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Abstract 

In this thesis, a new novel method to align two images with recent deep learning scheme called 

ssEMnet is presented. The reconstruction of serial-section electron microscopy (ssEM) images gives 

critical insight to neuroscientist understanding real brains. However, alignment of each ssEM plane is 

not straightforward because of its densely twisted circuit structures. In addition, dynamic 

deformations are applied to images in the process of acquiring ssEM dataset from specimens. Even 

worse, non-matched artifacts like dusts and folds occur in the EM images. 

In recent deep learning researches, especially related with convolutional neural networks (CNNs) 

have shown to be able to handle various problems in computer vision area. However, there is no clear 

success on ssEM image registration problem using CNNs. ssEMnet is constructed with two parts. The 

first part is a spatial transformer module which supports differentiable transformation of images in 

deep neural network. A convolutional autoencoder (CAE) which encodes dense features follows. The 

CAE is trained by unsupervised fashion and its features give wide receptive field information to align 

the source and target images. This method is compared with two other major ssEM image registration 

methods and increases accuracy and robustness, although it has less number of user parameters.  
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1 Introduction 

1.1 Problem Definition 

Image registration has long been studied and the aim of this problem is to find the optimal 

transformation between two source and target images. [16] Image registration problems can be 

formulated as finding a transformation 𝑇 minimizing following objective function: 

 min
𝑇

𝑀(𝑇(𝐼𝑠), 𝐼𝑡) + 𝑅(𝑇) (1) 

𝐼𝑠 and 𝐼𝑡 are the source and target images, respectively. M is a metric for comparing the matching 

results. R is a regularization term that restricts transformation 𝑇 to unnatural or trivial solutions.  

(1) is a problem of finding T for defined M and R, but the image registration problem is not 

simply optimization, because the optimization of solving the problem greatly changes according to M 

and R. If M or R is too simple, the optimization of (1) is also too easy and the resulting T is likely to 

be trivial. Therefore, depending on the given source and target images, a different M and a different R 

should be given. Various previous image registration methods based on (1) have been proposed. 

However, the implementation and modeling of these methods is not generalized. This means that 

different modeling is needed when different images and data are given. Therefore, tools that are used 

practically are trying to perform image registration in arbitrary data by using various user parameters 

according to dataset. It is up to the user to find the parameters one by one. In this paper, I propose a 

framework for image registration in a more general way to solve these problems. I have verified the 

validity of this framework through implementation and experiment of unsupervised method.  

 

Fig. 1. An example of EM image registration. (a) A fixed image, (b) a moving image, and (c) a 

warped image of (b) with grid visualization. 
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1.2 Background 

Connectomics research focuses to construct brain connectivity that represents how neurons are 

related with each other. Reconstructing 3D volume of brain tissue is challenging because the high 

packing density of neuronal-circuit. [7] The physical approaches of finding connection of the neural 

structure rely on slicing brain tissue and scanning these sections by electron microscopy (EM). For 

example, ATUM [6], the automated tape-collecting ultramicrotome generates serial-section EM 

(ssEM) images with 30nm thick and 5nm in-place resolution. However, the acquired dataset has slice-

wise transformation including scale, rotation, translation and non-linear deformation because of the 

heat and pressure applied on the tissue. Therefore, these distorted ssEM sections should be stitched 

and aligned first to reconstruct the 3D volume as close as possible to the original specimen and to 

process next step of analysis on it. 

Although Image registration problem has been studied with both real and medical images in 

decades, ssEM image registration has different challenging issues with traditional registration problem 

handling the real world images. Large deformation and non-predictable artifacts such as dusts and 

folds easily occurred on the acquiring process. An open-source toolset for ssEM data processing 

called TrakEM2 [4] supports several ssEM image registration methods including bUnwarpJ [2] and 

Elastic stack alignment [3] which are commonly used for ssEM image alignment. 

bUnwarpJ is a B-spline based elastic registration with consistency constraint. This method 

registers two source and target images by solving minimization problems with three terms of 

similarity term, soft landmark term and regularization term. However, divergence and curl parameters 

in the regularization term are not intuitive for users to control regularization. In addition, the 

regularization more depends on quality setting (e.g. resolution of control vector grid), because its 

main similarity energy term is based on pixel-wise mean-square distance which is vulnerable to 

outlying features caused by artifacts from imaging process or anisotropic characteristic of ssEM 

datasets. 

Elastic stack alignment is a more practical tool to align ssEM dataset. It has two alignment steps: 

A global alignment based on SIFT [26] and spring mesh alignment with block matching features. By 

matching SIFT descriptor which is rotate and scale invariant, given pairs of two images are 

approximately aligned. Based on these matching, each points of triangular grids in source image are 

matched to neighbor target images by block matching. Virtual springs are placed in these inter-image 

mappings and intra-image triangular grids, which control the distance through relaxation and deform 

images. 
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Both tools require users to find parameters on hand. The process of finding the parameters that 

match the characteristics of certain data depends entirely on the users’ intuition and on their several 

tedious attempts. Elastic stack alignment finds the matching points of the two images by brute force 

search of matching block. The users should check whether each block size is suitable for the 

alignment or not. Also, Gaussian blur should be applied according to the texture characteristics. A 

testing tool for block matching is provided, but this test tool just helps users to check block size 

repeatedly rather than finding it. Even worse, no tool is not supported to find the parameters for spring 

mesh relaxation. Therefore, users should try all registration step to ensure the spring mesh. Because of 

these limitations of existing tools, data-driven image registration algorithm with less number of 

parameters is demanded for large scale ssEM datasets.  

 

Fig.2. The concept overview of image registration on connectome dataset. After imaging, each EM 

slice is not matched to its neighbors, so an image registration procedure is required. 
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1.3 Motivation 

Convolutional Neural Networks (CNNs) addresses many of the problems in the computer vision 

area with superior performance. CNN looks for features and functions that are difficult to define 

directly through the dataset. Therefore, researchers do not have to model hand-crafted features. (e.g. 

[14]) Image registration is very important for modeling metrics and regularization term according to 

data. As mentioned earlier, for practical tools, many user parameters are needed to solve this problem. 

In order to deal with complex data such as ssEM, users have to search directly through many attempts. 

It is necessary to find a feature encoder that knows the characteristics of each data through an 

automatic method rather than a user for a large dataset. In recent research, abstract objects such as 

artistic style have also been successfully transferred through pre-trained CNN. [5] Here, VGG-19 [12], 

a pre-trained CNN, is used as a feature descriptor for the loss function. In other words, the deep neural 

network itself becomes a component for a metric. This approach can also be applied to image 

registration. If there is a learned network the target dataset, there will be no need for the user 

parameter for that dataset, and it can be applied to complicate data like ssEM. 

CNN is capable of feature encoding, but it does not represent the transformation of the image. 

Therefore, CNN alone cannot be an image registration model. In addition, the problem with the CNN 

feature is that the convolution operator is not rotational-invariant and scale-invariant in nature. This 

problem has been addressed in [8]. [8] suggests localization through scale, translation, affine 

transformation and thin plate spline (TPS) deformation using a differentiable transformation module 

called spatial transformer. In this way, robust features are learned from the given image to solve the 

fine-grained classification. A spatial transformer can also be applied to image registration. With this 

and the feature network, M and T in (1) can be constructed based on deep learning. 

1.4 Contribution 

There are three major contributions to this study. First, in this study, a general deep learning 

based image registration framework is presented. In this framework, new networks, transformations 

and objective functions can be used to construct new image registration models. Here, deep neural 

networks become feature descriptors, and thus metrics for matching. As mentioned in [8], various 

types of transformations can be implemented with ST module. Since these are differentiable, 

backpropagation-based optimizers used in existing deep learning can be used.  

Second, I confirmed that convoloutional Autoencoder (CAE) can act as a feature network for 

image registration. CAE is one of the simplest CNNs that can learn from a dataset without supervision 

[22]. [5] used a pre-trained network through a large dataset, but there is no labeled dataset for ssEM 
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datasets in my knowledge. Therefore, we want to verify that proposed image registration can work 

even if there is no powerful pre-trained network for arbitrary data. In this study, unsupervised CAE 

was shown to perform as a sufficient metric for matching. 

Finally, a new loss-drop technique has been proposed that can robustly match ssEM's various 

artifacts. The unpredictable features appearing in the ssEM dataset preclude correct matching. To 

avoid falling into local optimum due to these features, loss-drop drops large feature errors. This 

enables matching even in severely damaged data which could not be matched by the conventional 

method, and it can be applied in neural network architecture to improve image registration 

performance. 

1.5 Goal 

The goal of this study is to propose a novel method so-called ssEMnet, which is a general image 

registration framework with pre-trained deep neural networks. I explore various studies related with 

CNNs, including the neural style transfer algorithm and STNs. In addition, several existing image 

registrations are introduced to compare the proposed method. In order to apply it directly to ssEM 

dataset without supervision, I proposed a CAE that can be directly used as a feature encoder without 

supervision, and proposed a loss-drop technique for robust image registration in non-matching 

artifacts. Experiments have shown that CAE with loss-drop provides a proper metric to align a 

damaged ssEM dataset. 
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2 Related Work 

2.1 Convolutional Neural Networks 

Convolutional Neural networks (CNNs) are deep learning architectures based on the 

characteristics of visual reception. This is suitable for learning image datasets because the it uses 

fewer parameters than the previously used deep fully connected network [27] to handle a number of 

pixel of input images. More parameters require more time and data to learn, which can be a 

performance limitation. The basic CNN layer follows Eq. (2) [29]. 

 𝑧𝑖,𝑗,𝑘
𝑙 = 𝑤𝑘

𝑙 𝑇
𝑥𝑖,𝑗

𝑙 + 𝑏𝑘
𝑙  (2) 

Where 𝑙 denotes a specific layer, and 𝑖 and 𝑗 denote spatial coordinates. 𝑥𝑖,𝑗 is the input patch 

centered on 𝑖, 𝑗, and 𝑤𝑘 and 𝑏𝑘 are the bias of the kth filter respectively. As shown in (2), 𝑤 is 

independent of input size, so CNNs can be trained with fewer parameters. 

In [28], CNN has been used to analyze hand-written digits, and various networks have been 

proposed to solve image classification problem. AlexNet [30], which achieved the best records on 

ILSVRC-2012 large scale image classification challenge, applies ReLU non-linearity activation 뭉 

layer response normalization for the first time. GoogleLeNet [31] proposed the Inception module to 

improve performance by applying various types of convolutional filters to one layer and achieved 

state-of-the-art in ILSVRC-2014. VGG-19 [12] improved performance by learning a deeper network 

of 19 layers, and ResNet [32] won the ILSVRC-2015 challenge by reducing the gradient vanishing 

problem of deep networks by introducing a residual module. 

Besides image classification, CNNs have outperformed many areas like semantic segmentation 

[17] and super-resolution [18]. Unlike hand-crafted features, features from CNNs are directly derived 

from the data to solve the problem. For image registration, various hand-crafted features such as pixel 

intensity-based features (e.g. block matching) or SIFT were used, recent studies have shown that these 

existing descriptors can be replaced with learning-based descriptors. ([14], [15]). 

[23] is an inverting example for understanding the learning of Deep learning. Normally, we put 

input into CNN, but in this study the authors find information inside CNN through backpropagation. 

An example of solving a specific problem through inverting a neural network is to solve the optical 

flow through inversion of the frame interpolation network [24]. Video itself is made up of successive 

frames, so you can use it to train a frame interpolation network. After the frame interpolation network 
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is trained, an interpolated frame is obtained from two frames to compute the optical flow. Gradients 

from each pixel in the interpolated frame to the given two frames are computed as a chain rule. Since 

the pixel giving the largest absolute gradient value has the greatest influence on interpolation, we can 

find the matching of two frames.  

Gatys et al. [5] performed style transfer using pre-trained VGG-19. VGG-19 network learned 

from ImageNet [13], a large scale dataset, serves as a good descriptor for extracting various features 

of an image [14]. The authors made two assumptions in this paper: 1) if the features of the two images 

coming through VGG-19 are similar, they should be morphologically similar, and 2) image style is the 

correlation of filter responses in one layer of CNN. Based on their assumptions, they defined the 

content loss (3) and style loss (4) as follows, and performed style transfer by minimizing the total loss 

function (5). 

 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝐼𝑐, 𝐼𝑔, 𝑙) =
1

2
∑ (𝐹𝐼𝑐

𝑙 (𝑖, 𝑗) − 𝐹𝐼𝑔

𝑙 (𝑖, 𝑗))
2

𝑖,𝑗

 (3) 

 
𝐿𝑠𝑡𝑦𝑙𝑒(𝐼𝑠, 𝐼𝑔) = ∑

𝑤𝑙

4𝑁𝑙
2𝑀𝑙

2 ∑ (∑ 𝐹𝐼𝑠

𝑙 (𝑖, 𝑘)𝐹𝐼𝑠

𝑙 (𝑗, 𝑘)

𝑘

− ∑ 𝐹𝐼𝑔

𝑙 (𝑖, 𝑘)𝐹𝐼𝑔

𝑙 (𝑗, 𝑘)

𝑘

)

2

𝑖,𝑗

𝐿

𝑙=0

 (4) 

 𝐿𝑡𝑜𝑡𝑎𝑙(𝐼𝑐, 𝐼𝑠, 𝐼𝑔) = 𝛼𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝐼𝑐 , 𝐼𝑔) + 𝛽𝐿𝑠𝑡𝑦𝑙𝑒(𝐼𝑠, 𝐼𝑔) (5) 

𝐼𝑐, 𝐼𝑠, 𝐼𝑔 are content image, style image, generated image respectively. 𝐹𝐼
𝑙(𝑖, 𝑗) is 𝑙th layer 

feature of input image 𝐼 where the pixel positions are denoted as 𝑖 and 𝑗. In (4), the correlation of 

filter responses is computed by Gram matrix. In this study, the style loss is removed and only the 

content loss is applied to align a pair of images. 

Along with the recent development of CNN, CAE has appeared in image registration field. Wu et 

al. [10] acquires multi-dimensional features through a convolutional stacked autoencoder (SAE) to 

reduce the large 3-D image patch. They proposed multi-dimensional features through max-pooling 

and stacked autoencoder for MRI volume and matching them through multichannel version of 

Demons algorithm [20] and feature-based HAMMER algorithm [21]. However, their convolutional 

stacked autoencoder doesn’t have any convolution operators, but spatially reduced max-pooling of 

patch-wise features trained with sparse SAE. This allows for a wider receptive field than a simple 

patch-wise SAE feature, but max-pooling is a hand-crafted reduction. The convolutional SAE feature 

is translation invariant, but there is no guarantee that it is also rotation and scale invariant. 
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2.2 Image Registration 

Image registration is the task of aligning two matching images into the same coordinate space. 

As described in (1), the main elements in image registration are metric, transformation and 

regularization. Image registration methods are largely categorized as the difference between these 

three factors. Depending on the metrics, it can be broadly divided into feature-based and intensity-

based methods.  

Feature-based methods extract feature descriptors from source and target images and then 

transform the source image to reduce the distance of the sparse feature descriptors. An example of 

such a feature is Scale Invariant Feature Transform (SIFT) [26]. The SIFT algorithm finds scale, noise, 

rotation and illumination-invariant feature points. This means that it can find feature points robustly 

even if the four conditions are changed. However, the matching through the feature points such as 

SIFT has a limit when the deformation is strong. Globally, images can be matched, but matching in 

fine-resolution is difficult. [3] And, for image registration, the user needs to filter to the appropriate 

threshold according to matching of matching SIFT features. If there is an erroneous feature matching, 

the performance of the matching can be greatly reduced. The proposed method registers a pair of 

images through encoded features rather than pixel-intensities, but is close to intensity-based methods. 

In this respect, it is suitable to match finer local features rather than global alignment. This can be 

complemented by using SIFT for global alignment as in previous [5] and matching the detail with the 

proposed method. 

On the other hand, intensity-based image registration uses all the pixels of a given image. For 

example, UnwarpJ [33] using pixel intensity to match two source and target images with vector-spline 

regularization. In [33], the authors find solutions by minimizing the energy terms including data term, 

landmark term and two regularization terms. The landmark acts as a kind of human-labeled feature 

point. The reason for the landmark term is to prevent potential mismatches. This is because pixel 

intensity-based image registration is limited to local minima. A multi-channel intensity-based 

approach has emerged to compensate for the limitations of pixel intensity-based registration ([20], 

[21]). ssEMnet presented in this study matches through multi-channel vectors. However, the multi-

channel vectors are encoded based on deep learning. It differs from the single pixel location presented 

in [20], because it has a wider receptive field. In addition, it encodes the significant pixels through a 

convolutional filter compared to [21] which just uses multi-resolution pixels. 
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2.3 Spatial Transformer Networks 

CNN is a powerful tool for solving problems through data-driven, but the disadvantage is that the 

convolution operation on which it is based is not invariant to rotation or scale. There have been many 

attempts to solve these problems. (Reference addition) 

Spatial transformer (ST) is a CNN module designed to solve this problem. It consists of 

localization network, grid generator, and sampler. Localization network finds suitable transformation 

parameters from a given input feature map. The number of parameters coming out of the output 

depends on the transformation. If the given transformation is an affine transformation, then the output 

parameter must be 6-dimensional. 

Through the parameters obtained from the localization network, the grid generator creates a 

sampling grid. The sampling grid indicates the mapping of the input and output feature maps of ST. 

For affine transformation, the pointwise sampling is expressed as:  

 (
𝑥𝑖

𝑠

𝑦𝑖
𝑠) = 𝑇𝜃(𝐺𝑖) = [

𝜃1 𝜃2 𝜃3

𝜃4 𝜃5 𝜃6
] (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

) (6) 

Where (𝑥𝑖
𝑡 , 𝑦𝑖

𝑡) is the target coordinate, (𝑥𝑖
𝑠, 𝑦𝑖

𝑠) is the source coordinate, and both coordinates are 

represented by relative coordinates with values from -1 to 1. More practically, ST also can perform 

attention by following transformation in (7) with 3 parameters. 

 (
𝑥𝑖

𝑠

𝑦𝑖
𝑠) = 𝑇𝜃(𝐺𝑖) = [

𝜃1 0 𝜃2

0 𝜃1 𝜃3
] (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

) (7) 

The sampler then uses the sampling grid to sample the input feature map. The actual reference 

values are contained in the grid feature map, so they are referenced using bilinear sampling. For the 

input feature map 𝑈, the output feature map 𝑉 is expressed as (8) where 𝑐 notates channel. 

 𝑉𝑖
𝑐 = ∑ ∑ 𝑈𝑛𝑚

𝑐 max(0, 1 − |𝑥𝑖
𝑠 − 𝑚|) max(0, 1 − |𝑦𝑖

𝑠 − 𝑛|)

𝑊

𝑚

𝐻

𝑛

 (8) 

The key point of ST is that all parts are made up of differentiable elements to enable 

backpropagation. For the output feature map 𝑉, we can obtain the following partial derivatives for the 

input feature map 𝑈 and source coordinate (𝑥𝑖
𝑠, 𝑦𝑖

𝑠). 

 
𝜕𝑉𝑖

𝑐

𝜕𝑈𝑚𝑛
𝑐 = ∑ ∑ max(0, 1 − |𝑥𝑖

𝑠 − 𝑚|) max(0, 1 − |𝑦𝑖
𝑠 − 𝑛|)

𝑊

𝑚

𝐻

𝑛

 (9) 
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 𝜕𝑉𝑖
𝑐

𝜕𝑥𝑖
𝑠 = ∑ ∑ 𝑈𝑛𝑚

𝑐 max(0, 1 − |𝑦𝑖
𝑠 − 𝑛|)

𝑊

𝑚

𝐻

𝑛

{ 
0
1
−1

 

if |𝑥𝑖
𝑠 − 𝑚| ≥ 1

if 𝑚 ≥ 𝑥𝑖
𝑠

if 𝑚 < 𝑥𝑖
𝑠

 (10) 

The partial derivative of (9), (10) can be used to learn the localization network, which can 

complement the lack of the rotational and scale invariant properties of the convolution operator. In 

this study, no localisation network is used in the proposed method. ssEMnet finds an optimal 

deformation by backpropagation rather than training on certain dataset, because basically, there is no 

ground-truth for ssEM image registration.    
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3 Method 

3.1 Training a Convolutional Autoencoder 

VGG-19 [12] is trained based on the real world image dataset, ImageNet. Style transfer with 

CNN also used VGG16. There is no such large scale of classification dataset on EM image, so a 

convolutional autoencoder (CAE) was used as a CNN to give a feature metric. The reason for using 

CAE as a feature network is that it can be learned in an unsupervised fashion without labels and has 

already been used as a feature in previous studies ([10], [22]) to produce meaningful results. The CAE 

used in this study consists of two components. The first is the convolutional encoder composed with 

convolutional layers followed by ReLU activation. The convolutional encoder reduces spatial 

resolution through strides without pooling. This is because the average pooling and max pooling are 

inadequate for feature encoding because of the loss of information. Instead, the spatial resolution was 

reduced by applying a convolution with a stride of 2 in height and width to some layers in the encoder 

network. By reducing spatial resolution, a network with a wider receptive field was constructed. The 

second part is a transposed convolutional decoder consisting of transposed convolutional layers with 

ReLU activations. Transposed convolutional layers are configured such that the kernel, strides, and 

channel dimension settings are mirrored with the encoder layers. Since the network consists entirely 

of convolution and transposed convolution, it can be applied to any data set regardless of spatial 

resolution. It can be designed formally as following equations. 

 ℎ = 𝑓𝜃(𝐼) (11) 

 𝐼 = 𝑔𝜙(ℎ) (12) 

 𝐿𝜃,𝜙 = ∑‖𝐼𝑖 − 𝐼𝑖‖
2

2
𝑁

𝑖=1

+ 𝜆 (∑‖𝜃𝑘‖2
2

𝑘

+ ∑‖𝜙𝑘‖2
2

𝑘

)  (13) 

Encoders and decoders are denoted by 𝑓𝜃 and 𝑔𝜙, respectively, 𝜃 and 𝜙 are parameters of each 

network. ℎ is applied as feature vector in the next step. The objection function (13) consists of 

reconstruction term and L2 weight regularization term used to reduce overfitting. The reconstruction 

term serves to contain as much information of input image as possible in the bottleneck feature vector 

ℎ. The weight regularization term limits the absolute value of the encoded feature ℎ to not be too 

large. Fig. 3 shows the comparison between pixel intensity-based registration and CAE feature-based 

registration. The normalized cross correlation (NCC) value measured on (c) is larger than (d). The 

solution obtained from pixel-wise loss seems to easily fall to a local optimum.  
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Fig. 3. Comparison between the pixel intensity based and the CAE feature based registration with 

backpropagation. (a) the fixed image, (b) the moving image, (c) the heat map of NCC of the pixel 

intensity-based result (NCC: 0.167), and (d) the heat map of NCC of the CAE-based result (NCC: 

0.28) in red box region. 
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2.2 Deformable Image Registration using a Spatial Transformer 

After learning the CAE, the encoder of the CAE is taken out and attached to a ST. This applies 

CNN to the image registration specific problem shown in (1). ST plays the role of transformation T, 

and the pre-trained encoder becomes the feature descriptor for metric M. This network architecture is 

designed to find proper deformation for image registration using ST as a differentiable transformer. 

The objective function for registration error is expressed by (14). Here, 𝐼0 is the source image to be 

transformed, and 𝐼1 is the target image. The deformation warp is generated by spanning the coarse 

vector map 𝒗 to the control points. Here, ST provides a gradient for updating 𝑣 to backpropagation. 

In [8], the authors applied a thin plate spline (TPS) [11] for smooth deformation with only a few 

parameters for their experiments. TPS, however, tended to be more difficult to match EM images if 

folds occur in the imaging process. Therefore, ST using bilinear interpolation is applied in the 

experiment.  

 𝐿𝑣(𝐼0, 𝐼1) = ‖𝑓𝜃(𝐼1) − 𝑓𝜃(𝑇𝑣(𝐼0))‖
2

2
+ 𝛼‖𝑣‖2

2 + 𝛽‖∇𝑣𝑥‖2
2 + 𝛾‖∇𝑣𝑦‖

2

2
  (14) 

 

Eq. (14) consists of a total of four terms. The first term is a contextual different measurement of two 

images through the learned CAE features. If both images are well matched, the encoded features of 

both images should appear similar. This term is designed as a loss that reduces the difference between 

the encoded features of the warped image and the target image with an L2-norm. The remaining terms 

are the regularization term for the vector map v. The second term is to prevent images from drifting 

when dealing with multiple images. The third and fourth terms are smoothness loss terms to produce 

the deformation as smooth as possible. 𝛼, 𝛽, 𝛾 are the weights of each regularization term. Since all 

ssEMnet components including ST are differentiable, 𝑣 is optimized by backpropagation via chain 

rule. At this time, the encoder of CAE is fixed and only 𝑣 is updated. The ADAM optimizer [9] is 

used to perform stable gradient descent in this study. Fig. 4 shows the image registration using the 

backpropagation with CAE features 

Optimizing the objective function (14) only aligns two adjacent images. During the imaging, 

various damage and artifacts can occur on EM sections. Matching a pair of images can cause 

accumulation of errors through multiple sections of alignment. For more robust registration, (14) is 

extended to make several sections of the neighbor as target images. 
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 𝐿𝑣(𝐼0, … , 𝐼𝑛) = ∑ 𝑤𝑖 ‖𝑀(𝑇𝑣) (𝑓𝜃(𝐼𝑖) − 𝑓𝜃(𝑇𝑣(𝐼0)))‖
2

2
𝑁

𝑖=1

+ 𝛼‖𝑣‖2
2 + 𝛽‖∇𝑣𝑥‖2

2 + 𝛾‖∇𝑣𝑦‖
2

2
  (15) 

 

As (14), the moving image is 𝐼0 and the remaining target images are 𝐼1 to 𝐼𝑛. Since each target 

image is a neighbor slice that is a different distance from the source image, we can assign a different 

weight to each target image. These weights are each represented as 𝑤𝑖. Eq. (15), a modified version 

of (14) measures the registration error from multiple images and is robust from finding false matches 

due to outlying artifacts or large deformation. 

An image deformed by the ST module can refer to a pixel outside the image boundary by a 

regularization term. In the implementation of ssEMnet, the outer part of all images was kept at pixels 

of intensity 0. Instead, an empty space mask representing the empty area outside the image was 

created after image deformation. This mask is applied with bilinear interpolation to have same spatial 

resolution with CAE features. (e.g. 𝑀(𝑇𝑣) in (15)). This is to ensure that CAE features with 

unnecessary information do not affect matching. 

A new technique called loss-drop is introduced for more robust matching from artifacts such as 

dusts and folds. Since the artifacts that occur during the imaging process create large feature errors, 

reducing the feature error of these parts from the beginning of registration makes it easy to fall into 

local minima. Loss-drop technique drops the top k% feature error to zero. In the experiments, k was 

initially set to 50 and this k was reduced by half for every iteration. This prevented 𝑣 from falling 

into the wrong solution early in the registration process and generated a smoother registration result. 

Since multiple EM sections should be aligned at the same time, sliding-window method is applied to 

minimize the objective function iteratively through the entire section sequences with out-of-core 

fashion. 
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Fig. 4. The model overview of the convolutional autoencoder consisting encoder 6 layers and decoder 

6 layers. 

 

 

Fig. 5. The overview of the proposed method. The right network is the encoder of pretrained 

convolution autoencoder (CAE). The alignment is processed by backpropagation with loss of CAE 

features.  
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4 Results 

4.1 Implementation & Experiment Details 

The proposed method is developed using TensorFlow [1]. All experiments were done using a 

GPU workstation equipped with an NVIDIA Titan X GPU. Three experiments on three datasets are 

performed to test the method. Each dataset is transmission EM (TEM) images of Drosophila brain, 

human-labeled TEM images of another Drosophila brain provided by CREMI challenge 

(https://cremi.org/). Mouse brain scanning EM (SEM) images are corrupted by fold artifacts that 

creates a strong deformation and loss of image parts. Drosophila images are acquired separately on 

the different imaging techniques. 

The characteristics of the CAE features, the receptive field and the computational burden of 

backpropagation vary greatly depending on the structure of the CAE. Therefore, two different 

autoencoders were implemented according to the experiment. One is a deeper network using a 3 × 3 

convolutional filters (Fig. 4). This was used to match Drosophila TEM datasets. The other is a 

shallower network consisting of encoder 3 layers and decoder 3 layers. The network was implemented 

with 7 × 7 filters instead of 3x3 convolutional filters. This shallow network was used for experiments 

on the mouse SEM dataset. bUnwarpJ and elastic stack alignment were tested and applied the best 

parameters to give the best results. 
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4.2 3D Volume Reconstruction 

The original dataset of an adult female Drosophila brain cut has 4 million plane images and 

occupies a capacity close to 50TB. The dataset was firstly aligned with AlignTK 

(http://mmbios.org/aligntk-home). AlignTK is a batch-oriented alignment toolkit for 2D or 3D dataset. 

It finds corresponding positional matching, so called ‘map’ between adjacent slices. The grid points of 

each source image is matched to neighbor target images based the pixel intensity of images. After 

finding mapping, it applies relaxation method with virtual springs as elastic stack alignment does. 

This tool supports parallel execution with Massage Passing Interface (MPI) that is able to process 

large amount of images with parallel fashion efficiently. Though AlignTK is very powerful tool to 

align such large scale dataset of EM images, it still requires persistent efforts of users and large 

amount of CPU resources like a huge computing cluster. The alignment via AlignTK allows 

researchers to complete manual neural annotation. However, additional fine-grained re-alignment is 

required for automated segmentation of membranes. Therefore, a small volume of size 512 x 512 x 47 

is cropped for re-alignment. Fig. 6 shows the result of ssEMnet. The left and right of Fig. 6 is cross-

sectional view before and after the re-alignment. The red circles are annotated to compare the 

correction by the proposed method. The membranes of the sub-volume after re-alignment are more 

smoothly connected through sections than before. 

 

Fig. 6. Drosophila melanogaster TEM dataset. Left: Pre-aligned result. Right: After registration using 

our method. 
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4.3 Recovery of Artificially Deformed Dataset  

Pixel intensity-based quantitative measurements are limited to making a good comparison in EM 

images where the two images have large variations and many features are not matched. Also, simple 

slice-by-slice measurements do not detect drifting of the stack. Thus, in this study, a new 

measurement based on the labeled dataset, the CREMI challenge dataset, was presented. First, raw 

and labeled images sampled at a size of 512 × 512 × 31 from CREMI dataset were deformed by TPS 

parameterized with a random vector on random positions. The random positions were uniformly 

sampled within the image size and the random vector are sampled from the normal distribution of 

zero mean value. By doing this, the image was subjected to various smooth random deformations. The 

labeled image was deformed as well as the raw EM image. For qualitative comparison, the weighted 

Dice coefficients of the label images after registration and ones before the random deformation were 

obtained. Through these weighted Dice coefficients, it is qualitatively measurable how much the 

deformation in the imaging process is restored to the existing data by matching. The weighted Dice 

coefficients were obtained by assigning weights according to the size of cell cross section for each 

slice of the largest cell 50 labels in the sampled area, and averaged over all slices. Tab. 1 shows a 

graph for each slices weighted Dice coefficient and the mean of the weighted Dice coefficient of all 

slices. 

This experiment is performed using bUnwarpJ, elastic stack alignment and the proposed method. 

Fig. 7 show orthogonal views of the results registered with each method. Fig. 7 (a) shows the result of 

applying the bUnwarpJ method to the data. Although slices in Fig. 7 (a) are continuously matched, the 

slices are drifting due to excessive deformation. On the other hand, elastic stack alignment results in 

less deformation but less matching. The vertical section through the proposed image registration 

method is smoother and more continuous than which of the other methods. The proposed method is 

also more robust to random deformation and less drifting. 
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Fig. 7. Vertical view of the alignment result of the randomly deformed CREMI dataset. (a) bUnwarpJ, 

(b) elastic stack alignment, and (c) our method. Each neuron is assigned a unique color. 

 

 

Tab. 1. The graph of the weighted Dice coefficient of each slice and the averaged values through slices for each 

method. Y-axis represents weighted Dice coefficient values. X-axis notices the slice number from the 1 to 31 

(Total 31 slices are aligned). 
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4.4 Robust Alignment of SEM Data with Fold Artifacts 

During imaging, a variety of damages can be imposed on the acquired EM image. One of them is 

fold artifact. Fold artifacts literally appear as wrinkled folds of paper in thin EM sections. These folds 

do not fit anywhere in adjacent sections. There is also a very strong deformation around this fold. Fig. 

8 is an example of the EM section where this fold is applied. Pixel intensity-based deformable image 

registration methods have a dilemma for matching these folded EM images. To fit unfolded features, 

the folded area must be pulled out to widen, resulting in a greater matching error. Experiments were 

performed to verify that the CAE feature loss using the loss-drop technique robustly matches these 

folded data with a mouse lateral geniculate nucleus dataset [19]. A sub-volume cropped to 1520 x 

2500 x 100 size was aligned. Fig. 9 is the vertical section view of the registration results. A fold 

artifact is a part of the vertical section view that looks dark. The red colored box was marked to 

compare whether the matching is correct near the folds. In other methods, there are many misaligned 

sections in the red box, but the proposed ssEMnet employing the loss-drop technique has smoother 

and more continuous results. Tab shows the average normalized cross correlation (NCC) values inside 

the resulted volumes. To exclude the out-of-boundary pixels, the NCC values were calculated using 

only the pixels in the inner region. 

 

Fig. 8. An example slice of mouse lateral geniculate nucleus dataset with fold artifact.  
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Fig. 9. Visual comparison of mouse ssEM image registration results. (a) before alignment, (b) 

bUnwarpJ, (c) elastic stack alignment, and (d) our method. The red box is the region near the folds 

(shown as black spots). 

 

Tab. 2. Normalized cross correlation values (NCC) of the inner region in each aligned result.  
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5 Conclusion and Future Work 

CNN is powerful in many computer vision areas, but CNN's fundamental component, the 

convolution operator, is neither scale-invariant nor rotational invariant. Spatial transformer networks 

(STN) were proposed to solve this problem. In this work, a deformable image registration method 

using a deep learning feature using ST and the commonly used backpropagation of deep learning has 

been proposed. The proposed method has a remarkably small number of parameters for matching 

because of the characteristic of learning based approach. In addition, the registration results are more 

robust and better than other methods. In this work, z-axis alignment is performed through the sliding 

window method and the sparsity term for the vector map, but applying the same relaxation scheme as 

the spring mesh will align the stack of EM images faster. 

The localization network of the ST module is missing in this work. This is because training the 

complex deformation of the EM image is difficult without supervision. [25] suggests how to learn 

deformable image registration through unsupervised end-to-end training, but does not handle 

regularization and appropriate metrics. Therefore, it can be a future work to train the feed forward 

network with the regularization on vector map and an appropriate loss function rather than the 

backpropagation based direct optimization of the vector map. 
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