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Abstract 
 

Alzheimer’s disease (AD) is the most common cause of dementia. The symptoms of AD mainly 

include short-term memory loss, cognitive defects, and poor judgment, consequently leading to death. 

Currently 28 million people worldwide are suffering from AD; however, a cure for the disease to 

retard its initiation and progression has not been developed. Indeed, the discovery of the drug has 

been very challenging due to involvement of multiple pathogenic factors in the pathogenesis of AD. 

For example, the aggregates of amyloidogenic amyloid-� (A�) peptides are accumulated in the AD-

affected brain. Among the aggregates, soluble and structured A� oligomers have been suggested to be 

toxic to nerve cells. Additionally, highly concentrated metal ions [e.g., Cu(I/II), Zn(II), Fe(II/III)] are 

found in senile plaques, composed of A� aggregates. Disrupted homeostasis of these metal ions would 

affect neuron signaling, apoptosis, and inflammation. Lastly, reactive oxygen species (ROS) can be 

overproduced through Fenton-like reactions causing oxidative damage to nucleic acids and cellular 

organelles. The studies presented in this thesis describe the development of chemical tools able to 

regulate single or multiple pathogenic component(s). In Chapter 1, an introduction of the hypotheses 

of AD is described, along with previously reported chemical tools designed to target pathological 

elements. In Chapter 2, our interdisciplinary studies of new small molecules towards distinct 

pathological factors, rationally designed via a novel structure-property-directed design strategy, are 

summarized. Lastly, in Chapter 3, a series of fluorescent sensors for metal ions in living cells, is 

illustrated, which could provide a better understanding of a link of their concentration and 

compartmentalization to the pathogenesis of AD. Overall, our approaches and findings presented 

herein would be useful for constructing effective chemical tools and therapeutics for AD, ultimately 

serving the illumination of complex pathogenesis of the disease in the future. 
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Chapter 1. 

 

Development of Chemical Tools Targeting Pathogenic Factors of Alzheimer’s Disease 

 to Elucidate its Complex Pathogenesis of the Disease 

 

 

  



 
 

1.1. Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disease, estimated approximately 

60-80% of dementia.1 The disease was first reported in 1906;1 however, the etiology of the disease has 

not still been clear.2-4 The main symptoms of the disease include loss of episodic memory, cognitive 

decline, disorientation, and poor judgment, which could ultimately lead to death.1,5 The hallmarks of 

AD consist of senile plaques and neurofibrillary tangles, mostly composed of amyloid-� (A�) 

aggregates and hyperphosphorylated tau (ptau) protein, respectively.5-8 The Alzheimer’s Association 

reported that the resultant social cost per patient for health care and long-term care services hovers at 

approximately 50 million won annually.1 Although 28 million people worldwide are currently suffered 

by the disease, a few medications (e.g., donepezil, memantine, galantamine, and rivastigmine), 

approved by the U.S. Food and Drug Administration (FDA), are available but they provide only 

temporary symptom relief by blocking a single risk factor, cholinesterase or N-methyl-D-aspartate 

(NMDA) receptor.1,3 Until now, due to the complexity of AD pathology, a cure for the disease has not 

been successfully developed. In this Chapter, we illustrate the representative pathological factors of 

AD and their inter-relationships. In addition, some previously reported chemical tools able to target 

and modulate such elements are presented. 

 

1.2. Hypotheses of AD 

1.2.1. Amyloid Cascade Hypothesis 

 

 
 

Figure 1.1. Production and aggregation of A� peptides. A� is generated by the proteolytic cleavage of 

APP via �- and �-secretases. The A��monomers (A�40 or A�42) are prone to aggregate into oligomers, 

protofibrils, and fibrils. 

 

In order to invent an effective treatment for AD, the etiology of the disease needs to be first identified. 

Multiple risk factors of AD have been suggested through several hypotheses: the amyloid cascade 

hypothesis, metal ion hypothesis, and the oxidative stress hypothesis.2-5,9,10 Amyloid hypothesis claims 

that the aggregation of misfolded A� proteins is relevant to the neurotoxicity in AD.2,4,5,10 A� peptides 

are generated via the proteolytic cleavage of amyloid precursor protein (APP) by �- and �-

secretases.5,11 The isoforms of A� peptides are determined depending on the cleavage site of �-

secretase.5,11 A�40 and A�42 are the dominant products from the cleavage reactions with the difference 

in two hydrophobic amino acid residues (i.e., isoleucine and alanine) in the C-terminus.4,5,11 A� 



 
 

monomers are natively disordered; however, external factors, such as pH and temperature, cause 

peptides to be partially folded,11 which tend to spontaneously aggregate into oligomers, protofibrils, 

and fibrils (Figure 1.1).2,3,5-7 Among various species, structured soluble A� oligomers are recently 

reported to be the most toxic species which could disrupt cellular signaling pathways by interfering 

membrane receptors [e.g., �-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor and 

NMDA receptor] or forming annular structures inserted in the membrane.8,11  

 

1.2.2. Metal Ion Hypothesis 

Homeostasis of transition metal ions, including Cu(I/II) and Zn(II), are impaired in the AD-affected 

brain.4,5,12-14 Since metal ions are responsible for numerous signal transduction pathways including 

apoptosis, inflammation, and cell proliferation, dysregulated metal ions are also pathogenic.4 In 

general, the concentrations of intracellular Cu(I/II) and Zn(II) are tightly regulated by various metal 

transporters (e.g., ATP7A and ATP7B for copper;4,15 ZnT3 for zinc4,16). Under pathological conditions, 

however, such metal ions are not properly compartmentalized in the regions of the brain (e.g., 

hippocampus, cortex, amygdala, and putamen).4 For example, the deficiency and overload of Cu(I/II) 

are simultaneously observed in the hippocampus and putamen of AD patients.17,18 The loss of protein-

bound metal ions in metalloenzymes [e.g., cytochrome c oxidase and Cu/Zn-superoxide dismutase 

(SOD)] can influence neuron degeneration and apoptosis.5 In addition to the effects of metal ions on 

the activities of metalloenzymes, they can form 1:1 complexes with the peptide [Kd = 10-11 to 10-8 M 

for Cu(II); Kd = 10-9 to 10-6 M for Zn(II)], which facilitates A� aggregation and stabilizes toxic 

oligomeric species.4,13,14,19 The exact mechanisms of how metal ions could affect the aggregation 

pathways of A� have not been identified.13  

 

1.2.3. Oxidative Stress Hypothesis 

The overproduction of reactive oxygen species (ROS) can trigger damage to the nucleic acid, 

membranes, and cellular organelles, consequently leading to neuronal death.5,12,20 The oxidative stress 

hypothesis proposes that the sources of ROS could be hypoxia and amyloid-related events.5,21 First, 

the condition of hypoxia stimulates the respiratory system in mitochondria, reducing dioxygen (O2) to 

superoxide (O2
•–), that prompts oxidative stress through overexpression of hypoxia-inducible factors 

(HIFs).22 Under hypoxia conditions, however, HIFs cannot be degraded;23 thus, the oxidative damages 

are further amplified through positive feedback.  

In addition, as described above, dysregulated metal ions can bind to A�, generating metal–A� 

complexes (vide supra). Particularly, redox-active Cu(II)–A� could generate hydrogen peroxide 

(H2O2) through the H2O2 cycle (Figure 1.2)5,7,9,24 upon reduction from Cu(II) to Cu(I), with a half 

potential as 0.34 V [versus normal hydrogen electrode (NHE)].25 Moreover, in the presence of 



 
 

reducing agents, such as ascorbic acids or glutathione,7,25 Cu(I)–A� additionally cleaves the O–O 

bond of H2O2 to generate hydroxyl radicals (•OH) through Fenton-like reactions (Figure 1.2).5,7,9,24 

ROS-mediated oxidative stress can be controlled via mitochondrial detoxifying mechanisms (i.e., 

SOD and catalase) under normal conditions;2 however, abnormal mitochondria in the AD-affected 

brain are able to overproduce O2
•– and release H2O2 into the cytoplasm.2,5  

 

 
 

Figure 1.2. Proposed mechanisms of Cu(I/II)–A�-mediated ROS production. Redox properties of 

Cu(I/II)–A� can direct the generation of H2O2 and •OH through the H2O2 cycle and Fenton cycle, 

respectively. 

 

1.3. Development of Chemical Tools to Elucidate the Pathogeneses of AD  

1.3.1. A��-targeting Agents 

In order to identify the role of A� aggregation in the neurotoxicity,2,4,5,10 chemical tools capable of 

targeting and regulating them would be necessary. For example, thioflavin-T (ThT) and Pittsburgh 

compound B (PIB) derivatives have been utilized to interact with �-sheet-enriched amyloid 

aggregates in vivo (Figure 1.3.a).2,4 In addition, some A� antibodies (e.g., bapineuzumab, 

solanezumab, ponezumab) are undergoing Phase III clinical trials, which can specifically bind to 

certain A� sequences and lower the levels of A� in the brain of AD patients.27 Moreover, the 

inhibitors against �-secretase, composed of at least four proteins [i.e., presenilin, nicastrin, anterior 

pharynx (APH1), and presenilin enhancer 2 (PEN2)], were developed to completely prevent the 

generation of A� peptides.3,28,29 Unfortunately, �-secretase has other substrates (e.g., notch receptor 1) 

rather than APP; thus, suppression of this secretase could cause notch-related lethal side effects.29,30 

As an alternative approach, small molecules able to modulate A� aggregation into off-pathway have 

been developed.29,31 For instance, �-sheet breakers have been recently proposed to inhibit or disrupt 

the formation of �-sheet by binding to the self-recognition site of A� species (Figure 1.3.b).29,31 In an 

inverse direction, Wanker and coworkers have reported the molecule, O4, that could interact with 

hydrophobic residues of A� and accelerates A� fibrillization leading to reduction of the amount of 

toxic oligomers (Figure 1.3.b).32  



 
 

 
 

Figure 1.3. A�-targeting agents and metal chelators. (a and b) Structures of A�-targeting and their 

reaction mechanisms towards A� aggregations. (c) Structures of metal chelators. 

 

1.3.2. Metal Chelators  

In order to redistribute abnormally compartmentalized metal ions in the AD-affected brain, effective 

metal chelators possessing reasonable binding affinities towards Cu(II), Zn(II), and Fe(II/III) are 

necessary. At the same time, metal binding affinities of chemical tools should be adjusted to avoid 

stripping out the essential biometals in metalloproteins.8 Moreover, since metal ions have been known 

to directly bind A� species as well as overproduce ROS, chemical reagents able to attenuate the 

interactions between metal ions and the peptide would be valuable.4,8 Clioquinol (CQ) is the common 

example of metal chelators utilized as an AD therapeutics (specifically, chelation of Cu(II) and Zn(II) 

[Kd = 10-10 M for Cu(II); 10-8 M for Zn(II)] as well as decrease in the level of A��in the brain of AD 

patients (Figure 1.3.c).3,33,34 Due to the toxicity of impurity (i.e., 5,7-diiodoquinolin-8-ol) generated 

during mass production, however, further clinical trials were halted. As a derivative of CQ, PBT2 was 

shown to function same as CQ, along with greater blood-brain barrier (BBB) permeability (Figure 

1.3.c).3,34,35 Moreover, both CQ and PBT2 are shown to reorganize the disturbed homeostasis of metal 

ions and activate metalloenzymes responsible for A� clearance (i.e., MMP-2 and MMP-3).3,35  

 

1.3.3. Multifunctional Chemical Tools 

Given that various risk factors found in AD are intertwined with one another (vide supra), the 

development of multifunctional chemical tools towards several elements (i.e., A�, metal ions, metal–

A�, and ROS) has recently received significant attention. Cyc-KLVFF, one of the cyclen derivatives 

incorporated to the amino acid residues in the self-recognition site of A�, has shown its novel ability 

to chelate Cu(II) and break the �-sheets as designed as a dual-functional chemical tool (Figure 1.4).36 

Interestingly, this molecule could further decrease H2O2 production mediated by Cu(II)–A�42.36 As 

described in the previous section, the dyshomeostasis of redox-active metal ions is closely correlated 

with overproduction of ROS;5,7,9,24 thus, Cyc-KLVFF can function as an antioxidant by preventing the 



 
 

oxidative damages induced by ROS.36 Additionally, our group has reported the molecule, ML, 

composed of rationally chosen structural moieties responsible for interacting with metal-free A�, 

metal-bound A�, and metal ions as well as scavenging free radicals (Figure 1.4).10 The framework of 

ML is based on p-I-stilbene37 and L2-b,38 each of which is a well-known A� imaging agent and a 

previously reported small molecule targeting metal–A�, respectively. In order to afford a tetradentate 

ligand with a relatively high metal binding affinity,39 an additional hydroxyl group was incorporated 

into the framework. The distorted square planar geometry of the Cu(II)–ML complex is indicated, 

which is not favorable for the geometry of Cu(I)–ML and thus subsequently prevents ROS generation 

via Fenton-like reactions.5,7,9,24 Moreover, it contains the moieties of quinoline and phenol that are 

previously reported to scavenge free radicals.10 ML could redirect the aggregation pathways of both 

metal-free A� and metal–A� as well as regulate the levels of ROS (i.e., inhibition of forming ROS 

and scavenging of the free radicals). In addition to the rationally designed molecules, natural products 

have been investigated to function as multifunctional tools. For example, melatonin, a hormone 

responsible for maintaining the circadian rhythm, is a well-known antioxidant.40 The amide functional 

group of melatonin could contribute to the interaction with Cu(II) and Zn(II),40 inhibiting the 

formation of metal–A� oligomers (Figure 1.4).41 Vitamine E (�-tocopherol) was observed to inhibit 

A� aggregation as well as disaggregate preformed A� fibrils along with its antioxidant capacity 

(Figure 1.4).42 

 

 
 

Figure 1.4. Examples of multifunctional chemical tools towards A�, metal ions, and ROS. The 

structural moieties for A� interaction (highlighted in green), metal binding (highlighted in yellow), 

and radical scavenging (highlighted in blue) arer responsible for their activity towards pathogenic 

elements. 

  

1.4. Conclusions 

A growing number of AD patients is emerging as a severe social problem; however, the clear 



 
 

medication has not been provided. Multiple pathological factors, including A�, metal ions, and ROS, 

are found in the AD-affected brain. These pathogenic factors are observed to be closely inter-related 

with one another, aggravating the neurotoxicity. In order to advance our understanding of the 

complicated pathology of AD and provide a new insight into the discovery of therapeutics, the 

development of chemical tools towards modulation of such pathological components would be 

necessary. In this Chapter, we illustrate some examples of chemical reagents, including A�-targeting 

agents, metal chelators, and multifunctional chemical tools. 
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Chapter 2. 
 

Tuning Structures and Properties for Developing Novel Chemical Tools  

towards Distinct Pathogenic Elements in Alzheimer’s Disease 
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2.1 Introduction 

Various pathological factors [e.g., amyloid-� (A�), metal ions, metal-bound A� (metal–A�), reactive 

oxygen species (ROS)] are reported to be involved in the pathogenesis of Alzheimer’s disease (AD).1-

10 A� peptides, produced via the proteolytic cleavage of amyloid precursor protein (APP), tend to 

aggregate into oligomers, protofibrils, and fibrils.1,2,8-10 Recently, soluble A� oligomers are suggested 

to be major toxic species that cause neuronal atrophy and death.2,10-13 Additionally, highly 

concentrated metals (e.g., copper, zinc, iron) found in senile plaques are observed to directly interact 

with A� generating metal–A� complexes, which can facilitate A� aggregation and stabilize toxic A� 

oligomers.8,13-15 Moreover, complexes of A� and redox-active metal ions, including Cu(I/II), are 

presented to overproduce ROS via Fenton-like reactions leading to damage of nucleic acids, lipids, 

and cellular organelles.2,16-18 Due to the complex link among multiple pathological elements to AD 

pathology, however, a cure for the disease has not been still discovered.8,19  

In order to gain a better understanding of the pathogenesis of AD, chemical tools capable of 

targeting and modulating pathogenic factors have been devised.20-39 A variety of anti-amyloidogenic 

compounds that interact with metal-free A� species and mediate peptide aggregation have been 

constructed.20-22 Small molecules, exhibited to specifically modify the aggregation of metal–A� over 

metal-free A�, have also been invented.23-25 In addition, several antioxidants have been shown as 

chemical tools against ROS-induced oxidative stress.26,27 Moreover, given that the individual elements 

have been detected to be intertwined with each other in the AD-affected brain, the design of small 

molecules as multifunctional tools for regulating the inter-connections among AD pathogenic 

components has currently received attention.28-39 For example, some small molecules, including (E)-5-

(4-hydroxystyryl)quinolone-8-ol (10c),32 N,N-dimethyl-p-phenylenediamine (DMPD),37 and N1-((1H-

pyrrol-2-yl)methyl)-N4,N4-dimethylbenzene-1,4-diamine (4),39 were shown to alter the aggregation of 

metal-free A� and metal–A� as well as quench free radicals. Taken together, the efforts on 

engineering chemical tools able to target and control single or multiple pathogenic components(s) and 

control their activities have been made to provide molecular-level insights into the pathology of AD. 

The development of such tools, however, has been challenging. 

Herein, we report new small molecules (1–3; Figure 2.1) that distinguishably interact and react 

with the pathological targets found in AD (i.e., metal-free A�, metal–A�, and free radicals). Our 

compounds, 1–3, were designed via a rational structure-property-directed strategy. As depicted in 

Figure 2.1, through an extremely minor structural variation [i.e., change of only one nitrogen (N) or 

sulfur (S) donor atom in the backbone], we are able to tune the properties of compounds (e.g., 

oxidation potentials, interactions with metal-free and metal-bound A�) and subsequently afford 

reactivities against disparate pathological features. Overall, our studies demonstrate that small 

molecules as chemical tools for modulating distinct pathological components of AD can be rationally 



 
 

constructed through a structure-property-based design strategy. Such design tactics would be further 

applied for devising chemical reagents utilized for other neurodegenerative disorders. 

 

 
 

Figure 2.1. Rational design of the small molecules (1–3) able to have distinct properties and 

reactivities with pathological factors found in AD. (a,b) Structures of DMA and the bidentate ligands 

used for construction of 1–3. (c) Structural variations of 1–3, obtained via a change of only one N or S 

donor atom in the framework, and the difference in their oxidation and targets. 

 

2.2 Results and Discussion 

2.2.1. Structure-Property-Directed Principle for Designing Chemical Tools Able to Target 

Distinct Pathological Components of AD 

To design the backbone of the new compounds (1–3), we rationally selected two structural moieties, 

i.e., DMA and bidentate ligands composed of N and S donor atoms (Figure 2.1a,b). The conjugation 

of two structural groups could achieve different redox properties of small molecules and their 

distinguishable interactions with metal ions, metal-free A�, metal–A�, and free radicals. First, DMA 

(Figure 2.1a) is a structural portion employed for previously reported chemical tools targeting metal-

free A� and/or metal–A�.34,37,40,41 In addition, the DMA-containing structures [e.g., DMPD,37 439], 

incorporated with one N donor atom at the para position of the N,N-dimethyl group, are known to 

undergo one- or two-electron oxidation.37,39,42,43 Such oxidation is indicated to direct the capabilities of 

compounds against regulation of metal-free A�, metal–A�, and free radicals.37,39,44 Second, in order to 

interact with metal ions [i.e., Cu(II), Zn(II)] as well as metal ions bound to A�, the bidentate ligands 

containing N and S donor atoms were introduced into the framework of 1–3 (Figure 2.1b).45,46 Lastly, 

to tune the extent of compounds’ oxidation, 1–3 were obtained through the modification of only one N 

or S donor atom (Figure 2.1c). The oxidation potentials of small molecules have been previously 

demonstrated to be critical for interactions and reactivities with pathological targets, including metal-

free A�, metal–A�, and free radicals.39,44 As summarized in Figure 2.1c, our new molecules (1–3), 

developed via a very slight structural variation, are observed to have the differences in their oxidation 

and coverage of pathological targets for interactions and reactivities (vide infra). 

 



 
 

2.2.2. Synthesis and Characterization of 1–3 

As described in Scheme 2.1, new small molecules (1–3) were prepared. Compound 1 was afforded by 

ring opening of ethylene sulfide with DMPD. Compounds 2 and 3 were obtained through copper-

catalyzed C–S bond formation between 4-iodo-aniline and the corresponding alkanethiols, followed 

by conversion of terminal groups into thiol (for 2) or amino (for 3) functionality. Synthesis of 1–3 was 

confirmed by spectroscopic and spectrometric methods (Figures 2.2-2.4). Moreover, our molecules 

were verified to interact with Cu(II) and Zn(II) (Figure 2.5) as we designed. Furthermore, 1–3 are 

suggested to be blood-brain barrier (BBB) permeable based on the calculated and experimentally 

obtained values (logBB > −1.0 and −logPe < 5.4; Table 2.1). 

 

Scheme 2.1. Synthetic routes to 1–3. 
 

 

 
 

 
 
Figure 2.2. 1H (a, 400 MHz) and 13C (b, 100 MHz) NMR spectra of 1 in CD2Cl2. 

 



 
 

 
 

Figure 2.3. 1H (a, 400 MHz) and 13C (b, 100 MHz) NMR spectra of 2 in CD2Cl2. 

 

 

 
 

Figure 2.4. 1H (a, 400 MHz) and 13C (b, 100 MHz) NMR spectra of 3 in CD3OD. 

 

 

 
 

Figure 2.5. Metal binding of 1–3 observed by UV–Vis. Spectral changes of our molecules are 

monitored upon titration of various concentrations of (a) Cu(II) and (b) Zn(II). Conditions: 

[compound] = 50 �M, [CuCl2 or Zn(NO3)2] = 0 (blue), 25, 50, 100, and 250 �M (orange), EtOH [for 

Cu(II) binding studies] or buffered solution [20 �M HEPES, pH 7.4, 150 �M NaCl, for Zn(II) binding 

studies], room temperature, incubation for 10 min.  



 
 

Table 2.1. Values (MW, clogP, HBA, HBD, PSA, logBB, and –logPe) of 1–3.  

 

 
 
aMW, molecular weight, bclogP, calculated log of water-octanol partition coefficient, cHBA, hydrogen 

bond acceptor atoms, dHBD, hydrogen bond donor atoms, ePSA, polar surface area, flogBB = 0.152  

clogP − 0.0148  PSA  0.139, g−logPe, the values obtained using the parallel artificial membrane 

permeability assay adapted for the BBB (PAMPA–BBB) were calculated by the PAMPA Explorer 

software v. 3.5. Compounds assigned to be CNS� are able to penetrate the BBB and thus be available 

in the central nervous system (CNS), compounds assigned to be CNS– compounds have poor BBB 

permeability and thus their availability in the CNS are considered minimal. 

 

 

2.2.3. Redox Properties of 1–3 

To determine whether a minor structural variation of compounds could lead to distinguishable 

compounds’ oxidation potentials as we designed (Figure 2.1), their redox properties were investigated 

by cyclic voltammetry (CV) and UV–visible spectroscopy (UV–Vis). The oxidation potentials of each 

compound were measured by CV (Figures 2.6 and 2.7). The lower value of the anodic peak potential 

(Epa) indicates that the compound is relatively easy to be oxidized.47 The Epa value of 1 containing a 

moiety of DMPD is ca. 0.22 V [versus Ag/Ag(I)], significantly lower than those of 2 and 3 (Epa = ca. 

0.54/0.80 and 0.75 V, respectively) composed of a 4-(dimethylamino)-benzenethiol (BT) group 

(Figure 2.6 and Table 2.2). Although the Epa values of 2 and BT could not be measured in H2O due to 

their limited solubility, 1 has a much lower Epa value than 3 in H2O, similar to the observation in 

DMSO (Figure 2.7 and Table 2.3). Based on the Epa values of DMPD and BT (ca. 0.23 and 0.93 V, 

respectively), the structural portion of DMPD would be mainly responsible for the lower Epa value of 

1. 

1 2 3 Lipinski’s rules and others 
MWa 196 213 196 ≤ 450 

clogPb 2.16 3.22 1.91 ≤ 5.0 

HBAc 2 1 2 ≤ 10 

HBDd 1 0 2 ≤ 5 

PSA (Å2)e 15.3 3.24 29.3 ≤ 90 

logBBf 0.232 0.580 –0.0130 < –1.0 (poorly) 

–logPe
g  4.59 ± 0.02 

(CNS+) 
 4.52 ± 0.07 

(CNS+) 
4.45 ± 0.01 

(CNS+) 
–logPe < 5.4 (CNS+) 
–logPe > 5.7 (CNS–) 



 
 

 
 

Figure 2.6. Redox potentials of 1–3 measured in DMSO. The oxidation of (a) 1–3 and (b) their 
structural portions was monitored by cyclic voltammetry. The Epa values at 250 mV/s are summarized 
in (c). Conditions: [compound] = 1 mM; 0.1 M tetra-N-butylammonium perchlorate (in DMSO); 
various scan rates [25 (red), 50, 100, 150, 200, and 250 mV/s (blue)]; room temperature; three 
electrodes composed of the glassy carbon working electrode, platinum counter electrode, and 
Ag/Ag(I) reference electrode. 
 

 

Table 2.2. Quantitative data of cyclic voltammograms of 1–3 in DMSO. 

 

Scan rate 

(mV/s) 

1  2 
Epa (V) Epa (V)  Epa (V) ipa (�A)  Epa (V) ipa (�A) 

25 0.186 0.186  0.520 1.25  0.750 6.67 

50 0.196 0.196  0.522 2.39  0.756 9.69 

100 0.208 0.208  0.532 2.82  0.779 12.2 

150 0.214 0.214  0.534 3.66  0.784 14.4 

200 0.219 0.219  0.538 4.40  0.796 15.1 

250 0.220 0.220  0.538 4.41  0.802 17.5 

Scan rate 

(mV/s) 

3  DMPD  BT 
Epa,1 (V) ipa,1 (�A)  Epa,2 (V) ipa,2 (�A)  Epa (V) ipa (�A) 

25 0.704 16.8  0.191 17.0  0.919 25.2 

50 0.719 23.5  0.204 25.2  0.919 39.9 

100 0.732 31.7  0.218 34.8  0.933 46.2 

150 0.734 38.1  0.224 40.8  0.938 66.6 

200 0.748 41.1  0.226 40.9  0.938 80.8 

250 0.747 37.8  0.232 49.4  0.933 83.6 

 

 



 
 

 
 

Figure 2.7. Redox potentials of 1–3 measured in H2O. The oxidation of 1, 3, and DMPD was 

monitored by cyclic voltammetry. Conditions: [compound] = 1 mM, 1 M NaCl (in ddH2O), various 

scan rates [25 (red), 50, 100, 150, 200, and 250 mV/s (blue)], room temperature, three electrodes 

composed of the glassy carbon working electrode, platinum counter electrode, and Ag/Ag(I) reference 

electrode. 

 

 

Table 2.3. Quantitative data of cyclic voltammograms of 1–3 in H2O. 

 

Scan rate 

(mV/s) 

DMPD 
Epa (V) ipa (�A) Epc (V) ipc (�A) 

25 0.138 4.19 0.0830 4.16 

50 0.141 8.88 0.0840 8.68 

100 0.139 14.8 0.0820 14.1 

150 0.140 22.9 0.0840 22.5 

200 0.140 31.8 0.0840 26.4 

250 0.141 37.6 0.0860 34.2 

Scan rate 

(mV/s) 

1 
Epa (V) ipa (�A) Epc (V) ipc (�A) 

25 0.0960 8.91 – – 

50 0.107 12.4 0.0994 1.90  

100 0.111 25.6 0.0987 3.67 

150 0.103 22.7 0.103 5.94 

200 0.106 44.4 0.101 11.3 

250 0.109 58.0  0.100  15.8 

Scan rate 

(mV/s) 

3 
Epa (V) ipa (�A) Epc (V) ipc (�A) 

25 0.557 10.4 0.491 5.00  

50 0.560 13.8 0.488 6.63 

100 0.560 17.4 0.491 8.11 

150 0.563 19.9 0.490 8.24 

200 0.565 23.5 0.488 12.5 

250 0.567 28.7 0.491 17.2 

 

In addition to the moieties of DMPD and BT, the oxidation of the thiol groups in 1 and 2 was 

monitored by the DTNB assay [DTNB = 5,5’-dithio-bis-(2-nitrobenzoic acid)] with L-cysteine as a 

positive control (Scheme 2.2 and Figure 2.8). A new absorption band at ca. 412 nm was exhibited 



 
 

upon reaction of the thiol groups in 1 and 2 with the disulfide bond in DTNB, indicative of the 

formation of 2-nitro-5-thiobenzoic acid dianion (TNB2-) (Figure 2.8). The different intensity of the 

optical bands of TNB2-, resulted from the interactions of DTNB with compounds, presents that the 

thiol group in 1 is less oxidizable than that in 2. 

 
Scheme 2.2. Reaction scheme of the DTNB assay 
 

 

 

 

Figure 2.8. Oxidation of thiol groups in L-cysteine (L-Cys) and compounds, monitored by the DTNB 

assay. L-Cys was used as a positive control in the DTNB assay. Conditions: [DTNB] = 50 �M; 

[compound] = 50 �M; buffered solution (pH 8.0); room temperature; incubation for 10 min.  
 

 Based on the redox properties of 1–3, analyzed through CV and the DTNB assay, their oxidation 

was additionally traced for 24 h by UV–Vis (Figure 2.9). The absorption band of 1 decreased at ca. 

254 nm and increased at ca. 300 nm upon incubation, indicative of oxidation producing the 

delocalized electron(s) on the phenyl ring.37,39 Different from 1, the intensity of the optical band of 2 

was slightly reduced at ca. 280 nm, whereas the peak intensity was enhanced in the range of ca. 290 

to 400 nm. The spectral changes of 3 were not detected even for 24 h (Figure 2.9), suggesting that the 

compound was not easily oxidizable under our experimental conditions. Therefore, the moiety of 

DMPD in 1 is suggested to be more associated with ligand oxidation than the BT portion found in 2 

and 3, which is consistent with the results of CV (Figure 2.6). More importantly, the different degree 

of the compounds’ oxidation is demonstrated to be achieved via a minor structural difference (i.e., 

replacement of only one donor atom in the backbone; Figure 2.1c). These distinct redox properties of 

compounds are observed to direct their distinguishable interactions as well as modulating reactivities 

towards metal-free A�, metal–A�, and free radicals (vide infra). 

 



 
 

 

Figure 2.9. Oxidation of 1–3 monitored by UV–Vis. Conditions: [compound] = 50 �M; 20 �M 

HEPES, pH 7.4, 150 �M NaCl; room temperature; incubation for 24 h. 

 

2.2.4. Interactions of 1–3 with Metal-free A�� 

To verify how the distinct redox properties of 1–3 could influence their reactivities towards A� 

aggregation, the interactions of 1–3 with metal-free A� species were identified at the molecular level 

employing electrospray ionization mass spectrometry (ESI–MS) and tandem MS (ESI–MS2) (Figure 

2.10). Upon incubation of metal-free A�40 with or without the compounds, the +3-charged A�40 

monomer ([A�40 + 3H]3+) was detected at 1444 m/z in the ESI–MS spectra (red peaks; Figure 2.10a). 

Among our small molecules, 1 was observed to oxidize metal-free A�40 showing the peak at 1449 m/z 

corresponding to [A�40 + O + 3H]3+ (red asterisk; Figure 2.10a), while such peptide modification was 

not monitored in the case of metal-free A�40 treated with both 2 and 3. 

 

 

Figure 2.10. Interactions of 1–3 with metal-free A�40, analyzed by ESI–MS and ESI–MS2. (a) The 

+3-charged A�40 monomers in the samples incubated with 1–3 in the absence of Cu(II) were detected 

in the ESI–MS spectra. Metal-free A�40 is denoted as red peaks. The oxidized ions are indicated by 

the red asterisks. (b) The oxidized amino acid residue of A�40 incubated with 1 was identified through 



 
 

ESI–MS2. Conditions: [A�40] = 100 �M; [compound] = 500 �M; incubation for 3 h; 20 mM 

ammonium acetate, pH 7.2; 37 °C; no agitation. All samples were diluted with ddH2O by 10 fold 

before injection to the mass spectrometer. 

 

Furthermore, we determined which amino acid residues of metal-free A�40 were plausibly oxidized 

upon treatment of 1 through ESI–MS2 (Figure 2.10b). The ESI–MS2 spectrum of 1-added A�40 

displayed that the methionine 35 (M35) residue in A�40 was oxidized (e.g., methionine sulfoxide).48,49 

In the previous studies, the oxidation of M35 in A� has been suggested to modify A� aggregation 

pathways.50,51 Together, among our molecules (1–3), 1 with the lowest Epa value is capable of 

oxidizing metal-free A�40, implying that the interactions of compounds with metal-free A�40 could be 

linked to their redox properties. 

 
2.2.5. Interactions of 1–3 with Cu(II)–A�� 

In addition to metal-free A�40, the interactions of 1–3 with Cu(II)-treated A�40 species were 

investigated (Figure 2.11). Note that compounds’ interactions with Zn(II)–A� could not be studied 

since Zn(II)- bound A� species were not observed under our MS conditions. Upon incubation of A�40 

in the presence of Cu(II), Cu(II)- added A�40 (i.e., [A�40 + Cu(II) + H]3+) was revealed at 1465 m/z, 

along with metal-free A�40 at 1444 m/z (red and light blue peaks; Figure 2.11). Compound 1 with the 

lowest oxidation potential was shown to degrade and oxidize Cu(II)-treated A�40 (orange peaks and 

red asterisks, respectively; Figure 2.11). The degraded A�40 by 89 Da could be induced by oxidative 

cleavage of the aspartate 1 (D1) residue forming isocyanate.52-54 The D1 residue was reported to be 

preferentially oxidized through alkoxyl radical pathways,52-54 which could impact the structural 

rearrangement of Cu(II) coordination in A�. In addition to the degraded A�40 (at 1415 m/z), the peak 

at 1409 m/z could be assigned as the degraded A�40 with further loss of one water (H2O) molecule. In 

a similar manner, the peaks at 1421 m/z and 1427 m/z (peptide species bound to one and two H2O, 

respectively) might indicate the degradation of A�40.  

The oxidation sites in the amino acid sequence of Cu(II)-added A�40 induced by 1 were determined 

by ESI–MS2 (Figure 2.11b). Under Cu(II)-present conditions, histidine 13 and 14 (H13 and H14) were 

shown to be oxidized, along with M35, previously reported as the plausibly oxidizable residues in 

A�.48,50,51,55,56 Since Cu(II) is known to be bound to H13 and H14 in A�,3,5,45 their oxidation (e.g., 2-

oxo histidine)57 upon incubation of A� with 1 might explain the low abundance of Cu(II)–A�40 in the 

spectra (Figure 2.11b). Additionally, the oxidation of H13, H14, and M35 in A� is previously reported 

to alter A� aggregation pathways.50,51 



 
 

 

Figure 2.11. Interactions of 1–3 with Cu(II)-treated A�40, analyzed by ESI–MS and ESI–MS2. (a) The 

+3-charged A�40 monomers in the samples incubated with 1–3 in the presence of Cu(II) were detected 

in the ESI–MS spectra. Cu(II)–A�40 is denoted as light blue peaks, respectively. The oxidized ions are 

indicated by the red asterisks. The number of the asterisks represents the number of the oxygen atoms 

incorporated into A�40. The degraded A�40 with 89 Da loss (orange peaks) was presented from the 1-

treated samples in the presence of Cu(II). (b) The oxidized amino acid residues of A�40 incubated 

with 1 and Cu(II) were identified through ESI–MS2. Conditions: [A�40] = 100 �M; [CuCl2] = 100 

�M; [compound] = 500 �M; incubation for 1 h; 20 mM ammonium acetate, pH 7.2; 37 °C; no 

agitation. All samples were diluted with ddH2O by 10 fold before injection to the mass spectrometer. 

 

Compound 2, which possesses the higher oxidation potential than 1 (Figure 2.6), indicated 

different interactions with Cu(II)-treated A�40, compared with 1. In detail, 2 significantly reduced the 

intensity of peaks at 1465 m/z corresponding to [A�40 + Cu(II) + H]3+, suggesting that the 

coordination of Cu(II) to A�40 was modified by incubation with 2 (Figure 2.11). Distinct from 1, 2 

was not able to degrade and oxidize A� even in the presence of Cu(II). In order to further analyze the 

interaction of 2 with Cu(II)–A�, we additionally employed Cu(II)-treated A�42, another isoform of A� 

(Figure 2.12).12 When 2 was incubated with Cu(II) and A�42, the peak of Cu(II)–A�42 disappeared, 

supporting that this molecule might also disrupt Cu(II) binding to A�42 (blue peaks; Figure 2.12a). 

Moreover, compound 2 was observed to be transformed to BT58 (153 Da) or the oxidized BT (BTox; 

304 Da) under Cu(II)-present conditions. These transformed compounds from 2, BT and BTox, were 

shown to subsequently form the non-covalent adduct with the A�42 dimer at 1868 m/z (green peaks; 

Figure 2.12a). Moving forward, we applied ion mobility mass spectrometry (IM–MS) to monitor the 

effects of 2 on conformation of the A�42 dimer (Figure 2.12b). The arrival time distribution (ATD) of 



 
 

the A�42 dimer, monitored after addition of 2 into the sample of Cu(II)-treated A�42, was enhanced at 

11.57 ms, implying that 2 could trigger the conformational compaction of the dimeric form. Thus, 2 is 

able to specifically interact with Cu(II)-treated A� over metal-free A�, especially showing the non-

covalent complexation between the compound and the A�42 dimer with conformational changes when 

Cu(II) is present. These interactions of 2 with Cu(II)–A�42 are exhibited to be related to its modulating 

activity towards the aggregation of Cu(II)–A�42 (vide infra).  

 

 
 

Figure 2.12. Interactions of 2 with Cu(II)-treated monitored A�42 monitored by ESI–MS and IM–MS. 

(a) The +5-charged Cu(II)-treated A�42 dimer in the samples incubated without (left) or with 2 (right). 

The non-covalent complex formation of BT (153 m/z) or BTox (304 m/z) with A�42 was detected in the 

ESI–MS spectra (green peak, 1868 m/z). (b) The altered arrival time distributions (ATDs) of Cu(II)–

A�42 upon incubation with 2 indicate the conformational change of the peptide. Ions selected for the 

IM–MS analysis are marked with gray and orange circles in the ESI–MS spectra. Conditions: [A�42] = 

100 �M; [CuCl2] = 100 �M; [2] = 500 �M; incubation for 1 h; 20 mM ammonium acetate, pH 7.2; 

37 °C; no agitation. All samples were diluted with ddH2O by 10 fold before injection to the mass 

spectrometer. 

  

Lastly, the hardly oxidizable compound 3, relative to 1 and 2, displayed no significant interaction 

with Cu(II)-treated A�40. For example, 3 was not able to degrade and oxidize A� as well as generate 

non-covalent complexes with peptides (Figure 2.11b). In summary, the easily oxidized compound, 1, 

is observed to considerably interact with both metal-free and Cu(II)-treated A�. Compound 2 (with 

the higher Epa value than 1) specifically affects Cu(II) binding to both A�40 and A�42 and produces a 

non-covalent adduct with the A�42 dimer showing structural compaction. The least oxidizable 

compound, 3, among our molecules could not interact with both metal-free A� and Cu(II)–A�. Taken 



 
 

together, our MS studies support that the interactions between our compounds and metal-free or 

Cu(II)-treated A� could be differentiated depending on their redox properties which were rationally 

tuned via a very minor structural variation (Figure 2.1c). 

 

2.2.6. Regulatory Abilities of 1–3 against Metal-free A�� and Metal–A� Aggregation 

To confirm the compounds’ regulatory activities against metal-free A� and metal–A�, the capability 

of 1–3 to control peptide aggregation with and without metal ions was evaluated. The resultant A� 

species upon treatment with compounds were analyzed by gel electrophoresis/Western blotting 

(gel/Western blot; for size distribution) with an anti-A� antibody (6E10) and transmission electron 

microscopy (TEM; for morphology). In the inhibition experiments (Figure 2.13), freshly prepared A� 

was introduced with our compounds in the absence and presence of metal ions [i.e., Cu(II) and Zn(II)] 

for 24 h. In the disaggregation experiments (Figure 2.14), the compounds were added to preformed 

metal-free or metal-added A� aggregates, generated by 24 h incubation, and the resultant samples 

were additionally incubated for 24 h. The larger A� aggregates (e.g., fibrils), generated from both 

experiments, are known to limit their penetration through the gel matrix; thus, they are in general 

visualized by TEM.59,60 When A� aggregation is varied with the treatment of compounds producing 

small-sized A� species, smearing bands in the gel/Western blot are presented.59,60  

 

 
 



 
 

Figure 2.13. Reactivities of 1–3 to inhibit metal-free A� and metal–A� aggregation. (a) Scheme of the 

inhibition experiments. (b) Analysis of the size distributions of the resultant A�40 and A�42 species 

from (a) by gel/Western blot using 6E10. (C) [A� ± Cu(II) or Zn(II)]; (1) [(C) + 1]; (2) [(C) + 2]; (3) 

[(C) + 3]. Conditions: [A�] = 25 �M; [CuCl2 or ZnCl2] = 25 �M; [compound] = 50 �M; pH 6.6 [for 

Cu(II) samples] or pH 7.4 [for metal-free and Zn(II) samples]; 37 °C; constant agitation. (c) TEM 

images of the samples from (b). The inset image represents the minor species. Scale bar = 200 nm. 

 

 

 
 
Figure 2.14. Reactivities of 1–3 against the preformed metal-free and metal-induced A�40/A�42 

aggregates. (a) Scheme of the disaggregation experiments. (b) Analysis of the size distributions of the 

resultant A�40 and A�42 species from (a) by gel/Western blot using 6E10. (C) [A� ± Cu(II) or Zn(II)]; 

(1) [(C) + 1]; (2) [(C) + 2]; (3) [(C) + 3]. Conditions: [A�] = 25 �M; [CuCl2 or ZnCl2] = 25 �M; 

[compound] = 50 �M; pH 6.6 [for Cu(II) samples] or pH 7.4 [for metal-free and Zn(II) samples]; 

37 °C; constant agitation. (c) TEM images of the resultant A�40/A�42 aggregates from the 24 h 

incubated samples from (b). Scale bar = 200 nm. 

 

When metal-free A�40/A�42 and metal–A�40/A�42 were incubated with 1, noticeable smearing 

bands of the resultant A�40 and A�42 species with lower molecular weights were observed in the 

gel/Western blots (Figure 2.13b). These results suggest that 1 is able to significantly modulate A� 

aggregation pathways in the absence and presence of metal ions. In addition, 1 is shown to 

disaggregate preformed metal-free A�40/A�42 and metal–A�40/A�42 aggregates or affect their further 



 
 

aggregation (Figure 2.14b). TEM images of the A� aggregates formed upon treatment of 1 in both 

inhibition and disaggregation studies were amorphous and smaller sized instead of larger and fibrillar 

aggregates observed from compound-free A� samples (Figures 2.13c and 2.14c). 

In the case of 2, this molecule could not regulate metal-free A�40 and metal–A�40 aggregation in 

both inhibition and disaggregation experiments (Figures 2.13b and 2.14b). Different from A�40, 

smearing bands of Cu(II)–A�42 aggregates, larger than 140 kDa, were observed upon incubation with 

2, which could indicate its specific reactivity towards the aggregation of Cu(II)–A�42 over metal-free 

A�42 and Zn(II)–A�42 (Figures 2.13b and 2.14b). In accordance with the results of gel/Western blot, 

shorter-sized A� aggregates were shown only in the samples containing 2 and Cu(II)-treated A�42 in 

both inhibition and disaggregation experiments (Figures 2.13c and 2.14c). Lastly, 3 could not modify 

the aggregation of metal-free A�40/A�42 and metal–A�40/A�42 based on the results of gel/Western blot 

(Figures 2.13b and 2.14b). No noticeable morphological changes of 3-added A� aggregates, produced 

with and without metal ions, were visualized (Figures 2.13c and 2.14c). 

The reactivities of 1–3 against the aggregation of metal-free A� and metal–A� are consistent with 

the trend of their Epa values (Figure 2.6) as well as the observation for the interactions with metal-free 

and metal-bound A� species (Figures 2.10-2.12). Compound 1 with the lowest Epa value could trigger 

the oxidation of metal-free A� (at M35) as well as the degradation (at D1) and oxidation (at H13, H14, 

and M35) of Cu(II)–A�. Such interactions could lead to modifying metal-free and metal-induced A� 

aggregation by 1. Compound 2 with the higher Epa value than 1 could disrupt the coordination of 

Cu(II) to A� and generate a non-covalent complex with the A�42 dimer showing structural compaction 

with Cu(II) being present; thus, the molecule could noticeably control Cu(II)–A�42 aggregation. In the 

case of 3 with the highest Epa value among our molecules, the compound was not able to interact with 

metal-free A� and Cu(II)–A�, which could support no reactivities of the molecule towards the 

aggregation of both metal-free A� and metal–A�. Taken together, the ability of compounds to 

modulate the aggregation of A�40 and A�42 with or without metal ions is demonstrated to be highly 

relevant to their characteristics, including redox properties and interactions with the targets. 

 

2.2.7. Antioxidant Capabilities of 1–3 against Free Radicals 

To determine if the redox properties of compounds can direct their regulatory activity against free 

radicals, the ability of 1–3 to quench free radicals was evaluated by the Trolox equivalent antioxidant 

capacity (TEAC) assay employing the lysates of Neuro-2a (N2a) neuroblastoma cells (Figure 2.15a). 

The TEAC assay verifies the capability of compounds to scavenge free radicals, such as ABTS+• 

[ABTS = 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)], relative to that of an analog of 

vitamin E, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid).39,61-63 The quenching 



 
 

ability of Trolox against free radicals is well characterized; thus, small molecules with the TEAC 

values higher than 1.0 are regarded as potent antioxidants than Trolox.61 Compound 1 is presented to 

have the TEAC value as 1.6 (± 0.1), suggesting this molecule as a better scavenger against free 

radicals than Trolox (Figure 2.15). Compound 2 also quenches free radicals [the TEAC value as 0.33 

(± 0.04)] but its activity is much lower than 1 and Trolox. As expected, 3 with the highest oxidation 

potential exhibits the lowest TEAC value [0.03 (± 0.01)]. Collectively, the trend of the TEAC values 

of 1–3 is observed to be well matched with the degree of their oxidation (Figures 2.6 and 2.7). 

 

 
 

Figure 2.15. Scavenging capability of 1–3 against free organic radicals in N2a cell lysates, 
determined by the TEAC assay. The TEAC values of compounds are summarized in (b). *n.d., not 
determined. The TEAC values of ethanamine (EA) and ethanethiol (ET) were not able to be obtained 
due to their limited activity. 
 

In order to identify which structural portions contribute to the antioxidant capability of our 

compounds (especially, 1 and 2), we further investigated the ability of structural components of 1–3 

[i.e., DMPD, BT, ethanamine (EA), ethanethiol (ET); Figure 2.15] to scavenge free radicals. The 

TEAC value of DMPD is 1.0 (± 0.03), much higher than that of BT [0.02 (±0.03)], which could 

explain the better antioxidant capability of 1 containing DMPD, compared to 2 and 3 possessing BT. 

In the case of EA and ET, their TEAC values could not be measured due to their limited activity 

against free radicals. In addition to the individual parts, the entire structure of the compounds might 

be shown to be important for their antioxidant capacity (1 versus DMPD; Figure 2.15b). Overall, the 

antioxidant capability of compounds is confirmed to be associated with their chemical structures that 

consequently differentiate their oxidation potentials. 

 



 
 

 
 
Figure 2.16. Toxicity of compounds in SH-SY5Y (5Y) cells. (a) Cell survival of compounds (1–3) in 

the absence of metal ions. (b) Cell survival of compounds (i.e., 1 and 2) in the presence of metal ions. 

(c) Cell survival of compounds (i.e., 1 and 2) in the presence of A�40 or A�42 and metal ions. 

Conditions: [A�] = 10 �M, [CuCl2 or ZnCl2] = 5 �M, [compound] = 10 �M. 

2.3. Conclusions 
Novel small molecules, composed of DMA and bidentate ligands, were newly constructed for 

regulating distinct factors linked to AD pathology to different extents. The development of such 

compounds was achieved via our rational structure-property-directed design principle employing a 

very straightforward structural modification. The distinguishable characteristics of the small 

molecules, including redox properties and interactions with pathological components, were obtained 

through our simple structural variation. The relatively easily oxidizable compound, 1, is demonstrated 

to effectively modify multiple pathogenic factors, i.e., metal-free and metal-bound A� as well as free 

radicals. In addition, 2, which is less easily oxidized than 1, presents the specific reactivity towards 

the aggregation of Cu(II)–A�42, along with less scavenging ability against free radicals than that of 1. 

The hardly oxidizable compound, 3, could not influence the actions of all pathogenic components, i.e., 

metal-free A�, metal–A�, and free radicals. Therefore, our studies reveal that a very minor structural 

change could successfully tune their properties (especially, oxidation potentials) as well as regulatory 

reactivities towards distinct pathogenic elements found in AD. 

In order to evaluate biological applications of our small molecules, their cytotoxicity was 

examined employing human neuroblastoma SH-SY5Y cells through the MTT assay [MTT = 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (Figure 2.16). Compound 1 was observed to 

have no cytotoxicity up to 10 �M (cell viability, ca. 100%; Figure 2.16). In the case of 2 and 3, the 



 
 

compounds were less toxic up to 25 �M (cell viability, ca. 80-100%) (Figure 2.16). When the cells 

incubated with A� and 1 (the compound with regulatory reactivities towards multiple pathological 

factors) in the absence and presence of metal ions, the cell survival was enhanced by ca. 10 to 20% 

(Figure 2.16). To improve the utilization of such molecules in biological systems, further structural 

optimization would be necessary. To conclude, our structure-property-directed design demonstrates 

the feasibility of building up novel structural entities useful for devising chemical tools towards 

modulation of single or multiple pathogenic factor(s) found in AD. 

 

2.4. Experimental Section 

2.4.1. Materials and Methods 

All reagents were purchased from commercial suppliers and used as received unless otherwise noted. 

Cyclic voltammograms were recorded under N2 (g) with a CHI620E model potentiostat (Qrins, Seoul, 

Republic of Korea). A three-electrode setup is composed of an Ag/Ag(I) reference electrode [RE-1B 

Reference electrode [Ag/Ag(I); Qrins], a Pt wire auxiliary electrode (SPTE Platinum electrode; Qrins), 

and a glassy carbon working electrode (Qrins). A�40 and A�42 (A�42 = 

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA) were purchased from Anaspec 

(Fremont, CA, USA). Trace metal ions were removed from the solutions used in the studies by 

treating the solutions with Chelex overnight (Sigma-Aldrich, St. Louis, MO, USA). Optical spectra 

were recorded using an Agilent 8453 UV–Vis spectrophotometer. Absorbance values for biological 

assays, including the PAMPA–BBB, TEAC, and MTT assays, were measured using a Molecular 

Devices SpectraMax M5e microplate reader (Sunnyvale, CA, USA). TEM images were taken by a 

JEOL JEM-2100 transmission electron microscope [UNIST Central Research Facilities (UCRF), 

Ulsan, Republic of Korea]. ESI–MS and IM–MS analyses were performed using a Waters Synapt G2-

Si quadrupole time-of-flight (Q-Tof) ion mobility mass spectrometer (Waters, Manchester, UK) 

equipped with an ESI source [DGIST Center for Core Research Facilities (CCRF), Daegu, Republic 

of Korea]. 1H and 13C NMR spectra were recorded using a 400 MHz Agilent NMR spectrometer 

(UCRF). The high-resolution mass spectra of compounds were obtained through a Q exactive plus 

orbitrap mass spectrometer (Thermo Fisher Scientific, Carlsbad, CA, USA).  

 

2.4.2. Preparation of 1 

Ethylene sulfide (150 �L, 2.5 mmol) was added dropwise into a solution of dimethyl-4-

phenylenediamine (690 mg, 5 mmol) in EtOH (3 mL) and the reaction mixture was heated to 100 °C 

under N2 (g). After 2 h, ethylene sulfide (100 �L, 1.7 mmol) was added dropwise. After 1 h, the 

solvent was removed under vacuum. The residue was dissolved in water and extracted with ethyl 

acetate (EtOAc; 3x). The combined organic layer was dried over anhydrous magnesium sulfate 



 
 

(MgSO4) and concentrated under the vacuum. The crude compound was purified by column 

chromatography (SiO2; EtOAc:hexanes = 1:3) yielding a product (white oil; 140 mg, 0.71 mmol, 

29%). 1H NMR [400 MHz, CD2Cl2, 	 (ppm)]: 6.71 (2H, d, J = 8.8 Hz), 6.61 (2H, d, J = 8.8 Hz), 3.57 

(1H, br), 3.28 (2H, t, J = 6.4 Hz), 2.81, (6H, s), 2.73 (2H, m), 1.48 (1H, m). 13C NMR [100 MHz, 

CD2Cl2, 	 (ppm)]: 144.9, 140.1, 115.8, 115.0, 48.2, 42.2, 24.9. HRMS (m/z): [M + H]+ Calcd. for 

C10H16N2S, 197.1107; found, 197.1102. 

 

2.4.3. Preparation of 2 

4-Iodoaniline (660 mg, 3.0 mmol), 2-mercaptoethanol (0.42 mL, 6.0 mmol), copper sulfate 

pentahydrate (CuSO4∙5H2O; 38 mg, 0.15 mmol), and KOH (840 mg, 15 mmol) were added into a test 

tube containing DMSO/H2O (2 mL/0.2 mL) with a magnetic stir bar. After flushing with Ar (g), the 

mixture was stirred in a preheated oil bath at 90 °C for 20 h and then cooled to room temperature. The 

reaction was quenched with water and extracted with EtOAc (4x). The organic layer was washed with 

water (1x) and brine (1x) and then concentrated under vacuum. The crude product was purified by 

column chromatography (SiO2; EtOAc:hexanes = 1:1) yielding a primary amine product (yellow oil; 

360 mg, 2.1 mmol, 70%).  

A mixture of 3 M sulfuric acid (H2SO4; 1.2 mL, 3.4 mmol) and formaldehyde (aq, 37% w/w, 0.64 

mL, 8.4 mmol) was cooled to 0 °C. A slurry of 2-((4-aminophenyl)thio)ethanol (360 mg, 2.1 mmol) 

and sodium borohydride (NaBH4; 480 mg, 13 mmol) in tetrahydrofuran (THF; 5 mL) was added 

dropwise into the solution. After stirring the solution for 1 h, the reaction mixture was basified with 1 

N sodium hydroxide (NaOH; aq) and then extracted with EtOAc (3x). The combined organic phase 

was washed with brine (1x), dried over anhydrous MgSO4, and concentrated under vacuum. The 

crude compound was purified by column chromatography (SiO2; EtOAc:hexanes = 1:1) yielding a 

tertiary amine product (white solid; 330 mg, 1.7 mmol, 79%). 

A solution of 2-((4-(dimethylamino)phenyl)thio)ethanol (340 mg, 1.7 mmol) and thiourea (140 mg, 

1.9 mmol) in HCl (aq) (0.6 mL) was stirred at 100 °C for 6 h. The reaction mixture was cooled to 

50 °C. A solution of NaOH (aq; 20% w/w, 0.39 mL) was slowly added to the reaction solution, and 

then white solid precipitates were obtained. The reaction mixture was stirred at 70 °C for 1 h until the 

white precipitates disappeared. The reaction was quenched with water and extracted with EtOAc (3x). 

The organic layer was washed with brine (1x), dried over anhydrous MgSO4, and concentrated under 

vacuum. The crude product was purified by column chromatography (SiO2; EtOAc:hexanes = 1:2) 

yielding a thiol product (140 mg, 0.65 mmol, 12%). 1H NMR [400 MHz, CD2Cl2 , 	 (ppm)]: 7.31 (2H, 

d, J = 8.1 Hz), 6.65 (2H, d, J = 8.8 Hz), 2.94 (6H, s), 2.91 (2H, m) 2.62 (2H, m), 1.72 (1H, t, J = 8.1 

Hz). 13C NMR [100 MHz, CD2Cl2, 	 (ppm)]: 150.8, 135.0, 119.3, 113.1, 41.1, 40.5, 24.7. HRMS 

(m/z): [M + H]+ Calcd. for C10H15NS2, 214.0719; found, 214.0714.  

 



 
 

2.4.4. Preparation of 3 

4-Iodo-N,N-dimethylaniline (490 mg, 2.0 mmol), 2-(Boc-amino)ethanethiol (680 �L, 4.0 mmol), 

copper acetate dihydrate [Cu(OAc)2∙2H2O; 40 mg, 0.2 mmol], and potassium carbonate (K2CO3; 1.1 g, 

8.0 mmol) were added into a test tube containing DMSO/H2O (3 mL/1 mL) with a magnetic stir bar. 

After flushing with Ar (g), the mixture was stirred in a preheated oil bath at 90 °C for 24 h. After 

cooling the solution to room temperature, the reaction was quenched with EtOAc. The reaction 

solution was washed with water (3x) and brine (1x). The organic layer was dried over anhydrous 

MgSO4 and concentrated under vacuum. The crude product was purified by column chromatography 

(SiO2; EtOAc:hexanes = 1:10) yielding a product (white solid; 210 mg, 0.71 mmol, 34%).  

tert-Butyl 2-(4-(dimethylamino)phenylthio)ethylcarbamate (400 mg, 1.4 mmol) was added into the 

solution of HCl/dioxane (4.0 M, 10 mL) at 0 °C under Ar (g). The reaction mixture was stirred at 

room temperature for 24 h. The solvent was removed under vacuum and the residue was washed with 

diethyl ether (Et2O). The sticky compound was basified with 1 N NaOH (aq) and extracted with 

EtOAc (3x). The combined organic layer was washed with brine (1x), dried over anhydrous MgSO4, 

and concentrated under vacuum. The crude compound was purified by column chromatography (SiO2; 

CH2Cl2:CH3OH = 7:1). A product (white powder; 50 mg, 0.25 mmol, 18%) was obtained by addition 

of Et2O to the yellow liquid product. 1H NMR [400 MHz, CD3OD, 	 (ppm)]: 7.35 (2H, m), 6.72 (2H, 

d, J = 8.8 Hz), 2.94 (10H, m), 1.90 (2H, s). 13C NMR [100 MHz, CD3OD, 	 (ppm)]: 152.2, 136.0, 

119.2, 114.2, 40.6. 39.8, 35.5. HRMS (m/z): [M + H]+ Calcd. for C10H16N2S, 197.1107; found, 

197.1103. 

 

2.4.5. Metal Binding Studies  

The interactions of compounds with metal ions [Cu(II) and Zn(II)] were determined using UV–visible 

spectroscopy (UV–Vis). The solutions of compounds (50 �M; 1% v/v DMSO) were prepared in EtOH 

for [Cu(II) samples] or buffer [20 �M HEPES, pH 7.4, 150 �M NaCl; for Zn(II) samples). Various 

concentrations of CuCl2 or Zn(NO3)2 (25, 50, 100, and 250 �M) were titrated to the solutions of the 

compound. The UV–Vis spectra were recorded after 10 min incubation for every titration at room 

temperature. 

 

2.4.6. Cyclic Voltammetry (CV) 

Cyclic voltammograms were recorded under N2 (g) with a CHI620E model potentiostat (Qrins) with 

three electrodes composed of an Ag/AgCl reference electrode [RE-1B Reference electrode (Ag/AgCl); 

Qrins], a Pt wire auxiliary electrode (SPTE Platinum electrode; Qrins), and a glassy carbon working 

electrode (Qrins). Electrochemical analyses of compounds (dissolved in DMSO; final concentration, 1 

mM) were recorded in 0.1 M tetra-N-butylammonium perchlorate (in DMSO) and 1 M NaCl (in 



 
 

ddH2O; 1% v/v DMSO) at various scan rates (25, 50, 100, 150, 200, and 250 mV/s) at room 

temperature.  

 

2.4.7. DTNB Assay 

The oxidation of a thiol group in our compounds was evaluated through the DTNB assay [DTNB = 

5,5’-dithio-bis-(2-nitrobenzoic acid)]. The solutions of DTNB (50 �M) were prepared in 0.1 M 

sodium phosphate buffer, pH 8.0, 1 mM EDTA, followed by treatment of L-cysteine, as a positive 

control, and small molecules (50 �M; 1% v/v DMSO). The DTNB molecule can react with the thiol 

groups in small molecules, yielding a product containing a newly formed disulfide bond and a yellow-

colored compound, 2-nitro-5-thiobenzoic acid dianion (TNB2-).64 After 15 min incubation at room 

temperature, the absorbance of TNB2- at 412 nm was measured. 

 

2.4.8. Stability of Compounds 

The oxidation of compounds was traced by UV–Vis. The solutions of compounds (50 �M; 1% v/v 

DMSO) were prepared in buffer (20 �M HEPES, pH 7.4, 150 �M NaCl). The compound was 

incubated for 24 h at room temperature without agitation.  

 

2.4.9. TEAC Assay 

The assay employing Neuro2a (N2a) cell lysates was conducted following the previously reported 

methods.34,63 Cell lysates were prepared following a previously reported procedure with 

modifications.65 N2a cells were seeded in a six-well plate and grown to approximately 80-90% 

confluence. Cells were washed once with cold phosphate buffered saline (PBS, pH 7.4, GIBCO, 

Grand Island, NY, USA) and harvested by gently pipetting off adherent cells with cold PBS. The cell 

pellet was generated by centrifugation (2,000 g for 10 min at 4 °C) and sonicated on ice (5 s pulses, 

3x with 20 s intervals between each pulse) in 2 mL of cold buffer (5 mM potassium phosphate, pH 7.4, 

containing 0.9% NaCl and 0.1% glucose). The cell lysates were centrifuged at 5,000 g for 10 min at 

4 °C. The supernatant was removed and stored on ice until use. To prepare the standard and samples 

in 96 well plates, 10 �L of the supernatant of cell lysates was delivered followed by the addition of 

compound (10 �L), metmyoglobin (55 �M, 10 �L), 2,2’-azino-bis(3-ethylbenzothiazoline-6-

sulphonic acid) (ABTS; 220 �M, 150 �L), and H2O2 (412 �M, 40 �L) in order. The final 

concentrations (2.14, 4.28. 6.43, 8.57, 10.7, and 15.7 �M) of compounds and Trolox were used. After 

5 min incubation at room temperature, the absorbance at 750 nm was recorded. The percent inhibition 

was calculated according to the measured absorbance [% inhibition = 100  (A0 – A)/A0, where A 

and A0 are the absorbance of the supernatant of cell lysates with and without compound treatment, 

respectively] and was plotted as a function of compound concentration. The TEAC values of 



 
 

compounds for each time point were calculated as a ratio of the slope of the compound to that of 

Trolox. The measurements were conducted in triplicate. 

 

2.4.10. A�� Aggregation Experiments 

A�40 or A�42 was dissolved in ammonium hydroxide [NH4OH (aq); 1% v/v]. The resulting solution 

was aliquoted, lyophilized overnight, and stored at –80 °C. A stock solution of A� was then prepared 

by dissolving the lyophilized peptide using NH4OH (1% v/v, 10 �L) and diluting with ddH2O. All A� 

samples were prepared by following the previously reported procedures.34,37,66,67 The concentration of 

the peptide solution was determined by measuring the absorbance of the solution at 280 nm (
 = 1,450 

M–1cm–1 for A�40; 
 = 1,490 M–1cm–1 for A�42). The peptide stock solution was diluted to a final 

concentration of 25 �M in the Chelex-treated buffer [20 �M HEPES, pH 6.6 [for Cu(II) samples] and 

pH 7.4 [for metal-free and Zn(II) samples], 150 �M NaCl]. For inhibition studies, compounds (final 

concentration, 50 �M; 1% v/v DMSO) were added to the samples of A� (25 �M) in the absence and 

presence of a metal chloride salt (CuCl2 or ZnCl2; 25 �M) followed by incubation at 37 °C with 

constant agitation for 24 h. For disaggregation studies, A� (25 �M) was incubated with and without a 

metal chloride salt (CuCl2 or ZnCl2; 25 �M) for 24 h at 37 °C with constant agitation to generate 

preformed A� aggregates. The resulting peptide aggregates were then treated with compounds (50 �M) 

and incubated with constant agitation for an additional 24 h. 

 

2.4.11. Gel Electrophoresis with Western Blotting (Gel/Western Blot) 

The A� resultant species from in vitro experiments were analyzed through gel electrophoresis with 

Western blotting (gel/Western blot) using an anti-A� antibody (6E10).34,37,66,67 The samples (10 �L) 

were separated on a 10-20% Tris-tricine gel (Thermo Fisher Scientific). Following separation, the 

proteins were transferred onto nitrocellulose membranes and blocked with bovine serum albumin 

(BSA, 3% w/v, Sigma-Aldrich) in Tris-buffered saline (TBS) containing 0.1% Tween-20 (TBS-T) for 

2 h (at room temperature) or overnight (at 4 °C). The membranes were incubated with the anti-A� 

antibody (6E10) (1:2,000, Covance, Princeton, NJ, USA) in a solution of 2% BSA (w/v in TBS-T) for 

4 h (at room temperature) or overnight (at 4 °C). After washing with TBS-T (3x, 10 min), a 

horseradish peroxidase-conjugated goat anti-mouse secondary antibody (1:5,000 in 2% w/v BSA in 

TBS-T; Cayman Chemical Company) was added for 1.5 h at room temperature. A homemade ECL 

kit63,68,69 was used to visualize gel/Western blot data on a ChemiDoc MP Imaging System (Bio-Rad, 

Hercules, CA, USA). 

 

2.4.12. Transmission Electron Microscopy (TEM) 

Samples for TEM were prepared according to previously reported methods.34,37,63,66-68 Glow-



 
 

discharged grids (Formvar/Carbon 300-mesh, Electron Microscopy Sciences, Hatfield, PA, USA) 

were treated with A� samples (25 �M, 5 �L) for 2 min at room temperature. Excess sample was 

removed using filter paper followed by washing twice with ddH2O. Each grid, incubated with uranyl 

acetate (1%, ddH2O, 5 �L) for 1 min, was blotted off and dried for 15 min at room temperature. 

Images for each sample were taken on a JEOL JEM-2100 transmission electron microscope (200 kV; 

25,000x magnification; UCRF). 

 

2.4.13. MTT Assay 

The SH-SY5Y (5Y) cell line was purchased from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). The cell line was maintained in media containing 50% minimum essential 

medium (MEM) and 50% F12 (GIBCO) and supplemented with 10% fetal bovine serum (Sigma-

Aldrich), 100 U/mL penicillin, and 100 mg/mL streptomycin (GIBCO). Cells were grown and 

maintained at 37 °C in a humidified atmosphere with 5% CO2. The cells used for our studies did not 

indicate mycoplasma contamination. Cell viability upon treatment with compounds was determined 

by the MTT assay [MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. Cells were 

seeded in a 96 well plate (15,000 cells in 100 �L per well) and treated with A� (10 �M) with or 

without CuCl2 or ZnCl2 (5 �M), followed by addition of compounds (10 �M, 1% v/v DMSO). After 

24 h incubation, MTT [25 �L of 5 mg/mL in PBS (pH 7.4, GIBCO)] was added to each well, and the 

plate was incubated for 4 h at 37 °C. Formazan produced by cells was solubilized using an acidic 

solution of DMF (pH 4.5, 50% v/v, aq) and sodium dodecyl sulfate (SDS; 20% w/v) overnight at 

room temperature in the dark. The absorbance was measured at 600 nm by the microplate reader. Cell 

viability was calculated relative to cells containing an equivalent amount of DMSO.  

 

2.4.14. Electrospray Ionization Ion Mobility Mass Spectrometry (ESI–IM–MS) 

The experiments were performed according to previously reported methods.63,68,70 A�40 and A�42 (100 

�M) were incubated with compounds (500 �M; 1% v/v DMSO) and/or CuCl2 (100 �M) in 20 mM 

ammonium acetate (pH 7.2) at 37 °C without agitation. Incubated samples were diluted by 10 fold 

with water and then injected into the mass spectrometer. A Waters Synapt G2-Si quadrupole time-of-

flight (Q-Tof) ion mobility mass spectrometer (Waters) equipped with ESI source (CCRF) was used 

for the experiments. The capillary voltage, sampling cone voltage, and source temperature were set to 

2.8 kV, 70 V, and 40 °C, respectively. The backing pressure was adjusted to 2.7 mbar. Ion mobility 

wave height and velocity were adjusted to 10 V and 300 m/s, respectively, and gas flow for the helium 

and ion mobility cell was set to 120 and 30 mL/min, respectively. Tandem MS (ESI–MS2) analyses 

were additionally performed on the singly oxidized A� and complexes of A� with compounds. The 

ESI parameters and experimental conditions were the same as above. Collision-induced dissociation 



 
 

(CID) was conducted by applying the collision energy in the trap and adjusting the low mass (LM) 

resolution to 10 or 15 depending on the samples. More than 200 spectra were obtained for each 

sample and were averaged for the analyses. To estimate the collision cross section (CCS) values of 

IM–MS data, the calibration was also carried out base on the previously reported methods.
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2.4.15. Parallel Artificial Membrane Permeability Assay Adapted for the Blood-brain Barrier 

(PAMPA–BBB)  

PAMPA–BBB experiments were conducted using the PAMPA Explorer kit (pION Inc., Billerica, MA, 

USA) using previously reported protocols.2,5,6 The compounds (25 �M, 200 �L) in Prisma HT buffer 

(pH 7.4, pION) were added to the wells of a donor plate (number of replicates = 12). The 

polyvinylidene fluoride (PVDF, 0.45 �M) filter membrane on the acceptor plate was coated with 

BBB-1 lipid formulation (5 �L, pION). The acceptor plate was then placed on the top of the donor 

plate. Brain sink buffer (BSB, 200 �L, pION) was added to each well of the acceptor plate and was 

incubated for 4 h at room temperature without agitation. UV–Vis spectra of the solutions in the 

reference, acceptor, and donor plates were measured using the microplate reader. The PAMPA 

Explorer software v. 3.5 (pION) was used to calculate the –logPe values for compounds. 

CNS designations were assigned by comparison with compounds that were identified in previous 

reports.72,73 
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Chapter 3. 

 

Detection of Metal Ions in Living Cells by Fluorescence-based Chemosensors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results presented in this chapter were published; (1) Jo, T. G.; Bok, K. H.; Han, J.; Lim, M. H.; 

Kim, C. Dyes Pigm. 2017, 139, 136–147; (2) Jeong, H. Y.; Lee, S. Y.; Han, J.; Lim, M. H.; Kim, C. 

Tetrahedron 2017, 73, 2690–2697; (3) Jo, T. G.; Jung, J. M.; Han, J.; Lim, M. H.; Kim, C. RSC Adv. 

2017, 7, 28723–28732. I conducted the imaging experiments in order to monitor fluorescent responses 

of chemosensors for metal ions in living cells.  



 
 

3.1. Introduction 

Dyshomeostasis of transition metal ions has been suggested to be involved in the pathogenesis of 

neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD).1,2 

Particularly, aluminum, the third most prevalent metallic elements in the earth, can be accumulated in 

the regions of the brain, i.e., the cortex and hippocampus, both of which are notably vulnerable at the 

early stage of AD.1,2 Recent studies have revealed that a trace amount of Al(III), transported to the 

brain via blood-brain barrier (BBB), can either intrude metal-mediated signaling pathways [e.g., Ca(II) 

exchange] or replace essential biometals in transporters (e.g., iron carrier transferrin), which induces 

neurotoxicity.3,4 In addition, Al(III) can interfere the activities of iron-sulfur clusters in mitochondrial 

respiratory systems, disrupting the energy production.5,6 Moreover, Al(III) has been reported to 

directly bind A� and stabilize structured oligomers.5,6 In order to quantify the concentration of Al(III) 

and monitor its compartmentalization in the brain, various chemosensors able to specifically detect 

this metal ion would be valuable.2,7,8 In this Chapter, we described three chemical tools capable of 

targeting Al(III) in living cells. 

 

3.2. Results and Discussions 

3.2.1. Fluorescent Responses of AIC-Jul to Al(III) in Living Cells 

Scheme 3.1. Proposed structure of the AIC-Jul–Al(III) complex. 
 

 
 

AIC-Jul was rationally designed through the incorporation of imidazole and julolidine (Scheme 3.1).9 

This molecule functions as a turn-on and turn-off fluorescent sensors against Al(III) and 

pyrophosphate (P2O7
4-

, PPi), the product of during hydrolysis of adenosine triphosphate (ATP), 

respectively. Upon incubation of AIC-Jul (20 �M, DMSO 1%, v/v) with 5 and 10 equiv of Al(III) for 

10 min, significant fluorescent responses were monitored employing the green fluorescence protein 

(GFP) channel [excitation 470 (± 11) nm; emission 510 (± 21) nm; Figure 3.1a]. Furthermore, the 

AIC-Jul–Al(III) complex was shown to specifically detect PPi among various anions (e.g., Cl-, F-
, N3

-, 

and NO3
-) in the cellular environment. When PPi was treated to cells, pre-incubated with AIC-Jul and 

Al(III), the Al(III)–PPi complex was subsequently formed, indicative of detaching Al(III) from the 

complex. The quenching process achieved via complexation of Al(III)–PPi was monitored using the 

GFP channel (Figure 3.1b). Our experiments demonstrate the potential of AIC-Jul as a sensor for 



 
 

both AI(III) and PPi in living cells.  

 

 
 
Figure 3.1. Fluorescent responses of AIC-Jul to Al(III) in HeLa cells in the absence and presence of 

PPi. (a) Cells were pre-incubated with AIC-Jul for 10 min prior to addition of various concentrations 

of Al(III). (b) Cells incubated with AIC-Jul (for 5 min) followed by addition of Al(III) for 10 min 

were treated with various concentrations of PPi. Conditions: [AIC-Jul] = 20 �M; [Al(III)] = 0, 100, 

and 200 �M; [PPi] = 0, 100, and 200 �M; 37 °C; 5% CO2. The scale bar is 50 �m. 
 

3.2.2. Fluorescent Responses of TP-DAS to Al(III) in Living Cells 

Scheme 3.2. Proposed structure of the TP-DAS–Al(III) complex. 
 

 
 

TP-DAS was newly designed by introduction of diethylaminophenol and thiophene into a framework 

(Scheme 3.2).10 Based on competition experiments, Co(II), Ni(II), and Zn(II) could not interfere the 

interactions between TP-DAS and Al(III), while Cu(II) and Fe(II/III) were shown to intrinsically 

quench the fluorescent responses from the TP-DAS–Al(III) complex. Our compound (5 �M, DMSO 

1%, v/v) was incubated with Al(III) in HeLa cells for 10 min at various concentrations (Figure 3.2). 

The fluorescent responses of TP-DAS as a function of the concentration of Al(III) were gradually 

enhanced, monitored at the channel of 4’,6-diamidino-2-phenylindole (DAPI) channel [excitation 357 

(± 22) nm; emission 447 (± 30) nm]. Our experimental results reveal that TP-DAS could be a detector 

for Al(III) in biological systems.  



 
 

 
 

Figure 3.2. Fluorescent responses of TP-DAS to Al(III) in HeLa cells. Cells were pre-incubated with 
TP-DAS for 10 min prior to addition of various concentrations of Al(III). Conditions: [TP-DAS] = 5 
�M; [Al(III)] = 0, 100, 200, and 300 �M; 37 °C; 5% CO2. The scale bar is 50 �m. 

 

3.2.3. Fluorescent Responses of Sul-Nap to Al(III) in Living Cells 

Scheme 3.3. Proposed structure of the Sul-Nap–Al(III) complex. 
 

 
 

Sul-Nap was rationally designed by integrating a water-soluble sulfonic acid group to the naphthol 

moiety, a widely utilized fluorophore (Scheme 3.3).11 Sul-Nap was presented to selectively recognize 

Al(III) in a 1:1 ratio, followed by a significant change in fluorescence emission in aqueous media. In 

order to examine the potentials of Sul-Nap to be used for sensing Al(III) in biological systems, 

fluorescence imaging experiments were performed (Figure 3.3). HeLa cells were incubated with Sul-

Nap (20 �M, DMSO 1%, v/v) for 10 min, prior to treatment of 5 equiv of Al(III) for additional 10 

min. The fluorescence responses of Sul-Nap in the presence of Al(III) were detected at the GFP 

channel [excitation 470 (± 11) nm; emission 510 (± 21) nm]. Note that due to the poor cell 

permeability of the molecule, the concentration-dependent fluorescent responses of Sul-Nap to Al(III) 

could not be monitored (Figure 3.3). 

 

 



 
 

 
 
Figure 3.3. Fluorescent responses of Sul-Nap in HeLa cells in the (a) absence and (b) presence of 
Al(III). Cells were pre-incubated with Sul-Nap for 10 min prior to addition of Al(III). Conditions: 
[Sul-Nap] = 20 �M; [Al(III)] = 100 �M; 37 C; 5% CO2. Scale bar = 50 �m. 
 
3.3. Conclusions 

Impaired homeostasis of metal ions is found in the AD-affected brain.1,2 In the recent studies, Al(III) 

has been suggested as an additional risk factor in AD, which can facilitate A� aggregation and 

interfere the activities of metalloenzymes.3,4 In order to gain a better understanding of Al(III) in AD, 

the design of small molecules able to trace this metal ion would be desirable. In this Chapter, we 

developed three chemical probes, AIC-Jul, TP-DAS, and Sul-Nap, able to detect Al(III) based on 

fluorescence in living cells. In the future, we will further optimize the structures of the molecules in 

order to improve their metal specificity and cytotoxicity. 

 

3.4. Experimental Sections  

3.4.1. Imaging Experiments in Living Cells 

HeLa cells (ATCC, Manassas, USA) were maintained in media containing Dulbecco modified eagle 

medium (DMEM), 10% fetal bovine serum (FBS, GIBCO, Grand Island, NY, USA), 100 U/mL 

penicillin (GIBCO), and 100 mg/mL streptomycin (GIBCO). The cells were grown in a humidified 

atmosphere with 5% CO2 at 37 °C. Cells were seeded onto 6 well plate (SPL Life Sciences Co., Ltd., 

South Korea) at a density of 150,000 cells per 1 mL and then incubated at 37 °C for 16 h. For imaging 

experiments, cells were first treated with compound [dissolved in DMSO; 1% v/v final DMSO 

concentration; 5 �M (for TP-DAS) or 20 �M (for AIC-Jul and Sul-Nap); at room temperature]. After 

10 min, aluminum nitrate (dissolved in water; 1% v/v final concentration; 0-300 �M) is introduced to 

cells for 10 min. In case of fluorescence quenching experiments for AIC-Jul, cells were first treated 

with the compound (dissolved in DMSO; 1 % v/v final DMSO concentration; 20 �M; at room 

temperature). After 5 min, aluminum nitrite (dissolved in water; 200 �M; 1% v/v) was incubated with 

cells 10 min. Various concentrations of PPi (dissolved in bis-tris buffer; 1% v/v) were introduced to 

cells for 5 min and the cells were washed with 3 mL of bis-tris buffer three times. Imaging 

experiments were performed with an EVOS FL fluorescence microscope (Life Technologies) using a 



 
 

DAPI light cube [for TP-DAS; excitation 357 (± 22) nm; emission 447 (± 30) nm] or GFP light cube 

[for AIC-Jul and Sul-Nap; excitation 470 (± 11) nm; emission 510 (± 21) nm]. 
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