soaking time  

(tested at 75 psi, using 2,000 ppm NaCl or MgSO4 single solution). 

 

  

Support layer 

soaked time in acid 

0 Day  

(Virgin) 
27 Days 63 Days 

NaCl, flux (LMH) 1504 ± 57 1546 ± 25 1477 ± 69 

MgSO4, flux (LMH) 1228 ± 33 1199 ± 59 1193 ± 40 

NaCl, rejection (%) ~0 ~0 ~0 

MgSO4, rejection (%) ~0 ~0 ~0 
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3.3.3 Computational analysis to interpret degradation of NE70 and NE90 

In an acidic condition, the amide bond spontaneously protonates [81]. Our calculation results 

also showed the spontaneous protonations of oxygen and nitrogen in NE70 and NE90 (Step 1 to Step 2 

in Fig. 3.8 (a) and (b)). As seen from other molecules containing a planar amide bond [37, 38], the 

protonation of oxygen was more energetically favorable, since the protonation of N induced a large 

deformation of the resonance structure, whereas the protonation of oxygen had little impact on the 

resonance structure as indicated by the small change in τD (Fig. 3.11 (a) and (b)). Interestingly, the most 

optimal protonation was found to be the protonation of oxygen in NE70, followed by that of nitrogen 

in NE70. Also, we found that the energy difference was correlated with τD at the initial state (Step 1 in 

Fig. 3.8), which indicates the stability of resonance structure in amide bond. For the nitrogen case, τD 

was already larger in NE70 at the initial state than NE90, so NE70 was more easily protonated due to 

the unstable resonance in the amide bond. 

The second reaction was the dissociative adsorption of the H2O molecule at the amide bond, 

which was turned out to be the rate determining step (RDS) of the degradation mechanism (Step 2 to 

Step 3 in Fig. 3.8 (a) and (b)). At this reaction, the highest energy barrier was found in the case of 

NE70(O) (i.e., 42.62 kcal/mol) while the energy barrier was similar in NE90(O) (i.e., 39.61 kcal/mol) 

and NE90(N) (i.e., 39.06 kcal/mol). The lowest energy barrier was calculated in the NE70(N) (i.e., 

34.17 kcal/mol) with the lowest endothermic heat of reaction, so that the degradation of NE70(N) was 

expected to be the highest. We notify that the lowering degree of the energy barrier of NE70(N) well 

offsets the higher value of NE70(O). As C3 is the adsorption site for OH- dissociated from H2O, the 

deformation of the resonance structure mostly occurs at this carbon (Fig. 3.10). Therefore, τD at the 

protonated state (i.e., Step 2) could be still used as a descriptor to indicate the stability for this reaction, 

which was readily seen by the linear correlation of the activation energy with τD (Fig. 3.11 (c)). 

Lastly, the deformation of the C-N bond was an exothermic reaction (Step 3 to Step 4 in Fig. 

3.8 (a) and (b)). The energy barrier for this reaction was calculated to be 13.54 kcal/mol and 5.68 

kcal/mol for the cases of NE70 and NE90, respectively, since the length of the C-N bond was shorter 

for the case of NE70 (i.e., 1.582 Å) than NE90 (i.e., 1.655 Å) at Step 3. However, we presume that the 

difference of the energy barriers at Step 3 to Step 4 does not change the overall degradation tendency, 

since the RDS occurs at that reaction environment. Also, we note that in addition to investigating the 

monomers, the dimers and trimers of NE70 and NE90 (Fig. 3.9 and 3.11) were also tested to observe 

the trend of structural changes in the longer chain. With the initial values of τD’s, their varying trends 

by protonations were maintained. Thus, we conjecture that the predicted degradation reaction is highly 

plausible to show the degradation of the polymer. In conclusion, the degradation of NE70 proceeds 

relatively fast compared to NE90 for its easier protonation and the lowest energy barrier (i.e., 
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thermodynamic dominance of nitrogen protonated) in RDS. 

Figure 3.8 (a) Change of Gibbs free energy (ΔG at T = 25 °C) diagram of the degradation reactions 

of NE70 and NE90. The colored values at transition states (TS 1 and TS 2) in the graph indicate 

the energy barrier for the reaction, and the colored values at Step 3 and Step 4 indicate the relative 

Gibbs free energy of the product to the reactant. O and N in parentheses indicate the protonated 

sites. (b) Schematic reaction mechanism. Red-dotted circles indicate the protonated sites. 
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Figure 3.9 From top to bottom, monomer, dimer and trimer of NE70 and NE90 are presented, 

respectively. Blue dashed line indicates intermolecular hydrogen bonding (HB). Carbon, 

hydrogen, oxygen and nitrogen atoms are colored gray, white, red, and blue, respectively. 

  

NE90NE70

HB

HB



65 

 

 

 

Figure 3.10 The monomer structures of NE70 (a) and NE90 (b). Out-of-plane deformations (τD) 

values are calculated from the sets of atoms as follows; For NE70, τD : C1-N-C3-O, C2-N-C3-C4 

and for NE90, τD : C1-N-C3-O, H-N-C3-C4. 

 

 

 

Figure 3.11 Out-of-plane deformations (τD) profiles of NE70 (a) and those of NE90 (b). O and N 

indicate the N protonated and O protonated structures of NE70 and NE90, respectively. Note that 

τD’s of dimer and trimer were calculated by averaging the values of each protonated site. (c) The 

correlation between activation energy at the rate determining step (i.e., Step 2 to Step 3 in Fig. 3.8 

(a)) and τD at Step 2 (Fig. 3.8 (a)). The dotted line indicates a linear trend line. O and N in 

parenthesis indicate the protonated sites. 
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3.4 Conclusions 

In this work, commercially available NF polyamide TFC membranes fabricated by amine 

monomer (piperazine or MPD) with acyl chloride (TMC) was systemically investigated in view of the 

effect of acidic aqueous solution (15wt% sulfuric acid) on the membrane’s physical and chemical 

properties. Surface morphology (SEM images), ATR-FTIR, XPS, and permeation experimental results 

supported that piperazine-based NE40/70 membrane has relatively lower chemical stability than MPD-

based NE90 membrane. Additionally, a ToF-SIMS experiment showed the conversion of an amide 

group to carboxyl and amine groups by acid-catalyzed hydrolysis. These converted carboxyl and amine 

groups decreased the contact angle and increased the absolute value of the zeta potential on the surface 

of NE40 and NE70 membranes. Piperazine-based NE40 and NE70 membranes had relatively lower 

chemical stability than MPD-based NE90 membrane, since piperazine-based amide’s monomer having 

N-protonation state (NE70 (N)) had the lowest energy barrier in the RDS step. These results are well 

correlated with surface characterization results. These energy barrier results in RDS had a close 

relationship with protonated amides’ twist angle (τD), and the tendency of the twist angle was also 

maintained in longer molecules (dimer and trimer). The results of our study showed that the semi-

aromatic membrane (NE40/70) is less chemically stable than the aromatic membrane (NE90) in terms 

of various surface characterization and DFT calculation results.  
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Abstract 

 

We systematically investigated the effects of both sulfuric acid (pH 0 to 2) and hydrogen 

halides (pH 0) on the physical, chemical, and performance properties of full aromatic nanofiltration 

(NF) polyamide (PA) NE90 membrane. Surface characterizations of the degraded membranes were 

conducted by Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform 

Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), goniometer, and zeta 

potential analyzer. No noticeable changes were observed in the surface properties of the membrane 

exposed to sulfuric acid; however, the permeable characteristics were changed due to the distortion of 

hydrogen bonding from additionally generated proton bridge for O-protonation and the formation of 

tetrahedral structure for N-protonation. On the other hand, the membrane’s physico-chemical properties 

were much affected by hydrogen halides compared with sulfuric acid. Amide peaks N-H bending at 

1541 cm-1 and C=O stretching at 1663 cm-1 in ATR-FTIR were reduced because of the halogenation 

reacted with halogens produced by oxidation of hydrogen halides. The increment in halogenation on 

PA was in the order HCI, HBr, and HI, and it was the same as the order of temporary dipole moment 

from the effect of molecular size. Water flux after exposure to hydrogen halides was severely decreased 

due to broken hydrogen bonding by halogenation. Investigation of sulfuric acid and hydrogen halides 

on the change of the physico-chemical characteristics in the NE90 can be utilized when full aromatic 

NF membrane is applied to treat/recycle several industrial processes, which include sulfuric acid or 

hydrogen halides. 
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4.1 Introduction 

 

 Water is essential for humans, and at many locations on the Earth, fresh water shortages need 

to be solved. In consequence, membrane technology to supply alternative fresh water has been widely 

researched because of its lower operation and maintenance cost, as well as lesser land space requirement 

[4]. Nanofiltration (NF) membrane, which has ~0.5 to ~2.0 nm of pore diameter, has been rapidly 

attracted during the last decades due to its low operating pressure and high rejection for divalent salts 

or organic molecules with low molecular weight in the range from 200 to 1000 g mol-1 [5]. The high 

rejection of NF can be explained by the combination of two different separation mechanisms which are 

the solution diffusion mechanism and steric/electrostatic sieving mechanism [6]. Current commercial 

NF thin-film composite (TFC) polyamide (PA) membranes have generally been fabricated by interfacial 

polymerization (IP) technique using both m-phenylenediamine (MPD, aromatic amine monomer) and 

trimesoyl chloride (TMC, acyl chloride monomer) for the active layer [7, 8]. This IP technique is a good 

way to fabricate TFC NF membranes, because the thin and dense full aromatic PA active layer results 

in high membrane performance despite low operating pressure, and the membrane performance can be 

controlled by various fabrication factors such as the concentration of monomers/additives, 

reaction/curing time, and temperature for post-treatment [9]. 

The NF technique has been widely applied to the reutilization/removal of target compounds 

under acidic conditions: 1) purification of nitric acids in picture tube production [13], 2) treatment of 

acidic effluents in the pulp and paper industry [15], 3) regeneration of acidic streams in dairy cleaning-

in-place processes (CIP) [14], 4) removal of heavy metals [18] and sulfate ions [19] in the mining and 

metal industry, 5) recovery of phosphorus in sewage sludge [16, 17], and 6) separation or recycling of 

abundant acids such as HBF4, HCl, HNO3, H2SO4, and H3BO3 in effluents from rinsing, fermentation, 

and extraction processes [11]. Furthermore, NF technique can be applied to wastewater containing HCl, 

HBr and HI from etching process for semiconductors [20-22]. Acid-resistant NF membranes are needed 

to use the above processes which operate at low pH condition. However, high-performance commercial 

NF full aromatic PA membranes, which are fabricated by MPD with TMC, are limited in the range of 

pH 2 to 11 [24]. Therefore, additional research on the degradation of full aromatic PA membrane by 

acid is needed to apply the above processes which have less than pH 2 acidic condition. Liu et al. [25] 

studied the effect of 0.5 mol/l HCl on full aromatic reverse osmosis PA membrane, and PA was 

hydrolyzed after 30 Days filtration, following more permeations of water and salt. However, to the best 

of our knowledge, the effects of degradation by acid on full aromatic membrane using different pH 
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range of acid and various kinds of acid containing sulfuric acid and hydrogen halides have not 

previously been researched. Therefore, the degradation of full aromatic membrane in various acidic 

conditions, with pH < 2 condition of sulfuric acid and hydrogen halides, requires systematic 

investigation. 

Plentiful research has been conducted on the hydrolysis of amide by the biological importance 

of proteolytic reactions [32]. An amide bond’s stability originates from the delocalization of electrons 

between lone pairs of the nitrogen atom in amide and the carbonyl πCO bond [34, 37, 39]. Acid-catalyzed 

hydrolysis reactions firstly undergo protonation on oxygen (O) or nitrogen (N) in amide group. The 

O/N-protonation twists the amide’s C-N bond to lose the resonance between carbonyl πCO bonds and 

nitrogen lone-pair electrons, and accordingly accelerates the amide’s hydrolysis [38, 39, 81]. Ma et al. 

[81] explains the O- or N-protonation pathways, which compete with each other (e.g., undistorted 

amides are normally protonated at the oxygen [38]). When acid-catalyzed hydrolysis occurs on the PA 

membranes, permeations of water and salt increased as shown in previous researches [6, 25]. However, 

the occurrence of mainly O/N-protonation without hydrolysis would also affect membrane performance 

because of the change of hydrogen bonding and deformation of polymer structure. Firstly, when the O-

protonation occurs in amide group, it changes hydrogen bonding between a hydrogen-accepting 

carbonyl group and a hydrogen-donating H atom (e.g., connecting N atom in amide), due to the 

protonated carbonyl group generated by proton bridge [112, 113]. Witt et al. [113] studied several 

diamides which generate a rigid and strong proton bridge between the amide groups after the O-

protonation, because it can be further stabilized by changing conformations including those with axial 

substituents. Furthermore, Addario et al. [112] reported N-acetylated amino acids made proton bridges 

after the O-protonation for not only the stabilizing effect between two atoms by proton bridge, but also 

better stabilization for amide resonance of the N-acetyl group itself. Likewise, spatial rearrangement of 

protonated amide can occur by proton bridge, because of the more stabilized state. In terms of the N-

protonation, on the other hand, rotation of N-C(O) bond occurs, due to the formation of a tetrahedral 

structure at the nitrogen in amide. That is, when a progressive pyramidalization of the N from sp2 (planar) 

to sp3 (tetrahedral) geometry occurs, a rotation about the N–C(O) bond of 30° takes place [34]. Because 

the spectral interpretation of polymeric materials is quite difficult, benzanilide can be used for the model 

compound of full aromatic PA membrane [114]. If the benzanilide is assumed for the model compound 

of full aromatic PA membrane, the amount of N-protonation in pH 0 and 1 is 76 and 24%, respectively, 

because the pKa value for N-protonation of benzanilide is 0.5 [115]. These spatially distorted structures 

caused by O/N-protonation in acidic condition can possibly affect the performance of the full aromatic 

PA membrane, because the application of high pressure could collapse or locally compact or mainly 
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distort the polymer chain [116]. Hydroiodic acid (HI) is known as an unstable chemical, so it oxidizes 

to molecular iodine (I2) in air [117, 118]. Table 4.1, which shows the chemical reaction for generating 

halogen gases by oxidation of hydrogen halides, shows that these phenomena can be explained by 

spontaneous reaction. Subsequently, molecular chlorine (Cl2) and molecular bromine (Br2) can be 

generated from hydrochloric acid (HCl) and hydrobromic acid (HBr) in the same manner. Henry’s 

constants (HCP) of these halogens (Cl2, Br2, and I2) in water are 9.2 × 10-4, 7.2 × 10-3, and 2.8 × 10-

2, respectively (Fig. 4.1) [119]. These generated halogens are an another possible source to affect the 

surface characterization/performance of the full aromatic polyamide membrane, given that research has 

been widely conducted on the effect and mechanism of halogenation on the polyamide membrane [8, 

120]. For example, chlorination mechanisms on polyamide membrane are mainly divided into two kinds 

of mechanisms: polymer depolymerization and polymer deformation (e.g., N-chlorination) [8]. Firstly, 

mechanisms of polymer depolymerization due to chlorination were suggested by Koo et al. [121] and 

Avlonitis et al. [122]. They suggested polyamide’s oxidative chain cleavage and Hoffmann degradation 

in alkaline chlorine solutions, respectively. Secondly, in the case of polymer deformation, nitrogen atom 

in a polyamide can react with chlorine to generate N-chloroamide, because the nitrogen is electron-

donating group by lone pair electrons which can share with the electron-withdrawal chlorine (Clδ+) 

created by a temporary dipole moment [123, 124]. Figure 4.1 shows a schematic description of the 

possible pathway of halogenated polyamide due to halogenation, which in this work explains the 

formation of N-halogenation. Membrane degradation due to chlorination affects membrane flux and 

rejection of inorganic salts as well as pharmaceutically active compounds [125]; however, systematic 

studies of membrane halogenation in the presence of HCl, HBr, and HI have not yet been reported. 

 In this work, systematic physico-chemical characterization was conducted to explain the effect 

of degradation by sulfuric acid in the range of pH 0 to 2 as well as hydrogen halides at pH 0 on the full 

aromatic membrane. Degraded membrane samples were characterized by various analytical tools such 

as (1) scanning electron microscopy (SEM) for observation of surface morphology, (2) attentuated total 

reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for measurement of chemical bonds 

on surface, (3) X-ray photoelectron spectroscopy (XPS) for confirmation of the surface’s atomic 

percentages, (4) goniometer for contact angle of membrane surface, (5) zeta potential analyzer by 

electrophoresis for surface charge of the membrane surface. Finally, filtration experiments were 

investigated to explain the effects of degradation by acid on membrane performance. As far as we know, 

this is the first study to systematically investigate the degradation of commercial NF full aromatic 

membrane by sulfuric acid as well as by hydrogen halides. 
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Table 4.1 Chemical reaction for generating halogen gases by oxidation of hydrogen halides and 

gibbs energy in standard state (for one mole at 298K and 1 bar). 

 

Chemical reaction formula for generating halogen 

gases from oxidation of hydrogen halides 

Gibbs energy for reaction 

(kJ·mol-1) 

4 HCl (g) + O2 (g) → 2Cl2 (g) + 2H2O (g) -76.0 

4 HBr (g) + O2 (g) → 2Br2 (g) + 2H2O (g) -236.9 

4 HI (g) + O2 (g) → 2I2 (g) + 2H2O (g) -423.6 

Compound Gibbs energy (kJ·mol-1) 

HCl (g) -95.3 

HBr (g) -53.5 

HI (g) 1.3 

O2 (g) 0 

Cl2 (g) 0 

Br2 (g) 3.13 

I2 (g) 19.38 

H2O (g) -228.6 
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Figure 4.1 Schematic description of possible pathway of halogenated polyamide due to 

halogenation generated by hydrogen halides and oxygen. 
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4.2 Materials and methods 

 

4.2.1 Chemicals and materials  

Commercial TFC PA NE90 membrane was obtained from Toray Chemical Korea Inc (Korea), 

and used as a representative membrane to investigate the effect of degradation by acid on full aromatic 

PA, because the NE90 was already known as an MPD-based PA membrane without hydrophilic coating 

layer [92].    

The following chemicals were used without further purification: Sulfuric (95% assay) and 

hydrochloric acid (35-37% assay) were purchased from DaeJung Chemicals Co., Ltd. (Busan, Korea), 

and hydrobromic (47-49% assay) and hydroiodic acid (57% assay) were purchased from Yakuri Pure 

Chemicals Co., Ltd. (Kyoto, Japan) to analyze the effect of degradation by acid on full aromatic PA 

membrane. To perform filtration test of the virgin NE90 and degraded membranes, sodium chloride 

(NaCl, 99% assay) for monovalent ion and magnesium sulfate heptahydrate (MgSO4·7H2O, 98% assay) 

for divalent ion were chosen and obtained from Samchun Pure Chemicals Co., Ltd (Seoul, Korea) and 

Sigma-Aldrich Co., Ltd. (MO, USA), respectively. Pure water produced by Milli-Q equipment (18 M 

resistivity, Millipore®, Merck Millipore, Germany) was used for the preparation of acidic solutions by 

the dilution of concentrated sulfuric and hydrogen halides as well as for the soaking and rinsing of the 

membrane samples. 

 

4.2.2 Membrane degradation protocol 

In this work, full aromatic NE90 membrane was investigated to study the effect of degradation 

by acid under (1) sulfuric acid in the range of pH 0 to 2, and (2) hydrogen halides at pH 0 during 7, 14, 

28, 42, 63 Days of exposure time. Solution pH was checked by Orion ROSS Sure-Flow pH electrode 

purchased from Thermo Fisher Scientific Inc. (New York, U.S.A.), which, according to the supplier, 

guarantees pH range from (0 to 14). Degradation experiments were conducted in 1 L bottle consisting 

of amber color of the material with PP (polypropylene) cover for immersion of the NE90 membranes’ 

coupons (10 × 15 cm2) at room temperature (25°C). The membrane samples were rinsed thoroughly 

with Milli-Q water after exposure to each acidic condition, followed by storage in Milli-Q water until 

usage for characterization and filtration tests. 
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4.2.3 Characterization of membranes  

4.2.3.1 Scanning electron microscopy (SEM) 

To investigate the effect of degradation by acid on surface morphology, surface images of the 

NE90 virgin and degraded membranes were measured by a Field Emission-Scanning Electron 

Microscopy (FE-SEM) (Cold FE-SEM SU8000, Hitachi, USA). We referred to the experimental 

procedure in our previous work to measure the surface morphology of the membranes [6]. In brief, the 

vacuum-dried membrane samples were fixed by a conductive carbon tape for platinum (Pt) coating. 

Then, Turbo Pumped High-Resolution Chromium Sputter Coater (K575X, EMITECH, Lohmar, 

Germany) was used for Pt coating during 1 min at 20 mA in 2 ×  10-3 mbar to relieve artifacts from 

electrostatic charge. All of the SEM images were analyzed at 10,000 resolutions.  

 

4.2.3.2 Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was used to 

measure the change of chemical properties between the NE90 virgin and degraded membranes using 

Nicolet 6700 spectrometer (Thermo Scientific, Waltham MA, USA). A flat plate germanium ATR 

crystal was equipped in spectrometer to measure the TFC membranes [91]. All of the membrane 

samples were vacuum-dried, before measurements of ATR-FTIR. Prior to measurement of membrane 

samples, the background spectrum of air was firstly measured with purging by nitrogen gas, then 

membrane samples were measured with 64 scans of average spectra from 1000 to 4000 cm-1 with a 

resolution of 4 cm-1. OMNIC software (version 8.1) was used to record the FTIR spectra, correct the 

peaks’ baseline, and normalize the baselined peaks. Peaks for full aromatic PA such as amide I band at 

1663 cm-1 and amide II band at 1541 cm-1 were mainly focused on investigate the effect of acid on the 

chemical properties of PA. In order to compare the peak change of the virgin NE90 and degraded 

membranes, all of the sample peak were normalized by the 1250 cm-1 peak, which is strong C–O–C 

asymmetric stretching vibration of polysulfone support layer [126]. 

 

4.2.3.3 X-ray photoelectron Spectroscopy (XPS)  

X-ray photoelectron Spectroscopy (XPS) (K Alpha, Thermo Scientific, USA) was conducted 

to study effect of degradation by acid on content of halogen percentages on degraded membranes’ 

surface. Wide survey XPS spectra were scanned by sweeping in the range of electron binding energy 
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from 0 to 1000 eV using a 1 eV resolution. The X-ray beam can penetrate about 5 to 10 nm depth from 

top surface, analyzing the elemental composition of the membranes’ surface. All of the membrane 

samples were vacuum-dried prior to XPS measurement. In this work, binding energy of Cl2p, Br3d, 

and I3d were detected at 200, 68, and 620 eV, respectively to obtain content of halogen percentage on 

the degraded membrane surface [8, 127].  

 

4.2.3.4 Contact angle 

The surface hydrophilicity of the virgin and degraded membranes was investigated by the 

contact angle value of the membrane surface using a goniometer (Phoenix 300Plus, Surface & Electro 

Optics Co. Ltd., Korea). To attain representative contact angle values of virgin and degraded membranes, 

50 contact angle measurements were conducted, using coupons from two different membranes. Sessile 

drops method was applied to calculate the contact angles of the membrane surface. All of the membrane 

samples were vacuum-dried at the same time for the same condition. 

 

4.2.3.5 Zeta potential 

The surface zeta potentials of the NE90 and degraded membranes were analyzed by the 

electrophoresis method to investigate the effect of degradation by acid on membrane surface charge 

according to our previous work [6]. In contrast with the preparation for SEM, ATR-FTIR, XPS, and 

contact angle, membrane samples for zeta potential were kept in Milli-Q water over 1 Day until the 

measurement of zeta potential. The surface zeta potentials of the wet membrane samples were measured 

by electrophoretic light scattering spectrophotometer (ELS-8000, Photal, Otsuka Electronics, Japan). 

The membrane samples were fixed at a plate sample cell, followed by measurement of surface zeta 

potential using a 10 mM NaCl electrolyte solution containing polystyrene latex particles (diameter: 520 

nm) (Otsuka Electronics, Osaka, Japan) in the range of pH 3 to 9 adjusted by 1 N HCl or NaOH.  

 

4.2.4 Filtration tests 

The NE90 virgin and degraded membranes were performed using filtration test cells to 

investigate the effect of degradation by acid on the permeation properties according to our previous 

research [4]. Filtration test were operated at 1 L min-1 flow rates at room temperature with 2,000 ppm 
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NaCl or MgSO4 single electrolyte solution, and three different membranes of 19.6 cm2 effective area 

were installed in the filtration test system. The operating procedure of filtration test was firstly 

compaction at 150 psi for 1 hr, and subsequently, 30 min stabilization at 75 psi, before measurement of 

the water flux and salt rejection. The permeate water flux (Jw (L m-2h-1 or LMH)) was calculated by 

mass change of permeate solution per unit time and membrane area as shown in Eq. (4.1). Calibrated 

conductivity meter (Ultrameter IITM, Myron L Company, USA) was then used to calculate the NaCl 

or MgSO4 salt rejection by Eq. (4.2), conversion of conductivity of feed and permeate solution to each 

concentration. 

 

𝐽𝑤 =  
∆ weight

∆ time × effective membrane area × water density
 (

L

m2h
 or LMH)           (4.1) 

𝑅 = (1 −
[NaCl or MgSO4]permeate

[NaCl or MgSO4]feed
 ) × 100 (%)                                                            (4.2) 

 

To investigate the effect of degradation by acid on the permeation properties, firstly, the NE90 

virgin membranes were normalized by the initial permeation results to perform only the compaction 

effect of high-pressure (Virgin membrane’s normalized flux1 or rejection1). Secondly, the degraded 

membranes were also normalized by the initial permeation results to confirm both the compaction effect 

of high pressure, and degradation by acid (Degraded membranes’ normalized flux1 or rejection1). Finally, 

the permeation results of the virgin membrane subtracted from those of the degraded membranes could 

come only from degradation by acid, and these normalized results were defined as normalized flux2 or 

rejection2 as clearly explained in Table 4.2, using an example of the calculation.    

Table 4.2 Example of calculation to calculate normalized flux2
. 

Normalized condition (Days) 0  7  14 28 42 63 

Normalized flux1 of NE90 virgin 

(Only compaction)  
1.000 0.935 0.903 0.901 0.905 0.896 

Normalized flux1 after soaking in acid 

(Compaction + damage of acid) 
1.000 0.886 0.774 0.772 0.747 0.733 

Normalized flux2 after soaking in acid 

(Only damage of acid) 
1.000 0.951 0.871 0.871 0.842 0.837 



78 

 

4.3 Results and discussion  

 

4.3.1 Characterizations of degraded membranes 

4.3.1.1 Effect of degradation by acid on surface morphology (SEM) 

The surface morphology of the full aromatic NE90 virgin and degraded membranes was 

characterized by SEM images. Figure 4.2 (a) shows a representative SEM image of the NE90 virgin, 

and its surface morphology has ridge-and-valley structure, compared to the piperazine-based semi-

aromatic PA membrane, which has smooth surface morphology [105]. This full aromatic PA layer is 

formed by connecting the tufts from interfacial polymerization, diffusing from MPD amine solution 

into TMC organic solvent, until termination of the polymerization due to the high solubility and 

diffusivity of MPD in organic solvent [49]. That is, the tufts, which have higher molecular weight than 

the laterally spreading base layer, become the ridge part, resulting in high roughness characteristics of 

the MPD-based full aromatic PA membrane [49]. Figure 4.2 shows the SEM images for the surface 

morphology of (a) the NE90 virgin, and the degraded membranes soaked in pH 0 (b) H2SO4 (c) HCl, 

(d) HBr, and (e) HI until 63 Days for exposure times. However, surface morphology was not changed 

after degradation by acid checked from maintaining a similar ridge-and-valley structure, so the ATR-

FTIR and XPS results will be discussed in the following section, to investigate the effect of degradation 

by acid on the surface’s chemical properties. 

 

Figure 4.2 SEM images of the surface of the active layer of the NE90 virgin (a) and degraded 

membranes soaked in pH 0 (b) H2SO4 (c) HCl, (d) HBr, and (e) HI until 63 Days for exposure 

times. 
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4.3.1.2 Effect of degradation by acid on change of membrane surface’s chemical bond and atomic 

percentages (ATR-FTIR and XPS)  

ATR-FTIR spectra of the virgin NE90 and degraded membrane by acid were analyzed to study 

the effect of degradation on chemical bonding of the membrane surface, including both the PA layer 

and polysulfone support layer due to the large penetration depth of the IR [106]. Figure 4.3 shows 

spectra of the NE90 virgin and degraded membranes under (a) H2SO4 (b) HCl, (c) HBr, and (d) HI pH 

0 acidic conditions in the range from 1000 cm-1 to 4000 cm-1 of characteristic bands. Amide I band at 

1663 cm-1 and amide II band at 1541 cm-1 correspond to C=O stretching and N-H bending motion of 

amide, respectively [92], and these peaks were mainly focused on investigate the effect of acid on the 

chemical properties of PA. In the case of pH 0 H2SO4 acidic condition, neither amide I or II peak was 

affected, as shown in Fig. 4.3 (a). However, in the case of pH 0 hydrogen halides (Fig. 4.3 (b) to (d)), 

amide II peak was continuously decreased with increasing exposure time due to replacing the hydrogen 

in amide bond by the bounding of molecular halogens [128]. Furthermore, the disappearance of the 

peak in amide II by the bounding of molecular halogens increased from HCl (Fig. 4.3 (b)) to HI (Fig. 

4.3 (d)) acidic condition. These phenomena occurred by electron-withdrawal halogen (e.g., Clδ+) created 

by a temporary dipole moment [123]. Temporary dipole moment increases with the size of molecule, 

because a smaller molecular is less polarizable and has smaller dispersion forces due to tightly holding 

electrons, on the other hand, a larger molecule is more polarizable and has larger dispersion forces 

because of many electrons [33]. That is, temporary dipole moment increases in the molecular size order 

from Cl2 to I2 among the halogens, and this characteristic was reflected in the disappearance of the 

amide II peak as shown in Fig. 4.3 (b) to (d). In particular, both amide I and II peak in the HI condition 

(Fig. 4.3 (d)) were shifted to higher and lower wavenumber, respectively. Kwon et al. [126] proposed 

that the reason for shifting of amide I and II after chlorination resulted from broken and weakened 

hydrogen bonds, respectively, so shifting of the amide I and II peaks in the HI condition is also thought 

to result from changed hydrogen bonds. 

Subsequently, XPS analyses were conducted to support the ATR-FTIR results, which show 

bounding of molecular halogens on the membrane surface after exposure to acidic solution containing 

hydrogen halides. Figure 4.4 indicates the atomic percent of halogen in the degraded membranes’ 

surface after exposure to hydrogen halides. The content of halogen on the degraded membrane surface 

monotonically increased with increasing acid-soaking time, and the content of halogen increased 

incrementally with molecular size order from Cl2 to I2. That is, the amount of bounding by electron-

withdrawal halogens in hydrogen of amide bond increased from HCl to HI. These results support the 

ATR-FTIR results, which are decreasing amide II peak after exposure to hydrogen halides as well as 
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shifting amide I and II peaks in the case of HI due to severely decreased hydrogen bonds from the 

relatively higher content of halogen on the membrane surface. 

 

Figure 4.3 ATR-FTIR spectra of the NE90 virgin and degraded membranes soaked in pH 0 (a) 

H2SO4 (b) HCl, (c) HBr, and (d) HI until 63 Days for exposure times.  

 

Figure 4.4 Atomic percent of halogen in the degraded membranes after exposure to pH 0 HCl, 

HBr, and HI until 63 Days.  
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4.3.1.3 Effect of degradation by acid on change of membrane surface’s hydrophilicity and surface 

charge (contact angle and zeta potential) 

The measurement of contact angle can analyze the tendency of the liquid wettability on the 

solid surface, by calculating the angle between the air/water interface and solid surface. From the point 

of view of the membrane surface, there is a higher tendency to wet the membrane surface by water 

when the contact angle value is lower. Table 4.3 shows the contact angle values of the NE90 virgin and 

degraded membranes that were measured to investigate the effect of degradation by acid on the 

membranes surface’s hydrophilicity. After exposure to pH 0 H2SO4 acidic condition during 63 d, the 

degraded membrane surface’s hydrophilicity was not changed; however, the membranes degraded by 

hydrogen halides changed to slightly more hydrophilic (Table 4.3). Such an increment in hydrophilicity 

after exposure to hydrogen halides would be related to the bounding of molecular halogens, as checked 

by the ATR-FTIR and XPS results (Figs. 4.3 and 4.4), because previous researches reported that after 

chlorination, the surface became more hydrophilic [125, 128]. Kwon et al. [128] studied that decreased 

contact angle value after exposure to sodium hypochlorite solution resulted from the greater polar 

membrane surface due to the introduction of unbalanced dipole moments. Furthermore, Do et al. [129] 

proposed that hydrolysis of C-N bond after chlorination can cause an increase in hydrophilicity due to 

carboxylic functional group. Therefore, increased hydrophilicity after degradation by hydrogen halides 

is also thought to result from the introduction of unbalanced dipole moments and hydrolysis 

phenomenon. 

Measurement of the membrane surface’s zeta potential was performed by the electrophoresis 

method to explain the effect of degradation by acid on the membrane surface charge. Figure 4.5 shows 

the surface zeta potential of the NE90 virgin and degraded membranes in the range pH from 3 to 9. 

Figure 4.5 shows that the isoelectric point (IEP) of the NE90 virgin membrane is about pH 3.5. The 

surface of full aromatic PA membrane generally become more negative with increasing pH (at higher 

than IEP value) due to the deprotonation of the carboxyl groups converted from unreacted TMC [111], 

and adsorption of hydroxyl ions on the membrane surface [128]. On the other hand, the membrane 

surface at less than IEP value has a positive charge due to the protonation of unreacted amino groups 

[128] or amide group [129]. After degradation by pH 0 H2SO4 acidic condition during 63 Days, the 

membrane’s surface zeta potential was not affected; however, the membranes degraded by hydrogen 

halides resulted in a more negative charge from HCl to HI condition (Fig. 4.5). More negative charge 

after exposure to hydrogen halides also resulted from bounding of molecular halogens on hydrogen in 

amide group, because increasing negative charge is consistent with previous publications related to 

chlorination [128, 129]. Negative surface charge of chlorinated membrane was attributed to: (1) –NH2
+ 
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groups converted from amide nitrogen to N-Cl bond formation no longer being formed [129], (2) 

increased carboxylic groups after cleavage of C-N bond [125], and (3) introduction of unbalanced dipole 

moments by substitution of chlorine in amide bond [128]. Hence, both the contact angle and zeta 

potential results clearly supported the bounding of molecular halogens on membrane surface after 

exposure to acidic solution containing hydrogen halides as discussed in the ATR-FTIR results. 

 

Table 4.3 Contact angle of the NE90 polyamide membranes soaked in  

pH 0 H2SO4, HCl, HBr, and HI until 63 Days for exposure times. 

 

Figure 4.5 Zeta potential of the NE90 virgin and degraded membranes soaked in pH 0 H2SO4, 

HCl, HBr, and HI until 63 Days for exposure times. 

Sample 

Condition 

NE90 

Virgin 

H2SO4  

63 Days 

HCl  

63 Days 

HBr  

63 Days 

HI  

63 Days 

Contact angle (°) 45.2 ± 3.2 45.3 ± 3.3 44.3 ± 2.8 43.8 ± 3.4 42.9 ± 3.6 
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4.3.2 Effect of degradation by sulfuric acid (pH 0 to 2) on permeability properties 

Prior to study sole effect of degradation by acid on the permeation properties, compaction 

effect by high operating pressure was firstly performed through the NE90 virgin membrane samples 

soaked in Milli-Q water. The NE90 virgin membranes were normalized by the initial permeation results 

to easily understand compaction effect on the permeation properties, and it is expressed by normalized 

flux1 or rejection1 as shown in Fig. 4.6. Normalized water flux1 decreased and salt rejection1 increased 

until 14 Days, then maintained until 63 Days (Fig. 4.6), and these results are consistent with the results 

of RO membrane compaction in Pendergast et al. [130]. According to their study, changes of permeation 

properties by the compaction effect were explained by the decreased effective path length for water and 

solute diffusion. In other words, pores of the support membrane polymer become narrower due to the 

compaction effect, resulting in increased diffusion distance in the support layer. Thus, water and NaCl 

salt permeability should decrease. Even though both water and NaCl permeability decreased, salt 

rejection tended to increase, because the decline of NaCl permeability was much more affected than the 

water permeability [130].  

 

 

Figure 4.6 The effect of compaction on membrane flux and salt rejection of the NE90 virgin 

membrane kept in Milli-Q water (tested at 75 psi, using Milli-Q, 2,000 ppm NaCl and MgSO4 

single electrolyte solution). 
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To study the effect of degradation by H2SO4 acidic solution of the pH on permeation properties, 

degraded membranes were firstly normalized by the initial permeation results, then the compaction 

effect subtracted, as explained in Fig. 4.6. The calculated water flux and salt rejection are expressed by 

the normalized flux2 and rejection2, as explained in Table. 4.2, and this value indicates the sole effect of 

degradation by acid on the changed water flux and salt rejection. Figure 4.7 indicates the effect of 

sulfuric acid in the range from pH 0 to 2 and its exposure time on the permeation properties of the NE90 

membrane. Water flux and salt rejection were maintained after exposure to pH 2 H2SO4 acidic condition, 

and this is in good agreement with the manufacturer’s product catalog, which limits the operational pH 

range from 2 to 11 (Fig. 4.7).  

Water flux increased and salt rejection decreased with increasing exposure time in the pH 1 

H2SO4 acidic condition; on the other hand, water flux monotonically decreased in the pH 0 H2SO4 acidic 

condition, as shown in Fig. 4.7. The change of salt rejection by degradation of pH 0 H2SO4 acidic 

condition was not significant compared with the change of water flux. The different tendency of 

permeation properties between pH 0 and pH 1 H2SO4 acidic condition would be explained by the 

distorted hydrogen bonding and deformation of polymer structure, because amide II band at 1541 cm-1 

and amide I band at 1663 cm-1 after degradation by H2SO4 were not disappeared, as shown in Fig. 4.3 

(a). Namely, the O/N-protonation on amide spontaneously occurs before the occurrence of acid-

catalyzed hydrolysis [81], so hydrogen bonding between amides can be distorted by proton bridge [112, 

113] in the case of O-protonation and pyramidalization from planar to tetrahedral geometry in the case 

of N-protonation in nitrogen of amide [34], resulting in deformation of the PA structure. These 

phenomena are explained in Fig. 4.8 using a schematic of the NE90 PA membrane when O/N-

protonation occurs. Firstly, O-protonation changes hydrogen bonding between a hydrogen-donating H 

atom and a hydrogen-accepting carbonyl group by proton bridge, because the changed conformation 

can be a more stabilized state as already discussed in previous papers using several diamides [113] and 

N-acetylated amino acids [112]. Secondly, protonation at N atom in amide changes from planar N-C(O) 

bond to about 30° distorted N-C(O) bond due to the formation of tetrahedral structure. If benzanilide 

is a model compound of the NE90 virgin membrane, the total amount of N-protonation in pH 1 and 0 

is 24 and 76% state, respectively, calculated from the 0.5 pKa value of benzanilide [115]. Thus, in pH 0 

condition, decreased water and salt flux would result from mainly collapsed or compacted polymer 

structure by the 10 times higher number of hydrogen ion than that in pH 1 condition. However, in the 

pH 1 condition, water and salt flux would be easily permeated through the partially twisted polymer 

structure, because pH 1 condition has a relatively lower number of distorted hydrogen bonding. 

Furthermore, increased water flux and decreased salt rejection in pH 1 condition is a similar 
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phenomenon to the membrane swelling effect at low or high pH [4, 131, 132]. However, the effect of 

collapsed or compacted polymer structure is overwhelming compared to membrane swelling in pH 0 

condition, resulting in decreased water and salt flux.  

 

Figure 4.7 The effect of sulfuric acid’s pH (pH 0-2) and exposure time on membrane flux and salt 

rejection of the NE90 membrane (tested at 75 psi, using Milli-Q, 2,000 ppm NaCl and MgSO4 

single electrolyte solution). 
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Figure 4.8 Schematic diagram of possible mechanisms to change membrane performance due to 

different pH condition of sulfuric acid. 
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4.3.3 Effect of degradation by hydrogen halides (pH 0) on permeability properties 

Normalized flux2 or rejection2 as explained in Table. 4.2 were also used to study the sole effect 

of degradation by pH 0 H2SO4 and hydrogen halides acidic solution on the permeation properties. Figure 

4.9 shows the effect of sulfuric acid and hydrogen halides at pH 0 condition on the permeation properties 

of the NE90 membrane. Water flux after exposure to both pH 0 H2SO4 and hydrogen halides tended to 

decrease, and salt rejection after exposure to hydrogen halides also tended to decrease with increasing 

exposure time (Fig. 4.9). Such decrements of water flux and salt rejection were in the order H2SO4, HCl, 

HBr, and HI.  

Decrement in the order of water flux between sulfuric acid and hydrogen halides at pH 0 

condition resulted from reduced hydrogen bonding due to halogenation, because amide II band at 1541 

cm-1 and amide I band at 1663 cm-1 after degradation by hydrogen halides were decreased, compared 

with that by sulfuric acid as shown in Fig. 4.3 (a) to (d). In other words, broken hydrogen bonding 

causes increased the flexibility of the PA structure, rather than twisted hydrogen bonding from O/N-

protonation, and this increased the rotational freedom results in deformation/compaction of the PA 

structure, when applied to high pressure [126]. In other words, broken hydrogen bonding causes 

increased the flexibility of the PA structure, rather than twisted hydrogen bonding from O/N-protonation, 

and this increased the rotational freedom results in deformation/compaction of the Therefore, the 

decrease in water flux in the case of degradation by hydrogen halides was much higher than that by the 

degradation by sulfuric acid. Figure 4.10 describes these phenomena using schematics of the NE90 PA 

membrane when halogenation occurs. In addition, the order of decreasing water flux in hydrogen 

halides was equal to the molecular size order from Cl2 to I2, and this is highly related to the content of 

halogens on the membrane surface, as already discussed in the ATR-FTIR and XPS results PA structure, 

when applied to high pressure (Fig. 4.3 and 4.4).  

When the membrane surface has a high absolute value of zeta potential, salt rejection generally 

increases, due to the increased Donnan exclusion effect [6]. Even though the membrane after exposure 

to hydrogen halides had a more negative surface charge (Fig. 4.5), the decrease of salt rejection seemed 

to be due to hydrolysis of the C–N bond, and this result shows a similar tendency to previous studies 

related to chlorination [8, 125]. Therefore, when the full aromatic NF membrane is applied to the 

reutilization/removal of target compounds in various acidic conditions, the changes of surface 

characteristics and permeable properties should be considered. 
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Figure 4.9 The effect of halogen halide (pH 0) and exposure time on membrane flux and salt 

rejection of the NE90 membrane (tested at 75 psi, using Milli-Q, 2,000 ppm NaCl and MgSO4 

single electrolyte solution). 
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Figure 4.10 Schematic diagram of possible mechanisms to change membrane performance due to 

different acidic condition. 
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4.4 Conclusions 

In this work, full aromatic NF PA membrane fabricated by MPD as an amine monomer and 

TMC as an acyl chloride was systemically studied for investigation of various acidic conditions (pH 0 

to 2 sulfuric acid and pH 0 hydrogen halides) on the membrane’s physico-chemical properties. In the 

case of membrane degraded by sulfuric acid, no distinct change was observed by SEM, ATR-FTIR, 

contact angle, and zeta potential. However, when the membrane was exposed to pH 1 condition, water 

flux increased and salt rejection decreased; on the other hand, when membrane was degraded by pH 0 

condition, water flux decreased and salt rejection maintained. These phenomena are explained by the 

distorted hydrogen bonding between amides through proton bridge for O-protonation, and the formation 

of tetrahedral structure for N-protonation. Meanwhile at pH 0 condition, the membrane’s physico-

chemical properties were much more influenced by hydrogen halides than by sulfuric acid. In ATR-

FTIR results, after degradation by hydrogen halides, amide II band (N-H) at 1541 cm-1 and amide I band 

(C=O) at 1663 cm-1 were decreased due to halogenation reacted with halogens generated by oxidation 

of hydrogen halides. To support ATR-FTIR results, XPS, contact angle, and zeta potential were also 

conducted. These amounts of halogenation increased in the order HCI, HBr, and HI, and the order was 

equal to the order of temporary dipole moment caused by the size of molecule. Water flux after exposure 

to hydrogen halides tended to severely decrease with increasing exposure time, resulting from broken 

hydrogen bonding due to halogenation. This work suggests that when full aromatic NF membrane is 

applied to treat/recycle several industrial processes that include sulfuric acid and hydrogen halides, 

changes of the surface characteristics and permeability should be contemplated. 
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Abstract 

 

The effect of post-treatment by acid-catalyzed hydrolysis of a commercial NE70 semi-

aromatic polyamide (PA) membrane was systemically investigated to determine feasibility of use in 

water softening and antibiotic enrichment applications. The surface of a post-treated PA membrane was 

characterized using various analytical tools: SEM (Scanning Electron Microscopy) for surface 

morphology, ATR-FTIR (Attentuated Total Reflectance-Fourier Transform Infrared spectroscopy) for 

chemical bonds, contact angle for hydrophilicity of membrane surface, and electrophoretic light 

scattering spectrophotometer for surface charge of membrane surface. Conversion of amide groups to 

amine and carboxyl groups by post-treatment increased hydrophilicity and absolute value of surface 

charge as well as pore size and molecular weight cut off (MWCO) value. Post-treated membrane under 

optimal condition showed enhancement of water flux (~10%) as well as ~20% ideal selectivity 

(Na+/Mg2+) for water softening using a single electrolyte solution. In addition, mixture selectivity 

(Na+/Mg2+) using a mixture solution at pH 3 was also improved ~2.6 times. Post-treated membranes at 

pH 0.25 for 7 and 14 days as optimization points were also applied to enrichment of antibiotics which 

are erythromycin (ERY) and vancomycin (Van). Optimized post-treatment membranes showed higher 

water flux and lower NaCl rejection as well as competitive rejection of antibiotics when compared to 

virgin NE70 membrane or other commercial/fabricated membranes. The approach to post-treatment of 

semi-aromatic membrane by the acid-catalyzed hydrolysis method can be utilized as a multipurpose 

usage in the future depending on characteristics of the target compound (e.g. surface charge 

(positive/negative) or size diversity). 
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5.1 Introduction 

 

Over the past several decades, nanofiltration (NF) technology has gradually evolved and the 

transportation mechanisms of NF membrane have been intensively investigated. Separation by NF 

membrane with nominal pore size of 1~100 nm mainly achieved via solution-diffusion mechanism or 

steric/electrostatic sieving mechanism [133, 134]. The NF process can be operated under the condition 

of low pressure and low energy consumption, however, the rejection of divalent ions and organic 

molecules from 200 to 1000 Da is high [135, 136]. Due to the high separation of multivalent ions and 

organic molecules, NF technology has been widely used in the fields of purification and concentration 

such as removal of dyes from wastewater, extraction or purification of woody biomass, food 

concentration in food industries, water softening of groundwater, and rejection of heavy metal and 

environmental pollutants [7, 133, 135, 136]. 

Commercial NF polyamide thin-film composite (TFC) membranes are generally prepared by 

interfacial polymerization (IP) techniques using piperazine and trimesoyl chloride (TMC) as an 

aliphatic amine with acyl chloride monomers for the fabrication of thin active layer [137]. The chair 

structure of the piperazine molecule in its lowest energy state makes the thin active layer difficult to 

compact, providing a large free volume inside the active layer and high permeability of water molecules 

through the thin layer [47]. Further enhancement of membrane performance has been achieved by 

addition of additives and surface modification as post-treatment. Amhed et al. investigated the effect of 

trimethylamine (TEA) added as an acid acceptor during IP [51], and reported that the TEA can not only 

prevent protonation of piperazine but also keep reactivity of piperazine, causing enhanced amount of 

cross-linking and a subsequent increase in salt rejection. Mansourpanah et al. studied the additive effect 

of cationic surfactant on membrane performance and showed that cetyltrimethyl ammonium bromide 

(CTAB) increases water flux without loss of salt rejection due to the enlarged free-volume in the active 

layer [52]. As a surface modification method, Mi et al. [138] introduced N-aminoethylpiperazine 

propane sulfonate (AEPPS), a zwitterionic compound, onto a TFC membrane to react with unreacted 

TMC monomer, thereby increasing hydrophilicity and water flux from 28 to 58 (Lm-2h-1 or LMH) 

without loss of Na2SO4 rejection. Furthermore, surface modification by grafting has been reported to 

enhance hydrophilicity using hydrophilic monomer such as polyethylene glycol, acrylic acid, or 

methacrylic acid [137]. However, to the best of our knowledge, there has been no published paper that 

applied acid-catalyzed hydrolysis as a post-treatment to semi-aromatic (piperazine-based) amide 

membrane. 
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 Amide hydrolysis has been already studied significantly due to the biological importance of 

proteolytic reactions [32]. Figure 5.1 shows schematic diagram of (a) piperazine-amide chemical 

structure and (b) acid-catalyzed hydrolysis reaction of the amide group. During the hydrolysis reaction 

of the amide group, the C-N piperazine-amide bond breaks, causing depolymerization of the amide 

group into carboxyl and amine groups [32, 80]. The carboxyl and amine groups converted during the 

depolymerization increase amount of surface charges on the membranes and the surface property 

change make the membranes applied to particular process requiring high electrostatic repulsion 

(Donnan exclusion effect [139]). For example, the removal of divalent cations (Ca2+, Mg2+) are 

important in water softening process since water with high concentration of divalent cations can cause 

clogging of water pipes and deterioration of industrial equipment such as boilers and cooling towers 

[140]. In this view, modification of polyamide membrane using the acid-catalyzed hydrolysis can be 

used to water softening process by utilizing enhanced electrostatic repulsion interaction between the 

divalent ions and membranes. In addition, modification using acid-catalyzed hydrolysis can tailor the 

pore size of the membrane for specific purposes, such as enrichment of antibiotics.  

Antibiotics have been generally applied to treat bacterial infections in the medical field for the 

last 80 years, since they are highly effective for the control of microorganisms with minimal toxicity to 

people [141, 142]. The antibiotics’ molecular masses range from about 200 to 1500 Da [143], which are 

similar or slightly higher than the MWCO of NF membranes, because molecular weight cut off (MWCO) 

of regular semi-aromatic piperazine based polyamide ranges from ~200 to 400 Da [137, 144]. 

Antibiotics are mostly prepared by fermentation of bacteria or fungi in the broths [142], then, 

ultrafiltration system is conducted to quarantine the microorganisms in a purification process [145]. 

Finally, purified products are extracted by solvent, followed by vacuum distillation to enrich the 

products [141]. Some paper [141, 142] suggested that NF techniques could be used to help both the 

solvent extraction and vacuum distillation processes by decreasing the volume of the feed solution, 

resulting in improved efficiency. In order to apply NF membrane to the recovery of the antibiotics, the 

membrane should have a high rejection of antibiotics but a low rejection of salt. Larger amounts of 

antibiotics retained in the feed side of the membrane due to high rejection minimizes the loss of product, 

whereas the salt enrichment on the feed side causes a build-up of concentration polarization and osmotic 

pressure, subsequently decreasing the permeability of the solution and overall energy efficiency [146].  

 In this work, physico-chemical properties of a commercial NF semi-aromatic polyamide TFC 

membrane was systemically investigated during the post-treatment of the membrane via acid-catalyzed 

hydrolysis under various acidic conditions. Characterizations were conducted using various analytical 

tools such as (1) SEM (scanning electron microscope) for surface morphology, (2) ATR-FTIR 

(attentuated total reflectance Fourier transform infrared spectroscope) for measurement of changed 

chemical bonds, (3) contact angle analyzer for hydrophilicity of membrane surface, (4) electrophoretic 
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light scattering spectrophotometer for measuring surface charge of the membrane, and (5) filtration test 

equipment for measuring MWCO as well as permeation properties of water flux, rejection, and 

selectivity. The hydrolysis condition was optimized based on the characterization study, and the 

membrane was modified for use in water softening and antibiotics enrichment processes.  

 

 

Figure 5.1 Schematic diagram of (a) piperazine-amide chemical structure and (b) acid-catalyzed 

hydrolysis reaction of the amide group. 
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5.2 Materials and methods 

 

5.2.1 Chemicals and materials  

Commercially available NE40 and NE70 thin-film composite (TFC) NF membrane, obtained from 

Toray Chemical Korea Inc (Korea), were used to represent a semi-aromatic polyamide (PA) membrane. 

Characteristics of the membranes reported by the manufacturer are given in Table 5.1 [4]. 

The following chemicals were used without further purification: Sulfuric acid was purchased from 

DaeJung Chemicals (Korea) to modify the membrane via acid-catalyzed hydrolysis. Nitric acid was 

used to adjust pH in the water softening experiment and obtained from Sigma-Aldrich Co., Ltd. (MO, 

USA). Sodium chloride (NaCl) and magnesium sulfate (MgSO4·7H2O) were purchased from Samchun 

Chemicals (Seoul, Korea) and Sigma-Aldrich Co., Ltd. (MO, USA), respectively, for the filtration test. 

Neutral solutes of polyethylene glycol (PEG, Mw 200, 300, 400, 600, and 1000 Da), and sugars (glucose 

(Mw 180 Da), saccharose (Mw 342 Da), raffinose (Mw 594 Da), and α-cyclodextrin (Mw 972 Da)) were 

selected to evaluate MWCO of virgin and post-treated membrane, and these chemicals were purchased 

from Tokyo Chemical Industry (TCI) Co., Ltd. (Tokyo, Japan) and Sigma–Aldrich Co., Ltd. (MO, USA), 

respectively. Erythromycin (Mw ~ 734 Da, 850 μg mg-1) and vancomycin hydrochloride (Mw  ~ 1486 

Da, 900 μg mg-1) were purchased from Sigma-Aldrich Co., Ltd. (MO, USA) as representative 

antibiotics. Milli-Q water (18 M resistivity, Millipore® , Merck Millipore, Germany) was utilized as 

the solvent for preparing aqueous solutions as well as rinsing the membrane samples. 

 

Table 5.1 Specifications of NE 40 and 70 membranes from supplier. 

Membrane Manufacturer 
Water 

permeation 

Monovalent 

ion rejection 
Test condition 

Operating 

pH range 

NE 40 

(NE4040-

40) 

Toray Chemical 

Korea 

49.8 

L/m2h 
20.0-60.0% 

Feed solution: 2000 

mg/L NaCl 

Applied pressure: 75psi 

Effective membrane 

area: 7.9m2 

2-11 

NE 70 

(NE2540-

70) 

Toray Chemical 

Korea 

28.3 

L/m2h 
40.0-70.0% 

Feed solution: 2000 

mg/L NaCl 

Applied pressure: 75psi 

Effective membrane 

area: 2.5m2 

2-11 
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5.2.2 Characterization of membranes  

In this work, the NE70 membranes (membrane area: 10cm × 15cm) were post-treated via acid-

catalyzed hydrolysis under various acidic conditions of 1L volume of H2SO4 ranging from pH 0 to 2 

during 7, 14, 28, 42, and 60 days. For the hydrolysis experiments using NE40 membrane, the membrane 

was exposed to 1L volume of 15 wt% sulfuric acid up to 14 days. The hydrolysis was conducted in 

Pyrex glass bottles with PTFE (polytetrafluoroethylene) covers. Then, the membrane samples were 

taken from each condition and rinsed thoroughly with de-ionized water, followed by storage in Milli-Q 

water at room temperature until use in filtration tests. In addition, membranes were freeze-dried for over 

2 days in a vacuum freeze dryer (Biocryos, Korea) in preparation for analysis with Attenuated Total 

Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), Scanning Electron Microscopy 

(SEM), and contact angle. 

 

5.2.2.1 ATR-FTIR and SEM 

An attenuated Total Reflectance-Fourier Transform Infrared spectroscopy was utilized for 

analyzing the influence of post-treatment on the chemical properties of the membranes. The measuring 

method was referred to other previous papers [91, 147]. The ATR-FTIR spectrometer (Nicolet 6700, 

Thermo Scientific USA) was operated with a flat plate Germanium ATR crystal with an incident angle 

of 42°. Vacuum-dried membrane samples were continuously purged with nitrogen gas during 

measurement and 64 scans of spectra from 1000 to 4000 cm-1 wave numbers with a resolution of 4 cm-

1 were averaged. The thickness of the active layers were evaluated based on peak intensities of C=O 

bond-stretching (1634 cm-1) of semi-aromatic PA and aromatic in-plane ring bend stretching vibration 

(1587 cm-1) of a polysulfone (PSf) support layer [92].  

Surface images of the virgin and post-treated membranes were obtained using a Field Emission 

Scanning Electron Microscope (FE-SEM) (Cold FE-SEM SU8000, Hitachi, USA) to investigate the 

effect of post-treatment on membrane surface morphology. The vacuum-dried membrane was mounted 

on a specimen using conductive carbon tape, then all samples were coated with platinum (Pt) at 20 mA 

in 2 ×  10-3 mbar for 60 sec in a Turbo Pumped High-Resolution Chromium Sputter Coater (K575X, 

EMITECH, Lohmar, Germany) to reduce image artifacts generated by electrostatic charge. 

 

5.2.2.2 Contact angle and Zeta potential 

Contact angle of virgin and post-treated membranes were conducted to evaluate effect of post-

treatment on the membrane surface’s hydrophilicity using a goniometer (Phoenix 300Plus, Surface & 
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Electro Optics Co. Ltd., Korea) and sessile drops method. To get representative contact angle values, 

measurement was conducted over 10 points using three separately prepared membranes coupons. All 

membrane samples were vacuum dried simultaneously to achieve the same condition.  

Electrophoresis was performed to study the influence of post-treatment on membrane surface 

charge. The surface zeta potentials of the membranes were measured three times by an electrophoretic 

light scattering spectrophotometer (ELS-8000, Photal, Otsuka Electronics, Japan). Wet membrane 

samples soaked in Milli-Q water over 24 h were attached to a plate sample cell, then zeta potential was 

measured using a 10mM NaCl electrolyte solution with polystyrene latex particles (diameter: 520 nm) 

(Otsuka Electronics, Osaka, Japan) in the range of pH 3 to 9. The acidic and basic pH values were 

adjusted using 1M HCl and NaOH, respectively. 

 

5.2.2.3 Molecular weight cut off (MWCO) and pore size of membranes 

The MWCO value of the membrane was determined by the molecular weight of the neutral 

solute which had 90% rejection. The MWCO values of the virgin and post-treated membranes were 

obtained using the method which was reported in previously published papers [142, 146, 148]. Filtration 

tests were conducted with feed solution containing both 200 ppm single neutral solute of sugars (glucose 

(Mw 180 Da), saccharose (Mw 342 Da), raffinose (Mw 594 Da), and α-cyclodextrin (Mw 972 Da)) [148], 

and 1000 ppm polyethylene glycol (PEG, Mw 200, 300, 400, 600, and 1000 Da) [142, 146] as model 

solutes under 10 bar. The concentration of neutral solute in the feed and permeate solutions were 

measured with a Total Organic Carbon analyzer (TOC-V, Shimadzu, Japan). Pore size of NE 70 virgin 

and modified membranes were evaluated by the mathematical prediction using Eq. (5.1) [149, 150]. 

Average pore radius of membranes were calculated using rejection data of four neutral solutes (Glucose, 

Saccharose, Raffinose, and PEG 1000).  

Neutral solute's rejection (%) = 1- {1-[
𝑟𝑠

𝑟𝑝
(

𝑟𝑠

𝑟𝑝
-2)] 2} exp(-0.7146 ×

𝑟𝑠
2

𝑟𝑝
2

 )                (5.1) 

where rs is the radius of solute and rp is the radius of membrane pore. 

5.2.3 Filtration tests 

The virgin NF membrane (NE70) and post-treated membrane were tested in pressurized mode 

to investigate the effect of post-treatment on the permeation properties using a test cell [4]. Three 

membrane coupons with 19.6 cm2 effective area were tested at flow rates of 1 L min-1 at room 

temperature. In order to investigate single or mixture solutions of NaCl and MgSO4 in the water 

softening experiment, solutions used were 2,000 ppm concentration of NaCl or MgSO4 as single feed 
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solution or a combined NaCl/MgSO4 mixture 1,000 ppm concentration of each, both with and without 

adjusting pH using nitric acid. The operating pressure of the filtration test was first compacted at 150 

psi for 60 min, followed by a 30 min stabilization time at 75 psi before measurement of water flux and 

salt rejection. The permeate water flux (Jw, (Lm-2h-1 or LMH)) and salt rejection was calculated by both 

Eq. (5.2) and (5.3). Concentration of ionic NaCl and MgSO4 in feed and permeate was measured by 

conversion from conductivity to concentration, and conductivity of single solution was measured by a 

calibrated conductivity meter (Ultrameter IITM, Myron L Company, USA). In the case of NaCl/MgSO4 

mixture, the concentration of cations and anions within the feed and permeate solutions were obtained 

by ICP-MS (ELAN DRC-II, Perkin Elmer, Massachusetts, America) and ion chromatography (IC; 

Dionex ICS-3000, Thermo Fisher Scientific Inc., USA), respectively. 

𝐽𝑤 =  
∆ 𝑤𝑒𝑖𝑔ℎ𝑡

∆ 𝑡𝑖𝑚𝑒 × 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑎𝑟𝑒𝑎 × 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 (𝐿𝑚−1ℎ−1 𝑜𝑟 𝐿𝑀𝐻) (5.2) 

𝑅 = (1 −
[𝑁𝑎𝐶𝑙 𝑜𝑟 𝑀𝑔𝑆𝑂4]𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

[𝑁𝑎𝐶𝑙 𝑜𝑟 𝑀𝑔𝑆𝑂4]𝑓𝑒𝑒𝑑
 ) × 100 (%)                                                            (5.3) 

 

5.2.4 Ideal selectivity and mixture selectivity 

Membrane selectivity between A and B can be expressed in terms of 𝛼𝐵
𝐴 which consists of 

concentration ratio A to B in permeate and concentration ratio A to B in feed as shown in Eq. (5.4) 

where Cf and Cp are solute concentrations in the feed and permeate, respectively [140]. This selectivity 

value shows how much different solutes preferentially pass through the membrane.  

α𝐵
𝐴 =  

𝐶𝐴,𝑝

𝐶𝐵,𝑝

𝐶𝐴,𝑓

𝐶𝐵,𝑓

 =   
𝐶𝐴,𝑝 × 𝐶𝐵,𝑓

𝐶𝐵,𝑝 × 𝐶𝐴,𝑓
 = 

100 −  𝑅𝐴

100 −  𝑅𝐵
                                                                                   (5.4) 

In the field of gas separation, selectivity is divided into ideal selectivity or mixture selectivity 

depending on whether the feed gas is a single or binary mixture, respectively [151]. Ideal selectivity is 

an intrinsic property of the membrane, and should be equal to mixture selectivity without consideration 

of the mixture species’ interaction with the membrane. The interaction of mixed ion species with the 

membrane was investigated by comparing ideal selectivity and mixture selectivity. Ideal selectivity was 

measured first to select optimal conditions of pH and exposure time for the application of water 

softening, followed by measuring mixture selectivity using an optimized membrane in a single 

electrolyte condition.  
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5.2.5 Antibiotics separation and enrichment 

The virgin NF membrane (NE70) and membrane optimized by post-treatment were used to 

compare permeation properties in the application of antibiotics separation and enrichment. The model 

antibiotics used in this study are erythromycin (Mw ~ 734 Da) and vancomycin (Mw ~ 1449 Da) [142]. 

Composition of antibiotics/salt mixture in feed solution (4L volume) was 100 ppm antibiotics and 10 g 

L-1 NaCl. The pH of erythromycin and vancomycin feed solution was 8.8 and 4.7 at the operating 

concentration, respectively, since the chemicals were used without further purification. The feed 

solution was concentrated under 10 bar by wasting permeate solution until 1L of feed volume remained 

at room temperature. 75% recovery was defined as the feed solution permeated from 4L to 1L. In order 

to calculate rejection, the antibiotics and NaCl concentration in the feed and permeate solutions were 

measured by a calibrated total organic carbon analyzer and conductivity meter, respectively. In order to 

compare the amount of salt enrichment between virgin and post-treated membranes, the amount of salt 

enrichment when unit amount of antibiotics is recovered can be expressed by ∆C𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐
𝑠𝑎𝑙𝑡  , which 

consists of salt concentration ratio of initial (at 0% recovery of feed solution) to final (at 75% recovery 

of feed solution) in feed solution and antibiotics concentration ratio of initial to final in feed solution 

(Eq. (5.5)). A lower ∆C𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐
𝑠𝑎𝑙𝑡  value is desired in the enrichment of antibiotics, because it has lower 

amount of osmotic pressure generated by enrichment of salt during simultaneous enrichment of 

antibiotics. The flux reduction ratio of each membrane was evaluated through Eq. (5.6) using permeated 

initial (at 0% recovery of feed solution) and final water flux (at 75% recovery of feed solution) 

according to the modification of method developed by other researcher [152]. 

 

∆C𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐
𝑠𝑎𝑙𝑡 =  

𝐶𝑠𝑎𝑙𝑡,   𝑎𝑡 75% 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐶𝑠𝑎𝑙𝑡,  𝑎𝑡 0% 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐶𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐,   𝑎𝑡 75% 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐶𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐,   𝑎𝑡 0% 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

                                                       (5.5) 

 

𝐹𝑙𝑢𝑥 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (%)=(1 - 
𝐽𝑤,   𝑎𝑡 75% 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐽𝑤, 𝑎𝑡 0% 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) × 100 (%)            (5.6) 
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5.3 Results and discussion 

 

5.3.1 Characterization of virgin and post-treated membrane 

5.3.1.1. Effect of post-treatment on chemical structure of membrane and surface morphology 

The ATR-FTIR spectra of virgin NE70 and post-treated membranes were measured to 

investigate effect of post-treatment on the chemical structure of the membrane. Since most semi-

aromatic NF PA membranes are restricted to pH 2-11 [24], post-treatment of the membrane using acid-

catalyzed hydrolysis was conducted with sulfuric acid at less than pH 2. Figure 5.2 shows the spectra 

of virgin and post-treated semi-aromatic PA membranes which were exposed to (a) pH 0, (b) pH 0.25, 

(c) pH 0.5, (d) pH 0.75, (e) pH 1, and (f) pH 2 for various exposure times. The spectra ranging from 

1000 cm-1 to 4000 cm-1 reveals characteristic bond motions of PA in the active layer as well as PSf in 

the support layer due to the penetration depth of FTIR beam being deeper than thickness the of active 

layer. In order to evaluate the change of peak due to the post-treatment, the FTIR peaks were normalized 

around the 1250 cm-1 peak which is attributed to strong C–O–C asymmetric stretching vibration of PSf 

[126]. Absorbance peaks at wavenumbers 1634 and 1587/1488 cm-1 are attributed to the amide (I) band 

of semi-aromatic PA and aromatic in-plane ring of PSf substrate, respectively [92]. The C=O stretching 

amide bond peak at 1634 cm-1 continuously decreased with both increasing strength of acid and 

exposure time due to acid-catalyzed hydrolysis. However, peaks of PSf at 1587/1488 cm-1 were not 

decreased, because the PSf support layer is widely known as a polymer with high chemical stability 

[42].  
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Figure 5.2 ATR-FTIR spectra of semi-aromatic NE70 virgin and post-treated polyamide 

membranes under (a) pH 0, (b) pH 0.25, (c) pH 0.5, (d) pH 0.75, (e) pH 1, and (f) pH 2 conditions 

with characteristic bands from 1000 cm-1 to 4000 cm-1 related to the membrane polyamide active 

layer and polysulfone support layer. Absorbance peaks at wavenumbers 1634 and 1587/1488 cm-

1 are attributed to the amide (I) band of semi-aromatic polyamide and polysulfone layer, 

respectively.  

 



103 

 

The surface morphology of virgin and post-treated membranes was characterized by SEM 

images (Fig. 5.3). Piperazine-based semi-aromatic NF membrane is generally either grainy or smooth 

[137]. According to Fig. 5.3 (c) and (d), semi-aromatic PA membranes’ surface were continuously 

peeled from the PSf support layer, revealing the PSf support layer clearly after exposure to pH 0 sulfuric 

acid over 14 days. These results are in good agreement with the FTIR result showing continuously 

decreased peak intensity of amide (I) band at wavenumber 1634 cm-1. However, post-treatment at 

greater than pH 0.25, as shown in Fig. 5.3 (g) to (k), does not show the complete peeling of the active 

layer from the PSf support layer.  

 

 

Figure 5.3 Surface morphology of virgin NE70 (a) and post-treated membranes from (b) to (k) 

measured by SEM in terms of strength of acid and post-treatment time. 

 

5.3.1.2 Effect of post-treatment on permeability and salt rejection 

Performance of semi-aromatic PA NE70 virgin and post-treated membranes was measured in a 

pressurized condition to investigate effect of post-treatment on permeability and salt rejection. Water 

flux and salt rejection of the membranes exposed to various strength of acid and exposure time are 

shown in Fig. 5.4 (a) to (f). Water flux of post-treated membrane monotonically increased and salt 

rejection continuously decreased with increasing strength of acid and exposure time in the case of both 

NaCl and MgSO4 single feed solution (Fig. 5.4 (a) to (e)). This tendency of water flux and salt rejection 

is in strong agreement with the trade-off relationship between permeability and selectivity [153]. 

However, there seems to be no influence on the water flux and salt rejection in the case of post-treatment 

by pH 2 acidic condition during 60 days as shown in Fig. 5.4 (f), and manufacturer’s product catalog 

also supported this results (operating limit of pH range is from 2 to 11).  
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Figure 5.4 Permeation properties (water flux and rejection) of virgin and post-treated membranes 

with increasing strength of acid and post-treatment time (tested at 75 psi, using 2,000 ppm NaCl 

or MgSO4 single solution). 
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5.3.1.3 Effect of post-treatment on hydrophilicity and surface charge (Contact angle and zeta potential) 

Contact angle was measured to investigate effect of post-treatment on surface’s hydrophilicity 

(Table. 5.2). The contact angle value of NE70 virgin membrane was 45.6 ˚ ± 2.4 ˚, but the value 

decreased to 40.6 ˚ ± 2.3 ˚ with increasing post-treatment time up to 28 days in pH 0.25 acidic solution. 

Mänttäri et al. [108] studied the effect of surface charge on hydrophilicity of a membrane surface and 

showed that hydrophilicity increases when the surface of the membrane has positively or negatively 

charges. As discussed in Fig. 5.1, amide groups are converted to carboxyl and amine group by acid-

catalyzed hydrolysis. The more negative charge of the carboxyl group and positive charge of the amine 

group at neutral pH [111] after acid-catalyzed hydrolysis could increase hydrophilicity of the membrane 

surface.  

 

Table 5.2 Contact angles of NE70 virgin and post-treated membranes by pH 0.25 acidic solution 

for 7, 14, and 28 days using Milli-Q water. 

Membrane Virgin 

Post-treated 

 (pH 0.25  

7 Days) 

Post-treated 

 (pH 0.25  

14 Days) 

Post-treated 

 (pH 0.25  

28 Days) 

Contact angle (˚) 45.6 ± 2.4 44.8 ± 2.6 43.0 ± 2.7 40.6 ± 2.3 
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Electrophoresis method was used to measure surface’s zeta potential and to investigate the 

effect of post-treatment on membrane surface charge. Figure 5.5 shows zeta potential of the NE70 virgin 

and post-treated membranes exposed to pH 0.25 acidic solution for 7, 14, and 28 days. Isoelectric point 

(IEP) of NE70 virgin membrane was ~pH 4. The surface of the semi-aromatic PA membrane becomes 

positively charged below IEP and negatively charged above IEP because of the protonation of the amine 

group of piperazine and the deprotonation of the carboxyl group, respectively [111]. Because acid-

catalyzed hydrolysis of amides produces more negative charge of carboxyl groups and positive charge 

of amine groups on the membrane surface, absolute value of zeta potential increased with increasing 

post-treatment time with maintained IEP. Both contact angle and zeta potential results clearly supported 

that post-treatment using acid-catalyzed hydrolysis converted amide groups into amine and carboxyl 

groups on the membrane surface, increasing hydrophilicity and surface charges.  

 

 

Figure 5.5 Zeta potential of the NE70 virgin and post-treated membrane by pH 0.25 acidic 

solution for 7, 14, and 28 days. 
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5.3.2 Application of post-treated membrane to water softening 

Water containing high concentration of divalent cations (Ca2+, Mg2+) can cause serious 

problems in industrial equipment such as boilers, cooling towers, etc. The process to remove those 

divalent cations in hard water is called water softening, and NF membranes are sometimes used in this 

application. In this case, allowing the passage of monovalent ions through the membrane is beneficial 

since it can relatively reduce osmotic pressure of the feed solution, resulting in a sustained high water 

flux. That is, membrane for water softening requires high rejection of divalent ions (Ca2+, Mg2+) as well 

as low rejection of monovalent ions. In this work, NaCl and MgSO4 were used to evaluate the 

performance of a prepared membrane in water softening as representative monovalent and divalent ions, 

respectively.  

Selectivity has been previously used as a quantitative analytic parameter for water softening 

[140]. Since ideal selectivity is an intrinsic property of the membrane, it is measured firstly to select the 

optimization condition of pH and exposure time using a single electrolyte solution, followed by 

measuring mixture selectivity using NaCl/MgSO4 mixture solution. Figure 5.6 shows ideal selectivity 

of NE70 virgin and post-treated membranes exposed to acidic solution of pH 0 to 2 for various 

increasing post-treatment times. Ideal selectivity of post-treated membranes increased from initially 39 

(NE70 virgin) up to 47 due to enhanced permeation of monovalent ion (NaCl) with sustained rejection 

of divalent ions when PA was partially post-treated. Afterwards ideal selectivity of post-treated 

membranes decreased from 47, which is a limiting ideal selectivity, to 1, a non-selective state, with 

decreasing pH or increasing exposure time during post-treatment because further hydrolysis permeated 

divalent ion (MgSO4) along with monovalent ion. The selectivity enhancement by partial acid-catalyzed 

hydrolysis was also confirmed by semi-aromatic NE40 membrane which was manufactured by Toray 

Chemical Korea Inc (Korea). The ideal selectivity of virgin NE40 membranes was 11, but the selectivity 

increased up top 15 at the exposure time of 3 days, and then decreased to 1 after 14 days (Table 5.3). 

 



108 

 

 

Figure 5.6 Ideal selectivity of NE70 virgin and post-treated membranes under acidic solution 

ranging from pH 0 to 2 with increasing post-treatment time. 

 

Table 5.3 Permeation properties (water flux, rejection, and ideal selectivity) of  

NE40 virgin and post-treated membranes with increasing post-treatment time using 15 wt% 

sulfuric acid (tested at 75 psi, using 2,000 ppm NaCl or MgSO4 single solution). 

 NE40 virgin NE40 3 Days NE40 7 Days NE40 14 Days 

NaCl Flux 58.0 ± 1.6 72.1 ± 4.7 169.7 ± 1.2 359.8 ± 1.4 

MgSO4 Flux 49.6 ± 0.1 54.0 ± 3.8 137.7 ± 0.6 263.1 ± 6.9 

NaCl Rejection 36.4 ± 1.0 9.1 ± 0.3 2.1 ± 0.2 0.3 ± 0.0 

MgSO4 Rejection 94.2 ± 0.2 94.0 ± 0.3 9.7 ± 0.6 0.1 ± 0.0 

Ideal selectivity 11.0 ± 0.3 15.1 ± 0.5 1.1 ± 0.1 1.0 ± 0.0 



109 

 

In order to clearly summarize effects of acid concentration or exposure time during post-

treatment on improvement of ideal selectivity, total post-treated membranes’ ideal selectivity used in 

Fig. 5.6 were plotted against ATR-FTIR’s peak intensity ratio of representative PSf support layer (1587 

cm-1) to polyamide layer (1634 cm-1) (Fig. 5.7). The degree of post-treatment can be indirectly 

calculated by FT-IR peak intensity ratio of PSf to PA, because depolymerization occurred only in PA 

due to the high chemical stability of PSf [42]. Depending on degree of post-treatment, ideal selectivity 

increased (shown in blue oval), then decreased (shown in orange box) (Fig. 5.7). That is, effective or 

excessive post-treatment can be determined by degree of post-treatment based on the purpose of 

application. 

 

 

Figure 5.7 ATR-FTIR’s peak intensity ratio of representative polysulfone support layer (1587 cm-

1) to polyamide layer (1634 cm-1) for comparison of degrees of ideal selectivity with increasing 

acid concentration or exposure time to acidic solution. 
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The optimized membrane with the highest ideal selectivity was the treated under the condition 

of pH 0.25 for 7 days; this membrane was selected to compare with NE70 virgin membrane by 

measuring mixture selectivity. This optimized membrane showed an improvement of about 10% water 

flux and 20% ideal selectivity as shown in Table 5.4. In terms of measuring method for rejection, the 

conductivity meter can measure only single electrolyte solution. Thus, ICP-MS was used for measuring 

mixture selectivity of NE70 virgin and optimized post-treatment membrane. There was no significant 

difference between the two techniques for measuring salt rejection (Table 5.4).  

Table 5.5 gives mixture selectivity with water flux and salt rejection of NE70 virgin and post-

treated membrane. Mixture selectivity of each membrane was in contrast with ideal selectivity results. 

Post-treated membrane’s mixture selectivity was about 3 times lower than NE70 virgin membrane. 

Because ideal selectivity should be equal to mixture selectivity when the interaction of mixture ion 

species with the membrane is not considered, the lower mixture selectivity value of the treated 

membrane might derive from the mixture species’ interaction with membrane. Generally, rejection of 

organic compounds and ions by NF membranes is determined by both the relative size of the compounds 

compared to membrane pore size (or steric hindrance) and electrostatic repulsion [139].  

Rejection of divalent cations (Mg2+) in both NE70 virgin and post-treated membrane had the 

opposite results compared with divalent anion (SO4
2-) as shown in Table 5.5. In this study, electrostatic 

repulsion is the dominant factor to determine salt rejection of the NF membranes. Zeta potential of post-

treated membrane at pH 5.7 is much lower than NE70 virgin membrane (Fig. 5.5) due to increased 

carboxyl groups created by the acid-catalyzed hydrolysis of polyamide, resulting in an increased SO4
2- 

rejection and decreased Mg2+ rejection by Donnan exclusion effect [139]. In this electrostatic repulsion, 

the co-ions (same charge with membrane) are preferentially rejected by the membrane surface, followed 

by rejection of same equivalent number of counter-ions (opposite charge of the membrane) to satisfy 

the electroneutrality condition, thus determining total salt rejection of the membrane [154]. The main 

difference between ideal selectivity and mixture selectivity is nonexistence or existence of monovalent 

ion to satisfy electroneutrality when divalent counter-ion pass through the membrane. In this view, an 

important factor for mixture selectivity of water softening is positive charge on the membrane surface.  

According to Fig. 5.5, zeta potential of the membrane was positive in acidic conditions. When 

the pH of mixture electrolyte solution was adjusted with nitric acid to pH 3, mixture selectivity of the 

post-treated membrane was ~2.6 times higher than NE70 virgin membrane (Table. 5.5) due to high 

positive surface charge by increased amine group resulting from acid-catalyzed hydrolysis of polyamide. 

These results are in strong agreement with Ouyang et al. [140] which explains that electrostatic 

repulsion is major factor of Na+/Mg2+ mixture selectivity. The above results suggest that the best water 

softening can be achieved when the optimized post-treated NF membrane is used in acidic conditions.  
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Table 5.4 Water flux, salt rejection, and ideal selectivity of NE70 virgin and optimized post-treatment membranes using single feed solution. 

Used 

membranes 

Feed concentration 

(ppm) 

Rejection (%)a  Water flux (LMH)a Ideal 

Selectivity 

(Na+/Mg2+) NaCl MgSO4 NaCl MgSO4 

NE70 virgin 
Single solution of  

NaCl & MgSO4 2000ppm  

58.9 ± 2.8b  

(57.5 ± 2.1)c 

98.9 ± 0.09b  

(99.1 ± 0.2)c 
22.1 ± 1.2 19.5 ± 0.8 

39.1 ± 1.9b  

(47.2 ± 1.7)c 

Post-treated at 

pH 0.25 7 Days 

45.6 ± 0.9b  

(45.5 ± 2.5)c 

98.8 ± 0.1b  

(99.1 ± 0.1)c 
25.4 ± 1.2 23.6 ± 0.6 

46.7 ± 0.9b  

(60.6 ± 3.3)c 

a Performance test was performed at 5 bar, room temperature.  

b Concentration of feed and permeate solution was measured by conductivity meter. 

c Cation’s concentration of feed and permeate solution was measured by ICP-MS. 
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Table 5.5 Water flux, salt rejection, and mixture selectivity of NE70 virgin and post-treated membranes  

using a NaCl/MgSO4 mixture solution in neutral and acidic conditions. 

Used 

membranes 

pH 

condition  

Feed 

concentration 

(ppm) 

Rejection of each ions (%)a  
Water flux  

(LMH)a 

Mixture 

Selectivity 

(Na+/Mg2+)b Na+ b Cl- c Mg2+ b SO4
2- c 

NE70 virgin 

Neutral  

(pH 5.7) 

Mixture of   

NaCl & MgSO4 

1000ppm each 

39.5 ± 2.7 38.1 ± 4.5 95.7 ± 1.1 98.0 ± 0.05 21.6 ± 1.3 14.0 ± 1.0 

Post-treated at 

pH 0.25, 7 Days 
30.8 ± 1.9 18.5 ± 4.4 84.3 ± 1.9 99.5 ± 0.03 27.4 ± 0.5 4.39 ± 0.3 

NE70 virgin 

Acidic  

(pH 3.0) 

Mixture of   

NaCl & MgSO4 

1000ppm each 

67.6 ± 0.5 64.9 ± 0.2 98.7 ± 0.1 98.5 ± 0.1 22.7 ± 1.0 25.1 ± 0.2 

Post-treated at 

pH 0.25, 7 Days 
54.0 ± 0.2 55.6 ± 1.3 99.3 ± 0.1 95.7 ± 0.1 26.8 ± 0.3 64.3 ± 0.3 

a Performance test was performed at 5 bar, room temperature.  

b Cation’s concentration of feed and permeate solution was measured by ICP-MS. 

c Anion’s concentration of feed and permeate solution was measured by ion chromatography. 
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5.3.3 Application of post-treated membrane in enrichment of antibiotics 

NF membrane performance have close relevance to MWCO value which describes pore size 

of membrane quantitatively [139, 155], therefore, the MWCO of the membranes before and after post-

treatments was investigated. Figure 5.8 shows MWCO values measured by (a) PEGs and (b) Sugars 

rejection curves of NE70 virgin and post-treated membrane treated with a pH 0.25 acidic solution for 

0, 7, 14, and 28 days. MWCO values continuously increased with increasing post-treatment time (Fig. 

5.8), showing the increase of membrane pore size by the acid-catalyzed hydrolysis [139, 155]. The pore 

size of the membranes before and after acid-catalyzed hydrolysis was evaluated with the mathematical 

prediction methods using 4 kinds of rejection data of neutral solutes (Glucose, Saccharose, Raffinose, 

and PEG 1000) [149, 150]. Average pore radius of the membranes exposed to a pH 0.25 acidic solution 

for 0 (virgin), 7, 14, and 28 days were 0.62, 0.64, 0.69, and 1.05 nm, respectively (Table 5.6) [149, 150]. 

 

 

Figure 5.8 (a) PEGs and (b) Sugars rejection curves of NE70 virgin and post-treated membranes 

in pH 0.25 acidic solution for 7, 14, and 28 days for MWCO measurement (tested with 1000 ppm 

PEG aqueous solution and 200 ppm sugars aqueous solution under 10 bar). 
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Table 5.6 Pore radius of NE70 virgin and post-treated membranes by pH 0.25 acidic solution for 

7, 14, and 28 days estimated from neutral organic compound’s rejection. 

Organic compound Solute radius, rs (nm) rs / rp Pore radius, rp (nm) 

NE70 virgin membrane 

Glucose 0.37 0.76 0.48 

Saccharose 0.47 0.89 0.53 

Raffinose 0.58 0.90 0.65 

PEG1000 0.78 0.96 0.82 

Average   0.62 

NE70 7 Days 

Glucose 0.37 0.70 0.52 

Saccharose 0.47 0.88 0.54 

Raffinose 0.58 0.89 0.65 

PEG1000 0.78 0.95 0.83 

Average   0.64 

NE70 14 Days 

Glucose 0.37 0.52 0.71 

Saccharose 0.47 0.84 0.56 

Raffinose 0.58 0.89 0.66 

PEG1000 0.78 0.93 0.84 

Average   0.69 

NE70 28 Days 

Glucose 0.37 0.23 1.59 

Saccharose 0.47 0.52 0.91 

Raffinose 0.58 0.71 0.83 

PEG1000 0.78 0.89 0.88 

Average   1.05 
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MWCO values measured by different neutral solutes (PEG and sugar) revealed different 

tendencies. Virgin NE70 membrane’s MWCO was 210 and less than 180 Da as measured by PEGs and 

sugars, respectively. This MWCO value of NE70 virgin membrane measured by PEGs are similar to 

another published paper [144]. MWCO of the membrane exposed to pH 0.25 for 28 days was 420 or 

620 Da when measured by PEGs and sugars, respectively. The MWCO of the virgin NF membrane had 

lower MWCO at PEG, however, the MWCO of the hydrolyzed membrane showed higher MWCO with 

sugars. It is likely that the discrepancy of MWCO using different model compounds occurred due to 

the contribution of molecular shape of neutral solutes to rejection [150]. Wang et al. [150] characterized 

NF membrane using Cephalexin (Mw ~ 347 Da) and saccharose (Mw ~ 342 Da), which had similar 

molecular weight. Rejection of Cephalexin was higher than saccharose, because the Cephalexin 

molecule is a more rod-like than a saccharose molecule, resulting in increased steric hindrance [150]. 

Likewise, sugar molecules used in this study are more spherical than PEG molecules, resulting in larger 

steric hindrance at smaller pore-sized membrane, but lower steric hindrance at larger pore-sized 

membrane as schematically explained in Fig. 5.9 (a).  

 

Figure 5.9 Schematic illustration of PEG and sugar’s rejection in (a) larger and (b) smaller pore 

case. 

Erythromycin (ERY, Mw ~ 734 Da) and vancomycin (Van, Mw ~ 1449 Da) were selected as 

representative antibiotics. On the basis of NE70 virgin and post-treated membranes’ MWCO value as 

shown in Fig. 5.8, NE70 virgin and post-treated membranes (pH 0.25 for 7 and 14 days) were chosen 

for the enrichment of antibiotics for minimization of loss. ∆C𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐
𝑠𝑎𝑙𝑡  value was used to compare the 

amount of salt enrichment between virgin and post-treated membranes (Table. 5.7). Post-treated 
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membranes in terms of concentration polarization and osmotic pressure from salt enrichment were 

much better than virgin NE70 membrane, because lower ∆C𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐
𝑠𝑎𝑙𝑡  values represent low amounts 

of NaCl enrichment during simultaneous antibiotics enrichment, resulting in better water flux and 

energy efficiency. 

Table 5.7 Relative enrichment ratio of salt to antibiotic (∆C𝒂𝒏𝒕𝒊𝒃𝒊𝒐𝒕𝒊𝒄
𝒔𝒂𝒍𝒕 ) and flux reduction ratio 

using NE70 virgin and post-treated membranes. 

Used membranes Target antibiotics ∆C𝒂𝒏𝒕𝒊𝒃𝒊𝒐𝒕𝒊𝒄
𝒔𝒂𝒍𝒕  Flux reduction ratio (%) 

NE70 

Erythromycin (ERY) 

0.43 13.6 

Post-treated at pH 

0.25, 7 Days 
0.36 8.3 

Post-treated at pH 

0.25, 14 Days 
0.33 12.4 

NE70 

Vancomycin (Van) 

0.43 18.3 

Post-treated at pH 

0.25, 7 Days 
0.34 13.2 

Post-treated at pH 

0.25, 14 Days 
0.27 11.7 

 

The flux reduction ratio of each membrane was also evaluated (Table. 5.7). Flux reduction 

ratio of post-treated membranes were lower than virgin NE70 membrane in both ERY and Van 

concentration. The flux decline may result from both concentration polarization on the membrane 

surface due to salt enrichment (Fig. 5.10 (c) and Fig. 5.11(c)) [146] and membrane fouling [156]. Tang 

et al. [156] explained the relationship between flux reduction and initial water flux. Membrane fouling 

was severe at high initial water flux due to increased hydrodynamic permeate drag [156]. Although 

post-treated membranes had lower NaCl enrichment than virgin NE70 membranes in feed solution (Fig. 

5.10 (c) and Fig. 5.11(c)), high hydrodynamic permeate drag from high initial water flux seems to play 

an important role on the reduction of water flux by about 10%. In addition, the gradual fouling 

phenomenon in the PA layer continuously increased rejection of antibiotics (Fig. 5.10 (b) and Fig. 

5.11(b)), because entrapment of antibiotics in the PA layer hinders the further passage of both water and 
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antibiotics [156]. Thus, the hindrance effect of additional fouled layers on the passage of antibiotic 

molecules is much higher than water molecule because of the much larger molecular size of antibiotics, 

which results in a higher rejection with increasing permeate volume (Fig. 5.10 (b) and Fig. 5.11(b)) 

[156]. 

 Rejection of NaCl in an ERY/NaCl mixture solution gradually decreased with increasing 

permeate volume as shown in Fig. 5.10 (b). Continuous decrease of NaCl rejection is mainly associated 

with reduction of the Donnan exclusion effect, resulting from augmentation of the Na+ ion’s shielding 

effect in accordance with increasing NaCl enrichment as shown in Fig. 5.10 (c) [146]. On the other 

hand, rejection of NaCl in Van/NaCl mixture solution (Fig. 5.11 (c)) maintains due to nearly neutral 

surface charge of virgin NE70 and post-treated membranes at pH 4.7 as provided in Fig. 5.5. Figure 

5.10 (d) and Fig. 5.11 (d) show the concentration of antibiotics in feed. Operating times of post-treated 

membranes for 75% recovery of total volume were about 2 to 3 times faster than virgin NE70 

membranes (pH 0.25 for 7 and 14 days, respectively), resulting from both higher MWCO values (Fig. 

8) and lower amount of salt concentration (Fig. 5.10 (c) and Fig. 5.11(c)). Small amount of salt 

enrichment on the feed side due to the relatively low salt rejection during filtration causes less 

concentration polarization and less osmotic pressure build-up, increasing water flux and decreasing 

operation time. Consequently, post-treated membranes with higher water flux and lower NaCl rejection 

as well as almost maintained antibiotics rejection (except pH 0.25 14 days condition for ERY) are 

appropriate to produce antibiotics from concentrating the antibiotics/salt mixtures (Fig. 5.10 and 5.11). 
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Figure 5.10 Comparison of NE70 virgin and post-treated membranes in pH 0.25 acidic solution 

for 7 and 14 days in terms of erythromycin (ERY) enrichment during the feed solution permeated 

from 4L to 1L (a) water flux, (b) ERY/NaCl rejection, (c) concentration of NaCl in feed, and (d) 

concentration of ERY in feed (tested at 150 psi, using mixture of 100 ppm ERY/10 g L-1 NaCl at 

pH 8.8 because chemicals were used without further purification). 
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Figure 5.11: Comparison of NE70 virgin and post-treated membrane by pH 0.25 acidic solution 

for 7 and 14 days in terms of vancomycin (Van) enrichment during the feed solution permeated 

from 4L to 1L (a) water flux, (b) Van/NaCl rejection, (c) concentration of NaCl in feed, and (d) 

concentration of Van in feed. (tested at 150 psi, using mixture of 100 ppm Van/10 g L-1 NaCl at 

pH 4.7 because chemicals were used without further purification. 

 

Overall, Table. 5.8 compares post-treated membrane in this work with other commercial or 

fabricated membranes for separation of antibiotics, and here we demonstrate that post-treated 

membranes exhibited higher water flux, lower NaCl rejection as well as competitive antibiotics 

rejection [142, 150, 157, 158].  
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Table 5.8 Comparison of the performance of NE70 control and optimized membranes in the separation of antibiotics with other published papers. 

Used membranes Target antibiotics 
Molecular weight 

of antibiotics (Da) 

Rejection of 

antibiotics (%) 

Rejection of 

salt (NaCl, %) 

Water permeability 

(L m-2 h-1 bar-1) 
Reference 

NE70 Erythromycin (ERY) 734 96.9b 31.0b 4.9b This work 

Post-treated at pH 0.25, 7 Days Erythromycin (ERY) 734 96.4b 15.5b 9.5b This work 

Post-treated at pH 0.25, 14 Days Erythromycin (ERY) 734 84.8b 5.2b 16.9b This work 

NE70 Vancomycin (Van) 1449 99.3b 24.5b 5.2b This work 

Post-treated at pH 0.25, 7 Days Vancomycin (Van) 1449 99.1b 12.3b 9.1b This work 

Post-treated at pH 0.25, 14 Days Vancomycin (Van) 1449 98.4b 3.6b 15.0b This work 

ZTFCM (M0) Erythromycin (ERY) 734 93.8b 31.1b 4.3b [142] 

ZTFCM (M3) Erythromycin (ERY) 734 96.5b 14.4b 8.4b [142] 

ZTFCM (M5) Erythromycin (ERY) 734 88.9b 18.0b 13.2b [142] 

SR2 Tetracycline 444 75-95b 24a 7.5a [158] 

NF90 Oxytetracycline 460 99.0b 85.5b 7.2b [157] 

N30F Cephalexin 347 98.0a 25-35a 1.0-1.8a [142, 155] 

NFPES10 Cephalexin 347 88.0a 10-20a 5-10a [142, 155] 

a Performance test was conducted by single solution. b Performance test was conducted by mixture (antibiotic/salt) solution. 
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5.4 Conclusion 

In this work, post-treatment using acid-catalyzed hydrolysis of semi-aromatic polyamide 

membrane was systemically investigated. Post-treatment converted polyamide group into amine and 

carboxyl group, resulting in increased hydrophilicity and absolute value of surface charge as well as 

MWCO value. In accordance with change of surface characteristics, the post-treated membrane at 

optimal condition (pH 0.25 for 7 days) showed about 10% enhanced water flux as well as 20% 

improvement of ideal selectivity of a NaCl or MgSO4 single electrolyte solution. In the case of water 

softening, mixture selectivity (Na+/Mg2+) was improved about 2.6 times in acidic conditions. Optimized 

post-treatment membranes (at pH 0.25 for 7 and 14 days) were also applied to the enrichment of 

antibiotics, resulting in higher water flux, lower NaCl rejection as well as competitive antibiotics 

rejection compared to other commercial or fabricated membranes. Operation time of membrane 

modified by acid-catalyzed hydrolysis to achieve 75% recovery of antibiotics was 2 to 3 times shorter 

than virgin NE70 membrane. This work suggests that the post-treatment of semi-aromatic membranes 

by acid-catalyzed hydrolysis could be utilized as a versatile usage by different purposes. 
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 The NF process has been rapidly attracted during last decades due to pressure-driven 

separation process in acidic wastewater recovery/treatment. This work contributed to the systematical 

investigation of the effect of the acidic conditions on semi/full-aromatic PA membranes in terms of 

changes of physico-chemical properties, and suggested to mechanism for explanations of changed the 

properties using various analytical tools and computational calculation methods. Summary and 

conclusions of this work is as follows: 

 

6.1 Comparison between semi and full-aromatic membrane  

 

Commercially available Toray Chemical Korea © NF polyamide TFC membranes fabricated 

by amine monomer (piperazine or MPD) with acyl chloride (TMC) were used as representative semi 

and full-aromatic membrane in terms of the effect of acidic aqueous solution (15wt% sulfuric acid) on 

the membrane’s physico-chemical properties. Characteristic results such as SEM, ATR-FTIR, XPS, and 

permeation experimental supported that piperazine-based NE40/70 membrane has relatively lower acid-

stability than MPD-based NE90 membrane. In addition, a ToF-SIMS experiment showed the conversion 

of an amide group to carboxyl and amine groups by acid-catalyzed hydrolysis. These converted 

carboxyl and amine groups increased both the hydrophilicity and the absolute value of the zeta potential 

on the surface of NE40 and NE70 membranes. Because piperazine-based amide’s monomer having N-

protonation state (NE70 (N)) had the lowest energy barrier in the RDS step, piperazine-based NE40 and 

NE70 membranes had relatively lower acid-stability than MPD-based NE90 membrane. These 

computational calculation results are well correlated with surface characterization results. These 

activation energy results in RDS had a close relationship with protonated amides’ twist angle (τD), and 

the tendency of the twist angle was also maintained in longer molecules (dimer and trimer). The results 

of our study showed that the semi-aromatic membrane has less acid-stability than the aromatic 

membrane in the view of various surface characterization and computational calculation results.  

 

6.2 Effect of sulfuric acid and hydrogen halides on full-aromatic membrane 

 

Full-aromatic NE 90 membrane was systemically investigated in various acidic conditions (pH 

0 to 2 sulfuric acid and pH 0 hydrogen halides) to in-depth study of the membrane’s physico-chemical 

properties, because full-aromatic membrane had high acid-stability than semi-aromatic membrane as 
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explained in section 6.1. In the case of membrane degraded by sulfuric acid, any surface characterization 

didn’t change by observing SEM, ATR-FTIR, contact angle, and zeta potential. However, water and salt 

permeability increased when membrane was exposed to H2SO4 pH 1 condition, on the other hand, water 

flux decreased and salt rejection maintained when membrane was degraded by H2SO4 pH 0 condition. 

These results were explained by distorted hydrogen bonding between amides produced from proton 

bridge in the case of O-protonation and formation of tetrahedral structure in the case of N-protonation. 

Meanwhile, membrane’s physical and chemical properties were much affected by pH 0 hydrogen 

halides condition than sulfuric acid condition. ATR-FTIR results show decreased amide II band (N-H) 

in 1541 cm-1 and amide I band (C=O) in 1663 cm-1 after exposure to hydrogen halides due to 

halogenation reacted with halogens generated by oxidation of hydrogen halides. XPS, contact angle, 

and zeta potential results also supported ATR-FTIR results. These amount of halogenation were 

increased in HCI, HBr, and HI order, and it was same as temporary dipole moment order produced by 

size of molecule. Water flux after exposure to hydrogen halides was severely decreased, and this results 

was caused by broken hydrogen bonding due to halogenation. This work suggests that change physico-

chemical properties should be considered when full-aromatic NF membrane is utilized to treat/recycle 

for several industrial effluents which contain sulfuric acid and hydrogen halides at extreme low pH. 

 

6.3 Practical application of acidic hydrolysis on semi-aromatic membrane 

 

In the view of practical application, acid-catalyzed hydrolysis of semi-aromatic PA membrane 

was utilized as post-treatment using sulfuric acid in the range of pH 0 to 2, because of relatively lower 

acid-stability of semi-aromatic PA membrane. Post-treatment converted polyamide group into amine 

and carboxyl group, resulting to increase hydrophilicity and absolute value of surface charge as well as 

membrane pore size. Consistent with change of surface characteristics, the post-treated membrane at 

optimal condition (sulfuric acid pH 0.25 for 7 days) showed about 10% improved water flux as well as 

20% enhanced ideal selectivity between Na+ and Mg2+ using a NaCl or MgSO4 as a single electrolyte 

solution. In the case of mixture selectivity (Na+/Mg2+), it was improved about 2.6 times in acidic 

conditions. Additionally, optimized post-treatment membranes (at sulfuric acid pH 0.25 for 7 and 14 

days) showed the possibility for application of the antibiotics enrichment due to higher water flux, lower 

NaCl rejection, and high antibiotics rejection compared to other commercial or fabricated membranes. 

Therefore, operation time of optimized membrane resulted 2 to 3 times shorter than virgin NE70 

membrane. This study suggests that the post-treatment of semi-aromatic membranes by acid-catalyzed 

hydrolysis can be applied to a multipurpose usage depended on different applications. 
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