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Abstract 

Over the past few decades, π-conjugated molecules have been attended due to the exotic properties 

and widely used for the devices such as organic photovoltaics (OPVs), field effect transistors (FETs) 

and light emitting diodes (LEDs). Especially, π-conjugated frameworks of fused aromatic compounds 

incorporated with heteroatoms exhibited distinguishable features such like high electron affinity and 

strengthen intermolecular interaction without significant steric effect. Among of previously reported 

frameworks, dithienosilole (DTSi) and dithienogermole (DTGe) have been considered as one of the 

outstanding π-conjugated molecules. 

In this contribution, I investigated study about the effects of introducing the cyclic chain onto the 

fused heteroaromatic compounds with comparisons of heteroaromatic compounds incorporating non-

cyclic chain in chapter 1. Furthermore, I synthesized these two types of π-conjugated molecules 

depends on central heteroatom with characterization and investigated optoelectrical, electrochemical 

properties and crystalline structure of thin film. And then, these four π-conjugated molecules applied 

finally as a donor material of OPVs.  

In chapter 2, effects of introducing fluorine atom (F) on different position in benzothiadiazole (BT) 

unit with different end capping group were investigated. Modification of fluorine position exhibited 

totally different crystalline structures in blending system caused by dissimilar interaction. 

Furthermore, we have established foundation for the rational designing of π-conjugated molecules 

with measurement of molecular frontier energy, and light absorption properties. 

in chapter 3, I attempted replacement of C-C covalent bond embedded on fused aromatic compounds 

B←N coordination bond. B←N unit which is isoelectronic and isosteric with C-C unit have exhibited 

exotic properties in previously reported literatures. In this thesis, I attempted to investigated effects of 

introducing the B←N unit onto the fused aromatic compounds. 
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Introduction. 

1. Basic Concepts of Conjugated Molecules. 

Most organic polymers have been widely used for insulators or plastics before discovery of π- 

conjugated polymers. However, discovery of π-conjugated polymer exhibiting electrical conductivity 

induced by delocalized π-electrons existing along the backbone leads to appear words of synthetic 

metals1 with mechanical plastic properties and have attracted attention as novel organic materials with 

exotic properties such as semiconducting properties, light absorbing and emitting properties. Many 

researchers and scholars have accomplished understanding basic concepts of π-conjugated molecules 

and utilization for the electronic devices. As a result, π-conjugated molecules have been widely used 

for the organic photovoltaics (OPVs), field effect transistors (FETs) and light emitting diodes (LEDs). 

(Figure 1).2  

 

Figure 1. Diverse applications of π-conjugated molecules for the semiconducting electronic devices. 

Among of them, one of the most important thing, revelation of semiconducting properties achieved by 

π-conjugated system of connected p-orbital with delocalized electrons in molecules with alternating 

single and multiple bonds and these exotic properties (e.g., energy band gap, charge carrier mobility, 

solid state morphology and mechanical properties) can be tuned successfully through the various 

modification of molecular structures.3 Many researchers have studied from modification of π-

conjugated molecules to application in various fields and it leads subdivision of fresh research fields 

into the side chain engineering, modification of backbone, introducing the various functional unit. As a 

result, present molecular frameworks (Figure 2) were invented diversely and further in depth 

understanding about the fundamentals of the π-conjugated molecules could be accomplished. 
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Figure 2. Many kinds of π-conjugated frameworks for the semiconducting materials. 

However, despite of many kinds of successful achievements and endeavors, many crucial issues have 

been remained related with commercialization of π-conjugated molecules. First, π-conjugated 

molecules have not exhibited comparable performance with devices composed of inorganic materials. 

Although Jianhui Hou et al. achieved power conversion efficiency (PCE) up to 13.1% in OSC field 

through the tandem cell architecture,4 this value stayed below 26.7% PCE based on crystalline cell 

composed of silicon.5 Second, π-conjugated polymers occurred variation of properties affecting the 

performance.6 Despite small molecules which have mono diversity, diverse variations must be occurred 

for a variety of reasons (e.g., condition of device fabrication, purity and surrounding environment). Last, 

they exhibited short-term life-time. Most π-conjugated molecules degenerate not only morphology of 

solid state but also device characteristics after some time.7 

These crucial issues imply that there are many undisclosed parts for the understanding the fundamentals 

and further deep studies have to be attained thoroughly.  
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2. Introducing the Heteroatoms on Fused Aromatic Compounds. 

 Among of the many kinds of endeavors for the modulating properties of π-conjugated molecules, 

introducing the hetero atoms such as silicon (Si), germanium (Ge) and fluorine (F) atoms on fused 

aromatic compounds have been considered as a most effective methodology. 

 

Figure 3. Illustrated basic concepts of introducing the heteroatoms onto the π-conjugated molecules. 

Particularly, introducing the heteroatoms on fused aromatic compounds facilitate efficient charge 

transport with intrinsically high electron affinity. Furthermore, strengthen noncovalent interaction 

without significant steric effect can modulate morphology of solid state and finally desirable properties 

are obtained.8  

Among of previously reported fused heteroaromatic compounds, 7'-(4,4-bis(2-ethylhexyl)-4H-

silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithio-phen]-5-

yl)benzo[c][1,2,5]thiadiazole) (DTSi(FBTTh2)2) designed by Bazan et al.9 and 7,7'-(4,4-bis(2-ethylhex-

yl)-4H-germ-olo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)-

ben-zo[c][1,2,5]thiadiazole) (DTGe(FBTTh2)2) designed by our group are one of the most successful 

π-conjugated framework with high PCE up to 9% as a single junction device.10 Especially, strong light 

harvesting ability within visible ray of these frameworks enough to attract attention and many exotic 

properties related with these frameworks could be demonstrated.  
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3. B←N coordination bonding. 

Introducing the boron (B) atom and nitrogen atom (N) on the fused aromatic compounds have been 

studied with many kinds of advantages exhibiting exotic properties diversely.11 

 

Figure 4. Various B-N doped molecular structures for understanding nature of B-N elements. a) 

Borazino-doped polyphenylene designed by David Bonifazi et al. and b) BN-embedded 

dibenzotetrathienocoronene, c) B2N2‑dibenzo[a,e]pentalenes designed by Klaus Müllen et al. and d) 

typical BODIPY structures. 

Among of them, replacement C-C unit covalently linked with B←N unit coordinately linked have been 

demonstrated as effective modulation to tune the energy level without significant steric effects by 

Lixiang Wang et al. through the introducing the B←N unit onto the counterpart with isoindigo (IID), 

dithienyldiketopyrrolopyrrole (DPP), thienopyrrolodione (TPD) units.12 Furthermore, boron-

dipyrrome-thene (BODIPY) has triggered enthusiasm of many researchers for the novel 

semiconducting materials.13 However, despite diverse attempts to understand nature of embedding 

B←N unit onto the heteroaromatic compounds, only few successful examples have been investigated. 

In this contribution, herein we attempt to study about fundamentals of effect of B←N unit in 

heteroaromatic π-conjugated molecules. 

 

c)

a)

b)

d)
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Chapter Ⅰ. A Comparative Investigation of Cyclohexyl-End-Capped 

Versus Hexyl-End-Capped Small-Molecule Donors on a Small Donor: 

Polymer Acceptor Junction Solar Cells 

1.1.  Abstract. 

Replacing hexyl-end-side with cyclohexyl-end-side groups on dithieno[3,2-b:2′,3′-d]silole (DTSi) and 

dithieno[3,2-b:2′,3′-d]germole (DTGe)-based cores yielded two new small-molecule donors: 

DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2. Together with the hexyl-end-capped analogs 

DTSi(FBTTh2)2 and DTGe(FBTTh2)2, the physical properties, morphology, and organic solar cell (OSC) 

performances with respect to hexyl-end-side versus cyclohexyl-end-side groups were investigated. We 

observed that the cyclohexyl-end-capped molecules showed blue-shifted film absorptions and lower 

exothermic crystallization temperatures due to less packed backbones compared to the cyclohexyl-end-

capped molecules. When used as donor materials with poly((N,N′-bis(2-octyldodecyl)-naphthalene-

1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)) polymer acceptor, the relatively 

improved open-circuit voltage was achieved from OSCs based on the hexyl-end-capped molecules as a 

result of their deeper-lying highest occupied molecular orbitals. Nevertheless, the induced higher short-

circuit current density and fill factor parameters led to better power conversion efficiencies in the 

cyclohexyl-end-capped molecule-based OSCs. This was attributed to the preferential face-on 

orientation with a coarsened morphology, as evidenced by a series of blend film morphological studies. 

Our experimental findings confirm that the cyclized-end groups in small conjugated materials possess 

a high potential for improving OSCs.  
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1.2. Introduction. 

Multiple organic semiconductors, including organic solar cells (OSCs), field-effect transistors 

(FETs), and light-emitting diodes, have been developed to improve the device performances.14-23 In 

this regard, several efforts have focused on the design and synthesis of new π-conjugated 

backbones.23-31 On the contrary, recently, there has been considerable research demonstrating the 

substantial impact of the side chains on the device performance with regard to organic 

semiconductors.32-39 These results have indicated that even a subtle variation of the side chains, such 

as chain type and length, branching and substitution position, terminally functionalized groups, 

chirality, and odd–even-numbered carbon numbers, can significantly impact the device 

performance.40-45 

Compared to linear alkyl side chains, cyclic side chains correspond to a special class. When 

introduced into the conjugated polymer backbones, it is generally documented that the bulkiness of 

cyclic side chains precludes inter-chain interdigitation, indicating a negative effect on the key 

parameters of the aforementioned devices.46 However, several examples with different scenarios have 

previously been reported. (i) Yang et al. reported that in a given polymer backbone, the cyclic side 

chains can make the controlling of the polymer self-assembling more effective, which in turn 

improves the photovoltaic characteristics (e.g., short-circuit current density (JSC), open-circuit voltage 

(VOC), and fill factor (FF)) using processing additives.47 (ii) In other reported polymer systems, 

Facchetti and Marks et al. demonstrated that using cyclic side chains effectively reduces steric 

hindrance when these cyclic side chains are formed by connecting sp3-hybridized bridgehead silicon 

atoms, resulting in an enhancement in the charge-transport capacity in FETs.48 (iii) Bao et al. reported 

that the cyclohexyl groups add steric bulkiness at the periphery of the molecule that provides 

improved solubility without having a detrimental effect on the molecular packing in the thin-film 

phase.49  

We aim to further understand the impact of cyclic side chains versus acyclic side chains not only 

on device performance but also on the film microstructure. Therefore, we designed and synthesized two 
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small-molecule donors with cyclohexyl-end-side groups (7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-

b:4,5-b′]dithiophene-2,6-diyl)bis(4-(5′-cyclohexyl-[2,2′-bithiophen]-5-yl)-6-

fluorobenzo[c][1,2,5]thiadiazole) (DTSi(FBTTh2Cy)2) and 7,7′-(4,4-bis(2-ethylhexyl)-4H-

germolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(4-(5′-cyclohexyl-[2,2′-bithiophen]-5-yl)-6-

fluorobenzo[c][1,2,5]thiadiazole) (DTGe(FBTTh2Cy)2)) and hexyl-end-capped analogs (7,7′-(4,4-

bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2'-bithio-

phen]-5-yl)benzo[c][1,2,5]thiadiazole) (DTSi(FBTTh2)2) and 7,7′-(4,4-bis(2-ethylhex-yl)-4H-

germolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)-

benzo[c][1,2,5]thiadiazole) (DTGe(FBTTh2)2)) for a comparative study. Recently, driven by their 

promising advantages over fullerene-based ones, there have been intensive research efforts on fullerene-

free based OSCs, including polymer donor/polymer acceptor, polymer donor/non-fullerene small 

acceptor, and small donor/non-fullerene small acceptor.50-55 However, to the best of our knowledge, 

there is only one report related to the small donor/polymer acceptor system.56 thus, it is still in the early 

stages of understanding its potential as a new OSC technology. Considering abovementioned aspects, 

herein, we chose small donor/polymer acceptor systems for not only extending the field of fullerene-

free based OSCs but also for further understanding the new bulk heterojunction (BHJ) platform. We 

evaluated the photovoltaic properties of the small-molecule donor/polymer acceptor OSCs using a 

combination of the small-molecule donors and the poly((N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-

bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)) polymer acceptor, known as Activink N2200. 

We found that compared to the hexyl-end-capped molecule-based OSCs, the cyclohexyl-end-capped 

molecule-based OSCs provided better performance with improved JSC and FF despite a lower VOC value, 

which can be attributed to the preferential face-on orientation with a coarsened morphology. 
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1.3. Results and Discussion. 

1.3.1. Synthesis and Characterization. 

 

Figure 5. Schematic synthetic pathways for the DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2. 

 

Figure 6. Synthetic steps for the key intermediate. 

DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2 were synthesized in seven steps, as shown in Figure 6. First, 

2-cyclohexylthiophene (3) was synthesized through the nucleophilic addition of 2-lithiated thiophene 

to cyclohexanone, followed by reduction with LiAlH4–AlCl3 mixtur-es in 88% overall yield. Then, 

treatment of 3 with n-BuLi and subsequent quenching with 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane afforded 2-(5-cyclohexylthiop-hen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4) in 

68% yield. On the contrary, the synthesis of the cyclohexyl-end-capping key intermediate 8 was 

performed through a combination of a series of cross-coupling reactions and bromination based on the 
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published methods.56 

Finally, the cyclohexyl-end-capped target oligomers (DTSi(FBTTh2Cy)2 in 44% yield) and 

(DTGe(FBTTh2Cy)2 in 37% yield) were prepared by microwave-assisted Stille coupling between 8 and 

the corresponding bis-stannylated aromatic cores (4,4′-bis-(2-ethylhexyl)-dithieno[3,2-b:2′,3′-d]silole 

(DTSi) and 4,4′-bis-(2-ethylhexyl)-dithieno[3,2-b:2′,3′-d]germole (DTGe)), respectively. Both 

DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2 exhibited a good solubility in various organic solvents. We 

confirmed their high purity and molecular structur-es via NMR spectroscopy, mass spectroscopy, and 

elemental analysis (EA). The detailed syn-thesis and characterization are provided in Experimental 

Section. For a fair comparison, as mentioned in Introduction, the hexyl-end-capped analogs 

(DTSi(FBTTh2)2 and DTGe(FBTTh2)2) were also synthesized by the procedure reported in previous 

research57 and a comparative discussion will be presented in the following sections. 
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1.3.2. Optical, Electrochemical, Thermal and Theoretical Characterizations. 

 

Figure 7.  UV-vis spectra of DTSi- and DTGe-based small molecules in (a) chloroform solutions 

and as (b) thin films. 

We measured the UV–Vis absorption spectra of DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2 in 

chloroform solutions and thin films (Figure 7) and summarized the relevant data in Table 1. 

DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2 in chloroform have considerably similar absorption bands 

in the range 350–700 nm, with an absorption maximum (λmax) of 590 nm, which are nearly identical to 

those of hexyl-end-capped analogs (DTSi(FBTTh2)2 and DTGe(FBTTh2)2). In the thin films, the 

absorption spectra of both the molecules show broader absorption with redshifts compared to the 
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solution spectra due to the stronger intermolecular interaction on the condensed solid state, as 

observed in several other conjugated materials. For both cases, a considerably similar optical band 

gap (Eg
opt) of ~1.66 eV was determined by the onsets (λonset) of their absorption films. Interestingly, 

clear differences were observed in the absorption film profiles between the cyclohexyl-end-capped 

and hexyl-end-capped samples. For example, compared to hexyl-end-capped analogs, the λmax and 

λonset values of DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2 films were blueshifted and the 0–1 

vibrational transitions relative to 0–0 ones were intensified. These results indicate that the structural 

change of the alkyl side chain from hexyl to cyclohexyl groups leads to longer inter-chain distances, 

thereby reducing the backbone inter-chain interaction. Similar behaviors were also reported for -

conjugated polymers appended with these cyclic side chains due to intra- or inter-molecular steric 

hindrance effects.58-59 

Table 1. Optical and electrochemical properties of the DTSi- and DTGe-based small molecules. The 

HOMO (eV) = − (E(ox)
onset − E(ferrocene)

onset + 4.8) and LUMO (eV) = − (E(red)
onset − E(ferrocene)

onset + 4.8) 

were calculated from CV results. 

 

The frontier energy levels (the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO)) of these molecules have been investigated via cyclic 

voltammetry in a liquid electrolyte. The onset oxidation and reduction potentials (Eox
onset/Ered

onset) of 

DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy) were measured to be −0.29/1.58 V and −0.32/1.59 vs. 

Ag/Ag+ and their HOMO energy level (EHOMO)/LUMO energy level (ELUMO), which were calculated 

to be −5.05/−3.26 eV and −5.08/−3.25 eV, respectively, according to the following equations: HOMO 

(eV) = − (E(ox)
onset − E(ferrocene)

onset + 4.8) and LUMO (eV) = − (E(red)
onset − E(ferrocene)

onset + 4.8), where the 

ferrocene/ferrocenium (Fc/Fc+) redox couple with a standard energy level of −4.8 eV appeared at 

0.04 V. In addition, the HOMO/LUMO values of the hexyl-end-capped samples were found to be 

−5.13/3.37 and −5.14/3.38 for DTSi(FBTTh2)2 and DTGe(FBTTh2), respectively, under the same 

condition. All the relevant data are summarized in Table 1. It is worth noting that the hexyl-end-
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capped samples have slightly deeper-lying HOMO and LUMO levels compared to those of the 

corresponding cyclohexyl-end-capped analogs, which are beneficial for enhancing the open-circuit 

voltage VOC of the OSCs based on the compounds as donor. This trend is opposite to what was 

previously observed in -conjugated polymers appended with cyclic side chains.58-60 

 

Figure 8. Cyclic voltammograms of DTSi- and DTGe-based small molecules in n-Bu4NPF6/CHCl3 

solutions with Fc/Fc+ as external reference (scan rate : 100 mV/s). 

 

Figure 9. Molecular conformation and frontier orbital geometries for a) DTSi(FBTTh2), b) 

DTGe(FBTTh2)2, c) DTSi(FBTTh2Cy)2 and d) DTGe(FBTTh2Cy)2 calculated by DFT. 
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We also performed theoretical calculations on the molecular geometries and electronic wave functions 

of frontier orbitals using the density functional theory (DFT) method under B3LYP and a 6-31G basis 

set. As shown in Figure 4, for all these molecules, the molecular backbones exhibit similar geometries, 

e.g., high co-planarity of conjugated backbone and similar electron density distributions of the HOMO 

and LUMO orbitals. In addition, there is nearly no difference in the twist angle between the end-side 

chains and the plane of the backbone (θ1  67°−70°). Additionally, note that the calculated 

HOMO/LUMO trends were well correlated with the above CV results. 

 

Figure 10. DSC curves for DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2. 

The differential scanning calorimetry (DSC) heating curves of both DTSi(FBTTh2Cy)2 and 

DTGe(FBTTh2Cy)2 showed a distinct endothermic melting peak (Tm) with a similar temperature of 

~208 °C, while their exothermic crystallization (Tc) occurs at different temperatures (116 °C for 

DTSi(FBTTh2Cy)2 and 127 °C for DTGe(FBTTh2Cy)2) during the cooling cycle (Figure 10). In addition, 

note that the reason for the presence of additional small peaks in the DSC of DTGe(FBTTh2Cy)2 is 

unclear; however, this could be due to the result of an intermediate phase. The Tm/Tc values of the hexyl-

end-capped analogs have been already reported (209 °C/173 °C, DTSi(FBTTh2)2 and 203 °C/167 °C, 

(DTGe(FBTTh2)2).61 Based on these comparison data, we can suggest that varying the terminal chains 

from hexyl to cyclohexyl groups leads to a kinetical change in the crystallization process but has little 

impact on the melting processing. 
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1.3.5. Device Fabrication and Thin Film Morphology. 

BHJ OSCs were fabricated with DTSi- and DTGe-based small-molecule donors and N2200 polymer 

acceptor using a conventional solution spin-coating process. The detailed fabrication procedure is 

described in Experimental Section. The device structure is indium-tin oxide (ITO)/poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/active layer/Al. Photovoltaic 

performance measurements were performed under an illumination of AM 1.5G simulated solar light at 

100 mW cm−2. Device optimization was conducted at the optimized donor/acceptor ratio (3:2 w/w) in 

a chlorobenzene solution containing 0.2 vol% 1,8-diiodooctane (DIO) additive. Thermal annealing 

was performed at various temperatures for each 10 min in an inert atmosphere since we observed 

different isothermal crystallization behaviors depending on the end-side chains.  

 

Figure 11. J–V curves (ITO/PEDOT:PSS/active layer/Al) (a) and EQE spectra (b) of the optimized 

devices. Dependence of the photovoltaic parameters on different annealing temperatures (c). 
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Among the devices based on these four donors, the DTGe(FBTTh2Cy)2:N2200 system showed the 

best PCE (3.04%) with the highest JSC value (6.08 mW cm−2), the highest FF value (63%), and a 

moderate VOC value (0.78 V). As shown in Figure 5c, the observed variations in the JSC values with 

different copolymer compositions were well reflected in the changes of their spectral response in the 

external quantum efficiency (EQE) spectra. Additionally, Figure 5 shows the annealing temperature 

dependence of the photovoltaic performance, including the JSC, VOC, FF, and PCE values. For 

evaluated temperatures over 120 °C, all devices were subject to a significant decrease in all 

photovoltaic parameters, particularly JSC values. 

We can reasonably speculate that all the small molecules have temperature-dependent aggregation 

behavior, leading to a significant change in the blend morphology with high temperatures (>120 °C). 

Table 2. Optimized device parameters of OSCs based on DTSi- and DTGe-small molecules under100 

mW cm−2 AM 1.5G solar illumination.* 

 

*The photovoltaic properties were averaged over eight devices and the maximum values were given 

in parentheses. 

The structural order and crystallinity of the four donor materials in the optimized blend films were 

studied via grazing-incidence wide-angle X-ray scattering (GIWAXS). As evident in Figures 6a and 

6b, both the hexyl-end-capped molecule-based blend films exhibited highly ordered (h00) diffraction 

peaks (up to third order; d ~ 24 Å ) along the out-of-plane (qz) direction with the (010) – diffraction 

peak (d ~ 3.6 Å ) in both in-plane (qxy) and qz profiles, suggesting the long-range ordered lamellar 

structure with a mixed edge-on and face-on orientation relative to the substrate. On the contrary, the 

cyclohexyl-end-capped molecule-based blend films exhibited similar (100) and (200) diffraction 

peaks, whereas the (010) – diffraction peak along only qz, implying that the face-on orientation 

with respect to the substrate is the preferred orientation for these blends.  
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In addition, we obtained the area ratio of AXY to AZ (AXY/AZ) using pole figures along the (100) 

lamellar diffraction peaks (Figure 6). The ratio values were in the order of DTGe(FBTTh2Cy)2 (0.83) 

> DTSi(FBTTh2Cy)2 (0.73) > DTSi(FBTTh2)2 (0.19) > DTGe(FBTTh2)2 (0.17), supporting a more 

pronounced tendency to face-on orientation in the cyclohexyl-end-capped molecule-based blends.  

 

Figure 12. GIWAXS images (a-d) of the optimized blending films and their pole figure plots (e) 

obtained from the (100) lamellar diffraction; the integrated areas of Axy (0°45° and 135°180°) and Az 

(45°135°) indicate the preferable orientations. 

On the contrary, slightly shorter lamellar distances (d ~ 22 Å ) were observed from hexyl-end-capped 

molecule-based blends. This finding well agrees with the overall experimental data, as discussed above. 

It is well known that the face-on orientation is more favorable for photovoltaic devices because of its 

vertical charge transportation channel. Therefore, we speculate that the formation of the preferential 

face-on orientation in the blends is a more significant effect on the overall performance than the tightly 

packed structure. 
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Figure 13. AFM height (a) and TEM (b) images of optimized blend films. 

We also investigated the surface and bulk morphologies of the optimized blend films using tapping-

mode atomic force microscopy (AFM) and transmission electron microscopy (TEM). The AFM images 

shown in Figure 7 reveal that the hexyl-end-capped molecule-based blend films have a relatively 

smooth surface with a root-mean-square (RMS) roughness of 2.25 nm for the DTSi(FBTTh2)2/N2200 

film and 2.09 nm for the DTGe(FBTTh2)2/N2200 blend film, while relatively coarse surfaces with a 

RMS roughness range of 4.03–4.31 nm were observed in the cyclohexyl-end-capped molecule-based 

blend films. In addition, the TEM images reveal that a homogeneous morphology with inconspicuous 

phase separation features was found for hexyl-end-capped molecule-based blend films, whereas slightly 

coarsened domains were observed in the cyclohexyl-end-capped molecule blend films. The AFM and 

TEM data suggest that the hexyl-end-capped molecules can provide somewhat better miscibility with 

the N2200 polymer in the blend films. 
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Furthermore, to investigate effect of incorporation of cyclo chain, we have studied about blending 

system with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor additionally. In this 

system, thermal annealing experiments were also progressed for the subtle morphological changes and 

normalized device characteristics are shown in Figure 19. Although dramatic decay of Jsc were 

exhibited during the thermal annealing in this system, PCE was improved through the enhanced open 

circuit voltage (Voc) except for the DTSi(FBTTh2Cy)2. 

 

Figure 14. Normalized device parameters depend on different annealing temperatures with PC71BM. 
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And optimized EQE, J-V curves and device parameters shown in Figure 20 and Table 3 respectively 

after thermal annealing.  

 

Figure 15. J-V curves (a) and external quantum efficiency (b) of optimized blending films with PC71BM. 

Table 3. Optimized device parameters under100 mW cm−2 AM 1.5G solar illumination with PC71BM. 

 

Especially, both compounds of DTSi(FBTTh2)2 and DTGe(FBTTh2)2 exhibited higher PCE at 8.34% 

and 8.29% with higher Jsc and FF compared to the DTSi(FBTTh2Cy) and DTGe(FBTTh2Cy)2 

respectively. These results indicated that incorporation of cyclo chain affect unfavorable miscibility 

with PC71BM rather than forming the fine- tuned morphology and it will be discussed below with 

GIWAXS images, AFM and TEM images. 
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GIWAXS images of all optimized blending films with PC71BM are illustrated in Figure 21. As noted 

from images, both compounds of DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2 does not exhibited any 

arcs patterns except for the patterns of faint (100) peak and PC71BM and it inferred amorphous 

orientation of blending system. On the other hand, DTSi(FBTTh2)2 and DTGe(FBTTh2)2 exhibited 

distinct arcs patterns and longer-range ordered (h00) along the both planes of in-plane and out-of-

plane directions corresponding line cuts results (Figure 22). 

 

Figure 16. 2D-GIWAXS images of optimized blending films with PC71BM thermal annealed 

DTSi(FBTTh2Cy)2 (a), DTGe(FBTTh2Cy)2 (b), DTSi(FBTTh2)2 (c), DTGe(FBTTh2)2 (d).  
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Figure 17. Line cuts of optimized blending films with PC71BM along the in-plane (a) and out-of-

plane (b). 

These results indicated that both compounds of DTSi(FBTTh2)2 and DTGe(FBTTh2)2 achieved well-

defined morphology with PC71BM and it leads higher PCE with enhanced Jsc and FF attributed to 

ideal microstructures related with charge transporting ability. These ideal morphologies in surface and 

bulk state were also observed on AFM and TEM images (Figure 23).

 

Figure 18. a) TEM and b) AFM images of optimized blend films with PC71BM. 
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0.63 nm respectively. Especially, AFM images of DTSi(FBTTh2)2 and DTGe(FBTTh2)2 recorded 

distinct fibril-like structures indicating that donor could intercalate onto the acceptor phase well and it 

facilitated advanced charge dissociation of exciton induced by incidence of photon on the interface 

between donor and acceptor. On the other hand, aggregated particles which could not be mixed were 

recorded in AFM images of DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2. These results mean that 

incorporation of cyclic chain make repulsion with PC71BM different from N2200 blending system and 

non-cylic chain leads effective packing orientation with PC71BM arousing significant improvements 

of device performance. 
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1.4. Conclusion. 

In summary, two new DTSi(FBTTh2Cy)2 and DTGe(FBTTh2Cy)2 with cyclohexyl-end side chains were 

synthesized and characterized. A comparative study of the two resulting molecules and the hexyl-end-

capped analogs (DTSi(FBTTh2)2 and DTGe(FBTTh2)2) allowed us to identify the design principles that 

can be applied to influence the optical and electrochemical properties, film morphology, and OSC 

performance. Compared with the hexyl-end-capped analogs, the cyclohexyl-end-capped molecules 

exhibited slightly blue shift of the film absorption and lower Tc value due to the reduced backbone intra-

/inter-molecular interactions. 

Unexpectedly, the hexyl-end-capped analogs had deeper-lying HOMO and LUMO levels, which led to 

the improvement of VOC when blended with the N2200 polymer acceptor. The morphologies of the 

cyclohexyl-end-capped molecule/N2200 blend films revealed a more pronounced face-on character 

with a coarsened feature, whereas the hexyl-end-capped analog/N2200 blend films had a more ordered 

and shorter lamellar structure with homogeneity. Such microstructural differences contributed to the 

relatively enhanced PCEs with higher JSC and FF values in cyclohexyl-end-capped molecule-based 

OSCs compared to the hexyl-end-capped molecule-based counterparts. Our results demonstrate that 

replacing the linear-end side chains with the corresponding cyclized end groups can influence the 

molecular orientation of the blend films and potentially result in a positive effect for achieving higher 

performance of OSCs. 
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1.5. Experimental Section. 

Materials and Instruments: All the chemicals and reagents were purchased from Sigma Aldrich, Alfa 

Aesar Chemical Company, and Solarmer and used without further purification. All solvents are ACS 

and anhydrous grade by distillation. All the intermediates (17),56-57, 62 DTSi(FBTTh2)2, and 

DTGe(FBTTh2)2 were synthesized by previously reported literatures. 1H NMR and 13C NMR spectra 

were recorded on an Agilent 400 MHz spectrometer using deuterated CDCl3 as solvent and 

tetramethylsilane (TMS) as an internal standard. Elementary analyses were carried out with a Flash 

2000 element analyzer (Thermo Scientific, Netherlands) and MALDI-TOF MS spectra were checked 

by Ultraflex III (Bruker, Germany). UV-Vis absorption spectra in solution and in thin films were 

measured on a UV-1800 (SHIMADZU) spectrophotometer. Cyclic voltammetry (CV) measurements 

were performed on AMETEK Versa STAT 3 with a three-electrode cell system in a nitrogen bubbled 

0.1 M tetra-n-butylammonium hexafluorophosphate (n-Bu4NPF6) solution in chloroform at a scan rate 

of 100 mV/s at room temperature. Ag/Ag+ electrode, platinum wire, and carbon glassy were used as the 

reference electrode, counter electrode, and working electrode, respectively. The Ag/Ag+ reference 

electrode was calibrated using a ferrocene/ferrocenium redox couple as an external standard, whose 

oxidation potential is set at -4.8 eV with respect to a zero-vacuum level. The HOMO energy levels were 

obtained from the equation HOMO (eV) = – (E(ox)
onset – E(ferrocene)

onset + 4.8). The LUMO levels were 

obtained from the equation LUMO (eV) = –(E(red)
onset – E(ferrocene)

onset + 4.8). DFT calculations were 

performed using the Gaussian 09 package with the nonlocal hybrid Becke three-parameter Lee-Yang-

Parr (B3LYP) function and the 6-31G basis set to elucidate the HOMO and LUMO levels after 

optimizing the geometry of small molecules using the same method. 

Device fabrication: The ITO coated glass substrates (15 Ω-1) were sequentially cleaned by ultra-

sonicating in liquid detergent, deionized water, acetone and isopropanol for 15 minutes each. The 

washed ITOs were dried in oven at 70 °C for overnight. For preparation of N2200 based different ratios 

of D/A (3:1, 3:1.5, 3:2, and 3:3 w/w) with donor concentration of 24mg/ml in chlorobenzene were used 

to optimize the active layer morphology. The solution was heated at 30 °C for overnight under minimal 

stirring. Thereafter, the heating temperature was raised to 60 °C and 0.2 vol% of DIO was added and 

stirred for another 3 hours. Prior to device fabrication, cleaned ITOs were treated with UV-Ozone 

treatment for 30 minutes and then a thin PEDOT:PSS (Baytron P VP AI 4083, H. C. Starck) layer was 

deposited over ITO surface at 4000 rpm. After sequentially annealed at 140 °C for 20 minutes, the 

substrates were transferred to the nitrogen filled glove box. 30 µl of the active layer solution was added 

on PEDOT:PSS coated ITOs through dynamic dispense at 4500 rpm in active layer solution for 40 

seconds. The films were dried for 10 minutes in petri dish and then dried in vacuum chamber for 30 
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minutes to remove extra solvents. 100 nm Al cathode was thereafter thermally evaporated on top of the 

organic layer using the mask (device area: 0.13 cm2) under the pressure of < 9×10-7 torr. The devices 

were annealed at different annealing temperatures for 10 minutes prior to the measurement as discussed 

above.  

Synthesis of 4-bromo-7-(5'-cyclohexyl-[2,2'-bithiophen]-5-yl)-5-fluorobenzo[c][1,2,5]thia-diazole 8: 

The toluene (20 mL) solution of 4-bromo-7-(5-bromothiophen-2-yl)-5-

fluorobenzo[c][1,2,5]thiadiazole (1.5 g, 3.83 mmol) and 2-(5-cyclohexylthiophen-2-yl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (1.23 g, 4.21 mmol) was charged in long Schlenk flask under argon. 

After that, Pd2(dba)3 (87.98 mg, 0.096 mmol), tri(o-tolyl)phosphine (87.65 mg, 0.288 mmol) and K2CO3 

(2.65 g, 19.15 mmol) were added into the reaction flask. The reaction mixture was stirred for 3 days at 

110 °C. After cooling, the crude organic compounds were extracted with ether at three times, and then 

the solvent was evaporated. The product was purified by flash column chromatography using a 

hexanes/chloroform as an orange solid. Yield: 1.28 g (71%). 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 

4.0 Hz, 1H), 7.64 (d, J = 12.0 Hz, 1H), 7.16 (dd, J = 4.0, 12.0 Hz, 1H), 7.12 (d, J = 4.0 Hz, 1H), 6.74 

(d, J = 4.0 Hz, 1H), 2.81 (m, 1H), 2.14 – 2.03 (m, 2H), 1.95 – 1.78 (m, 2H), 1.43 (m, 4H), 1.34 – 1.14 

(m, 2H). 13C NMR (100 MHz, CDCl3) δ 154.23, 153.16, 148.88, 141.25, 135.02, 134.99, 133.45, 129.90, 

127.38, 124.19, 123.83, 122.98, 115.47, 115.17, 39.68, 35.30, 33.60, 30.95, 26.40, 25.90. Elemental 

Analysis Calc. for C20H16BrFNS3: C 50.10, H 3.36, N 5.84, S 20.26; Found: C 50.23, H 3.38, N 5.92, S 

20.42. Electron Ionization (EI) MS: Calcd. for 479.45; Found 480.25. 

Synthesis of DTSi(FBTTh2Cy)2: A microwave-assisted Stille coupling between 4,4-bis(2-ethylhexyl)-

2,6-bis(trimethylstannyl)-4H-silolo[3,2-b:4,5-b']dithiophene (400 mg, 0.54 mmol) and 8 (541 mg, 1.13 

mmol) was carried out by using the previous our synthetic condition.45 The product was purified by 

flash chromatography using a hexanes/chloroform as a deep blue solid. Yield: 286 mg (44%). 1H NMR 

(400 MHz, CDCl3) δ 8.27 (s, 2H), 7.88 (s, 2H), 7.51 (d, J = 12.0Hz, 2H), 7.04 (dd, J = 4.0, 12.0 Hz, 

4H), 6.67 (d, J = 4.0 Hz, 2H), 2.76 (br s, 2H), 2.05 – 1.55(m, 12H), 1.45 – 1.20 (m, 30H), 0.87 (m, 12H). 

13C NMR (100 MHz, CDCl3) δ 159.77, 155.77, 153.93, 152.71, 149.42, 145.14, 144.10, 138.27, 136.26, 

133.78, 129.35, 126.88, 125.36, 123.67, 122.77, 122.54, 103.05, 102.80, 40.18, 39.59, 36.10, 35.88, 

35.26, 30.95, 29.13, 28.97, 26.42, 25.93, 23.13, 17.86, 14.27, 10.89. Elemental Analysis Calc. for 

C64H68F2N4S8Si: C 63.22, H 5.64, N 4.61, S 21.10; Found: C 63.78, H 5.65, N 4.78, S 21.22. MALDI-

TOF MS: Calcd. for 1214.29; Found 1214.28. 

Synthesis of DTGe(FBTTh2Cy)2: A microwave-assisted Stille coupling between 4,4-bis(2-ethylhexyl)-

2,6-bis(trimethylstannyl)-4H-germolo[3,2-b:4,5-b']dithiophene (400 mg, 0.50 mmol) and (532mg, 1.11 

mmol) was carried out by using the previous our synthetic condition.45 The product was purified by 
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flash chromatography using a hexanes/chloroform as a deep blue solid. Yield: 235 mg (37%). 1H NMR 

(400 MHz, CDCl3) δ 8.33 (s, 2H), 7.98 (s, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.14 (dd, J = 4.0, 8.0 Hz, 2H), 

7.10 (d, J = 4.0Hz, 2H), 6.73 (s, 2H), 2.80 (br s, 2H), 2.08 – 1.63(m, 12H), 1.49 – 1.20 (m, 30H), 0.87 

(m, 12H). 13C NMR (100 MHz, CDCl3) δ 152.75, 149.69, 147.56, 145.61, 140.91, 140.40, 136.05, 

133.81, 133.28, 129.79, 128.97, 128.96, 124.56, 123.87, 122.89, 116.23, 115.90, 114.61, 40.00, 39.66, 

37.13, 35.67, 35.30, 30.95, 29.11, 28.81, 26.42, 25.93, 23.10, 20.93, 14.20, 10.93. Elemental Analysis 

Calc. for C64H68F2GeN4S8: C 60.99, H 5.44, N 4.45, S 20.35; Found: C 61.15, H 5.62, N 4.52, S 20.36. 

MALDI-TOF MS: Calcd. for 1260.24; Found 1260.23. 
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Chapter Ⅱ. In-depth study of Introducing the Fluorine Atoms Inhabiting 

in Accepting Unit. 

 2.1. Introduction. 

Over the past two decades, many studies about bulk heterojunction organic solar cells (OSCs) based on 

small molecules (SMBHJ) have attracted attention as next generation energy conversion devices due to 

the many kinds of advantages such like ease of functionalization, mono-diversity and distinct molecular 

structures and many endeavors have achieved successful increase of power conversion efficiencies 

(PCE) over the 10% in this field. Among of efforts related with improvements of PCE, alternating 

donor-acceptor (D-A) molecular architecture that facilitates better charge dissociation on interface 

between donor and acceptor were well recognized as the most successful approach to access higher 

PCE.64  

Among of various donating and accepting units, 5-fluorobenzo[c][1,2,5]thiadiazole (FBT) unit has been 

widely exploited for the highest performance with many substantiations to be one of the most promising 

acceptor units resulted from strong electron affinity inducing  intramolecular charge transfer (ICT) 

interactions between donor and acceptor.8c, 8d Furthermore, because introducing fluorine (F) atoms 

which have strong electron-withdrawing ability could suggest methodologies to adjust not only the 

electronic properties but also noncovalent interactions, many kinds of donor materials incorporated with 

FBT unit have been emerged in this field.65 However, although intensive researches have been 

progressed, only few successful studies about in-depth study of F atoms have been investigated recently.  

In this study, we implanted FBT as an acceptor unit into 4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-

b']dithiophene (DTSi) and 4,4-bis(2-ethylhexyl)-4H-germolo[3,2-b:4,5-b']dithiophene (DTGe) core 

units with different end capping group as bithiophene (Th2) and benzofuran (BFu). Especially, we 

attempted to investigate the absorption properties, electro-chemical properties and photovoltaic 

characteristics with existence of F atoms on different position in FBT unit compared to the well-known 

7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-

bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole) (DTSi(FBTTh2)2), 7,7'-(4,4-bis(2-ethylhexyl)-4H-

germolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-

yl)benzo[c][1,2,5]thiadiazole) (DTGe(FBTTh2)2), 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-

b']dithiophene-2,6-diyl)bis(4-(benzofuran-2-yl)-6-fluorobenzo[c][1,2,5]thiadiazole) (DTSi(FBTBFu)2) 

and 7,7'-(4,4-bis(2-ethylhexyl)-4H-germolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(4-(benzofuran-2-yl)-

6-fluorobenzo[c][1,2,5]thiadiazole) (DTGe(FBTBFu)2). 
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2.2. Results and Discussion. 

2.2.1. Synthesis and characterization. 

 

Figure 19. Illustrated synthetic pathways for the final target molecules. 

The key reactions for the final compounds are shown in Figure 19. The key steps of (1), (2) and (3) 

were accomplished through the common microwave assisted Stille coupling and each intermediates and 

detailed experimental procedures were described in experimental section. Finally, final four small 

molecules of 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(5-fluoro-4-

(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadi-azole) (DTSi(BTFTh2)2), 7,7'-(4,4-bis(2-

ethylhexyl)-4H-germolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(5-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-

5-yl)benzo[c][1,2,5]thiadiazole) (DTGe(BTFTh2)2), 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-

b']dithiophene-2,6-diyl)bi-s(4-(benzofuran-2-yl)-5-fluorobenzo[c][1,2,5]thiadiazole) 

(DTSi(BTFBFu)2) and 7,7'-(4,4-bis(2-ethylhexyl)-4H-germolo[3,2-b:4,5-b']dithiophene-2,6-

diyl)bis(4-(benzofuran-2-yl)-5-fluorobenzo[c][1,2,5]thiadiazole) (DTGe(BTFBFu)2) could be acquired 
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with different two end capping groups respectively. The structures and purity were completely 

confirmed by 1H, 13C nuclear magnetic resonance (NMR) spectroscopy, matrix assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) spectroscopy and elemental analysis (EA). All 

target compounds of DTSi(BTFTh2)2, DTGe(BTFTh2)2, DTSi(BTFBFu)2 and DTGe(BTFBFu)2 

exhibited good solubility in general organic solvents.  
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2.2.2. Molecular Conformation and Dipole Momentum. 

To understand induced effects by existence of F atoms on different position in FBT unit, we firstly 

calculated molecular conformation and dipole moment of ground state through the density functional 

theory (DFT) with DTSi(FBTTh2)2, DTGe(FBTTh2)2, DTSi(FBTBFu)2 and DTGe(FBTBFu)2 (Figure 

20.) in this section. Interestingly, all compounds of DTSi(BTFTh2)2, DTGe(BTFTh2)2, DTSi(BTFBFu)2 

and DTGe(BTFBFu)2 which F atoms head for end capping groups exhibited coplanar molecular 

conformations along the backbone and higher net dipole moments in ground state compared to the what 

F atoms head for opposite directions. 
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Figure 20. Molecular conformations and dipole moments calculated by DFT. 

These results inferred that non-covalent interactions of F atoms between core units and different end 

capping group affect not only their planarity but also polarization of delocalized electron of ground state 

and it would lead different driving forces for the charge tranporting when it is exposed to environment 

to induce photovoltaic effect depends on location of F atom.66 Especially, DTSi and DTGe moieties 

end-capped with BFu exhibited distinct differences of planarity by ≈ 15°. It seems that F atoms of 

DTSi(BTFBFu)2 and DTGe(BTFBFu)2 could amicable overlap oxygen atom in benzofuran. 
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2.2.3. Optical and Electro-Chemical Properties. 

We measured UV-Vis spectroscopy all compounds of DTSi(BTFTh2)2, DTGe(BTFTh2), 

DTSi(BTFBFu)2 and DTGe(BTFBFu)2 as solution state and film state and their absorption spectra are 

shown in Figure 21.  

 

Figure 21. UV-vis spectrum of DTSi(BTFTh2)2, DTGe(BTFTh2)2, DTSi(BTFBFu)2 and DTGe(BTF-

BFu)2 as solution state a) dissolving in chloroform and film state b). 

In solution state, both compounds of DTSi(BTFTh2)2 and DTGe(BTFTh2)2 exhibited slightly red-

shifted λmax at 563, 565 nm respectively compared to the DTSi(BTFBFu)2 and DTGe(BTFBFu)2 in 

chloroform. On the other hand, λmax of all compounds exhibited bathochromic shift by ≈ 121 nm on 

film state indicating ordered packing. Especially, λmax of DTSi(BTFBFu)2 (λmax: 642nm) and 

DTGe(BTFTh2)2 (λmax: 686nm) are greater than the red-shift of DTSi(BTFTh2)2 (λmax: 611nm) and 

DTGe(BTFBFu)2 (λmax: 630nm) noting that facilitate greater electronic delocalization in the solid state. 

And we calculated time dependent (TD) DFT for the understanding the nature of charge transfer optical 

transition on the gas phase and the results are shown in Figure 22. These TD-DFT results indicated that 

main excited transition at 771 and 688 nm for the DTSi(BTFTh2)2 and DTGe(BTFTh2)2 with an 

oscillator strength 0.637 and 0.636 respectively and 687, 772nm for the DTSi(BTFBFu)2, 

DTGe(BTFBFu)2 with 0.636, 0.637 oscillator strength on the solid state.  
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Figure 22. Transition absorption spectra of a) DTSi(BTFTh2)2, b) DTGe(BTFTh2)2, c) DTSi(BTFBFu)2 

and d) DTGe(BTFBFu)2 calculated by time dependent DFT. 
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And we measured cyclic voltammetry (CV) of solution state to understand electro-chemical properties 

as an external process and cyclic voltammograms are described in Figure 23. 

 

Figure 23. Cyclic voltammograms of DTSi(BTFTh2)2, DTSi(BTFBFu)2, DTGe(BTFTh2)2 and 

DTGe(BTFBFu)2 in n-Bu4NPF6/CHCl3 solutions with external reference measurement of ferrocene 

(scan rate: 100 mV s-1). 

While all compounds exhibited distinct oxidation peaks reversely, peak of reduction indicating lowest 

occupied molecular orbital (LUMO). For this reason, each LUMO values were calculated with optical 

band gap and calculated frontier orbital energies by cyclic voltammetry and DFT were shown in Table 

4. 

Table 4. Summaries of energy levels calculated by CV results and DFT. 
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Highest occupied molecular orbital (HOMO) from solution cyclic voltammetry for the compounds of 

DTSi(BTFBFu)2 and DTGe(BTFBFu)2 exhibited -5.32 and -5.25 eV respectively. These deeper HOMO 

values coincided well with previously reported effect of incorporating benzofuran moieties compared 

to the DTSi(BTFTh2)2 and DTGe(BTFTh2)2. On the other hand, although DTSi(BTFTh2)2 and 

DTGe(BTFTh2)2 recorded reduced energy band gap at 1.80 and 1.83 eV inferring the charge generation 

ability with less photon energy, changing the central bridgehead atom does not affect their 

electrochemical properties.  
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2.2.4. Device Fabrication and Thin Film Morphology.  

Conventional solar cell devices were prepared with [6,6]-phenyl-C71-butyric acid methyl ester 

(PC71BM) as an acceptor and fabrication details of device were described in experimental section. After 

device optimizations related with ratio between donor and acceptor, coating speed rate and blending 

solution concentration, device tests were progressed under100 mW cm−2 AM 1.5G solar illumination. 

The results of optimized devices, J-V curves and incident photon-to-current efficiency (IPCE) were 

shown Figure 24 and Table 5. 

Table 5. Device characteristics of optimized blend films with PC71BM. 

 

 

Figure 24. J-V curves and IPCE records under optimized device conditions. 

Especially, optimized blend film of DTSi(BTFTh2)2 exhibited with short-circuit current density (Jsc), 

open circuit voltage (VOC) and fill factor FF of 10.03 mA/cm2, 0.79V and 41% yielding a PCE of 3.26%. 

Although VOC values of all compounds were estimated to be comparable, FF and Jsc attributed to 

morphology, miscibility exhibited significant changes. And each compound of DTSi(BTFTh2)2, 

DTGe(BTFTh2)2, DTSi(BTFBFu)2 and DTGe(BTFBFu)2 exhibited similar tendency of IPCE depends 
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on wavelength from 350 to 700nm. Furthermore, both compounds of DTSi(BTFTh2)2 and 

DTSi(BTFTh2)2 which incorporated with Si atom in central bridge head could accomplish the better 

photon harvesting ability compared to the Ge containing DTGe(BTFTh2)2 and DTGe(BTFBFu)2 and 

these results agree with higher Jsc values of DTSi(BTFTh2) and DTGe(BTFTh2)2 indicating that currents 

occurred from incident photon could reach to the electrodes without significant loss.  

To understand nature of morphology about pristine components, grazing incidence wide angle x-ray 

diffraction (GIWAXD) were recorded and images and line cuts along the in-plane and out-of-plane 

directions were described in Figure 25 and Figure 26.  

 

Figure 25. GIWAXS images of a) DTSi(BTFTh2)2, b) DTSi(BTFBFu)2, c) DTGe(BTFTh2)2 and d) 

DTGe(BTFBFu)2 as a pristine component. 
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The GIWAXD patterns of all compounds exhibited not formulaic packing orientation unformulaic 

molecular packing orientations except for the slight lamellar and π-π stacking orientation. 

 

Figure 26. Line cuts corresponds to GIWAXS patterns along the in-plane a) and out-of-plane b). 

Interestingly, both distances of lamellar and π-π stacking for the DTSi(BTFTh2)2 and DTGe(BTFTh2)2 

exhibited longer distances at 14.68, 14.81, 3.58 Å  respectively. On the other hand, BFu containing small 

molecules exhibited packing distances 13.03, 13.17 and 3.48 Å  depends on axis. These results indicated 

that although end capping group of Th2 induce the steric hindrance due to their rigidity, compounds 

were capable of efficient packing with each other leading to higher PCE. Furthermore, differences of 

packing orientation were not exhibited depends on central atoms. 

 

Table 6. Summaries of crystallo-properties acquired from GIWAXS patterns. 

 

We also measured atomic force microscopy (AFM) to understand bulk and surface morphology and 

images of AFM described in Figure 27. 
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Figure 27. AFM images of DTSi(BTFTh2)2, DTSi(BTFBFu)2, DTGe(BTFTh2)2 and DTGe(BTFBFu)2 

Especially, AFM image of DTSi(BTFTh2)2 showed fibril-like structures leading the improved Jsc and 
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FF. However, BFu containing small molecules exhibited pin hole phenomenon in AFM images. These 

results indicated that when devices were fabricated, solvents could not be evaporated without hitch 

due to the aggregation with each other caused by miscibility.67As a result, it leaded dramatic decay of 

device performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

2.3. Conclusion. 

We attempted to understand effect of introducing F atoms onto the BT accepting unit and their optical, 

electrochemical properties and photovoltaic effect. For these reason, we have synthesized four small 

molecules (DTSi(BTFTh2)2, DTGe(BTFTh2)2, DTSi(BTFBFu)2 and DTGe(BTFBFu)2 successfully. 

Among of them, DTSi(BTFTh2)2 recorded highest PCE at 3.26 % with higher Jsc (10.03 mA/cm2) and 

FF (0.41). Furthermore, although Th2 containing small molecules which have longer distances of 

crystal along the both axis, they could form the effective packing orientation for the charge 

transporting leading the improvements of device characteristics. However, despite more planar 

molecular structures of BFu containing family with shorter distances of crystal, they exhibited lower 

device performance. These results based on aggregation caused by inter molecular interaction could 

be confirmed through the pin hole phenomenon in AFM images. However, further investigations are 

needed for the understating effects of incorporating F atoms and rational design for conjugated 

molecules. 
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2.4. Experimental Section 

Materials and Instruments: All the chemicals and reagents were purchased from either Sigma Aldrich, 

Alfa Aesar Chemical Company, and Solarmer and used without further purification. All solvents are 

ACS and anhydrous grade by distillation. 1H NMR and 13C NMR spectra were recorded on an Agilent 

400 MHz spectrometer using deuterated CDCl3 as solvent and tetramethylsilane (TMS) as an internal 

standard. Elementary analyses were carried out with a Flash 2000 element analyzer (Thermo 

Scientific, Netherlands) and MALDI-TOF MS spectra were checked by Ultraflex III (Bruker, 

Germany). UV-Vis-NIR absorption spectra in solution and in thin films were measured on a UV-1800 

(SHIMADZU) spectrophotometer. Cyclic voltammetry (CV) measurements were performed on 

AMETEK Versa STAT 3 with a three-electrode cell system in a nitrogen bubbled 0.1 M tetra-n-

butylammonium hexafluorophosphate (n-Bu4NPF6) solution in chloroform at a scan rate of 100 mV/s 

at room temperature. Ag/Ag+ electrode, platinum wire, and carbon glassy were used as the reference 

electrode, counter electrode, and working electrode, respectively. The Ag/Ag+ reference electrode was 

calibrated using a ferrocene/ferrocenium redox couple as an internal standard, whose oxidation 

potential is set at -4.8 eV with respect to a zero-vacuum level. The HOMO energy levels were 

obtained from the equation HOMO (eV) = – (E(ox)
onset – E(ferrocene)

onset + 4.8). The LUMO levels were 

obtained from the equation LUMO (eV) = – (Eopt – E(ferrocene)
onset + 4.8). DFT calculations were 

performed using the Gaussian 09 package with the nonlocal hybrid Becke three-parameter Lee-Yang-

Parr (B3LYP) function and the 6-31G basis set to elucidate the HOMO and LUMO levels after 

optimizing the geometry of small molecules using the same method. 

Synthesis of 7,7'-(4,4-bis(2-ethylhexyl)-4H-germolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(4-bromo-5-

fluorobenzo[c][1,2,5]thiadiazole) DTGe(BTF)2, (1) : 30mL microwave tube was charged with 4,4-

bis(2-ethylhexyl)-2,6-bis(trimethylstannyl)-4H-germolo[3,2-b:4,5-b']dithio-phene (Me3Sn-DTGe-

SnMe3, 1.20 g, 1.52 mmol), 4,7-dibromo-5-fluorobenzo[c][1,2,5]-thiadiazole (FBTBr2, 1.19 g, 3.80 

mmol), Pd(PPh3)4 (0.087 g, 0.076 mmol), and toluene (10 mL), under Ar condition. The reaction 

mixture was heated to 100 ℃ for 1 min, 125 ℃ for 1 min, 150 ℃ for 10 min, and 160 ℃ for 60 

min using a Biotage microwave reactor. After cooling, the material was loaded onto silica and purified 

by flash chromatography using hexanes/chloroform gradient. Solvent was removed after collection. 

The solid in 3:1 mixture of methanol and hexanes was sonicated for 1 h and stirred during the 

overnight. The suspension was filtered and recrystallized with dichloromethane and hexane. Finally, 

red solid was obtained (0.61 g, yield: 43%). 1H NMR (400MHz, CDCl3): δ 8.19 (t, J = 8.0 Hz, 2H), 

7.68 (d, J = 4.0 Hz, 2H), 1.58 (m, 4H), 1.45 – 1.12 (m, 18H), 0.82 (m, 12H). 13C NMR (100MHz, 

CDCl3): δ 148.92, 148.86, 147.14, 139.03, 132.14, 132.11, 127.71, 127.61, 115.27, 114.96, 37.06, 
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35.57, 28.98, 28.78, 23.02, 20.92, 14.14, 10.89. Elemental analysis calc. For C36H38Br2F2GeN4S4: C 

46.72 H 4.14 N 6.05 S 13.86; Found: C 48.21 H 4.36 N 6.43 S 13.84. MALDI-TOF: Calcld. For 

925.42; Found: 925.95. 

Synthesis of 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(4-bromo-5-

fluorobenzo[c][1,2,5]thiadiazole) DTSi(BTF)2, (2): this reaction was progressed in the same method 

as DTGe(BTF)2. 4,4-bis(2-ethylhexyl)-2,6-bis(trimethylstannyl)-4H-silolo[3,2-b:4,5-b']dithiophene 

(Me3Sn-DTSi-SnMe3, 1.40 g, 1.88 mmol), 4,7-dibromo-5-fluorobenzo[c][1,2,5]-thiadiazole  

(FBTBr2, 1.47 g, 4.70 mmol), Pd(PPh3)4 (0.108 g, 0.094mmol) and toluene (10 mL) added into 30 mL 

microwave tube. it was also heated to 100 ℃ for 1 min, 125 ℃ for 1 min, 150 ℃ for 10 min, and 

160 ℃ for 60 min using a Biotage microwave reactor. And then, it was followed same purification 

method. As a result, product was obtained as a dark-red solid (0.42 g, yield: 26%). 1H NMR 

(400MHz, CDCl3): δ 8.17 (t, J = 8.0 Hz, 2H), 7.68 (d, J = 4.0 Hz, 2H), 1.51 (m, 2H), 1.43 – 1.16 (m, 

16H), 1.09 (m, 4H), 0.82 (t, 12H). 13C NMR (100MHz, CDCl3): δ 151.25, 148.84, 145.57, 132.10, 

132.07, 132.04, 127.69, 127.59, 115.35, 115.04, 35.98, 35.72, 30.91, 28.93, 22.99, 17.64, 14.14, 

10.82. Elemental analysis calc. For C36H38Br2F2N4S4Si: C 49.09 H 4.35 N 6.36 S 14.56; Found: C 

49.34 H 4.50 N 6.55 S 14.82. MALDI-TOF: Calcld. For 880.86; Found: 880.00. 

Synthesis of DTGe(BTFTh2)2, (3): Stille coupling between (1) (0.4g, 0.432 mmol) and (5'-hexyl-

[2,2'-bithiophen]-5-yl)trimethylstannane (Th2, 0.392g, 0.951 mmol) were progressed in obedience to 

same procedures of (1) with Pd(PPh3)4 (0.024 g, 0.022mmol) and 8 mL of toluene. Deep blue solids 

were acquired at 48% yield. %). 1H NMR (400MHz, CDCl3): δ 8.19 (t, J = 3.3 Hz, 2H), 8.11 (d, J = 

4.0 Hz, 2H), 7.58 (d, J = 13.1 Hz, 2H), 7.16 (d, J = 4.0 Hz, 2H), 7.09 (d, J = 3.5 Hz, 2H), 6.70 (d, J = 

3.5 Hz, 2H), 2.81 (t, J = 7.6 Hz, 4H), 1.68 (m, 6H), 1.50 – 1.20 (m, 32H), 0.94 – 0.81 (m, 18H). 13C 

NMR (100MHz, CDCl3): δ 153.21, 149.51, 148.71, 146.75, 146.00, 139.78, 134.56, 131.43, 131.41, 

131.05, 130.83, 130.73, 125.47, 124.91, 123.72, 123.11, 115.29, 110.54, 37.10, 35.64, 31.58, 31.53, 

30.24, 29.05, 28.83, 28.80, 23.10, 22.58, 20.94, 14.21, 14.08, 10.94. Elemental analysis calc. For 

C64H72F2GeN4S8: C 60.79 H 5.74 N 4.43 S 20.29; Found: C 60.79 H 5.80 N 4.54 S 20.15. MALDI-

TOF: Calcld. For 1264.27; Found: 1264.27. 

Synthesis of DTSi(BTFTh2)2, (4): Stille coupling between (2) (0.4g, 0.454 mmol) and (5'-hexyl-[2,2'-

bithiophen]-5-yl)trimethylstannane (Th2, 0.413g, 0.999 mmol) were progressed in obedience to same 

procedures of (3) with Pd(PPh3)4 (0.024 g, 0.022mmol) and 8 mL of toluene. Deep blue solids were 

acquired at 35% yield. 1H NMR (400MHz, CDCl3): 8.19 (t, J = 4.0 Hz, 2H), 8.15 (d, J = 4.0 Hz, 2H), 

7.66 (d, J = 12.0 Hz, 2H, 7.19 (d, J = 4.0 Hz, 2H), 7.11 (d, J = 4 Hz, 2H), 6.72 (d, J = 8.0 Hz, 2H), 

2.81 (t, J = 8.0Hz, 4H), 1.71 (m, 4H), 1.56 (m, 2H), 1.47 – 1.04 (m, 32H), 0.96 – 0.77 (m, 18H). 13C 
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NMR (100MHz, CDCl3): δ 156.32, 154.43, 149.37, 148.82, 144.00, 142.78, 138.56, 136.43, 134.28, 

132.37, 131.83, 131.69, 128.45, 124.85, 121.63, 120.13, 112.39, 110.65, 36.10, 34.64, 33.58, 32.53, 

31.28, 29.37, 28.75, 28.65, 22.80, 22.53, 20.43, 14.11, 13.08, 10.87. Elemental analysis calc. For 

C64H72F2N4S8Si: C 63.01 H 5.95 N 4.59 S 21.03; Found: C 63.09 H 6.09 N 4.68 S 20.12. MALDI-

TOF: Calcld. For 1218.33; Found: 1218.35. 

Synthesis of DTGe(BTFBFFu)2, (5): Stille coupling between (1) (0.4g, 0.432 mmol) and benzofuran-

2-yltrimethylstannane (BFu, 0.267g, 0.951 mmol) were progressed in obedience to same procedures 

of (3) with Pd(PPh3)4 (0.024 g, 0.022mmol) and 8 mL of toluene. purple solids were acquired at 46% 

yield. 1H NMR (400MHz, CDCl3): δ 8.26 (t, J = 4.0Hz, 2H), 7.91 (s, 2H), 7.77 (d, J = 12.0 Hz, 1H), 

7.70 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 

1.55 (m, 4H), 1.48 – 1.14 (m, 16H), 0.97 – 0.77 (m, 12H). 13C NMR (100MHz, CDCl3): δ 153.89, 

153.75, 150.59, 149.33, 144.25, 143.16, 130.42, 126.75, 126.34, 124.25, 121.37, 120.15, 115.37, 

113.22, 112.15, 110.97, 110.45, 110.21, 35.01, 33.85, 32.11, 29.86, 25.13, 19.82, 14.32, 11.79. 

Elemental analysis calc. For C52H48F2GeN4O2S4: C 62.46 H 4.84 N 5.60 S 12.83; Found: C 64.18 H 

5.58 N 6.04 S 11.08. MALDI-TOF: Calcld. For 1000.18; Found: 1000.19. 

Synthesis of DTSi(BTFBFFu)2, (6): Stille coupling between (2) (0.4g, 0.454 mmol) and benzofuran-

2-yltrimethylstannane (BFu, 0.280g, 0.999 mmol) were progressed in obedience to same procedures 

of (3) with Pd(PPh3)4 (0.024 g, 0.022mmol) and 8 mL of toluene. Purple solids were acquired at 38% 

yield. 1H NMR (400MHz, CDCl3): δ 8.24 (t, J = 4.4 Hz, 2H), 7.90 (s, 2H), 7.75 (d, J = 12 Hz, 2H), 

7.69 (d, J = 8 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 1.58 

– 1.54 (m, 6H), 1.44 – 1.05 (m, 16H), 0.89 – 0.77 (m, 12H). 13C NMR (100MHz, CDCl3): 154.98, 

154.96, 151.60, 149.64, 146.49, 143.43, 131.99, 128.50, 125., 123.13, 121.42, 121.39, 116.08, 115.77, 

114.42, 111.44, 110.07, 110.01, 36.02, 35.76, 30.91, 28.96, 23.03, 17.72, 14.18, 10.85. Elemental 

analysis calc. For C52H48F2N4O2S4Si: C 65.38 H 5.06 N 5.86 S 13.43; Found: C 64.99 H 5.45 N 6.59 S 

12.44. MALDI-TOF: Calcld. For 954.24; Found: 954.23. 
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Chapter Ⅲ. Investigation of Effects Induced by Replacements of C-C 

covalent bond with B←N coordination bond on heteroaromatic compound. 

 3.1. Introduction. 

Over the past two decades, conjugated molecules have attracted attention as a class of semiconducting 

materials and have been widely used in various fields, such as organic light emitting diodes (OLEDs), 

organic field-effect transistors (OFETs) and organic solar cells (OSCs) with exotic properties caused 

by delocalized π-electrons existing along the backbone. Despite many attempts to understand the 

conjugated molecules, many crucial issues have been remained related with rational design for the 

desirable properties. One of them is the creation building blocks which have not only reasonably high 

electron affinity but also crystalline structures for the smooth carrier transport on solution process. As 

a result of this matter, many researchers have attempted to acquire novel building blocks suggesting 

guide line for the rational design in these fields. Especially, embedding the hetero atoms (e.g., fluorine 

(F), nitrogen (N), boron (B)) onto the π-conjugated framework could be one of the most effective 

methodology for the intrinsic high electron affinity and have been widely accepted with ease of 

modulating the electro chemical properties, absorption properties even though solid structures. 

Furthermore, Klaus Müllen et al. demonstrated recently that sequence of embedded B and N atoms 

could be methodology to tune their aromaticity and it leads changes of optoelectronic properties. 

Despite many kinds of endeavors related with introducing the B and N atoms which have 

isoelectronic bond and isosterism with C=C bond onto the conjugated units, many studies have 

focused covalently linked B, N atoms with carbon atoms and only few successful examples related 

with embedding the coordinately linked B←N units. In this contribution, we have attempted to design 

exotic π-conjugated polymer and investigated their optoelectronic properties. 

 

 

 

 

 

 



46 

 

 

3.2. Result and Discussion. 

Herein, we described synthetic routes and characterization with 1H nuclear magnetic resonance 

(NMR) spectroscopy. Firstly, designated π-conjugated polymer and synthetic pathways were shown in 

Figure 28. 

 

Figure 28. Final target structure a) of molecules incorporated with B←N unit and b) synthetic 

pathways for the final compounds. 

 

 

a)

b)
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Synthesis of 3-bromo-2-iodothiophene (1): N-Iodosuccinimide (11.04g, 49.07 mmol was poured into 

the solution of 3-bromothiophene (10g, 61.33 mmol) solutions dissolving in mixed chloroform with 

acetic acid at room temperature. The reaction mixtures were stirred for the 1 day with blocking the 

light. And then, crude mixtures were extracted with ether and purified with prep JAI gel permission 

chromatography (GPC). After collect product fraction, finally colorless oil was acquired at 68% yield. 

1H NMR (400 MHz, CDCl3) δ 7.40 (d, 1H, J = 5.5 Hz), 6.90 (d, 1H, J = 5.5 Hz). 

 

 

 

 

 

 Figure 29. 1H NMR spectra of 3-bromo-2-iodothiophene. 
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Synthesis of 2-(tributylstannyl)thiazole (2): The reaction mixture of 2-bromothiazole (8g, 48.77 

mmol) dissolving in ether was cooled down to -78°C thoroughly. And then, n-BuLi (1.6M in hexane, 

30.48 mL, 48.88 mmol) was added as a dropwise into the reaction mixture. After stirred for the 1.5 h, 

tri-buthyltinchloride was added and warmed to room temperature. After crude gained from extraction 

with ether passthrough the short column filled with aluminum oxide, final pale-yellow liquid was 

acquired through the collection of prep JAI GPC at 65% yield. 1H NMR (400 MHz, CDCl3) δ 8.10 (d, 

1H, J = 4.0 Hz), 7.54 (d, 1H, J = 4.0 Hz). 

 

 

 

Figure 30. 1H NMR spectra of 2-(tributylstannyl)thiazole. 
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Synthesis of 2-(3-Bromo-2-thienyl)thiazole (3): Previously prepared (1) (5g, 17.31 mmol) and (2) 

(6.48g, 17.31mmol) were dissolved in THF (80mL). Pd2(dba)3 (0.396g, 0.432 mmol) and 

trifurylphosphine (0.501g, 2.16 mmol) were added to reaction mixture and the mixture was stirred for 

1 day at 60°C. After crude was extracted with toluene, combined organic layer was dried over MgSO4 

and filtrated organic layer was evaporated under reduced pressure. And then, the mixture was purified 

by a silica gel column chromatography with toluene and hexane. Finally, colorless solid was gained at 

64% yield. 1H NMR (400 MHz, CDCl3) δ 7.86 (d, 1H, J = 4.0 Hz), 7.39 (d, 1H, J = 4.0 Hz), 7.34 (d, 

1H, J = 8.0 Hz), 7.08 (d, 1H, J = 4.0 Hz). 

 

Figure 31. 1H NMR spectra of 2-(3-Bromo-2-thienyl)thiazole. 
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Synthesis of 2-(3-Dimesitylboryl-2-thienyl)thiazole (4): the reaction mixture of 2-(3-bromo-2-

thienyl)thiazole (3) (0.700 g, 2.84 mmol) in ether (60 mL) was cooled at –78 °C. n-BuLi (1.60 M in 

hexane, 1.78 mL, 2.84 mmol) was added into the reaction mixture. After the mixture was stirred at –

78 °C for 1.5 h, dimesitylfluoroborane (0.761 g, 2.84 mmol) dissolving in ether was added to the 

mixture. The reaction mixture was gradually warmed to room temperature and stirred for 2 h. The 

mixture was purified by a silica gel column chromatography with hexane and chloroform. Pale-yellow 

solid was acquired at 75% yield. 1H NMR (400 MHz, CDCl3) δ 7.73 (d, 1H, J = 4.0 Hz), 7.46 (d, 1H, 

J = 4.0 Hz), 7.25 (d, 1H, J = 4.0 Hz), 6.95 (d, 1H, J = 4.0 Hz), 6.68 (s, 4H), 2.16 (s, 6H), 1.88 (s, 

12H). 

 

 

 

Figure 32. 1H NMR spectra of 2-(3-Dimesitylboryl-2-thienyl)thiazole. 
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