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Abstract

Many studies related to condition based maintenance (CBM) have been conducted especially for quality
monitoring in motor, shipbuilding and electronics industries and equipment diagnosis in large-scale
plant or automation machines.

Sensor data related to critical components are collected using many sensors to analyze complex system
or equipment. When conducting fault diagnosis using high dimensional time series data composed of
many sensors, pre-processing steps such as selecting sensors related to system failure is needed for
effective analysis. In other words, selecting sensors is a kind of process to reduce dimension of
multivariate data.

Many researchers have studies dimension reduction techniques for hundreds of years. Among many
dimension reduction techniques, Principal Component Analysis, Linear Discriminant Analysis, and
Partial Least Squares are widely used methods. PCA, which is a bible in dimension reduction techniques,
basically uses variation of each sensor to decide new principal components, which is newly made axes.
However, due to these intrinsic characteristic emphasizing variance, sensor of which signal is highly
fluctuating periodically can be ranked as a highly important sensor even though it does not have any
relation with system failure. That is, there is a limit to improve fault diagnosis algorithm directly using
PCA sensor selection since it only considers total variance of data not finding principal sensors
distinguishing fault and no-fault state.

Therefore, in this study (i) we discuss key characteristics of sensor signals which are effective to
distinguish no-fault and fault state of a system and introduce indices considering those characteristics:
abrupt variance, discernibility index, and sparse impulse, (ii) propose sensor selection methods
considering proposed indices and (iii) propose new principal component using abrupt variance-based
PCA. The proposed sensor selection methods is illustrated and demonstrated with the case studies of
vehicle fault simulator and gear fault simulator.
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|. Introduction

1.1 Background

Mechanical defects cause a lot of loss such as facility stop and bad product quality. Thus, many studies
regarding maintenance have been conducted and progressed to increase the reliability of the system and

reduce operational cost (Xiao ef al., 2013; Ying et al., 2010).

Thus, operation and maintenance (O&M) techniques have been progressed. Starting from corrective
maintenance (Kenne & Boukas, 1997), preventive maintenance (Malik, 1979), condition based
monitoring such as statistical process control (SPC) (Kano & Nakagawa, 2008), and predictive

maintenance (Lu et al., 2009) have been studied and even needs for predictive process adjustment arose.

o & 0 0O (O 3

Corrective Preventive
Maintenance Maintenance
Condition Based
Monitoring Predictive
Maintenance

Predictive Process
Adjustment

+ Statistical )
Process Control + Prognostics and
(6-sigma) Health Management

+ Trend/Symptom
Analysis
+ Machine Learning

Figure I-1 Progress in operation and maintenance techniques

As for condition based monitoring techniques which have been already widely used in various
industrial fields, univariate SPC, multivariate SPC were simply used to fault diagnosis and prognosis
and more advance techniques are methods using pattern mining or machine learning algorithm such as
support vector machine, neural network and so on. Apart from detail methods, overall goal of fault
diagnosis and prognosis researches is improving performance considering accuracy and

computational time.
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Overall structure of fault diagnosis is shown in the Figure I-2. From the machinery, sensor data
which can show machinery conditions are collected using data acquisition unit. Then, signals are pre-
processed to increase efficiency of next step. Pre-processing includes noise removal, dimension
reduction and so on. Pre-processed data are then used to extracting meaningful features for classification

and extracted features are used in fault diagnosis at last.

—

= - [~
- Data Pre-processing
W bl Ww =

ature Extraction methods:
ipal Component Analysis

Classification using SVM

— i) L
Fault Diagnosis

Figure I-2 Overall structure of fault diagnosis

Distinguishing fault and no-fault state is classification problem. Thus, many studies have done to
improve classification performance to improve overall diagnostic performance. For example, SagHa
proposed a method to detect anomalous sensors in sensor networks by recognizing relationship between
each sensors and networks. Then, anomalous sensors are removed in classifier fusion process. The result
shows classification accuracy was improved by this method (Sagha et al., 2011). Also, wavelet and
SVM were used to detect bearing fault of induction motor (Konar & Chattopadhyay, 2011). In summary,
studies to improve classification result have been done in almost all fault diagnosis stages such as pre-

processing stage and feature extraction stage.
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1.2 Motivation

As mentioned earlier, there have been many methods and techniques studied to develop classification
performance. Among them, dimension reduction is one of the powerful and conventional methods of
data pre-processing by selecting sensors among all dataset. Dimension reduction can be divided into
two sections such as sensor selection conducted in transformed space, which means new space in

reduced domain and sensor selection by variable subset selection.

Among them, in this paper for clear understanding and interpretation of data, data which is
transformed in new space is not preferred. For instance, considering vessel diesel engine there exists
more than fifty sensors. In this case, several dimension reduction techniques such as Principal
Component Analysis (PCA) can give new reduced axes which named principal components. Basic
principle of PCA is based on the variance, finding the axis which can maximize total variance of data.
However, in practical environment, it is hard to interpret meaning of derived axis and even if the axis

is named, newly made axis might be not meaningful by states of the system.

Another method exists when selecting important sensors among dimension reduction techniques.
With sensor selection methods using variable subset selection, original sensor name and information is
not transformed into new space. Instead, original sensor subsets are selected. However, when
conducting sensor selection by variable subset selection simple classification algorithms are used so

that it takes a time to get selected sensor list.

Thus, new sensor selection method is necessary for getting computational efficiency and increasing

detection accuracy simultaneously.

1.3 Objectives

To enhance the performance of fault diagnosis and prognosis, machinery monitoring systems usually
use rich information from multiple sensors. For example, in vehicle engine fault generator there exists
forty sensors to monitoring condition of engine such as injector, O2 sensor, fuel pump relay control and
so on. However, monitoring of machine, it takes time to process data with too many sensors, even
though rich information can have much more potentially related interpretation for classifying fault and
no-fault state of a system. Also, it is not always the case that classification using all original data, which
is m dimensional, results better performance. Sometimes, total data with all sensors might have

redundant data.
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Figure I-3 A framework for fault detection using sensor selection methods

In this regard, this research aims to first, discuss key characteristics of sensor signals which are
effective to classify machine states and second, to propose sensor selection methods based on the signal
characteristics discussed. Figure I-3 illustrates the overall framework for a fault detection using sensor
selection techniques, and which consists of two main stages: (i) the online monitoring system for

machinery fault diagnosis and (ii) sensor selection stage, which is done in offline training stage.

1.4 Outline of the thesis

This thesis consists of five Chapters. Chapter 1 introduces brief background, motivation and objectives
of this paper. In the Chapter 2, literature reviews, which consist of dimension reduction techniques
especially related to sensor selection and characteristics of sensor signals, are presented. The proposed
key characteristics of sensor signals and way to select sensors are described in Chapter 3 and case
studies which can prove efficiency of the proposed method are presented in Chapter 4. Lastly, the

conclusions and future research are described in Chapter 5.
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2.1 Dimension reduction techniques

Since dimension reduction of high dimensional data is highly required in industrial fields, many

researchers have studied dimension reduction techniques for more than hundreds of years.

Dimension reduction methods can be mainly divided into two as feature selection and feature
extraction by several researchers. In feature extraction, original feature space is projected onto new
feature space by reducing high dimensional original data. New feature space can be represented as a
linear combination of original features. One of famous feature extraction methods is Principle
Component Analysis (Wold et al., 1987) which has been widely and mainly used in dimension reduction
studies. Furthermore, Linear Discriminant Analysis (Izenman, 2013), Partial Least Squares (Barker &
Rayens, 2003), Canonical Correlation Analysis (Thompson, 2005) are also widely used methods in
feature extraction. In second method named feature selection methods, subset of original features which
have strong relationship to the model are selected so that total data are explainable using selected subset
at most. Well known feature selection methods are Information Gain (Xing et al., 2001), Relief (Kira
& Rendell, 1992), Laplacian Score (He et al., 2006), Fisher Score (Gu et al., 2012), Lasso methods
(Tang et al., 2014) and so on.

Table II-1 Variable selection methods and dimension reduction methods (Hartmann, 2004)

Variable selection methods Dimension reduction methods

Exploratory modeling (unsupervised learning)

coloring a correlation matrix Exploratory modeling (unsupervised learning)

sparse principal components
Principal variables

Methods of discrete variable
clustering

Predictive modeling (supervised learning)

type 3 analyses

subset selection in regression
(stepwise regression)

recursive partitioning and regression
trees

step-up and step-down multivariate
testing

(kernel) PCA and factor analysis
singular value decomposition

and correspondence analysis
multidimensional scaling

methods of fuzzy variable clustering

Predictive modeling (supervised learning)

(kernel) partial least squares

sliced inverse regression and principal
hessian direction

neural networks and support vector
machines
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Variable selection methods Dimension reduction methods

Garotte by Breiman
(univariate) soft thresholding
Lasso

Elastic net

sparse L1 SV regression
sparse L1 SV classification
SVM feature selection by Guyon
Feature selection using genetic
algorithm

Bayesian methods of variable
selection

However, terms for dividing dimension reduction methods vary according to even professional
researchers. Hartmann even tried to classify variable selection methods and dimension reduction
methods clearly in order to emphasize the difference between two methods. Variable selection methods

and dimension reduction method could be summarized in the Table II-1.

Also, new approach for variable selection with dimensionality reduction was proposed by Lior Wolf
(Wolf & Bileschi, 2005). The author emphasized the importance of feature selection by comparing
conventional PCA approach and the proposed method. In his method, variable selection algorithm is
applied after informative features from the data are extracted. Then, dimension reduction algorithms
are applied to extract the vector which can represent the data well by keeping the same optimization

function on the dimension reduction and feature selection stage.

o

(b) (©) (d)

Figure II-1 The importance of feature selection. Each algorithm differs by the way dealing with
irrelevant variables (a): choosing three relevant variables among 203 dimensions (b): The first 2
PCs of three relevant dimensions (¢): PCA result of the whole dimensions (d): The result of
applying PCA with weights (Wolf & Bileschi, 2005)

Table II-2 Clarified terminologies used in this paper

Terms used in different forms Terms used in this paper

Feature selection
Sensor selection

Variable selection
Variable selection in feature extraction + Sensor selection by space

Sensor selection in feature extraction transformation

Sensor selection
by variable subset selection
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Feature selection is also known as variable selection, attribute selection or variable subset selection
and so on. To clarify the terms used in the paper, we will use ‘sensor selection by variable subset
selection’ instead of variable selection and feature selection, also use ‘sensor selection by space
transformation’ instead of feature extraction for preventing the confusion that might occur due to

different usage of term by people to people like in the Table II-2.

2.1.1 Sensor selection by space transformation

As already mentioned above, sensor selection methods are divided into two subsections. Among them,
first section is a sensor selection which can be done in transformed space. Principal Component Analysis,
Linear Discriminant Analysis, Partial Least Squares are widely and traditionally used techniques among
them. As a result of each method, new axis which could explain origial dataset in lower dimensions are
generated. The effectiveness and usefulenss of these methods have been fully verified already but they
have weakness in terms of interpretation and felxibility in usage such as change in state. Among them,
two main methods, Principal Component Analysis and Linear Discriminant Anlaysis are discussed

further in this section. Basic principle of each methods and way to select sensors are handled.

Principal Component Analysis (PCA)

Principal Component Analysis is well known and widely used methods in dimension reduction. The
method minimizes total sum of error between projected data and original data by capturing maximum

variance direction in data matrix X.

1 tit
X
X
P
P2 E

X=1*X+TP+E

Figure II-2 A principle of PCA. X-data matrix, T-score matrix, P-loading matrix, E-residual
matrix, X-mean value of the columns, 1-a vector of ones. (Mértsell & Gulliksson, 2001)
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Conventional PCA results principal components which are newly generated axis in reduced
dimension. However, when using principal components not original sensors it might be good for

dimension reduction but it is hard to clarify and interpret the real meaning of them.

There are several preliminary options when conducting dimension reduction especially in the case
of PCA. First, user should determine the number of factors to retain. In practice, user decide the number
arbitrarily or based on the threshold (e.g. threshold>90%, threshold>80%). Without considering
relevance or redundancy or data, it is always good to use many sensors as possible. Rich data can contain
all information which might be even potentially effective to fault detection even though it does not looks
like effective in mono criteria. Thus, it is upto users deciding the number of sensors used having

assupmtion that the more the sensors exist, the better the classifcation performance would be.

Pareto Chart var 1
o ' ' " var 2

var 3 -
,
# var4 -

e war s -

war B

5 10 15 20 5 30 5 40

Num of PCs varh, -

Figure II-3 Sensor ranking using standard PCA

Second subject is the way to select sensors based on PCA. It differs by practitioners or researchers.
Some researchers select sensors only considering coefficient value of first major principal component.
Otherwise, some researchers select sensors based on summation of coefficients. For better
understanding, sensor ranking methods are shown in the Figure 1I-3. For the first step, based on the
threshold value which were set by users, the number of principal components, which is k in this example,
attained are decided. After that, coefficients are summed from first column to k™ column. By ordering

summed coefficients values, sensors are ranked and top k' sensors are selected finally.

In this paper, basic assumption is that the number of principal component selected or the number of
sensors selected are user-defined. However, there have been a variety of opinions in terms of the way
to select the number of sensors. Some researchers thought user-defined value is too naive and uncertain.
Then, for these needs , in order to make this uncertain criteria certain, there have been several studies
done to try to find out which factors have to be retained. Among them, one study had highlighted there

exists optimal threshold. Thus, optimal hard threshold was proposed. After estimating noise of dataset,

8
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author removed components which have singular value less than specific threshold defined in this paper
(Donoho & Gavish, 2013). In other paper, author used Bayesian model selection to estimate data
dimension by interpreting PCA in terms of density estimation (Minka, 2001). In other words, Bayesian
model selection method was applied to probabilistic PCA. In order to decide a dimension of a specific

subspace, probability of data of each dimension was calculated and the maximum value was selected.

Also, there exists another method to select variable using principal component anlaysis. Yifie Wang
summarized three variable selection methods based on the principal components such as B2 method,
B4 method and H method (Y. Wang & Ma, 2012). In B2 method, for the first step the principal
components with eigenvalue less than a predefined constant are selected. Then starting with
eigenvectors with smallest eigenvalue, variable of which eigenvector has the largest eigenvalue is
eliminated until all the eigenvectors are examined. Different from B2 method, the selected variables
have largest absolute coefficient value in B4 method. Third method is H method which author suggested
the best among three methods. Basic principle of way to select variables are similar to B2 and B4
methods. However, In H method new index h, which is the sum of the squared correlations between

variables are examined until reaching the threshold.

In summary, there are several methods selecting sensors and ranking sensors using Principal
Component Analysis. Each methods has its own characteristics and strengths and weaknesses. Thus, it

is necessary to compare those characteristics and select appropricate methods to application.

Linear Discriminant Analysis (LDA)

Second methods which can be used to select sensors in transformed space is Linear Discriminant
Analysis. Fundamental objective of PCA and LDA is quite different. Fundamental objective of PCA is
find out new principal components. Selecting original sensors is not original purpose of PCA.
Fundamental principle of LDA is classification. In other words, Linear Discriminant Analysis generally
focuses on the classification only whereas PCA focuses on the signal representation referring the Figure
II-4. Also, similar with PCA the main purpose of LDA is not sensor selection. It just provides

classification results.
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Feature 2

Feature 1

Figure II-4 Comparison between PCA and LDA

Trendafilov and Jolliffe suggested variable selection method using LASSO constraints in
discriminant analysis named DALASS (Trendafilov & Jolliffe, 2007). They solved the classical
discriminant analysis problem adding LASSO constraints. However, unlike Principal Component
Analysis, a basis is not provided by the discriminant function coefficients so it is hard to get some

insight from unique and simple interpretation.

Likewise, two main methods of sensor selection in transformed space were discussed. In both cases,
the sensor selection, which is selecting reduced number of original variables among total original
variables, is not fundamental and main purpose so that the studies which handles the way to select

original sensors are relatively few.

2.1.2 Sensor selection by variable subset selection

In variable subset selection methods, best sensors can be found by removing features that are not
relevant to the model or that are redundant. The main point of the variable subset selection is not
generating new representation of the data. In other words, it keeps original representation of the data
(Saeys et al., 2007). By doing so, sensors can be selected without any transformation and the physical
meanings of the original dataset are maintained so that it is superior in terms of interpretability than

sensor selection using in transformed space.

For clear understanding of variable subset selection, there exists many literature survey papers.
Saeys reviewed each method and compared its advantages and disadvantages. Detail categorization and

explaination is in the Figure II-5.

10
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Advantapges

Disadvantages

Filter

FE spaca

Univanate

Fast
Scalable
Independent of the classifier

Multivariate

lgnores feature dependencies
Ignores interaction with
the classifier

Models feature dependencies

Independent of the classifier

Better computational complexily
than wrapper methods

Slower than univariate techniques
Less scalable than univanate
techmgues
Ignores interaction
with the classifier

Wrapper Deterministic
Simple Risk of over fiting
Interacts with the classifier More prone than randomized
Models feature dependencies algorithms to getting stuck mn a
Less computationally local optimum (greedy search)
intensive than randomized methods Classifier dependent selection
FS spaci
vpoihesls spaca
. Randomized
Less prone to local optima Computationally intensive
Interacts with the classifier Classifier dependent selection
Models feature dependencies Higher risk of overfitting
than determimstic algonthms
Embedded Interacts with the classifier Classifier dependent selection

FE U kyfpothesis spacs

Better computational
complexily than wrapper methods
Models feature dependencies

Figure II-5 A taxonomy of feature selection techniques. For each feature selection type, author
highlighted a set of characteristics which can help to choose a technique (Saeys et al., 2007)
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Sensor selection method using variable subset selection are mainly divided into three methods such
as filter methods, wrapper methods, and embedded methods. More detail explanation for each method

will be handled in following sections.
Filter methods

Filter methods can provide a generic selection of variables without using classification algorithm, which
is a learning machine. This method evaluates the goodness of selected subsets by observing the intrinsic
signal characteristics such as mean, RMS and so on. Thus, filter methods could be regarded as a

preprocessing step for dimension reduction.

INPUT:

D ={X,L} // a training data set with n number of features where
/X ={fi.fo. [ -» [n} and L labels

X' // predefined initial feature subset (X' < X or X' = {¢})

6 // a stopping criterion

OUTPUT: X',,,  //an optimal subset

Begin:
Initialize:
Xopt = X"
Qope = E(X',1y);  / evaluate X' by using an independent measure I,
do begin
X, = generate(X); //Subset generation for evaluation
@ =E(Xg 1,):  / Xgcurrent subset evaluation by 1,
If (9 > Qopt)
Popt = P
X'opr = Xg:
repeat (until Bis not reached );
end
return X'y, ;
end;

Figure I1-6 A general explanation for filter algorithm (Kumar & Minz, 2014)

A general filter algorithm could be explained as in the Figure II-6. Before meeting a stopping
criterion, subset which were generated are repeatedly used in evaluating the performance of
classification. In filter algorithm feature dependencies are not considered so that its main advantage is

computational efficiency.

There are some examples in filter algorithms such as correlation-based feature selection, the fast

correlation-based filter method, information gain and ReliefF and so on.

12



Literature survey

Wrappers

Second methods of variable subset selection is wrapper method. Different from the filter algorithms,
feature dependencies and interactions are considered in wrapper methods. Figure II-7 shows overall

algorithms of wrapper methods.

For instance, in a wrapper method which randomly selected sensor subsets, it takes time to evaluate
the classification performance using randomly generated subsets. Compared to filter methods, it is

computationally inefficient.

INPUT:
D={X,L} /' a training data set with n number of features where
A X ={fi.fo far e, [n} and L labels
X' // predefined initial feature subset (X' < XorX = {¢})
7] # a stopping criterion
oUTPUT: X', / an optimal subset
Begin:
Initialize:
Xope = X'
Qopt = E(X,A); /N evaluate X' by using mining algorithm A
do begin

X, = generate(X); // Subset generation for evaluation
@=E (XH,A) : Vi Xy current subset evaluation by A
If (@ > @ope)
q}gpt =@
X'opt = Xgo
repeat (until Bis not reached );
end
return X'y,
end;

Figure II-7 A general explanation for wrapper algorithm (Kumar & Minz, 2014)

Embedded techniques

Third method is embedded technique which considers both advantages and disadvantages of filter
methods and wrapper methods. One example of embedded techniques is random forest. It takes
comparatively lower computational cost than wrapper methods. Also, it interacts with learning
algorithms and considers feature dependencies. The Figure 1I-8 helps understanding embedded

techniques.
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INPUT:
D ={X,L} // a training data set with n number of features where
/X ={fi,fo f3 -, fn} and L labels
X' // predefined initial feature subset (X'  XorX' = {¢})
0 // a stopping criterion
OUTPUT: X'y,  //an optimal subset
Begin:
Initialize:
Xopt = X"
Yopt = E(X V1), //evaluate X' by using independent evaluation measure
Oopt = E(X LA); // evaluate X' by using mining algorithm A
C, = C(X), // cardinality calculation of X'
do begin

fork =Cy+lton
fori=0ton—k
Xg = Xopt U{fi}; //Subset generation for evaluation with cardinalityk
¢ =E(Xg, L) ;  // evaluation the current subset Xg by I,
If (@ > Qopt)
Popt = @
X'opt = Xg;
end
§=EX 'Opt, A); // evaluating subset X'op by A learning algorithm
If (5> S,p0)
X’opt = Xopt"
Oopt = 6.
else
break and return X',
end
return X',
end

pt

Figure II-8 A general explanation for embedded algorithm (Kumar & Minz, 2014)

Moreover, in embedded techniques the relationship between input feature and output feature is

considered but it also searches locally for features that allow better local discrimination.

In summary, above two sections handled the way to select sensors. Every method has its own pros
and cons in terms of application. In terms of selecting original sensors, which is original variables,
sensor selection using variable subset section methods looks like more simple and intrinsic methods.
However, in sensor selection using variable subset selection methods, its algorithm is applying
classification algorithm before fault diagnosis and prognosis. It is kinds of process that conducting
simple version of classification before classification. Due to the fact, still it takes high computational

cost so that it might be hard to apply to real-time monitoring, where computational efficiency is essential.

Also, above two methods discussed are not the only methods to sensor selection. Having thought

that factors influencing classification accuracy is input variable, Mahesh Pal uses Support Vector

14



Literature survey

Machine to feature selection in order to increase classification accuracy (Pal & Foody, 2010). The main

purpose of methods discussed in previous section is also increasing classification accuracy.

There remain additional things to be discussed when selecting sensors apart from the selection
method. Another key issue when selecting a subset of variables are relevance and redundancy. Criteria
are different from researchers. Some researchers prefer to remove redundant sensors from the sensor
list to improve the prediction accuracy. While, other researchers are cautious to remove redundant
sensors because the removal of the redundant sensors may disregard the potential relevant sensors (Zhao

etal., 2010).

In conclusion, while dimensionality reduction algorithms such as PCA and LDA do well on sets of
correlated features, sensor selection methods using variable subset selection perform poorly. They even
fail to pick relevant variables, because the score they assign to correlated features is too similar, and
none of the variables is strongly preferred over another. Hence, variable selection and dimensionality
reduction algorithms have complementary advantages and disadvantages. Due to this complementary
advantages and disadvantages, Janecek and Gansterer analyzed the relationship feature selection and
classification accuracy (Janecek et al., 2008). Subsets of the original variables are constructed using
feature selection methods such as filter and wrapper techniques but also using PCA. Authors compared
the classification results using three methods. The most remarkable insight of this study is that the
principal components captured by the variance are not necessarily key indicators for the classification

performance.

Thus, it is required to find out vital indicators among original variables increasing classification

performance such as accuracy and computational efficiency.

2.2 Characterization of sensor signals for fault diagnosis

Figure 11-9 shows typical representation of signals in time-domain. There are some measures to figure
out central tendency of signal or change of signal such as mean, variance and so on. In fault diagnosis
using univariate or multivariate Statistical Process Control (SPC), fault is usually detected focusing on
the change in mean value or variance based on mahalanobis distance. Thus, finding out key
characteristics of signals is critically related to an efficiency of fault diagnosis and prognosis

performance.
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Figure II-9 Time--domain representations of the six signals (a) sinusoidal signal. (b) sum of
sinusoids (¢) monocomponent, nonstationary signal (d) multicomponent, nonstationary signal
(d) sinc pulse with additive noise (Boashash, 2015)

For machine fault diagnostic, many kinds of researches have been done specifically to improve
efficiency of fault diagnosis. Some researchers tried to extract features by analyzing signal

characteristics which is meaningful to classify fault state in order to increase classification performance.

Statistical signal characterization was used to classify modulation signals (Hossen et al., 2007).
Author used statistical signal characterization for parameter extraction. Total four parameters are the
amplitude mean, the period mean, the amplitude mean deviation and the period mean deviation which
were extracted from the amplitude, frequency and phase of the signal waveform. Then, extracted four
statistical signal characterization parameters were used to classification models as key features. Main

objective of this study was simplifying the neural network process by using the small number of features.

Analyzing characteristics of signal was also used to finding effective features for blind digital
modulation classification (Ebrahimzadeh & Ghazalian, 2011). The instantaneous characteristics, the
higher order moments and the higher order cumulants were used as effective features in this study.
Instantaneous characteristics consist of instantaneous phase or instantaneous frequency. Here, standard
deviation of the absolute value of normalized and centered instantaneous frequency was used as an
Instantaneous feature. These prominent characteristics of the signals helped discriminating digital
signals. Another study has been done using high order cumulants to improve classification. Fourth-
order cumulants was used as a one kind of characteristics for classifying various digital signaling

formats (Swami & Sadler, 2000). It is simple so that it can work like a preliminary classifier. Similarly,
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the characteristics of sensor signals such as the kurtosis, the number of peaks in the phase probability
density function, and the mean of the absolute value frequency were used as a key features (Lopatka &

Pedzisz, 2000).

Other researchers used widely known characteristics of signal without proposing a new key
characteristic. Root mean square, short time fourier transform, and characteristic frequency-band

analysis were used to extract meaningful features from original dataset (Wu ef al., 2006).

As an another way to preprocess data before classification, unique characteristics of high-
dimensional data were discussed in terms of geometrical and statistical properties (Jimenez &
Landgrebe, 1998). Usually dimension reduction for supervised classification is conducted by computing
data of full dimension. In this paper, preprocessing method considering characteristics of high-
dimensional dataset was needed and parametric projection pursuit is the way to reduce the dimension
by conducting calculation in the lower dimensional subspace. It is regarded as a preprocessing step for

a feature extraction or classification steps. Overall steps are shown in the Figure 1I-10.

High Dimensional Data

Dimension Further Reduced
1}] SZ

l Feature Extraction ]—»lCIassiﬁcaﬁcrﬂAnalys‘lsl—»

Sample Label
Information

Figure II-10 Reprocessed high-dimensional data

r

Class Conditioned
Pre-pri

Dimension Reduced

Haining Liu proposed adaptive feature extraction method for machinery fault diagnosis using sparse
coding as shown in the Figure II-11. A dictionary learning process was used, not manually defining
basis functions. A dictionary learning process is useful to find the statistical structures of the signals.

Then captured basis functions are used for sparse coding (Liu et al., 2011).

'DICTIONARY BUILDING
Atoms (D1) D)")L(f:l,),’:,?;y { Learning signals (C:)
Atoms (D2) D,%:%%’:::} 4 Learning signals (Cz)

Tcarning -\ LoamIng SgHals (GV)
Atoms (D) Jearning Learning signals (Cx)

i 3 Sparse o T Sparse
e o, | cadimg | Tepresentations —7-"UE e features
: (Sparse domain) = (Feature domain)

| SPARSE FEATURE EXTRACTION

Merging

Redundant
dictionary

]\./[

Figure II-11 The adaptive feature extraction scheme for machinery fault diagnosis based on
sparse coding (Liu et al., 2011)
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To predict fault of equipment, Hu and Guo used fault tendency prediction based on multi-source
information fusion (Hu ef al., 2012). They focused on the mutual relationship of fusion information
source and the way to predict fault trend. In the fault tendency prediction model, information fusion is
three-level including data level fusion, feature level fusion and decision level fusion. Especially in
feature level fusion, the characteristic of feature is the characteristic of target equipment fault rule. In

the process, extracted failure feature is correlated using a fusion method.

Another effort to enhance efficiency of fault diagnosis and prognosis is to analyze fault tendency.
Wei Nai applied Naive Bayesian Classifying to evaluate fault tendency percentage (Nai et al., 2015).
Naive Bayesian Classifying method is rarely used in fault prognosis whereas it is widely used in fault
diagnosis. Thus, author improved it to be adjusted to prognosis. Wang applied wavelet packet sample
entropy to forecast fault trend of rolling element bearing (F. Wang et al., 2011). He used Empirical

Mode Decomposition to extract the signal trend.

To clearly figure out the change of signals or extract meaningful features for classification,
preprocessing could be done before feature extraction such as filtering, noise cleaning and so on.
Bugharbee used signal pretreatment before subjecting data to autoregressive model in fault diagnosis
of rolling element bearings. Author highlighted steps of noise cleaning and stationarisation before
autoregressive modelling. Singular spectrum analysis was used to clean noises. The proposed

pretreatment process improved model prediction performance (Al-Bugharbee & Trendafilova, 2016).

2.3 Summary

In fault diagnosis and prognosis of machinery or systems, it is not always efficient to use all signal data.
It is quite controversial issue amongst researchers whether classification performs better with reduced
data or not. In a point of view that reduced data is helpful for classification, redundant data often cause
difficulty in signal interpretation (Peter ef al., 2004). Thus, an efficient dimension reduction technique
is necessary specifically for classification and sensor selection using dimension reduction techniques

were discussed in previous section.

In summary, sensor selection can be done by space transformation and can be done by variable
subset selection methods. Each method has its own characteristics. Using sensor selection method in
transformed space, it is often hard to interpret newly made axes so instead we can use coefficient to
select sensors among original sensors apart from original purpose of the techniques. Different from this
method, sensor selection by variable subset selection is fundamentally to find best sensor subset.

However, in this case some methods such as filter methods lack of considering dependency and
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interaction in change for computational efficiency. Otherwise, some methods considered dependency
and interaction but instead it takes time to compute. Thus, the needs for computationally efficient and
simple sensor selection methods arose. According to these needs, signal characteristics of sensor will
be discussed. Analyzing and finding key characteristics of sensor signal is important to classification.
Basic idea of this paper is that by analyzing key characteristics of sensor signals specifically aiming for
classification, sensor can be ranked. Thus, for the first step, several key characteristics of signal are

discussed and the way to select sensors based on the defined indices are proposed in the Chapter 3.
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I1l. Characterization of sensor signals

3.1 Problem statement

The number of sensors monitoring the system increased as machinery system become complicated. It
leads to multivariate analysis rather than simple univariate analysis in fault diagnosis and prognosis
cause in complex system, correlation and interaction of several sensors have meaning in machinery

failure. Thus, high dimensional data such as time series data should be processed.

When processing high dimensional sensor data, it is hard to use all sensors in analysis in practice.
For example, in order to monitor vehicle engine fault forty sensors are used. However, if fault diagnosis
is done with fault pattern analysis it takes tremendous time to derive fault pattern. Also, redundancy
should be considered. Still it is controversial issue for the fundamental needs of dimension reduction.
It is not always the case that rich information can tell explainable. In some cases, too many sensor data

might be redundant. Redundant data have potential to lower prediction accuracy.

no-fault state fault state

heamd SN

sensor 1

sensor 2

sensor 3
Figure I11-1 Examples of similar signal trends
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As shown in the Figure III-1, if signal trends of sensor2 and sensor3 are similar, which means highly
correlated, one sensor can be removed in analysis. Then, instead of using all sensors, reduced sensors
can be used for classification reducing redundancy effect. Thus, properly reducing dimension of data is

necessary.

In case of dimension reduction, several things should be in consideration: first, the number of
reduced dimension, second, the way to reduce dimension. For the number of sensors selected,
sometimes it fully depends on the users or in other case, it can be set using threshold or using
automatically defined algorithms. As discussed before, rationale for reducing dimension should be valid,
which means assumptions should be carefully in consideration. In some case, the assumption is that
preferring high dimensional data, without loss of information whereas in other case, to reduce redundant

information, dimension reduction is proposed for preprocessing step before fault detection.

Also, existing dimension reduction techniques has several limitations especially when selecting
original variables (sensors) specific for fault detection. Thus, to solve these problems, new sensor

selection method using key characteristics of sensor signals will be presented.

Gathered data
failure history

Real-time
sensor data

Offline Monitoring Online Monitoring

Generate classifiers for fault Diagnose and prognose by
diagnosis and prognosis using comparing real-time data and pre-
gathered data defined classifiers

+ Statistical Process Control
+ Pattern analysis

Figure I11-2 Overall framework for real-time fault diagnosis
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3.2 Characteristics of sensor signals

In order to identify significance of specific sensor, characteristics of the sensor signal can be examined.
Variance, mean, kurtosis are measures to examine overall trend or helpful indicators for comparison.

Each method is simple so that easy to compute but cannot always cover whole characteristics of signal.

520 . - . .

sensor signal1
510 sensor signal2

|
L PN
490
480 : : : :
0 200 400 600 800 1000

Figure I1I-3 An example of equal mean sensor signals

For example, when using mean to compare signals, changes in signal are ignored. As shown in the
Figure III-3, even though sensorl is in unstable state whereas sensor2 is in stable state, mean value of
both sensors are same so that mean value cannot distinguish these two sensors. Also, when using
variance usually it assumes that a sensor which has big variance can have much more informative data

than a sensor having small variance.

520 . . . .

510 1

8 i

sensor signal 1 |1
sensor signal 2

480 1 1 1 1
0 200 400 600 800 1000

Figure I11-4 An example of equal variance sensor signals

In this case, abrupt changes could be ignored as shown in the Figure I1I-4. Even though sensor1 has
repeated vibration whereas sensor2 has only one drop, two signals have equal variance so that it is hard
to distinguish them using variance. Thus, it is necessary to have new measures to classify fault and no-

fault state effectively. In this regard, in next section new measures for sensor signals will be discussed.
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3.3 New measures for sensor signals

There are mainly three indices will be discussed in this section: (i) abrupt variance (ii) discernibility
index and (iii) sparse impulse. Abrupt variance and discernibility index were discussed and derived in
(Baek & Kim, 2017). Newly proposed index is a sparse impulse index which can compensate the things

which abrupt variance and discernibility index cannot cover.

3.3.1 Abrupt variance (aVar)

Abrupt variance is derived from variance. As mentioned above, it is not always the case that huge total

variance of data cannot ensure it to be a vital indicator for classification.
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Figure III-5 A signal which cannot differentiate fault and no-fault state. Vertical line means state
change; normal to fault state or fault to normal state

Figure II1-6 A signal which can differentiate fault and no-fault state. Vertical line means state
change; normal to fault state or fault to normal state
For example, as shown in the Figure III-5 and the Figure III-6, total variations are similar but detail
signal changes differ from states. Like the case, overall variance sometimes neglects detail information
such as a change of signal which can be meaningful to classification. Thus, it is necessary to have a
measure which can distinguish fault and no-fault state well even with the small variance. Also, the
highly fluctuated sensor signals mean that system is in unstable state and under this circumstance, an

abrupt variance (aVar) index was developed (Baek & Kim, 2017).

Zj=1(xij—7i)2X2j=1((xij+1 xi;) — (X1 — %5))?

aVar; =

n n-1
where
Xijr1 the /™ data of the i sensor
Xjj the mean of the j" data of the i sensor

Xy+1 — X, the mean of the difference of the i sensor
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This abrupt variance index is available in both time series data and frequency data simultaneously.

3.3.2 Discernibility index (DI)

For the second index which reflects key characteristics of sensor signals is discernibility index (DI)

(Back & Kim, 2017).

dF
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Figure II1-7 Distribution of the decision variable across noise and signal. @’ is the sensitivity
index (Stanislaw & Todorov, 1999)
In signal detection theory, there already exists sensitivity index d’. It measures the separation
between the means of the signal and the noise distributions. Sensitivity index can be drawn with

following equation:

where,

Us mean of the signal

Uy mean of the noise

os standard deviation of signal

oy standard deviation of noise

Important assumption is that two distributions are normally distributed. However, in real application
it is hard to meet the assumption. Thus, some researchers have used nonparametric measures to derive
sensitivity. Pollack and Norman proposed A’ which is widely known measure among several
nonparametric measures of sensitivity (Pollack & Norman, 1964). Similarly, A discernibility index is

an area measure, which is derived with following equation.
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DI;={ min{PDF",PDF'} dx
where,

PDF™ the estimated probability density function of sensor data in normal state

PDF/ the estimated probability density function of sensor data in fault state

For clear comparison between sensors, normalization for DI should be done.

DI(X)=Norm(-- ¥, DI;)

No-fault Fault

No-fault Fault

Probability density
Probability density

case 1l case 2

Figure II1-8 (a) high DI case (b) low DI case

As clearly shown in the Figure III-8, two states are highly discernible which means separable when

having low DI value than having high DI value.

3.3.3 Sparse impulse (S7)

Generally, sensors which have high variance are selected in many dimension reduction techniques such
as PCA and PLS. Basic assumption of it is that the sensor which has high variance can have change
which is much explainable for original data than the sensor which has low variance. However, there
might be a case that even a sensor having neglectable variance is effective having useful information to

classify fault and no-fault state.
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Figure I11-9 Examples of low and high variance sensor signals

For example, in the case shown in the left in the Figure I11-9, the sensor is powerful to classify fault

and no-fault state even though it has comparatively low variance whereas in the case shown in the right
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in the Figure I1I-9, even the sensor has high variance it does not show clear difference between different

states.

Sparse impulse (S7) is derived based on these assumptions. It detects sparsely existing impulse

signals and considers its effect to distinguish states.

Here, impulse signal is defined as a sudden peak. It is shown that sparse impulses are detected in

the Figure III-10 (left). There is an important constraint for sparse impulse, which is minimum height

(Hpmin)- Not every peak is regarded as sparse impulse. Peaks which exceed N times standard deviation

of the total signal are counted as sparse impulses (here, N is set as three). Since overall data are high

dimensional time series, peaks are counted in specific time window segment, which is user defined

(here, time window segment is 10). There are mainly two strategies in terms of defining sparse impulse.

In first strategy, if there exists at least one peak value in a time window segment, it is counted as a one

sparse impulse as shown in the Figure III-10 (center). In second strategy, mean value is considered as a

reference for sparse impulse. If mean value in a specific time window segment is larger than threshold,

it can be counted as a one sparse impulse in the Figure III-10 (right). User can decide which methods

to select for sparse impulse considering overall sensor signal conditions.
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Figure II1-10 Sparse impulse signal examples

Sparse impulse score is derived with the number of impulses. For clear understanding, we can

represent an impulse signal of which direction is up as a positive impulse (PI) and an impulse signal of

which direction is down as a negative impulse (NI).

where,

wa+1

=oua+1+b

w is the user-defined constant which can adjust the weight for the score

a is the difference of the number of impulses between fault and no-fault sections

b is the number of impulses which considers compensatory effects of impulses with opposite direction
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a and b values especially differ by existence of positive and negative impulses. Thus, it is calculated
case by case (i) only positive impulse or negative impulse exists and (ii) both positive and negative
impulse exist. It can be explained more detail by several examples in the Figure III-2. It is mainly
divided into two cases. First, if only positive impulse or negative impulse exists, it gives highest score
for the case where impulse exists only in one state whereas if impulse exists in both cases the difference
of the number of impulses between each state is also considered for scoring. Second, if both PI and NI
exists, sparse impulse in opposite direction have compensatory effect. In the left down example of the
Figure III-2, even though the number of sparse impulse is equal for both states, the directions of sparse
impulses are opposite so that does not deduct score. For more detail explanation is listed as a pseudo

code in the Table I1I-1.

Only Pl or NI exists

No-fault Fault No-fault Fault
I 11T 1 I 1110 1
o 1 o 1
S 1 1S 1
< 1 <C 1
1 t
0 1 0 Ll -
1 1
1 1
1 1
1 1
SI=1.00 ' SI=1.00 H
No-fault Fault No-fault Fault
a I 1 : I 1 I 1 : I 1
€
<E( | i | | ) | i | | | | | |
1 t 1 t
0 } 0 }
1 1
1 1
1 1
SI1=0.52 H S1=0.86 H
1 1
Both Pl and NI exists
No-fault Fault No-fault Fault
I 10T 1 I 10T 1
£ i £ i
< 1 < 1
. |
0 | 1 0 1 |
1 1
1 1
1 1
1 1
SI=1.00 H SI=1.00 H

Figure I11-11 Examples of spare impulse signals
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Table I1I-1 Pseudo code of sparse impulse score

Algorithm: Sparse impulse score

Require:

P1_n(f) = the number of positive impulse in normal(fault) state
NI_n(f)= the number of negative impulse in normal(fault) state
diff PI =PI_f-PI_n

diff NI =NI_f-NI_n

w=weight for the score

for i=1:the number of samples

Case 1)Both PI and NI exist

if diff_P1~=0
scorel=(w*diff_PI+1)/( w*diff_PI+1+min(PI_f,PI_n))
end
if diff_NI~=0
score2=(w*diff_NI+1)/(w*diff_NI+1+min(NI_f,NI_n))
end

if diff Pl~=0 && diff NI~=0
score= (scorel+score2)/2
elseif diff PI~=0 && diff NI==0
score= scorel
elseif diff_PI==0 && diff_NI~=0
score= score2
end
Case 2-1) only NI exists
alpha= diff_NI
if alpha<=0
beta=NI_f
if beta==
score=1
else
score=(w*abs(alpha)+1)/(w*abs(alpha)+1+beta)
end
else
beta=NI_n
if beta==
score=1
else
score=(w*alpha+1)/(w*alpha+1+beta)
end
Case 2-2) only PI exists
alpha= diff_PI
if alpha<=0
beta=PI_f
if beta==
score=1
else
score=(w*abs(alpha)+1)/(w*abs(alpha)+1+beta)
end
else
beta=PI_n
if beta==
score=1
else
score=(w*alpha+1)/(w*alpha+1+beta)
end
end
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It seems that total three indices are defined for index reflecting key characteristics related to fault

detection. However, those indices can be calculated in both time domain and frequency domain so that

overall six indices exist.
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Figure I11-12 Example signals considering aVar and DI. In clockwise (a-d). (a): high aVar and
high DI (b): low aVar and high DI (c): low aVar and low DI (d): high aVar and low DI

Using the indices, even we can infer the shape of sensor signals. Detail examples are in the Figure

II1-12 and the Figure II1-13. In the Figure I11-12, there are example signals only considering aVar and

DI. Combining these two indices, we can even infer the signal shape using signal characteristics. Also,

example signals considering aVar and S/ are shown in the Figure I11-13.
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Figure I11-13 Example signals considering aVar and SI. In clockwise (a-c). (a): high aVar and

high S7 (b): low aVar and low S1 (c): high aVar and low S1.
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3.4 Sensor selection methods

For the next step of discussing the key characteristics of sensor signals, a procedure to select sensors
should be discussed. In this section, mainly three methods are proposed. First, sensors are selected based
on abrupt variance. In this method, sensors which have low abrupt variance are selected as suitable
sensors for fault detection. Second, all indices such as abrupt variance, discernibility index, sparse

impulse are used to select sensors.

3.4.1 aVar-based PCA

A first method for sensor selection is based on abrupt variance, which was discussed before. Abrupt

variance can be used as two versions in sensor selection.
Simplified model: abrupt variance and variance

It is already defined that low abrupt variance means that signal changes steadily in time series. Signals

can be classified with variance and aVar into big four categories like the Figure I11-14.

s No fault | Fault 1 No-fault Fault
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Figure II1-14 Classified four signals. Clockwise (a-d) (a): high variance and high aVar (b): high
variance and low alar (c): low variance and low aVar (d): low variance and high alar

Among those classified signals, signal which is helpful to classify fault and no-fault state is the
signal (b) which have high variance and low aVar. Thus, maximization function can be derived as

follows:

argmax(var; — aVar;)
sensor;
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Based on alar definition, formation of it is a multiplication of a constant a and variance. Thus,
above equation become simplified like:
argmax(var;(1 — a))

sensor;

With above simple maximizing function, sensors could be ranked.

Extended PCA model: aVar-based PCA

Principal Component Analysis is one of the widely used methods for dimension reduction. In the
procedure of PCA, principal components are drawn, which can express overall data in reduced space.
Considering the very basic equation of PCA, fundamental principle of PCA is maximizing variance. By

the definition, aVar is modified version of variance. Thus, basic assumption is as follows:

Assumption: The lowest N principle components which are drawn with aVar-PCA can be used to select

sensors having low abrupt variance
To select sensors using aVar-based PCA, there are mainly four steps needed.

STEP1. Calculate abrupt variance of dataset

STEP2. Calculate covariance using aVar

STEP3. Conduct Principal Component Analysis using covariance in STEP2

STEP4. Bottom N (user defined) sensors are selected based on the coefficient matrix of aVar-based

PCA

For the first step, abrupt variance of dataset is calculated. After that, Covariance of abrupt variance
should be calculated. Covariance can be drawn using the relations between variates like the equation

below:

var(X +Y) = var(X) + var(Y) + 2cov(X,Y)

var(X +Y) —var(X) —var(Y)
2

cov(X,Y) =

Using the equation, covariance of abrupt variance can be calculated. Next step is conducting PCA.
PCA can be done by singular vector decomposition of data matrix, or by eigenvalue decomposition of
data covariance or correlation matrix. In this paper, the latter method is used. Detail steps and

explanations for conducting PCA using eigenvalue decomposition are as follows:

x is N dimensional original dataset. Principal components are derived by maximizing the variance

of the projected data on the reduced dimension or minimizing the mean squared distance between the

32



Characterization of sensor signals

data and projected data. In this paper, we handled first approach, maximizing variance.

Variance of the projected data is abbreviated to var(x)
ML
var(x) = NZ(uTxn —uTx)?2 =uTSu
n=1

where, S is the covariance of the data matrix and u is a unit vector on which data are projected.
N
1 - NT
S =2 (n = D)t = )
n=1

Using Lagrange multiplier, maximization function is formulated
Lix,A) =uTSu+ A(1 —uTw)
Derivative L(x,4) withregardto u
Su=Au

where,

u is an eigenvector of covariance matrix and A is an eigenvalue of covariance matrix.
By multiplying u”, the equation above is simplified.
uTSu = AuTu
ulSu =2

Thus, maximization variance is done by finding maximum eigenvalue in this regard. aVar can be
represented as multiplication of variance and a constant. Thus, in the same way, aVar-based PCA is also
done with covariance of abrupt variance. Coefficient matrix which is the result of aVar-PCA is used to
select sensors which is significant for classifying fault and no-fault state. More detail formula of aVar

1s as follows.

Abrupt variance of the projected data is abbreviated to aVar(x)

N N-1
1 1 , S .
aVar(x) = N Z (uTx, —uTx)? x N1 Z WTx | —uTxd1)2 = yTSuuTs4 fy
n=1 n=1

where,
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x is the original data matrix

x®T s the difference of original data matrix in time series. (e.g., X j+1 — X;; means the difference
between (j+1)" data and j™ data of i sensor)

S is the covariance of x

ST s the covariance of x4/

u is a unit vector on which data are projected
Since u is a unit vector, uu’ = 1, the equation is simplified.
uTSuuT Sy = yT'sss iy
Using Lagrange multiplier, maximization function is formulated
L(x,A) = uTSS% Ty + A(1 — uTu)
Derivative L(x,4) withregardto u
SSW y = Ju
By multiplying ul, the equation above is simplified.
uTSs4 Ty = auu
uTssfy = 2

Thus, in the same way to PCA, alar maximization (or minimization) problem turned into
maximization (or minimization) of eigenvalue. Basic assumption is same with previous method. The
number of selected sensors is user-defined value (N). For the next step, sum coefficients from first to N
in coefficient matrix and rank the summed value. Finally, N sensors with lowest summed values are

selected according to the procedure.

Above procedure are to find sensors, which are original variables of dataset. Aside from this, if it is
not the case using original variables, new principal component based on abrupt variance could be

proposed to be used in fault detection.
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no-fault fault

X2 x1

aVar-based PC

Figure II1-15 The first principal component from abrupt variance-based PCA and the first
principal component from conventional PCA (left) and the expected result (right)
Considering Original PCA, data which are projected onto principal components can represent
original dataset well but it does not guarantee that fault detection performance increases in projected
space. Compared to original PCA, if data are projected onto principal components based on abrupt
variance, converted data are much more sensitive to abrupt variation. In other words, projected data are

in the space which supports classification of fault and no-fault state.

3.4.2 Weighted sum approach

A Second method for sensor selection is done by aggregating PCA, aVar and DI. Basically, sensors are

ranked with weighted sum of each index.

Not only aVar, DI but also PCA are included for sensor ranking procedure since PCA is the most
powerful dimension reduction methods. Total three indices are derived from each method: indpcy4,
indgyar, and indp;. indpcy is derived by sum of PCA coefficient. As defined previous sections 3.4.1,
aVar-based PCA is done with applying aVar to PCA so ind,y ., is derived by inverse of sum of aVar-
based PCA coefficient since small aVar of a specific sensor means the signal characteristic of that sensor
is good for distinguishing fault and no-fault state. Lastly, indp; is derived by inverse of DI since low
discernibility index of a sensor means the signal of the sensor is highly discernible. Using these three

indices aggregated index is derived as follows:
Aggregated index = indpcy + indgyqer + indp;
In this way, all sensors can be ranked. Additionally, S/ is used to finding sensors which were low-

35



CHAPTER 3

ranked in PCA sensor selection but might have potential to be used to distinguish system state. S/ score
of low-ranked N sensors in PCA sensor selection method is calculated and sensors which exceed

threshold (e.g., 0.7, 0.8) are recommended to be used to fault diagnosis additionally.

In this way, total rank of sensors is attained. In this stage, I let users decide the number of sensors
selected. When reducing dimensions of data, information loss occurs. In other words, it means it would
be the best case if it is possible to use the sensors as many as possible. Thus, here the number of sensors

are user-defined value (N). Overall framework is described in the Figure I1I-16.

[Rank sensors using weighted sum]

. alVar-based PCA
PCA coefficient sum . DI
coefficient sum
i normalization [0 1] l normalization [0 1] i original range [0 1]
normalized sum 1-normalized sum 1-DI
indpca indgyar indp,;

sum (indpcy ind,y,, indp;)

'

Rank top N sensors

[SI scoring for the low-ranked sensors in PCA sensor selection]

PCA coefficient sum

l low-ranked N sensors

SI > threshold

i

Recommend sensors additionally

Figure I11-16 Overall framework for weighted sum approach sensor selection
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IV. Case study

A series of experiments have been conducted to validate the proposed sensor selection method of this

thesis.

4.1 Vehicle diagnostics simulator

NI-cDAQ
9178

Fault generator
by variable voltage
controllers

Figure I'V-1 Vehicle diagnostics simulator

Sensor data were collected from vehicle diagnostics simulator in the smart factory laboratory as shown
in the Figure IV-1. Fault state defined in this experiment was knocking in the vehicle engine. More

detail information for the experimental setting is as follows.

4.1.1 Experimental setting

Table IV-1 Description of the experimental data using vehicle fault generator

Fault state definition Engine knocking and abnormal engine RPM

Control intake air pressure randomly

Fault generating method ' o
Control actuators in the fuel injection system
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The number of sensors Total forty sensors

Injector, crank position, manifold absolute pressure

Type of sensors (MAP), throttle position (TP) ...

Sampling rate 2 Hz

Since total number of sensors are forty, dataset contains tremendous number of signals in high

dimension Figure IV-2.

sensor sensor name. mean  variamce  min max
Injectord 1408 711 021 2042
Injectar] 1525 51 1414 4546
EST 503 000 485 510
Fuelpumprelaycontrol 5] a0 006 018
Radiatorfaniow 1388 000 1377 1395
Radiatorfanhigh 1434 0ng 1425 1441
15Capen 017 000 012 0.24
Ignition23 043 102 000 342
Ignitionl4 022 046 000 293
Injectar? 1424 926 040 2486
PCSV 1433 000 1423 1442
I5Celose 1519 000 15.08 1527
Injector3 1445 1676 019 3313
CKP 232 620 000 510
WTS 001 000 -0.36 007
Ignitiondetect [iTE} a0l -015 0.59
CMp 215 605 -003 506
Mar 146 and 137 1.56
AThrelaycontrol 1279 a0 1248 1247
ATS 244 00 238 247
Q2sensor o0s a0 000 0.12
VS 1384 ang 137 139
IDLESW n0g 000 003 012
TPS 076 000 067 0.80
Knockingsensar o0 g -004 015
Damperclutchsoleno 1350 [ 1382 1401
Secondbrakesolenci 041 000 03 0.57
FFE 066 031 -208 0.18
PGA 254 524 033 509
GearD 004 [T 004 ol
GearP 009 056 -080 393
Underdrivesslenaid 21 2054 036 15.72
Gearl 000 a0z -083 0.08
Gear3 0% 016 156 002
Gearll 002 0no -010 005
Overdrivesolenoid 034 L1} 027 048
Loreversesolenaid 1410 000 1404 1416
53 Atoittemp 006 a0 047 002
39 Gear? 003 008 -028 155
540 Gear 0 00 -001 0.33

Figure I'V-2 High dimensional data. Total number of sensors is 40

In order to select sensors, methods which were discussed in the Chapter 3 will be all used. (i) sensor

selection using weighted sum of indices (ii) sensor selection using aVar-based PCA.

To validate the proposed sensor selection method, Hotelling T? was used. Model for test was
constructed with normal dataset. PCA model, abrupt variance-based PCA model, and aggregated index
-based model will be constructed and then, using test dataset performance of normal and fault

classification will be evaluated regarding hit rate and false alarm rate.

In Hotelling T? test, threshold to decide whether state is in normal or in fault is c.

(N-1)
CTWop P

where, N is the number of sample and p is the number of principal components
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Figure I'V-3 Hotelling T? and Q statistics (Baek et al., 2016)

Hypotheses for detection is as follows

HO: signal absent (no-fault state)
HI: signal present (fault state)

Signal
Present Absent
Yes Hit False Alarm
0
C
@]
o
(7]
[O)
o
No Miss Cprre_ct
Rejection

Figure I'V-4 Signal detection theory

In signal detection theory, trials are sorted into four categories such as hit, false alarm, miss, and
correct rejection. Among four cases shown in the Figure V-4, criteria for each case differs from
industrial application. For instance, in semiconductor industry, missing faults of wafer results critical
impact on the quality of final semiconductor. Also, in the power plant industry, missing machinery faults

or facility faults might result untold losses. Thus, in the fields where even very slight faults or defects
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are not allowed, missing rate is one of the most considerable factors. However, for detection
performance, hit rate is most important, which catch fault in time. Considering those characteristics, we

can evaluate performance of detection algorithms.

4.1.2 Experimental results and discussion

Sensor selection methods used in this experiment are (i) sensor selection using original PCA, (ii) sensor

selection using aVar-based PCA and (iii) sensor selection using aggregated index.

For clear understanding, we attached sensor signal plots starting from highest rank (see the Table
IV-2). As clearly shown in the, PCA selects sensors which has large variance and there are no any other
criteria. Thus, the sensor rank does not show any trend or tendency except large variance. Also, it does

not show clear distinguishable signal characteristics among top ranked sensors.

Different from the PCA sensor selection results, several sensors such as sensor31, sensor8, sensor36
ranked lower in aVar-based PCA sensor selection. Those sensors ranked high when using PCA sensor
selection just because they have large variance. However, several sensors such as sensor27, sensorl2,
sensor28 ranked higher than before with consideration of abrupt variance. In aVar-based PCA sensor
selection, sensors which have unfluctuating signals with low abrupt variance highly-ranked. Also,
several sensors such as sensorl2, sensor6, sensor37 are top-ranked when using aggregated index based
sensor selection, which ranked lower when using PCA sensor selection. Sensors with high S7 score

which was low-ranked in PCA sensor selection was highlighted with bold in the Table IV-2.

Table IV-2 Sensor selection results (using 15 sensors)

# aVar-based PCA # Aggregated index
(PCA rank) sensor selection (PCA rank) sensor selection
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# aVar-based PCA # Aggregated index
(PCA rank) sensor selection (PCA rank) sensor selection
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As shown in the Figure IV-5, it shows better detection performance regarding hit and false alarm
when using sensors selected with proposed method than using sensor selected with original PCA.
Detection performance results are listed in the Table IV-3. In dimension reduction, the reduced
dimension has critical effect on the classification result so the number of sensors used for detection
differs from 5 to 15. PCA result shows slightly higher hit rate than proposed methods result in the case
using 15 sensors whereas proposed methods result shows lower false alarm than the PCA result. As for
10 sensors and 5 sensors example, the number of sensors so small that it cannot generate proper PCA
model which can explain original dataset so hit rate of each case is almost zero. It is shown that as the
number of selected sensors decreases, proposed methods outperform than PCA sensors selection
regarding hit rate.

However, several concerns arise. Regarding proposed methods, detection performance seems to be
improved. However, proposed indices were made considering detection only. Thus, focus of key
characteristics of sensor was not incipient fault but abrupt and obvious change in signals. Considering

prognosis, which means prediction, further studies are necessary.

Table IV-3 Detection performance comparison

# of selected

sensor 15 sensors 10 sensors 5 sensors
Sensor
selection Hit (%) FA (%) Hit (%) FA (%) Hit (%) FA (%)
method
PCA 99.27 24.46 0.03 0.57 0.00 0.00
aVar-based
PCA 98.86 25.36 98.26 4.63 97.85 3.43
Aggregated g o 9.52 98.63 3.88 97.97 2.86
index based
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Sensor selection using PCA
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Figure IV-5 Plot Hotelling T? results to clearly show the difference (10 sensors)

4.2 Gear system diagnostics simulator

The proposed sensor selection methods were applied to gear diagnostics simulator, which uses vibration

to system monitoring.

4.2.1 Experimental setting

Speed controller
and RPM indicator
of a DC motor

Screw to adjust

an alignment N

between axes Sensor data
terminal

NI-cDAQ-9178

Figure I'V-6 Gear system diagnostics simulator

To get sensor data which can be used to machinery monitoring, a gear diagnostics simulator was
designed and made. More detail hardware specification of this simulator will be listed with figures and
explanation in the Table [V-4. Conventional gear simulator consists of single axis only. However, I

wanted to generate fault mode generating an axis unalignment so this simulator consists of two axes.
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Table IV-4 Hardware specification of gear system diagnostics simulator

Part name

Part

Explanation

Gears

Two planetary gears connecting two axes

Bearing unit

Pillow-type bearing unit
Ball bearing
Total five units are attached in the pillows

Motor

BLDC motor
MAX 3000 RPM

Motor driver

Motor driver for BLDC motor
Motor speed, driving direction can be controlled

RPM meter Motor RPM indicator
For making unbalance to the axis, two rotors were
Rotors customized to installing weights having four tabbed
holes
Flexible coupling Give flexibility to the long axis and the motor

Fixation screw
and other parts

Tool for controlling the location and the angle of short
axes

Fixation screws and other fixing parts prevent pillow
block from moving or vibrating

Accelerometer and
accessories
(e.g., cable)

single-axis PCB accelerometer
sensitivity 10mV/g
Total five sensors are attached on the bearing unit
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To gather sensor data for system monitoring and validate performance of diagnostic and prognostics

algorithm using the gathered, this simulator has several characteristics as follows.

1. Continuous and consistent data acquisition
2. Various failure mode

3. Easily change the system state from fault state to normal state, different from reliability
analysis

Detail information of data selected and fault mode is listed in the Table IV-5

Table IV-5 Description of the experimental data using machinery gear fault simulator

Fault state definition Abnormal vibration
- Loosen the screw fixing bearing case
Fault generating method * Misalignment

- Mass unbalance of a rotor

Motor specification Max 3000 RPM
The number of sensors Total five sensors
Type of sensors Accelerometer

Defect distribution

Unbalance
Misalignment

Bearings

Soft foot

Fan and duct turbulence
Bent shaft/bowed rotor
False brinnelling

Torshional vibrations

Gears

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Figure IV-7 Defect distribution of rotating machinery (Wowk, 1991)

Fault modes are total three: (i) bearing fault (ii) misalignment and (iii) mass unbalance of rotor.
Generally, unbalance, misalignment, and bearing faults comprise the great majority of rotating

machinery faults as shown in the Figure IV-7. Thus, most of the machinery faults can be handled by
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monitoring those three kinds of fault modes. Fault conditions can be made by first, loosening the screw
which fixes the bearing cases on the pillars, second making misalignment by adjusting gaps between
pillars supporting axis and third, adding additional weights on the rotors. In reality, defects of bearings
include mechanical damage, crack damage, wear damage, lubricant deficiency and so on (Mclnerny &
Dai, 2003). However, it was hard to make artificial damage on the bearing in the experiment, so it was

substituted with loosening bearing case.

Not only defining fault modes, sensor type for data acquisition should be determined. In this

simulator, vibration sensors are attached which can cover most kinds of defects.

Figure I'V-8 Sensor location and sensor numbering. A-E: accelerometer sensor 1-5

Five accelerometers are attached on the top of four bearing cases and a motor. Each sensor is

located close to possible failure points.

Experiments were done in five different conditions: First, normal condition without any
misalignment, unbalance, and bearing faults, second, misalignment of two axes, third, mass unbalance

of the rotor and forth and last, loosen bearing case of different bearings.

4.2.2 Experimental results and discussion

Using the dataset produced by gear fault simulator, total four fault mode data are used by combining

normal condition data with four fault condition data.

Fault mode 1: Misalignment of two axes, short axis is not in parallel with long axis
Fault mode 2: Mass unbalance of rotor in long axis
Fault mode 3: Loosen bearing case where sensor 2 is attached

Fault mode 4: Loosen bearing case where sensor 3 is attached

Methods used for sensor selection are (i) sensor selection using coefficients of original PCA, (ii)

sensor selection using aVar-based PCA and (iii) sensor selection using aggregated index.
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Table IV-6 Experimental results of each fault mode

sensor number aVar Variance SI DI
1 0.00004 0.00426 0.12841 0.20709
2 0.00006 0.00553 0.21118 0.17985
Fault mode 1 3 0.00047 0.01441 0.18619 0.10505
4 1.51553 1.40842 0.22211 0.04773
5 4.36148 1.94495 0.16375 0.02701
1 0.00002 0.00268 0.32621 0.19601
2 0.00005 0.00498 0.32537 0.17478
Fault mode 2 3 0.00016 0.00802 0.35765 0.13360
4 0.85903 1.17548 0.38313 0.01466
5 3.07869 1.79822 0.27610 0.01530
1 0.00002 0.00306 0.28023 0.19048
2 0.00016 0.00880 0.21827 0.12013
Fault mode 3 3 0.00019 0.00889 0.31367 0.13423
4 0.84816 1.26790 0.26466 0.01862
5 4.11381 2.41638 0.16845 0.01266
1 0.00002 0.00292 0.09475 0.27673
2 0.00003 0.00357 0.30530 0.26686
Fault mode 4 3 0.01447 0.07393 0.05530 0.08388
4 0.89728 1.21255 0.11146 0.02063
5 4.93760 2.40457 0.04928 0.02927

Experimental results such as aVar, variance, SI, and DI of each sensor are listed in the Table IV-6.
In whole dataset, variance of sensor] is the smallest, which is attached on the motor. Regarding aVar,
sensor5 has the largest alar value, which means it has highly fluctuating characteristic. For detail

explanation, signal visualization, rank and other information of analyzed data are listed in the following

tables (Table IV-7~Table 1V-10).

Table I'V-7 Visualization of selected sensors in fault mode 1

Sensor selection | Sensor | Sensor Signal visualization
method rank number No-fault Fault
1 4 R
PCA
2 3
3 5 e e e e e e
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Sensor selection | Sensor | Sensor Signal visualization
method rank number No-fault Fault
4 2 .
5 1 H
1 3 H
2 2 H
aVar-based PCA 3 1 .
4 4 i I
5 5 Falipblin bt ot iAottty bbb A i
1 3 H
2 4 VW -;]‘ Y o f ¥
Aggregated index
ggreg 3 2 |
4 1 H
5 5 Wwwmwwmmww_
Table I'V-8 Visualization of selected sensors in fault mode 2
Sensor selection | Sensor | Sensor Signal visualization
method rank | number No-fault | Fault
1 4 i
PCA
2 3 -
3 5 .
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Sensor selection | Sensor | Sensor Signal visualization
method rank | number No-fault | Fault
4 2
5 1
1 3
2 2
aVar-based PCA 3 1
4 4
5 5
1 1
1 3
2 4
T T
Aggregated index 3 )
L 1
4 1
5 5
Table I'V-9 Visualization of selected sensors in fault mode 3
Sensor selection | Sensor | Sensor Signal visualization
method rank | number No-fault | Fault
1 4 WWWMWWWWWWMWWWWWWWMWWWWW
1 | 1
PCA 2 3
3 5
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Sensor selection | Sensor | Sensor Signal visualization
method rank | number No-fault | Fault

T T T
4 2 .
5 1 7
! 4 WWWMWWWWMWMWWMWWWWWWMWWWWWWW 1

1 1 | 1
2 1 7

T T T
aVar-based PCA 3 ’ i

1 1 1
4 3 7

T T T
5 5 [yt ety st

T T T T
1 4 WWMWWWWWMWMWWWWWWWWW 7
2 3 7

A .

ggregated index 3 5 il i
4 2 WWWWWWWWWW% .
5 1 7

Table I'V-10 Visualization of selected sensors in fault mode 4

Sensor selection | Sensor | Sensor Signal visualization
method rank | number No-fault | Fault
1 4 -
T T T
PCA N
2 3 ® i
3 5 iyl aobe e sl Whymba Aoty Pl e 7
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Sensor selection | Sensor | Sensor Signal visualization
method rank | number No-fault | Fault

4 2 -

T T T T
5 1 i

Il L 1 1
2 2 g

aVar-based PCA

3 1 7
4 4 b
5 5 Paumrlumumisqutplannstispasssytsisspismthoial “Whsspbtolpipatitvity sy

1 1 Il Il
2 4 i

1 Il Il 1

T T T T

Aggregated index

ggreg 3 2 i

1 1 L Il
4 1 7
5 5 " 1_" UnAwhai n .r..“"u‘ 4 'u""“n"y‘"gw‘"bﬁu% M‘“me“-«‘ﬂv‘v' 1

First insight is that sensor ranks are same when using PCA in all fault modes: sensor4 (1* rank),
sensor3, sensorS, sensor2 and sensor] (last rank). Sensors are ordered in ascending orders, which means
the sensor on the top is the first rank. However, high-ranked sensors based on total variance does not
show any characteristic signal distinguishing fault and no-fault state. Total variance of sensor is closely
dependent on the location of failure points so the variance of sensorl, attached on the motor, is the
lowest in all cases. Thus, when using PCA-based sensor selection sensor1 cannot be selected even with

characteristic signal change.

Second, when using aVar-based PCA sensor selection, selected sensor order is totally different from

the order by conventional PCA sensor selection. However, due to intrinsic characteristic of vibration
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data, sensor signals show repeated up-down trends even though total variance is around one. In this
case, results show that signals of high-ranked sensor do not give any distinguishable trend or change in

signal for fault and no-fault classification compared to low-ranked sensor.

Also, as listed in the Table V-6, sparse impulse scores of every signal are similar, lower than 0.3 or
around 0.3 score, which means there is no sparse impulse signal which is meaningful for classification.
In this experiment, it is shown that using only DI score will be effective for classification than using
alar, PCA, or aggregated index. However, sensor selection by DI does not always give effective results
for classification, like sensor3 in fault mode 4. In fault mode 2 and 3, sensor4 and sensor5 have lowest
DI score, which means it is the most discernible sensor but those sensors do not show any clear

difference between fault state and no-fault state referring the results of each signal.
As a result, two important insights were got from the results.

[1] Reducing number of sensors among small sensor sets might be meaningless or even it might

delete any important data
[2] Needs for analyzing aVar, DI, SI in frequency domain not only in time domain

In this experiment, the number of sensors used in machine monitoring are not many compared to
first case study, vehicle fault generator. Thus, from the beginning reducing number of sensors among
small sensor sets might be meaningless or even it might delete any important data. Also, due to the
intrinsic characteristics of sensor signals such as repeated vibration, further study considering frequency

domain is needed.
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V.Conclusion and Future research

Researches regarding fault diagnosis and prognosis have been studied for many centuries. As for
fault diagnosis, classification performance plays an important role. However, existing sensor selection
methods, which are dimension reduction techniques, has several limitations. First, conventional
dimension reduction techniques using space transformation, it does not choose original sensors, instead
it generates new axes axis so that it is hard to interpret the meaning of them. Also, the effectiveness and
usefulness of using new axes in fault diagnosis should be considered. Second, in the case of dimension
reduction by variable subset selection, original sensors are selected as a result. However, it is a kind of
simple version of classification before conducting fault and no-fault classification. Randomly subset
selection method generated sensor subsets randomly and adjust them to classification for finding best
sensor subset so that it is computationally expensive. Therefore, simpler sensor selection method using

original sensors is needed.

In this thesis, key sensor characteristics of signal are discussed and then developed a sensor selection
methods based on the discussed indices considering (i) needs for dimension reduction without loss of

original variable information, (ii) way to improve classification performance.

In summary, key contribution in this research is simplified. I proposed new index S/ to emphasize
the importance of the signals which aVar and DI cannot cover and were low-ranked in PCA sensor
selection method but effective to fault and no-fault classification. As a result, classification performance
increased. Hit rate was similar with PCA sensor selection and false alarm decreased a lot in proposed

sensor selection aggregating PCA, aVar, DI, and SI.

There still exists challenging issues on the proposed sensor selection methods. The direction of
future research can be summarized as follows. First, further analysis using proposed indices in
frequency domain is needed. Second, analyzing the mathematical relationships between D/ and SI are

needed.
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