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Abstract

Analyzing multivariate time series data is important for many applications such as automated control,
sensor fault diagnosis and financial data analysis. One of the key challenges is to learn latent features au-
tomatically from dynamically changing multivariate input. Convolutional neural networks (CNNs) have
been successful to learn generalized feature extractors with shared parameters over the spatial domain in
visual recognition tasks. For high-dimensional multivariate time series, designing an appropriate CNN
model structure is challenging because the kernels may need to be extended through the full dimension of
the input volume. To address this issue, we propose an Expectation Maximization (EM) method to learn
the group structure of deep neural networks so that we can process the multiple high-dimensional kernels
efficiently. This algorithm groups the kernels for each channel using the EM method and partition the
kernel matrix into a block matrix. The EMmethod assumes the Gaussian Mixture Model (GMM) and the
parameters of the GMM is updated together with the parameters of deep neural network by end-to-end
backpropagation learning.
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Chapter I

Introduction

Multivariate time series data analysis has broad application in many domains such as system control,
financial analysis, and so on. So far, nonparametric Bayesian models [8, 17] and model based control
methods [14] have been popular tools for analyzing multiple time series. However, these approaches are
highly sensitive to the model parameters meanwhile finding the proper parameters for high-dimensional
data is a painful work. Moreover, new and complicated fields, such as bioinformatics, that require more
accurate analytic methods are emerging with the development of the technology while the existing ap-
plications are also becoming more complex and exacting. Accordingly, more accurate and sophisticated
time series analysis techniques became necessary.

Machine learning methods have been successful in many domains that have been stagnant such as
digit recognition, language translation, go playing and so on. Therefore, there has been researches which
adopts artificial neural networks (ANNs) to handle multivariate time series data. Autoencoders [2, 23]
train model parameters in an unsupervised manner by specifying the output value same as the input.
Recurrent neural network (RNN) [19] and long short-term memory (LSTM) [6] find temporal features
from themultivariate sequences using the recurrent transition function between time steps. Convolutional
neural network (CNN) can be also used as feature extractors by computing 1D convolutions over fractions
ofmultiple time series.Most of existing neural networkmodels assume (shared) fully connected networks
under theMarkov assumption when they deal with temporal data. Thus, suchmodels are often not precise
enough to deal with high-dimensional multivariate datasets, unfortunately.

To process high-dimensional data efficiently, we train the group structure of deep convolutional neu-
ral networks using expectation maximization (EM) [1, 15] method. This method uses the mixture model
clustering, specifically the Gaussian mixture model (GMM), to group the nodes based on the distribu-
tions of input node’s connections to the next layer then the EM algorithm is used to optimize the mixture
model parameters. After grouping, each group’s mean values are compared and weaker connections are
eliminated to turn the weight matrix into a block matrix as in the Figure 1.

The parameters for the GMM are updated together with the neural network parameters by backprop-
agation algorithm.By adding the likelihood function of EM algorithm to the cost function, the model can
be optimized to maximize the GMM likelihood function while minimizing the network’s cost function.

This EM method learns the group structure of the connections between the network layers by end-
to-end learning algorithm and disconnects the weights that are not from the group that has the strongest
connection to each output node. This process reduces the redundant kernels of existing CNNs and makes
it possible to build a lighter model that performs as good as the model with more parameters.

In Chapter II, we will briefly explain some of the background knowledge for our proposed method
followed by the Chapter III, related works. Then in the Chapter IV we will introduce the EM method for
learning group structure and explain the detailed algorithm. In Chapter V, we show that adding grouped
convolutional layers can accelerate the training by exploiting the larger number of parameters at the early
step of learning and pruning the network afterwards from the experiments withMNIST hand-written digit
dataset.
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Figure 1: Visualization of how the proposed EMmethod works. It learns the group structure of a network
using GMM to replace a weight connection with a simpler block matrix. It first groups the input nodes
based on their connections to the output layer and let the output nodes to choose group that has the
strongest connection to them and disconnects the connection with other groups. Organizing the order for
the purpose of the visualization, the resulting matrix can be described as a block matrix.
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Chapter II

Background

2.1 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a multi-layer artificial neural network inspired by the animal
visual cortex to solve vision problems. The cortical neurons of visual cortex respond to stimuli from a
restricted region of the visual field which is called as a receptive field and the receptive fields of different
neurons partially overlaps such that they cover the whole visual field. CNN adopts this idea to build a
layer, called a convolutional layer, which receives inputs from a small region of the previous layer using
convolution operation.

CNNs are generally composed of a stack of three types of multiple layers: convolutional layer, sub-
sampling layer, and fully-connected layer. First, convolutional layers compute convolutions over the
input layer. Generally, the input to a convolutional layer is a w × h × d sized vector where w is the
width, h is the height, and d is depth (or channel), e.g. an RGB image has w × h pixels and d = 3 for
RGB channels. The convolutional layer will have f number of filters (or kernels) of a receptive field size
w′×h′×d′ wherew′ ≤ w, h′ ≤ hwith d′ = d in most cases but could be less than d. Then starting from
the corner of the input, the convolution layer performs dot product of the small piece of the input with
the kernelW to produce a single node of one output channel. Then the kernelW is slid along the input
with the predetermined stride to produce one channel. Given an input x, the i-th channel of the output
layer, hi is computed from:

hi = σ(x⊗W i + bi) (2.1.1)

whereW i is the i-th filter, bi is the i-th bias, σ(·) is a nonlinear function such as sigm, and ⊗ represents
the convolution operation described above. Each kernel of the convolutional layer filters out an unique
feature from the input layer and produces a feature map. The convolution layer repeats this process for
all the f filters to produce f feature maps.

Figure 2: Convolutional layer.
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Figure 3: Convolutional neural network example.

Second, the nonlinear sub-sampling layer takes samples from small regions of the input layer using
nonlinear functions reducing the size of the layer. The most common choice for this local down-sampling
is max-pooling but mean or other methods can also be used. The idea of local sub-sampling is that once
a feature is detected, its absolute location is not as important as its relative location. By reducing the di-
mensionality, it makes the network less sensitive to the locality and lowers the computational complexity
[10, 11].

The last type of CNN layers is the fully-connected layer. After convolutional layers and sub-sampling
layers produce feature maps, fully-connected layers implement the reasoning using the extracted features
to produce the actual output.

Conventionally, CNN consists of alternate layers of convolutional layers and sub-sampling layers
on the bottom and several fully-connected layers following them as in the example of the Figure 3. The
model receives an input data composed of three channels like general image files and extract the local
features via two sets of convolution and sub-sampling layers. Then it processes the extracted features to
produce the actual output.

CNNs are trained via error backpropagation method like other ANNs. First a cost function J(θ|x, t)
to minimize is defined where θ is the set of parameters and t is the target output. The parameters on the
last layer are updated using gradient descent method minimizing the cost function and then the error is
propagated backward to update the previous layer’s parameters until it reaches the first layer and updates
all the parameters in the network.

The local computations of CNNs not only reduce the memory burden but also improve the classifi-
cation performance. They have been very successful in visual processing problems such as classification
[11, 9], object detection, and semantic segmentation [18, 13]. Furthermore, it has been applied to natural
language processing [7, 3] and time series data processing. Also, a recurrent variant of CNN, named
as recurrent convolutional neural network (RCNN) [5] showed state-of-the-art performance in object
recognition problem [12].

2.2 Mixture Models

2.2.1 Mixture Models

A mixture model is a probabilistic model which represents the probability of the observations in the
overall population by mixture of distribution. In many real life examples, the data to be modeled does
not follow one probabilistic model such as uniform or Gaussian. A mixture model combines multiple
models to better represent the multimodal case in which the data is composed of observations from more
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than one models. Using K number of probabilistic models, the probability distribution of an observation
x is described as below:

p(x) =
K∑
k=1

πkpk(x|θ) (2.2.1)

where θ is the parameters of the base distributions. This is the weighted sum of the base distributions pk’s
and the variables πk’s are the mixing weights or the mixing coefficients of this mixture model. They are
based on the information about the base distributions which can never be explicitly observed. Hence, it
is formulated with respect to a latent variable z = [z1...zK ]. z is the vector of K binary random variables
having a 1-of-K representation so that zk ∈ {0, 1},∀k ∈ {1, ...,K}, and

∑
k zk = 1. Then the mixing

coefficients πk’s can be formally defined as below:

πk = p(zk = 1) (2.2.2)

satisfying
∑K

k1
πk = 1 together with 0 ≤ πk ≤ 1. Then the Eq. 2.2.1 tells us how the observation

x was generated from the perspective of the mixture model. First, the distribution k was chosen with
probabilities given by the mixing coefficients and then one observation was generated according to the
distribution.

Another way to view the mixture models is to consider each component distribution as one cluster
and to separate the data points according to the clusters. From this perspective of view, what the variable
z represents is just the cluster label. To accomplish the clustering, the posterior distribution p(zk = 1|xi)
is used, which is the likelihood of xi belonging to k-th cluster given the data point. This is called the
responsibility of k-th cluster for the i-th data point and can be inferred using Bayes’ Rule as below:

γik = p(zk = 1|xi,θ)

=
p(zk = 1|θ)p(xi|zk = 1,θ)∑K
j=1 p(zj = 1|θ)p(xi|zj = 1,θ)

(2.2.3)

This procedure is called soft clustering as it gives the probability of the data point belonging each cluster.

2.2.2 Gaussian Mixture Model

GMM is one example of the mixture models whose base distributions are Gaussian distributions. It can
be written as a superposition of K base Gaussian distributions with the mean and covariance matrix of
the k-th component as µk and Σk. Formally, the distribution p(x|θ) is defined as below when x,µ are
L-dimensional vectors andΣ is LxL matrix:

p(x) =
K∑
k=1

πkN (x|µk,Σk) (2.2.4)

=

K∑
k=1

πk
1√

(2π)L|Σk|
exp(−1

2
(x− µk)

TΣ−1
k (x− µk)). (2.2.5)

Here, θ is a set of the base normal distributions’ parameters, {µ1,Σ1, ...,µK ,ΣK}.
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2.3 EM Algorithm

Maximum likelihood (ML) and maximum a posteriori (MAP) are the popular ways to optimize models in
statistics and machine learning. Computing ML or MAP parameter estimate is relatively easy given the
complete data, D. However, when some of the variables are missing or latent, computing the estimates
becomes hard. EM algorithm is an iterative algorithm for computing the ML/MAP estimates given data
with latent variables first introduced in [4]. For a complete data D, let x1, ..., xN be the observed variables
and z1, ..., zK be other latent variables where N >> K. The goal of the EM algorithm is to maximize
the log likelihood of the observed data defined as below where θ represents the parameters to estimate.

ℓ(θ) = log p(D|θ) =
N∑
i=1

log
[∑

zi

p(xi, zi|θ)
]

(2.3.1)

Unfortunately, this is hard to compute due to the inner summation. Instead, EM defines the complete
data log likelihood, ℓc(θ), as below:

ℓc(θ) =
N∑
i=1

log p(xi, zi|θ), (2.3.2)

Because the complete data log likelihood is not applicable due to the latent variables, EM maximizes the
expected log likelihood under the posterior distribution of the latent variables, Q(θ,θt−1), defined as :

Q(θ,θt−1) = E[ℓc(θ)|D,θt−1] (2.3.3)

where t is the current iteration index.
EM algorithm is therefore composed of two steps:E-step andM-step.E-step is to computeQ(θ′,θ)

andM-step is to update the parameters θ by solving the optimization problem given below:

θt = argmin
θ

Q(θ,θt−1) (2.3.4)

6



2.4 EM for GMMs

2.4.1 Expected Log Likelihood Function

The EM algorithm for GMM maximizes Q(θ,θt−1) given as:

Q(θ,θt−1) = E
[ N∑

i=1

log p(zi, xi|θ)
]

=
N∑
i=1

E
[
log

[ K∏
k=1

{πkp(xi|θk)}zik
]]

=
N∑
i=1

K∑
k=1

E[zik] log(πkp(xi|θk))

=

N∑
i=1

K∑
k=1

p(zik|xi,θt−1) log(πkp(xi|θk))

=
N∑
i=1

K∑
k=1

γik logπk +
N∑
i=1

K∑
k=1

γik log p(xi|θk) (2.4.1)

where zi is same as the vector z introduced above corresponding to the variable xi and zik is the k-
th element of zi. The variable γik = p(zik = 1|xi,θt−1) is the responsibility that the k-th Gaussian
distribution takes for the observed data xi.

2.4.2 E step

In the E step of the EM algorithm, γik value is updated following the equation below:

γik = p(zik = 1|xi,θt−1)

=
πkN (xi|µt−1

k ,Σt−1
k )∑k

j=1 πjN (xi|µt−1
j ,Σt−1

j )
(2.4.2)

The γik is the responsibility that the k-th Gaussian distribution takes for the observed data xi. The variable
γ(zk) = p(zk = 1|x,θt−1) can be considered as the posterior probability corresponding to πk once x is
observed.

2.4.3 M step

In theM step, the parameters are updated toward maximizing the Q function w.r.t.π,µ,Σ. To maximize
the expected log likelihood function, set the derivative of the equation 2.2.5 with respect to the means
µk to be 0. Then we get

−
N∑
i=1

πkp(xi|µk,Σk)

Σjπjp(xi|µj ,Σj)
Σk(xi − µk) = 0. (2.4.3)
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Multiplying by Σ−1
k and rearranging, we get

µk =
1

γk

N∑
i=1

γikxi (2.4.4)

where γk =
∑N

i=1 γik. This γk can be interpreted as the effective number of points assigned to cluster
k. Similarly, if we take derivate with respect to Σk and πk respectively and follow the same reasoning,
we get

Σk =
1

γk

N∑
i=1

γik(xi − µk)(xi − µk)
T (2.4.5)

πk =
γk
N

(2.4.6)

After computing the new estimates, the parameters are updated for k = 1, ..,K and the updates are
iterated until the log likelihood estimate converges as in the Algorithm 1.

Algorithm 1 EM Algorithm for GMM
1: procedure EMforGMM(X, N,K)
2: t := 0.
3: Initialize the means µt

k, covariance matricesΣ
t
k, and mixing coefficients πt

k.
4: Evaluate initial Q value.
5: while The convergence criterion is not satisfied do
6: t := t+ 1.
7: Evaluate the responsibilities, γik by

γtik =
πt−1
k N (xi|µt−1

k ,Σt−1
k )∑k

j=1 π
t−1
j N (xi|µt−1

j ,Σt−1
j )

.

8: Update parameters using the current γtik as

µt
k =

1

γtk

N∑
i=1

γtikxi

Σt
k =

1

γtk

N∑
i=1

γtik(xi − µt
k)(xi − µt

k)
T

πt
k =

γtk
N

9: Check for the convergence of either the log likelihood or the parameter values.
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Chapter III

Related Works

RNN and LSTM are the popular choices when ANNs are used to solve temporal problems, however,
recently there have been several works that used CNN and its variant models such as RCNN to deal with
the time series data.

Yang et al. [21] used CNN for human activity recognition (HAR) problem, in which inputs are multi-
ple bodyworn inertial sensor signals of specific length and outputs are predefined activities. They showed
that the deep convolutional neural networks can be used as an automatic feature extractor for the multi-
channel time series.

Ordóñez and Roggen [16] introduced a deep neural network (DNN) referred to as DeepConvLSTM
which combined CNN and LSTM for wearable activity recognition. The difference of the DeepConvL-
STM model and the CNN of Yang et al. [21] is the layers that follows the convolutional layers. Deep-
ConvLSTM used LSTM blocks instead of fully-connected layers so that the convolutional layers act as
feature extractors and the following LSTM layers model the temporal dynamics of the extracted features.

Zheng et al. [24] proposed multi-channels deep convolutional neural networks (MC-DCNN) for mul-
tivariate time series classification. They separate multivariate time series into multiple univariate ones
and stacked individual convolutional and sub-sampling layers for each time series. The last activations
of the individual sub-models were concatenated and processed by fully-connected layers. Their model is
similar with our model if we set the number of clusters to be same as the number of time series. However,
in MCDCNN does not let the information sharing at the convolutional layer level while our method al-
lows information from the variables in the same group to be mixed. Also, the group can change at every
layer and the group structure can be trained by end-to-end learning.

There has been also many researches about regularizing the ANNs. One popular way is to train
the parameters by minimizing a regularized cost function. Inspired by the least absolute shrinkage and
selection operator (LASSO) algorithm [20], the Lasso regularization performs both the regularization
and variable selection by bounding the l1 norm of the weights.

Yuan and Lin [22] considered the case that the variables are structured into K groups and proposed
group lasso method. When the variables can be divided into K different groups and the group member-
ships are given, only part of the groups are selected and contribute to the output. When the size of the
groups are 1, it works same as the lasso regularization.

9



Chapter IV

EMMethod to Learn the Group Structure of Deep Neural Networks

4.1 EMMethod

Consider a layer of a neural network which receives the input variables,X = {x1, ..., xN} and produces
the outputH = {h1, ..., hM}. LetW ∈ RN×M be its weight matrix and b = b1, ..., bM be the bias. Then
the output layer H can be formally defined as below:

H = σ(X ∗W + b)

σ(·) is a nonlinear function and ∗ is matrix multiplication. Also, each element hi inH can be written as :

hi = σ(
N∑
j=1

xjwj,i + bi)

where wj,i is the j-th row, i-th column element inW .
The goal is to restrict the weight connection between layers so that the weight matrix be a block

matrix form as in the Figure 1 by learning the group structure of a network. To achieve the goal, we first
group the rows of the matrix (Figure 4). Each row of the matrix W represents each input variable xi’s
connections to the output layer H.

Formally, we substitute wi = [wi,1 · · ·wi,M ] for the xi in the Section 2.4 and calculate the expected
likelihood function Q(θ, θt−1) in Equation 2.4.1. Then wi are grouped into K clusters in a way that wi

falls into the k-th cluster such that the responsibility γik has the greatest value among the k ∈ 1, ...,K.
Then, the mean vectors µk of the Gaussian distributions are compared with each other to find out in
which cluster k µk,j , the j-th element in µk, has the greatest value. For the j-th column, the row i that
falls into the k-th cluster where µk,j has the largest value remains and other rows are erased to 0 (Figure 4)
so that only the strong connections remain.

Figure 4: Grouping connections.

For the implementation, only the diagonal elements of the covariancematrixΣk were usedwith small
noise added to make sure that its inverse matrix exists so that the normal distribution can be calculated.
For the block matrix, a weight mask, W̃ which is of the same shape as W and has binary values that
represent whether an element to be erased or remained, is created and multiplied to the matrix W by
element-wise multiplication (Figure 12).
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4.2 Optimize parameters

In our model, there exist two sets of parameters to optimize. One is the network parameters which are
the weight matrices and bias vectors and the other is the Q parameters for the GMM. Let’s denote them
as θNN = {W,b} and θQ = {µ,Σ,π}. To optimize these two sets of parameters at the same time, we
introduce the following two functions.

First, consider an error function ERRNN , which is the root mean squared error (RMSE) of the
network output y compared to the target output t.

ERRNN =

p∑
i=1

(yi − ti)
2 (4.2.1)

The parameters θNN are trained to minimized the ERRNN function.
Also, consider the Q(θ,θt−1) function introduced in the Section 2.4.1. Let’s denote the negative of

theQ(θ,θt−1) function asNLLQ = −Q(θ,θt−1)which represents the negative log likelihood function.
The parameters θQ are trained to minimize the NLLQ function.

To achieve both goals, we defined the cost function asERRNN +NLLQ and solve the optimization
problem

min
θNN ,θQ

ErrNN + ρNLLQ (4.2.2)

Here, ρ, which is called the Q learning rate is the hyperparameter that controls the learning speed of
θQ separately from θNN . Both parameters are updated by gradient descent using backpropagation. As
described in the Figure 5, errors back propagated from the NLLQ term are stopped after updating the
θQ parameters to ensure that the parameters that are of the lower layers but not in θQ are not affected by
the NLLQ term so that NLLQ term only updates the parameters in θQ.

Figure 5: Optimization of a CNN whose second convolutional layer is grouped by the EM method. The
cost function is combined with two terms, ERRNN and NLLQ and the error from each term updates
two sets of parameters θNN and θQ separately.
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The gradient updates for the θQ from each observation xi are as follow:

∂

∂µk
NLLQ = − ∂

∂µk
Q(θ,θt−1)

= − ∂

∂µk

∑
k

γik log p(xi|θk)

= − γik
p(xi|θk)

∂

∂µk
p(xi|θk)

= −1

2

γik
N (xi|µk,Σk)

(Σ−1
k +Σ−T

k )(xi − µk)√
(2π)L|Σk|

exp(−0.5(xi − µk)
TΣ−1

k (xi − µk))

= −γik
2
(Σ−1

k +Σ−T
k )(xi − µk) (4.2.3)

∂

∂Σk
NLLQ = − ∂

∂Σk
Q(θ,θt−1)

= − ∂

∂Σk

∑
k

γik log p(xi|θk)

= − γik
N (xi|µk,Σk)

∂

∂Σk
N (xi|µk,Σk)

= − γik
N (xi|µk,Σk)

{
exp(F )

∂

∂Σk

1√
(2π)L|Σk|

+
1√

(2π)L|Σk|
exp(F )

∂F

∂Σk

}
= − γik exp(F )

N (xi|µk,Σk)

{ ∂

∂Σk

1√
(2π)L|Σk|

+
1√

(2π)L|Σk|
∂F

∂Σk

}
= − γik exp(F )

N (xi|µk,Σk)

{
− tr(adj(Σk))

2
√
(2π)L|Σk|

3 +
Σ−T

k (xi − µk)(xi − µk)
TΣ−T

k

2
√

(2π)L|Σk|

}
=

γik
2

{ tr(adj(Σk))

(2π)L|Σk|
−Σ−T

k (xi − µk)(xi − µk)
TΣ−T

k

}
∂

∂πk
NLLQ = − ∂

∂πk
Q(θ,θt−1)

= − ∂

∂πk
γik logπk −

∂

∂πk
γik log p(xi|θk)

= −
(∂γik
∂πk

)
logπk −

γik
πk

−
(∂γik
∂πk

)
log p(xi|θk) (4.2.4)

In the derivation, F is substituted for the term inside the exponential function of the normal distribution,
−0.5(xi − µk)

TΣ−1
k (xi − µk), and γik and its derivative with respect to πk are as below:

γik =
πkp(xi|θt−1

k )∑
k′ πk′p(xi|θ

t−1
k′ )

, (4.2.5)

∂γik
∂πk

=
p(xi|θt−1)

∑′
k πk′p(xi|θ

t−1)

{
∑

k′ πk′p(x|θ
t−1)}2

(4.2.6)

The derivatives with respect to each parameter are monotonically non-decreasing assuring that the func-
tions are concave and can converge to some values.

12



Figure 6: EM method applied time series convolution. Upper figure represents a general convolution for
time series data x1, ..., xN . This convolution is same as 3D convolutions of image processing such that
the height equals 1. Lower figure is the convolution applied with the EM method. One row of the kernel
matrix is used to create one output channel.

4.3 Applying to CNNs

To process time series, we built CNNs with 3-dimensional convolutional layers in which one of the di-
mension is set to be 1 as in the Figure 6. In the figure, height of the layer is 1 so that the width represents
the length of the sampled time series and each channel represents one time-series variable. In a con-
volutional layer of a CNN, channels of the input layer are multiplied by the kernels and the results are
added to create one output channel (Figure 6). To apply EMmethod to a CNN, consider this convolution
operation as a matrix multiplication such that the elements of the matrix are convolution kernels.

In Section 4.1,wi were replaced for the xi in the Section 2.4. However, in this case,wij , the elements
of wi are also vectors. Concatenating the kernels into one long vector can be one method but instead, we
feed the time series variables {x1, ..., xN} and perform the same process as in the Section 4.1.

This requires an assumption that if variables xa and xb have similar distribution,wa andwb also have
similar distribution. In other words, the rowswi should be in the same cluster when we perform clustering
on the xi if the weights connected to them are in the same cluster. Consider that two input variables have
distributions that are similar enough. Then if those two variables are exchanged, the model would work
the same. Therefore, we can assume that their weights would be also in the similar distributions.
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Chapter V

Experiments

In experiments, we tested our method on the MNIST handwritten digit dataset to compare the model
performance between a CNNwhich contains one or more group convolutional layer(s) and a CNNwhich
does not.

5.1 Experimental Setup

MNIST dataset 1 is a large dataset of black and white hand written digit images. It is composed of 55000
train images, 5000 validation images, and 10000 test images and each image is composed of 28x28
pixels. Each image of 28x28 size was flattened to 1x784 vectors and fed to the model in the Figure 7.

Themodel is composed of three alternate layers of convolution and subsampling layers, and two fully
connected layers. The first convolution layer enriches the input vector of 1 channel using convolutions of
multiple kernels. The second convolution layer is replaced with group convolution which is applied the
EMmethod to be compared with general CNNmodel. After three convolution and subsampling layers, it
is flattened into a 1 dimensional vector and processed by two fully connected layers. The output layer has
10 nodes where each node represents each digit from 0 to 9. Linear function was used for the activation
function and the softmax cross-entropy function is used for the ERRNN function instead of the mean
squared error function in the Section 4.2.

General CNN model and the model with a group convolution layer whose K values are set to 2, 3,
and 4 are compared each other. The number of kernels for each model increase from CNN to CNN-2,
CNN-3, and CNN-4 so the number of parameters used are similar. Detailed structures are in the Table 1.

Figure 7: Structure of the model used for the experiments.

Model Input Conv 1 Conv 2* Conv 3 Flatten Fully Output
CNN 1x784x1 1x112x112 1x28x112 1x7x112 784 400 10

MNIST1 CNN-22 1x784x1 1x112x162 1x28x162 1x7x112 784 400 10
CNN-33 1x784x1 1x112x192 1x28x192 1x7x112 784 400 10
CNN-44 1x784x1 1x112x256 1x28x256 1x7x112 784 400 10

1MNIST Dataset. 2K=2. 3K=3. 4K=4. *Output layer of a group convolution.

Table 1: Structure of the model used for the experiments. Conv 1, Conv 2, and Conv 3 of the model
include additional subsampling layer after the convolution layer.

1http://yann.lecun.com/exdb/mnist/
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5.2 Results

The models were trained for 400 epochs and validated every 10 epochs. The ERRNN values are in the
Figure 8. At the early steps of the training, the error values of the CNN-2, CNN-3, and NN-4 decrease
faster than the baseline CNN model. However, after sudden increases of error values, the error values
become bigger than the baseline model. Figure 9 shows ERRNN and Q = −NLLQ changes on one
figure. The sudden spikes of the error values overlap with the steep increases of Q values.
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(a) Train error graph.
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(b) Validation error graph.

Figure 8: Train and validation error graph. The horizontal axis is the training epoch and the vertical axis,
err, represents the RMSE of the model output and the target output, which is the ERRNN term of the
Equation 4.2.1.
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Figure 9: Train error and train Q graph. Left vertical axis is the ERRNN and the right y-axis is the Q.
The decreasing lines are the RMSE values that are on the left axis and the increasing lines are the Q
values that are on the right axis.
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(b) Validation error graph.

Figure 10: Train and validation error graph. Only the ERRNN of the Equation 4.2.1 is displayed. The
gradient from NLLQ is blocked after 150 epochs of training for the CNN-2, 80 epochs for the CNN-3,
and 80 epochs for the CNN-4.
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Figure 11: Change of the number of kernels whose mean of absolute value is greater than 0.01. CNN-
2 stopped has the same shape as CNN-2 and the gradient from NLLQ is stopped after 150 epochs of
training. The vertical axis represents the square root of the actual digits.

To prevent this, the gradients from the NLLQ term is blocked after certain epochs of training. Fig-
ure 10 shows the results. CNN-2, CNN-3, and CNN-4models have lower train error than the CNNmodel.
CNN with group convolution learn faster than the CNN model as their train errors decreases faster and
the validation errors start to increase earlier than the CNN model.

CNN and CNN-2 models were trained again until 500 epochs to see the change of the parameters.
Figure 11 shows the change of the number of kernels whose mean of absolute values are greater than
0.01. At early stages of training, CNN has 112× 112 kernels while CNN-2 has 162× 162 kernels. After
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Figure 12: Experimental examples of the group structure in the Figure 1. Model CNN-4 of Table 1.
Figures on the first row are from the model whose loss graphs are on the Figure 8 and the figures on the
second row are from the model in which the gradient from the NLLQ term is stopped after 80 epochs
of training.

the model learns the group structure and prune the weights, CNN-2 uses even less kernels than CNN.
Whether the gradient is stopped or not, the number of parameters decreases to the similar level and the
network learns the group structure as in the Figure 12. Seeing that the number of kernels decreases later
when the gradient is stopped, we can guess that the pruning occurred too early when the gradient is not
blocked.
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Chapter VI

Conclusion and Future Work

Multivariate time series analysis is applicable to a wide range of real world problems. Machine learning
methods are used to deal with the problems and CNNs can be used to extract features from the mul-
tivariate sequential data. However, CNNs suffer from the redundant kernels like other ANNs. An EM
method can learn the group structure of the convolution layers by end-to-end backpropagation learning.
The group structure can be exploited by reducing the redundant kernels and adding more emphasis on
the strong connections. In the experiments with MNIST dataset, the CNNs with a group convolution
layer were trained faster than the baseline CNN model by building more connections at the early stage
of learning and pruning unnecessary connections based on the trained group structure.

The experiment showed that the deep neural networks can be expressed using less connections if we
use the group structure. EM method was applied to only the CNN for the time series dataset but for the
future work it can be applied to other types of ANNs such as multilayer perceptrons (MLPs). Also, the
group convolution calculation need to be optimized as it takes too much time than normal convolution
due to the probability distribution calculation of GMM.
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