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Abstract

We show that concealing cost information is a dominant strategy in heterogeneous
Bertrand oligopolies. This result enables us to endogenize the number of firms in a
market in terms of market size, entry costs, and unit cost uncertainty.
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Zusammenfassung

Kein Informationsaustausch im Oligopol:
Der Fall von Preiswettbewerb bei Kostenunsicherheit

In diesem Beitrag zeigen wir, daß für ein heterogenes Oligopol die dominante Stra-
tegie der Unternehmen bei Preiswettbewerb lautet, keine Informationen über die
Höhe der Produktionsstückkosten auszutauschen. Auf der Basis dieses Ergebnisses
läßt sich die Anzahl der Unternehmen im Markt in Abhängigkeit vom Marktvolu-
men, von den Kosten des Marktzutritts und von der Unsicherheit über die Höhe
der Produktionsstückkosten endogenisieren.
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1 Introduction

In most markets in which firms interact strategically, firms are better informed

about their own cost and demand parameters than about those of their rivals. It

is therefore an important issue in Industrial Organization theory to study the in-

centives of firms to exchange private information (see, e.g., Vives 1999, ch. 8). The

literature on information sharing in oligopoly is vast. However, most papers study

Cournot competition in homogeneous markets. Even if in reality it is obviously

the most important kind of tactical competition, only few authors deal with price

competition in heterogeneous markets. While Vives (1984) and Sakai (1986) con-

centrate on the exchange of demand information, Gal-Or (1986) and Sakai (1991)

study the expected gains of exchanging cost information. These Bertrand duopoly

models yield the well known result that firms reveal their private information in

Bayesian Nash equilibrium under demand uncertainty, while under cost uncertainty

they do not. In an influential paper, Raith (1996) develops a unified approach in

which he derives the conclusions of the models cited above as special cases.

While it is generally accepted in the literature that the duopoly results with demand

uncertainty generalize to oligopolistic market structures, Raith (1996, p. 279) argues

that with cost uncertainty “... results obtained for duopolies do not extend to larger

markets.” This would indicate that the concealing strategy is not very robust.

Instead, for a large number of firms in the market, unilateral revelation of private

cost information should not be a dominant strategy. The present paper deals with

the case of price competition and cost uncertainty of Raith’s (1996) generalized

model, correcting a far-reaching error and drawing a new conclusion for Bertrand

oligopolies with cost uncertainty. We derive that concealing cost information is a

dominant strategy in price competition with substitutive goods. This unambiguous

conclusion enables us to endogenize the number of firms in heterogeneous markets

in terms of market size, entry costs as well as in terms of cost uncertainty. We show

that either expected equilibrium profits or the equilibrium number of firms in the

market increase with cost uncertainty.
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2 The Model

We consider a market consisting of n ≥ 2 firms, each producing a differentiated

good. According to most models in the Industrial Organization literature, we as-

sume a quadratic utility function

U (q0,q) = q0 + α

n∑
i=1

qi −
1

2

n∑
i=1

n∑
j=1

βijqiqj (1)

of a representative consumer. Each consumer demands q0 units of the numéraire

good and qi units of the differentiated goods i = 1, . . . , n, represented by the vector

q = (q1, . . . , qn)′. We impose the usual parameter restrictions βij = β ∀ i = j,

βij = γ ∀ i 6= j, α > 0 and 0 < γ < β. Consumers maximize utility subject to the

budget constraint

q0 +
n∑

i=1

piqi ≤ I, (2)

where I denotes income, p = (p1, . . . , pi, . . . , pn)′ the price vector of goods i =

1, . . . , n, and the price of the numéraire good is normalized to one. The first-order

conditions determining the optimal consumption levels of all goods lead to the linear

demand functions

Di (p) = a− bpi + d
∑
j 6=i

pj , i, j = 1, . . . , n (3)

where a := α
β+(n−1)γ

, b := β+(n−2)γ
(β−γ)[β+(n−1)γ]

and d := γ
(β−γ)[β+(n−1)γ]

, which implies

0 < (n+ 1) d < b.

We assume the same type of cost uncertainty as in Gal-Or (1986), i.e., firms know

the distribution function of their unit cost, but are only imperfectly informed about

the realizations. The deviations τi from the expected value c are independently

and identically normally distributed with means zero and variances t ≥ 0, i.e.

τi ∼ N (0, t).1

1 There may be parameter constellations where the nonnegativity constraint of unit cost is not
fulfilled if the random variables are assumed to be normally distributed. However, this distribu-
tion function which is usually applied in the information exchange literature can be interpreted
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If firms knew the realization of their respective deviation parameters τi, but were

uncertain about the rivals’ cost parameters, the underlying information structure

would be a standard one of asymmetric information. However, the assessment of

the advantage or disadvantage of information exchange becomes more complicated if

firms have to decide about their information revelation behavior at a point in time

when information about their own unit cost is also uncertain. As in the Gal-Or

(1986) model, we simultaneously analyze both stochastic uncertainty of firms about

their own unit cost as well as asymmetric information between the competitors.

Firm i’s ex ante observed signal for the deviation parameter τi is ϕi = τi +ψi, where

the signal errors ψi are also assumed to be independently and identically normally

distributed with means zero and variances u ≥ 0, i.e. ψi ∼ N (0, u). Thus, firms

can make no inferences about the unit cost of their rivals based on their private cost

information. However, each firm is able to signal its perception of unit cost to the

rivals. In a very general way we may account for the precision of a strategic infor-

mation revelation by specifying the signal as ϕ̂i = ϕi + ξi. The strategic revelation

deviations ξi are also assumed to be independently and identically normally dis-

tributed random variables with means zero and variances ri ≥ 0, i.e. ξi ∼ N (0, ri).

If the signal is sent with zero variance (ri = 0), firm i perfectly reveals its cost infor-

mation. In the case of an infinitely high variance (ri →∞), it conceals its private

information.2 All firms have to make their pricing decisions using all available cost

information, represented by their respective information sets zi = (ϕi, ϕ̂)′ with the

vector ϕ̂′ = (ϕ̂1, . . . , ϕ̂n) of revealed information by all firms.

The ex ante expected profit function of firm i is

Ei
[
πi (p)

∣∣ zi

]
= Ei

{{
[pi − (c+ τi)]

[
a− bpi + d

∑
j 6=i

pj (zj)

]}∣∣∣∣∣ zi

}
(4)

where E is the expected value operator. The necessary first-order conditions3 lead

as an approximation of any specific distribution function.
2 In this way, strategic lying in the revelation process as modeled by Ziv (1993) is excluded. Firms

only have the option to reveal their cost information with an arbitrarily large noise. This means
that concealing occurs by announcing and sending worthless signals.

3 The sufficient conditions for a profit maximum are globally met. In order to simplify the analysis,
we generally assume parameter values that guarantee Bayesian Nash equilibria with positive
quantities for all firms.
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to the reaction functions:

pi (zi) =
a+ b

[
c+ Ei (τi| zi)

]
+ d

∑
j 6=i E

i [pj (zj)| zi]

2b
(5)

Since the resulting equilibrium strategies are affine in the information sets zi, the

proposed solution equations take the form:

pi (zi) = η0i + η1iϕi + η2i
′ϕ̂ (6)

In order to solve for prices in Bayesian Nash equilibrium, we have to determine

the coefficients η0i, η1i ∈ R and η2i ∈ Rn. For the expected price decisions of the

competitors we obtain:

Ei [pj (zj)| zi] = η0j + η1jE
i (ϕj| zi) + η2j

′ϕ̂ , i, j = 1, . . . , n, i 6= j (7)

Due to the assumptions of the normal distributions, the conditional mean Ei (ϕj| zi)

solves as Ei (ϕj| zi) = t+u
t+u+rj

ej
′ϕ̂, where ej is the j-th unit vector. In an analogous

way, the expected deviations of unit cost from their mean are Ei (τi| zi) = t
t+u

ϕi. By

inserting these conditional means together with equation (7) into the reaction func-

tions (5) and equating the resulting expression with the proposed solution equations

(6), the coefficients can be identified as

η0i =
a+ bc

2b− (n− 1) d
(8)

η1i =
t

2 (t+ u)
(9)

η2i = t

{
bd

(2b+ d) [2b− (n− 1) d]
m̄− d

2 (2b+ d) (t+ u+ ri)
ei

}
(10)

with vector m̄ :=
(

1
t+r1

, . . . , 1
t+rn

)′
. Consequently, η2i contains the elements:

η2ii =
(n− 1) d2t

2 (2b+ d) [2b− (n− 1) d] (t+ u+ ri)
(11)

η2ij =
bdt

2 (2b+ d) [2b− (n− 1) d] (t+ u+ rj)
∀ i 6= j (12)

Inserting these expressions into the solution equations (6), we obtain the optimal
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price strategies which yield the ex ante expected equilibrium profits:4

Ei
(
πi

∣∣ zi

)
= bEi

{
[pi − (c+ τi)]

2}
= b

{{
a− [b− (n− 1) d] c

2b− (n− 1) d

}2

+ t2
{

t+ 4u

4t (t+ u)

+
b2d2

(2b+ d)2 [2b− (n− 1) d]2

∑
j 6=i

1

t+ u+ rj

−(n− 1) d2 [4b (2b+ d)− (n− 1) d (4b+ 3d)]

4 (2b+ d)2 [2b− (n− 1) d]2 (t+ u+ ri)

}}
(13)

Differentiating these functions with respect to the revelation variances ri yields:

dEi (πi| zi)

dri

=
(n− 1) bd2 [4b (2b+ d)− (n− 1) d (4b+ 3d)]

4 (2b+ d)2 [2b− (n− 1) d]2 (t+ u+ ri)
2 > 0 (14)

Since, as already noted, 0 < (n − 1)d < b, it can be shown that this derivative is

positive. Therefore, in contrast to the corresponding result derived by Raith (1996,

p. 279), firms will generally choose an infinite variance (ri →∞) in information

transmission which is equivalent to concealing its private cost information. Using

this conceiling strategy, firms weaken the price competition and, hence, increase

their expected profits.

Thus, Gal-Or ’s (1986) result for a duopolistic market indeed generalizes to oligopo-

listic market structures. Even for a very large number of firms, unilateral revelation

of private cost information never constitutes a Bayesian equilibrium strategy.5

Consequently, using the solution equations (6) with the coefficients defined in equa-

tions (8) to (10), we obtain the equilibrium prices

pi =
a+ bc

2b− (n− 1) d
+

t

2 (t+ u)
ϕi (15)

and from (13) the expected equilibrium profits:

4 See appendix.
5 This point was recently and independently made in a note by Jin (2000).
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E (π∗) = b

{{
a− [b− (n− 1) d] c

2b− (n− 1) d

}2

+
t (t+ 4u)

4 (t+ u)

}
(16)

The presented model explains the empirical observation that firms generally refuse

to reveal private cost information. As our analysis has shown, concealing successful

efforts in obtaining process innovations should be an important firm strategy in

order to temporarily maintain a technologically leading market position, especially

if patent protection is not perfect.

3 Cost Uncertainty and Market Structure

The comparative statics, as analyzed by Raith (1996), are not valid for the assumed

utility function, since the parameters he treats as exogenous are in fact endogenously

determined by the number of firms. To show the effects of market structure on the

firms’ expected profits and the effects of cost uncertainty on market structure, it is

necessary to transform the parameters a, b and d back into terms of the parameters

α, β and γ of the utility function (1). Making use of the latter, the relevant expected

equilibrium profit is determined by:

E (π∗) =
(α− c)2 (β − γ) [β + (n− 2) γ]

[β + (n− 1) γ] [2β + (n− 3) γ]2
+

[β + (n− 2) γ] t (t+ 4u)

4 (β − γ) [β + (n− 1) γ] (t+ u)
(17)

Both the derivatives of E (π∗) with respect to the cost deviation variance t and with

respect to the signal variance u are positive. This means that expected equilibrium

profits are positive functions of the degree of uncertainty as to unit cost and signal

accuracy. Thus, firms can gain from higher cost uncertainty. Defining the combined

cost uncertainty parameter T := t(t+4u)
4(t+u)

which depends positively on both t and u,

we obtain:

∂E (π∗)

∂T
=

β + (n− 2) γ

(β − γ) [β + (n− 1) γ]2
> 0 (18)

In order to address the issue of market structure, we assume free entry into the

market and introduce a fixed cost of entry. Consequently, the expected equi-
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librium profits of all firms which enter the market are zero (not taking the in-

teger problem into account). If the combined uncertainty parameter T is small

enough to ensure that the regularity constraint of a non-negative markup of prices

on the perceived unit cost is fulfilled (a sufficient regularity condition is given by

T <
4(α−c)2(β−γ)2{2β2+4(n−2)βγ+[7+n(2n−7)]γ2}

[2β+(n−3)γ]3γ
), then

∂E (π∗)

∂n
< 0 (19)

and the comparative statics yield a positive relationship between cost uncertainty

and the number of entering firms. Since the expected equilibrium profit positively

depends on market size α and negatively on the fixed cost of entry, it can further be

shown that the equilibrium number of firms in the market decreases with the level

of entry cost but increases with the size of the market as well as with the degree of

cost uncertainty.

4 Conclusion

This paper shows that conceiling private cost information is a dominant strategy

in a heterogeneous market with oligopolistic price competition. This unambiguous

conclusion enables us to endogenize the number of firms in terms of market size,

entry costs and unit cost uncertainty. If the degree of cost uncertainty is not too

large, there exists a negative relationship between the entry cost and the number

of firms, but a positive one between market size and the number of firms as well as

between cost uncertainty and the number of firms. Finally, we observe a positive

relationship between cost uncertainty and the endogenously determined number of

firms.
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Appendix

In order to calculate the ex ante expected equilibrium profits (13), we make use of

the means and variances of the deviation parameters τi, and of the variances and

means of the prices pi and of the covariances Cov (τi, pi):

E (pi) =
a+ bc

2b− (n− 1) d

Var (pi) = t2
{

1

4 (t+ u)
+

b2d2

(2b+ d)2 [2b− (n− 1) d]2

∑
j 6=i

1

t+ u+ rj

+
(n− 1) d2 [8b2 − 4 (n− 2) bd− (n− 1) d2]

4 (2b+ d)2 [2b− (n− 1) d]2
1

t+ u+ ri

}
Cov (τi; pi) = t2

{
1

2 (t+ u)
+

(n− 1) d2

2 (2b+ d) [2b− (n− 1) d]

1

t+ u+ ri

}
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