
Diplomarbeit

Engineering the

Fast-Multipole-Multilevel Method for

multicore and SIMD architectures

Martin Gronemann

26. Februar 2009

Betreuer:

Prof. Dr. Petra Mutzel

Dipl.-Inform. Carsten Gutwenger

Fakultät für Informatik

Algorithm Engineering (Ls11)

Technische Universität Dortmund

http://ls11-www.cs.uni-dortmund.de

Acknowledgment

The reader may forgive me for writing this in German:

An dieser Stelle möchte ich mich bei all denen bedanken, die mich während meiner Stu-

dienzeit begleitet haben. Als erstes danke ich meinen beiden Betreuern, Prof. Dr. Petra

Mutzel und Carsten Gutwenger, nicht nur für die Betreung dieser Arbeit, sondern auch

dafür, dass sie mir überhaupt erst das Gebiet des Graphenzeichnens nähergebracht haben.

Weiterhin möchte ich meinen Eltern danken, die mir das Studium ermöglicht haben und

mich währenddessen immer unterstützt haben. Ganz besonders möchte ich mich bei Bernd

Zey für die unzähligen Diskussionen, seine Geduld und die gemeinsame Studienzeit be-

danken.

i

Short Abstract

In this thesis, we present a new variant of the Fast-Mulitpole-Multilevel Method, which is

used to draw large graphs. Based on the original approach by Stefan Hachul, a new algo-

rithm is presented, which is optimized primarily for practical speed. In order to achieve

this, special processor instructions are used to accelerate computations with complex num-

bers. In addition, parts of the algorithm are executed in parallel to benefit from the widely

spread multicore architectures. Besides these two rather technical improvements, we de-

scribe a new construction method for a spatial space decomposition data structure, called

the quadtree. The algorithm exploits the binary representation of the coordinates and

shifts most of the work to the sorting of the input. Furthermore, we introduce another

problem from computational geometry, the well-separated pair decomposition, and success-

fully apply it in order to simplify parts of the algorithm. The resulting algorithm is able

to compete in speed and layout quality even with a recently published graphics processor

accelerated implementation.

ii

Zusammenfassung

Diese Diplomarbeit stellt einen neuen Entwurf der Fast-Mulitpole-Multilevel Methode vor,

die zum Zeichnen von großen Graphen verwendet wird. Basierend auf dem ursprünglichen

Algorithmus von Stefan Hachul wird eine neue Variante vorgestellt, die besonderes im

Hinblick auf die praktische Rechenzeit optimiert ist. Dabei wird zum einen von spezi-

ellen Intruktionen Gebrauch gemacht, um die Berechnungen mit komplexen Zahlen zu

beschleunigen. Zum anderen werden Teile des Algorithmus parallel ausgeführt, um die

mittlerweile weit verbreiteten Multicore Prozessoren effizienter nutzen zu können. Neben

diesen beiden relativ technischen Verbesserungen wird ein neuer Ansatz zur Berechnung

einer Raumunterteilungshierachie, den sogenannten Quadtrees, vorgestellt. Dieser macht

sich diverse Eigenschaften der Zahlendarstellung im Binärformat zu Nutze und verlagert

einen Großteil der Problematik auf das Sortieren der Eingabe. Zusätzlich wird ein weiteres

Problem aus der algorithmischen Geometrie, die Well-Separated Pair Decomposition, ver-

wendet um diverse Teile des Algorithmus zu vereinfachen. Der resultierende Algorithmus

kann im Bezug auf Geschwindigkeit und Qualität mit einer krlich veröffentlichten, auf

Grafikkarten basierenden Implementierung mithalten.

iii

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und kei-

ne anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich

gemacht habe.

Dortmund, den 26. Februar 2009

Martin Gronemann

iv

Contents

1 Introduction 1

1.1 Force-Directed Graph Drawing . 3

1.2 Parallel Machines . 7

1.3 Objectives and Outline . 10

2 The Fast Multipole Method 13

2.1 Force, Potential Fields and Energy . 14

2.2 The Multipole Framework . 16

2.3 Complex Arithmetic with SSE . 20

3 The Quadtree 23

3.1 Preliminaries . 23

3.2 Quadtree Construction . 27

4 The Well-Separated Pair Decomposition 37

4.1 Previous Work . 37

4.2 Preliminaries . 37

4.3 Algorithm . 40

4.4 Improving the Algorithm . 43

5 The Fast Multipole Embedder 45

5.1 Repulsive Force Approximation . 46

5.2 Parallel Computation . 51

6 The Fast Multipole Multilevel Embedder 55

6.1 Coarsening Phase . 56

6.2 Refinement Phase . 60

7 Experimental Results 63

7.1 Test Environment . 63

7.2 Runtime . 66

7.3 Resulting Layouts . 70

v

8 Summary and Outlook 81

List of Figures 84

List of Algorithms 85

Bibliography 88

vi

Chapter 1

Introduction

Graphs are an abstract way to represent all kinds of relations between entities. Entities

are encoded as a set of nodes, and relations between two entities are expressed by edges.

Therefore, in practice graphs are often used as a tool for analyzing and visualizing such

relationships.

For example a road map can be displayed as a graph by assigning each junction a node

and road sections are represented by edges connecting the corresponding nodes. If one

is interested in the shortest path between two places a generic graph algorithm can be

applied. However, when such relations are analyzed by a human instead of an algorithm,

the problem arises to draw the graph. The road map is a drawing itself with predefined

positions of roads and cities, which lies in the nature of things. But when considering a

computer network, the reader might be interested in the structure of the network, rather

than the physical positions of the computers in some server room or office.

This leads to the problem of calculating a drawing (or layout), based on the structural

information provided by the graph itself. Since the concept of a graph can be applied in

many ways, the drawing of graphs is used in various areas within computer science, as

well as in other fields. Common application areas are:

• Software Engineering: Unified Modeling Language Diagrams (UML)

• Database Development: Structured-Entity-Relationship-Model (SERM)

• Automation Engineering: Finite State Machines (FSM)

• Biology: Protein Interaction Networks

The drawing is usually done in the plane, although there exists layouts for three dimen-

sions. However, in the following we focus only on drawings in two dimensions.

Regardless of the application area, the drawing of a graph should be nice to read

and reflect the structure of the graph. Therefore, it is necessary to formulate aesthetic

1

2 CHAPTER 1. INTRODUCTION

criteria, which define a good drawing. The following common properties are proposed in

[Pur97, PAC01] and investigated there during empirical studies:

• Minimize Bends: The number of bends should be minimized.

• Orthogonality: Fix nodes and edges to an orthogonal grid.

• Number of Edge Crossings: Usually less crossings are considered to be better because

it is easier to follow an edge from one node to another.

• Size of the Drawing: The area covered by the layout should be as small as possible.

• Edge Length: The lines used to represent the edges should be as short as possible

but still long enough to allow the nodes to be clearly separated.

• Symmetry: If the graph is symmetric the drawing should also reflect these symme-

tries.

Some of these rules conflict with each other like, e.g., the minimization of edge crossings

and bends in an orthogonal layout. In order to reduce the crossings, sometimes it is

necessary to insert more bends. Furthermore, the problem of crossing minimization is an

NP -hard problem.

Dependent on the application area, some criteria are more important than others.

As a result, different kinds of layouts with different properties have been developed. An

overview about the various layouts can be found in [JM04].

Apart from the different layouts and the induced problems, the applicability of a layout

algorithm depends on two other aspects:

Runtime: In some application areas like, e.g., in bioinformatics, very large datasets have

to be visualized. Therefore, a fast algorithm is preferred to an algorithm, which may

produce a better layout.

Structural Requirements: Some algorithms are only applicable if the graph meets

some condition, like, e.g., planarity (the graph can be drawn without crossings).

If the input does not satisfy these requirements, it has to be modified (in case of

planarity, the graph is planarized).

After this short introduction to graph drawing, we give a brief introduction to force-

directed graph drawing and some previous work. The following chapters require only basic

knowledge in graph theory, thus no introduction is given. Other preliminaries needed are

introduced in the corresponding chapters for reasons of clarity. Since our algorithm makes

use of parallel computation, we introduce the concept of parallel machines in general, and

at the end of this chapter, the objective and basic structure of the thesis is outlined.

1.1. FORCE-DIRECTED GRAPH DRAWING 3

Figure 1.1: Principle of a force-directed layout algorithm.

1.1 Force-Directed Graph Drawing

In this section, the basic principles of the force-directed layout method are presented. Tutte

[Tut63] marks the starting point of both graph drawing in general and the force-directed

layout.

The basic idea of the force-directed layout is to run a physical simulation on a given

drawing of a graph, where each pair of nodes repel each other and edges act like springs

(Figure 1.1). The springs are used to keep adjacent nodes close to each other, whereas the

repulsive forces will unfold the drawing.

The simulation is done by repetitively calculating the forces acting on the nodes and

moving them accordingly. However, the method uses a simplified physical model, because

values like mass, friction, velocity, and acceleration are not taken into account. Instead,

the forces are used directly as a displacement vector at the end of each iteration. Before

going into detail, we make an agreement about the usage of variables, representing a scalar

or a vector, when it comes to forces: F describes an amount of force whereas ~F describes

a force vector.

In each iteration of the simulation, the total force ~Fres(v) for each node v ∈ V has to

be calculated, consisting of repulsive and attractive forces acting on v:

~Fres(v) = ~Frep(v) + ~Fattr(v)

Since both the repulsive and the attractive force function only depend on the distance and

not on the direction of the other node, they can be defined as a scalar function, mapping

the distance to a scalar force value. Regardless of the exact definition of the repulsive

force function Frep, the repulsive force vector for a node v can be obtained by

~Frep(v) =
∑

w∈V \{v}

~pv − ~pw

|~pv − ~pw|
· Frep(|~pv − ~pw|)

and the attractive forces due to all incident edges of v by

~Fattr(v) =
∑

e=(v,w)∈E

~pv − ~pw

|~pv − ~pw|
· Fattr(|~pv − ~pw|)

4 CHAPTER 1. INTRODUCTION

Algorithm 1.1 Force-Directed Layout Algorithm

1: function SpringEmbedder(G, p, λ, imax,∆threshold)

2: i← 0

3: repeat

4: ∆max ← 0

5: for v ∈ V do

6: ~Fres(v)← ~Frep(v) + ~Fattr(v)

7: end for

8: for v ∈ V do

9: ~dv ← λ · ~Fres(v)

10: ∆max ← max(∆max, |~dv|)
11: ~pv ← ~pv + ~dv

12: end for

13: i← i+ 1

14: until ∆max < ∆threshold or i ≥ imax

15: end function

where Fattr is the edge force function. When the force vectors for all nodes are calculated,

the nodes can be moved. Therefore, the force vector is multiplied by a constant λ > 0 and

then added to the current coordinates of the node. The factor λ is called the time step.

~pv := ~pv + λ · ~Fres(v)

This procedure is repeated until a maximum number of iterations imax is done or the

maximum displacement length falls under a given threshold ∆threshold. The objective is to

find a placement at which the nodes are in a state of equilibrium. This state is reached,

when the total force acting on all nodes is zero.

Definition 1.1.1. Given a graph G = (V,E) and a node placement P = {pv ∈ R2 | v ∈
V }, the nodes are in a state of equilibrium iff

∀v ∈ V : |~Fres(v)| = 0

Algorithm 1.1 describes the framework in detail. The running time of Algorithm 1.1

is dominated by the force calculation in line 6, since the rest can obviously be done in

O(|V |). First, the attractive forces induced by the edges can be evaluated in time O(|E|).
It remains the repulsive force calculation. The exact approach would have to consider

every ordered pair of nodes, which requires O(|V |2) time. Thus, the time needed for one

iteration is O(|V |2 + |E|) and the total running time is O(imax · (|V |2 + |E|)). In order

to use the algorithm for calculating layouts for large graphs, the running time has to be

improved in two points:

1.1. FORCE-DIRECTED GRAPH DRAWING 5

Initial Placement

Repulsive Forces Attractive Forces

Move Nodes

Spring Embedder

Figure 1.2: Basic excerpt of a force-directed layout algorithm

1. The time needed for the repulsive force calculation has to become sub-quadratic.

2. The number of iterations needed should be as small as possible.

However, the basic principle all force-directed algorithms share is displayed in Figure 1.2.

In the next chapters we will extend this diagram by adding more steps to it.

Next, the choice of the force function is discussed and some previous work is presented.

First, we introduce the force model of Eades [Ead84]. Let d = |~pu−~pv| denote the distance

between the nodes u and v. The repulsive and attractive force functions are defined there

as

FEades
rep (d) =

cr
d2

and FEades
attr (d) = −ca log d,

where cr and ca are two constants. Fruchterman and Reingold [FR91] introduced a set

of force models and a grid based approach to reduce the complexity of the repulsive force

calculation step. The so called Grid-Variant Algorithm uses a grid of squares and assigns

each node a square. Then the repulsive forces for a node are only computed for nearby

squares. The basic idea is, since most of the repulsive force functions are rapidly decaying

with increasing distance, that the error is small when skipping these. The time needed for

this approximation is O(|V |), assuming the nodes are uniformly distributed over the grid

squares. Besides the force model of Eades, they experimented with two other functions,

starting with

FFR1
rep (d) =

c2

d
and FFR1

attr (d) = −d
2

c
.

Furthermore, they tried

FFR2
rep (d) =

c

d
and FFR2

attr (d) = −d
c
.

6 CHAPTER 1. INTRODUCTION

1

2

3

4

5

1 2 3 4 5

d2 d2 log d d

d log d

log d

Distance between nodes

A
m

ou
nt

of
at

tr
ac

ti
ve

fo
rc

e

(a) Attractive force due to the spring length.

1

2

3

−1

−2

1 2 3 4 5

d2 d2 log d d

d log d

log d

Distance between nodes

A
m

ou
nt

of
at

tr
ac

ti
ve

fo
rc

e
(b) Resulting attractive force due to both spring

and repulsive force.

Figure 1.3: Comparision of the various force functions. In (a) the amount of attractive force by
edge length is shown, whereas in (b) the repulsive force (1/d except Eades with 1/d2) is subtracted.

Hachul’s Fast Mulitpole Mulltilevel Method(FM3) [Hac05] uses basically the same repulsive

force function, whereas the attractive force function can be parametrized with the desired

length de of the edge:

FHachul
rep (d) =

cr
d

and FHachul
attr (d) = −ca · log

d

de
· d2

For the repulsive force calculation, an approximation is used called the Fast Multipole

Method. The basic idea is to approximate the forces due to nodes located far away by

grouping them together and using a power series describing the forces. Since this work is

heavily based on Hachul’s work, especially on his multipole framework, we choose the same

repulsive function. The multipole framework will be dealt with in detail in a later chapter.

The attractive force function is modified, to avoid the need of stabilizing measures:

Frep(d) =
cr
d

and Fattr(d) = −ca · log
d

de
· d

deg(v)

As an example how these functions behave, assume two adjacent nodes are given. De-

pendending on the edge length alone, the amount of attractive force is shown in Figure

1.3(a), whereas (b) displays the resulting attractive force when, additionally, the repulsive

force of the other node is taken into account. The desired edge length of the two last

mentioned functions has been set to 1.0. Clearly visible in (a) is the sign change due to

the use of the logarithm at a distance equal to the desired edge length. When taking the

repulsive forces into account, the problem arises that the amount of attractive forces is

zero when the edge is nearly two times (1.5 times respectivly) longer then the desired edge

1.2. PARALLEL MACHINES 7

length. However, the scenario of two nodes is a simple one. Consider an edge connecting

two large sets of nodes alone, then the edge has to counter the repulsive forces between

the two sets, and not only between the two incident nodes. When a state of equilibrium

is reached, there is no guarantee for complying with the desired edge length, at best the

value acts as guidance. However, the final edge length dependents on the graph structure

and how much repulsive force the edge has to counter.

In order to reduce the number of steps needed during the simulation, two things can be

done. First, the time step is increased as much as possible without affecting the stability.

Increasing the time step results roughly in fewer iterations. Since we are not interested in

what is happening during the simulation, rather than in the result, the simulations should

run as fast as possible, regardless of the errors due to a bigger time step.

The second measure to reduce the number of iterations is a good initial placement for

the nodes. Obviously, a random placement needs more steps than a placement which is

already close to the desired result. This leads to the multilevel method, which generates

multiple graphs G1, . . . , Gm with different resolutions from the original graph G = G0.

Then the layout for the different levels is calculated, starting with the coarsest one Gm.

In each step, the initial placement for Gt is calculated by the positioning of the nodes in

the next coarser level Gt+1.

1.2 Parallel Machines

In this section, an introduction to the concepts of parallel machines is given with special

regards to the ones used in this thesis. First, shared memory machines are introduced,

since they are the underlying concept of modern multicore architectures. Then, the parallel

data concept is presented, which is used in form of the Single-Instruction-Multiple-Data

(SIMD) extensions contained in today’s processors.

Starting with the mainframes in the early 1960’s, the shared memory multiprocessor

system is one of the most important classes of parallel machines. The key property of

these systems is the ability to do implicit communications through shared memory space

with simple read and write operations. The main memory can be used like a pin board,

where one job leaves a note for another one. If the costs for accessing a memory location

is the same for all processors, then the system is called a symmetric multiprocessor (SMP)

system. Usually in an SMP all processors are connected by a bus to the main memory or

other components like IO controllers (see Figure 1.4).

The programming model of this system does not rely on the number of processors.

Instead, a processor is able to handle multiple jobs through time sharing, where each job

gets a specific amount of time assigned to do its work. In general, these jobs are called

threads, where each thread belongs to the owning process. Formally, a process consists

of a shared address space and at least one thread of control [CwAG99]. The first thread

8 CHAPTER 1. INTRODUCTION

Processor 1 Processor 2

System Bus

Main Memory IO Controller

Figure 1.4: Two symmetric multiprocessors and the main memory

is the main (control) thread. If the process has at any time only this one thread it is

called single-threaded. Otherwise, the process is called multi-threaded and the threads

share the address space of the process. Note that threads belonging to different processes

do not share the same memory address space and therefore communication is restricted

to methods referred to as “Inter-Process communication”. Threads can be created at any

point and even one thread can create a new one. If the machine contains multiple physical

processors, then a multi-threaded process (or application) can benefit from it by creating

threads, so the operating system can assign each processor a thread in order to execute

code in parallel, whereas in single-threaded applications, only one thread is available and

therefore only one processor can be used. In order to do work in parallel using threads

some aspects have to be considered.

• Platform (architecture, operating system and thread programming interface)

• Basic primitives for synchronization (and their overhead)

• Parallelization of the algorithm

In this thesis we target the IA-32 and Intel 64 architecture with multiple processors/cores

running Microsoft Windows and/or Unix based operating systems (like Linux, BSD, Mac

OS X). Therefore, we first discuss the available options of thread API’s. Thread pro-

gramming interfaces are usually provided by the operating system itself or an external

library. For example, Microsoft Windows has its own thread API, Linux provides ker-

nel functions but most Unix-like systems have the posix thread library installed, which

provides a unified interface for thread programming for Unix based systems. Other ex-

ternal libraries are Intel Threading Building Blocks, OpenMP, Boost (includes platform

independent thread support), and NVidia’s CUDA for GPUs. Since the algorithm is part

of the Open Graph Drawing Framework (OGDF) [OGD], it is required to run on all of

1.2. PARALLEL MACHINES 9

OGDF’s target platforms. In our case we will use a thread class already implemented in

OGDF, which uses pthreads and the Windows API and continue using these two APIs

when additional functionality is required.

When it comes to execute code in parallel, it is necessary to synchronize it at some

point. The classic example for this is a variable used by two threads at the same time. In

order to change a piece of memory, the system has to load it from the address into a register,

do a computation, and store it back to memory. Consider two threads, incrementing an

integer with a value of zero. Obviously, the wanted result is two. When the second thread

loads the integer before the first thread has stored it, they both will increment it in their

register, and store it back to the main memory. As a result, the memory location contains

the value of the last storing thread, thus, the resulting value is one.

In order to avoid accessing a shared resource at the same time, a synchronization

primitive called critical section (sometimes referred to as mutex or lock) can be used. A

critical section marks a piece of code that can only be executed by one thread at the same

time. In the previous example, the problem could be solved by letting a thread enter the

critical section before using the integer, and leaving it when finished, thereby guaranteeing

exclusive access to the integer when incrementing it.

Another useful primitive is the condition variable. Basically, a thread can either wait

for the condition or trigger it, in order to signal other threads to continue. In this thesis the

two primitives are not used directly; instead they are an essential part of a mechanism to

synchronize threads called a barrier. A barrier marks a kind of checkpoint all threads have

to reach before they are allowed to continue. The only rule to obey, when using barriers,

is that each thread must be able to reach this checkpoint. For example, if a barrier is

used inside an if-then-else statement, all threads have to either use the barrier or not.

Otherwise some threads are waiting for an event that will never occur. Apart from this

rule, barriers represent an easy way to synchronize threads, especially when they execute

the same code just with different parameters.

Furthermore, we introduce another concept, the data parallel processing. Assume an

array of data elements is given and the same instruction has to be executed for each

element. Usually the elements are processed sequentially. In older computer systems,

fetching an instruction was very expensive and therefore the concept of single instruction

multiple data (SIMD) arised. An SIMD capable processor can perform one instruction on

a fixed number of elements in parallel and therefore reducing the amount of instructions.

This is still a common concept in modern CPUs and GPUs (graphics processing units)

and very useful when it comes to vector calculations.

In order to benefit from an SIMD capable processor, Intel’s SSE (Streaming SIMD

Extensions) are used via intrinsics. Intrinsics are a lot more comfortable than using SSE

in assembler, since an instruction can be used like a C-function and does not require any

inline assembler blocks. Furthermore, the user is relieved from managing the physical

10 CHAPTER 1. INTRODUCTION

1 // two 16 byte a l i gned po in t e r
2 double∗ ptr1 , ptr2 ;
3 // two 128 b i t r e g i s t e r
4 m128d reg1 , reg2 ;
5 // load two double p r e c i s i o n va lue s
6 reg1 = mm load pd(ptr1) ;
7 // reg1 conta in s ptr1 [0] and ptr1 [1]
8 reg2 = mm load pd(ptr2) ;
9 // reg2 conta in s ptr2 [0] and ptr2 [1]

10 reg1 = mm mul pd(reg1 , reg2) ;
11 // reg1 conta in s ptr1 [0] ∗ ptr2 [0] and ptr1 [1] ∗ ptr2 [1]
12 mm store pd (ptr1 , reg1) ;
13 // ptr [0] := ptr1 [0] ∗ ptr2 [0]
14 // ptr [1] := ptr1 [1] ∗ ptr2 [1]

Listing 1.1: Example for using Intel’s SSE to multiply double precision values

available registers, because a 128-bit register can be introduced like a standard variable

and the compiler will deal with the register assignment. Listing 1.1 shows a small example

how to load, multiply, and store two double precision floating point numbers in parallel.

The _mm_load_pd statement loads two double values into a register; the address must be

aligned on a 16-byte boundary. After loading a second pair into the other register the

pairs are multiplied by _mm_mul_pd and the result is stored in the first register. Finally

_mm_store_pd writes the result pair back to main memory. For a complete reference of

all intrinsics available see for example [Int08a, Int08b].

1.3 Objectives and Outline

The objective of this thesis is to engineer the fast multipole multilevel method for multicore

and SIMD architectures, based on the work of Hachul [Hac05]. Instead of optimizing the

original implementation, a new algorithm has been implemented which follows the basic

ideas of the original one.

First, we introduce in Chapter 2 the Fast Multipole Method, originally invented by

Greengard [GR87] and improved by Hachul [Hac05, HJ04]. Furthermore, we describe

a simple way to accelerate all calculations involving complex numbers by using Intel’s

Streaming SIMD Extensions.

In Chapter 3, a new algorithm for constructing a quadtree is developed, which is more

optimized for speed rather than having a provable good theoretic running time for all

possible distribution of points. Instead of using a traditional top-down approach, a bottom-

1.3. OBJECTIVES AND OUTLINE 11

up construction is presented which is quite technical, but results in a fast implementation.

Furthermore, we describe an efficient memory layout for the data structure.

The presented quadtree construction lacks an ability, which is required for apply-

ing the Fast Multipole Method. Thus, another problem of computational geometry, the

Well-Separated Pair Decomposition (WSPD) is introduced in Chapter 4 and successfully

applied.

All previously described parts are then used in Chapter 5, where a force-directed layout

algorithm named the Fast Multipole Embedder (FME) is developed. In order to benefit

from multicore architectures, a parallel version of the algorithm is described as well.

The concept of multilevel layout algorithms is used in Chapter 6 together with the

FME to obtain the Fast Multipole Multilevel Embedder (FMME). Figure 1.5 shows how the

aforementioned chapters are used to describe the different parts inside the Fast Multipole

Multilevel Embedder.

The algorithm has been implemented in C++ as part of the Open Graph Drawing

Framework [OGD]. In Chapter 7, we present the practical runtime for various benchmark

graphs on a Dual Socket Intel Xeon E5430 system with eight cores and compare it with

the original implementation and a graphics card based implementation by Godiyal et al.

[GHGH09]. Furthermore, the resulting layouts are given at the end of the chapter.

The last chapter, summarizes the results of this thesis and we give some ideas what

can be done in the future.

12 CHAPTER 1. INTRODUCTION

Create Multilevels G1, . . . , Gm

Initial Placement for Level i

Reduced Quadtree

Well-separated Pair Decomposition

Fast Multipole Method

Attractive Forces

Move Nodes

Fast Multipole Embedder

Fast Multipole Multilevel Embedder

Figure 1.5: Basic excerpt of our Fast Multipole Multilevel Method

Chapter 2

The Fast Multipole Method

In this chapter, we describe the Fast Multipole Method, its applications, and finally some

implementation details. The method was invented by Greengard and Rokhlin [GR87]

and is used to approximate the forces acting in an N-Body system with gravitational or

coulombic forces.

In an N-body system, a set of n bodies repel or attract each other by a given force

function. The task is to calculate the acting forces on each of the objects or at some other

specified positions. Then, e.g., the forces can be applied in order to find the trajectory for

each body in a given time interval. These simulations have a wide range of applications

and can be used in many different ways. In our case, the bodies are the graph nodes and

we want to evaluate the forces between them during each iteration of the force-directed

layout algorithm.

The arising problem is the time needed to evaluate the functions. Assume n particles

are given and we want to calculate the forces acting on each particle due to the other n−1

particles. Then the naive approach has a running time of O(n2), because each ordered

pair of particles would be considered. The running time is obviously not practical for large

n.

In the following, we will first give two examples of other application areas, starting

with gravitational systems, the base for the simulation of celestial bodies. For the physical

background, we refer the reader to [HRW05]. In a gravitational system, two bodies with

mass mi and mj attract each other by an amount of force

FG
ij = γ

mimj

|pi − pj |2
,

where γ is the gravitational constant. For example, the Millennium Simulation Project

[mil] at the Max-Planck-Institut für Astrophysik in Garchingen, Germany, used more

than ten billion particles in their simulation, which kept the supercomputers busy for one

month. The objective was to simulate the forming of galaxies to gain more knowledge how

these formations were created from the early beginnings of the universe.

13

14 CHAPTER 2. THE FAST MULTIPOLE METHOD

Another application area is the simulation of electrostatic fields created by charged

particles. Given two particles with charge qi and qj , the amount of electrical force acting

between them due to their charge is defined by the law of Coulomb as

FC
ij =

1
4πε0

qiqj
|pi − pj |2

,

where qi is the charge of particle i (respectively j) and ε0 is the permittivity.

Both force functions are of the form 1/d2 and therefore rapidly decaying when the

distance d between the objects increases. However, even at large distances this force

cannot be ignored, because, e.g., a large cluster of particles can create a significant force

even over a long distance. The difference between the two functions is, of course, the

direction of the force vector. In a gravitational system two bodies attract each other,

whereas in a coulombic system this is only the case when the two particles have a positive

and a negative charge.

2.1 Force, Potential Fields and Energy

In the following, we use terms derived from electrostatics. However in this thesis the

Fast Multipole Method is used to serve our purposes in graph drawing and therefore we

will deviate from the principles of physics. Since we are interested in repelling forces to

simulate the repulsion between nodes, we will use a force function similar to the coulombic

version and assume the charges are both positive. Like in [Hac05] we choose Fij for two

particles at distance d as

Fij(d) =
qiqj
d

and the force vector respectively as

~Fij = Fij(|pi − pj |) ·
pi − pj

|pi − pj |
.

Given one particle i, the electric field induced by this particle is

~Ei(x) =
qi · (x− pi)
|x− pi|2

Note that ~Ei is a vector field and it depends only on the creating particle. To obtain the

forces acting on a particle due to the electric field of another particle, we use the relation

between the electric field and the force:

~Fij = qi · ~Ej(pi).

Given n particles, since we sum up the forces, we can sum up the electric fields to obtain

one vector field for all particles.

~E(x) =
n∑

i=1

~Ei(x)

2.1. FORCE, POTENTIAL FIELDS AND ENERGY 15

The idea of the Fast Multipole Method and other approximation methods is to divide the

sum into two parts:

~E = ~Efar + ~Enear

The first part called ~Efar is the force field due to particles located far enough away from

the point of analyticity. The Fast Multipole Method is used to approximate that function.

On the other hand ~Enear describes the forces induced by particles close to the point of

analyticity, which are evaluated directly. Therefore, in our application we have to deter-

mine for each graph node a set of near and far nodes. However, we first present the Fast

Multipole Method which is used to approximate ~Efar.

In the following, a small introduction to potential energy and fields is given. Everything

is based on our force model and not on the law of Coulomb. See [HRW05] for a more

detailed introduction to this matter.

Assume a fixed particle i with charge qi is given and we can move a test particle j

with charge qj to different positions relative to the first particle. At first the test charge is

located at distance d0 from i. Now we move the test charge j towards the other particle

to a distance of d. Then the potential energy of the test charge increases by the amount

of work needed to move it against the repelling force.

Vij = −
∫ d0

d
Fij(s)ds = qi · qj · (log(d)− log(d0))

Since the test particle has a charge itself, the potential energy between two particles

depends on both particles. However, like the electrical field, the potential field of a particle

depends only on the particle itself. Therefore we define the potential field of a particle

like in [Hac05] as

Φi(x) = −qi · log(|x− pi|).

This leads to the simple rule: When moving against the electrical field, the potential

energy increases, when moving with the electrical field the potential energy decreases.

Figure 2.1 shows an example of two particles with the same charge, their electric force

field, and the resulting potential field.

To prepare for the multipole expansion theorem in the next section, we refer from now

on to a point (x, y) ∈ R2 as the complex number z = (x + iy) ∈ C and introduce the

complex function E , like in [Hac05], as the potential energy function due to a charged

particle i located at pi with charge qi:

E(z) = qi · log(z − pi)

16 CHAPTER 2. THE FAST MULTIPOLE METHOD

Figure 2.1: Example of two particles with the same charge, the induced force field (arrows) and
the potential field (contours)

2.2 The Multipole Framework

This section presents the multipole framework presented in [Hac05]. All lemmata and

theorems are taken from [Hac05] and are presented without proof or error bounds; for

details see [Hac05] and [GR87].

Lemma 2.2.1 (Potential Field of a Charged Particle). Given a particle ci with charge

qi located at point pi ∈ C and an arbitary point z0 ∈ C. Then, for any z ∈ C outside the

circle centered at z0 with radius |pi − z0| the potential energy at point z due to particle ci
is given by

Ei(z) = qi · log(z − pi) = qi

(
log(z − z0)−

∞∑
k=1

(pi − z0)k

k · (z − z0)k

)
Theroem 2.2.1 (Multipole Expansion Theorem). Suppose that m charged particles

c1, . . . , cm with charges q1, . . . , qm are located at points p1, . . . , pm inside a circle of radius

r with center z0. Then, for any z ∈ C with |z − z0| > r, the potential energy at point z

induced by the m charged particles is given by

E(z) = a0 · log(z − z0) +
∞∑

k=1

ak

(z − z0)k
(2.1)

where

a0 =
m∑

i=1

qi and ak =
m∑

i=1

−qi(pi − z0)k

k

2.2. THE MULTIPOLE FRAMEWORK 17

Assume we know the coefficients a0, . . ., then we get a function which describes the po-

tential field outside the circle and we can evaluate it in time which is dependent on the

number of coefficients and not on the number of particles inside the circle. This leads to

the idea to truncate the Laurrent series in (2.1) and only use the first p terms, resulting

in the so called p-term multipole expansion

Mp
z0

(z) = a0 · log(z − z0) +
p∑

k=1

ak

(z − z0)k
(2.2)

We are now able to approximate the potential field outside a circle containing multiple

particles.

As an example consider a set of n points inside a circle with radius r centered at z0
and we want to evaluate the potential field of these particles at m points outside the circle.

The direct evaluation of the potential field function has to be evaluated m times and each

evaluation takes time O(n). Therefore the total time needed is O(n ·m). Whereas when

using a p-term multipole expansion, we need time O(n ·p) to compute the p+1 coefficients

for all n points and evaluating the expansion m times takes O(m · p), which results in a

total running time of O((n+m) · p). The next lemma will give us the ability to shift the

center of a multipole expansion.

Lemma 2.2.2 (Translation of a Multipole Expansion). Suppose that E(z) = a0 ·
log(z − z0) +

∑∞
k=1

ak

(z−z0)k is a multipole expansion of the potential field due to a set

of charged particles that are located inside a circle of radius r and center z0. Then, for

any z outside a circle centered at z1 with radius r + |z0 − z1|, the potential field induced

by these particles is given by

E(z) = a0 · log(z − z1) +
∞∑
l=1

bl
(z − z1)l

where the shifted coefficients are

bl =
−a0(z0 − z1)l

l
+

l∑
k=1

ak(z0 − z1)l−k

(
l − 1
k − 1

)
Given two p-term multipole expansions Mp

z1 ,M
p
z2 and their coefficients centered at different

points z1, z2, we are able to translate the centers to a common point and add the coefficients

to obtain one multipole expansion approximating the total potential field. Multipole

expansions offer a powerful tool for approximating the potential field function outside a

circle. However, in the following the concept of local expansions is introduced. In contrast

to a multipole expansion, a local expansion is used to approximate the function inside

the circle due to particles located outside the circle. We begin with the conversion of a

multipole expansion into a local expansion.

18 CHAPTER 2. THE FAST MULTIPOLE METHOD

Lemma 2.2.3 (Conversion of a Multipole Expansion into a Local Expansion).

Suppose that a set of charged particles is located inside a circle centered at z0 of radius r

and the corresponding multipole expansion is given by E(z) = a0 ·log(z−z0)+
∑∞

k=1
ak

(z−z0)k .

Furthermore, z1 is a point with |z1− z0| > 2r. Then, inside a circle of radius r and center

z1 the potential field is given by the power series

E(z) =
∞∑
l=0

bl · (z − z1)l (2.3)

with the converted coefficients

b0 = a0 · log(z1 − z0) +
∞∑
l=1

ak

(z1 − z0)k
and

bl =
(−1)l+1a0

(z1 − z0)l · l +
1

(z0 − z1)l

∞∑
k=1

ak

(z1 − z0)k

(
l + k − 1
k − 1

)
for l > 0

Like the multipole expansion the power series in (2.3) is truncated and named p-term local

expansion:

Lp
z0

(z) =
p∑

k=0

ak(z − z0)k (2.4)

We revisit and extend the example from the multipole expansion: Assume we have two

p-term multipole expansions centered at z1 and z2, each approximating the potential field

for n1 (respectivly n2) particles, and we want to evaluate the potential field at m points

contained in a circle centered at z0 far enough away. Then, we can convert each multipole

expansion to a local expansion centered at z0. It is easy to see that two local expansions

with the same center can be added by adding their coefficients in order to obtain one local

expansion describing the potential field inside the circle due to the two sets of particles.

The last remaining tool required is the translation of a local expansion.

Lemma 2.2.4 (Translation of a Local Expansion). Given a local expansion E(z) =∑∞
k=0 bk · (z − z0)k that describes the potential energy inside a circle centered at z0 with

radius r due to a set of particles that are located outside the circle. Then, for any z inside

a circle centered at z1 with |z1 − z0| < r and radius r′ = r − |z1 − z0|, the potential field

induced by these particles is given by

E(z) =
∞∑
l=0

bl(z − z1)l,

where the translated coefficients are

bl =
∞∑

k=l

ak(z1 − z0)k−l

(
k

l

)
.

2.2. THE MULTIPOLE FRAMEWORK 19

The lemma enables the shifting of the center of a local expansion, but the translation is

limited by the circle of the source expansion.

Since we are not interested in the potential field, but in the force vector field, the

derivate of the potential field is calculated. For the p-term multipole expansion from

Equation 2.2 we obtain

E ′(z) =
a0

z − z0
+
∞∑

k=1

k · ak

(z − zo)k+1

and for the p-term local expansion (Equation 2.3)

E ′(z) =
∞∑

k=1

ak · k · (z − z0)k−1

Like in [GR87] the force vector field can be obtained by evaluating the gradient at z:

~E(x) = −(Re(E ′(z)),−Im(E ′(z))) where z = (x1 + x2i) ∈ C

As a result, the multipole method enables the approximation of the force field ~Ei(x). We

summarize the most important parts:

• The potential field is the complex function E(z).

• A multipole expansion is used to describe the potential outside a given circle due to

particles inside the circle.

• A local expansion is used to describe the potential inside a given circle due to particles

outside the circle.

• Both the multipole and local expansions center can be shifted.

• A p-term expansion is used as an approximation for E(z).

• The force field can be obtained by using the derivate of a local expansion.

Furthermore the runtime needed for the different operations on a p-term expansion are as

follows:

• Computing the p-term multipole coefficients for a point takes time O(p).

• Translating p-term multipole or local expansions takes O(p2).

• Conversion of a p-term multipole in a p-term local expansion takes O(p2).

• Evaluating a p-term multipole or local expansion derivate takes time O(p).

For a constant number of coefficients, the running time for each operation is O(1). It

remains to find a partitioning of the particles in a way, such that we can apply the multipole

method. Most multipole methods, using multipole and local expansions, follow a basic

principle consisting of three major steps:

20 CHAPTER 2. THE FAST MULTIPOLE METHOD

1. For each partition, the multipole coefficients for the particles contained in the par-

tition have to be calculated.

2. Considering one partition, the local coefficients are obtained by finding a set of

partitions, which are far enough away in order to apply Lemma 2.2.3.

3. Evaluate for each point the local expansion of its partition(s).

Both [GR87] and [Hac05] use a spatial space decomposition data structure called the

quadtree as a partitioning. The next two chapters deal with this problem in detail, and

therefore we will first discuss some implementation aspects of the mulitpole framework

which are independent of the underlying partitioning.

2.3 Complex Arithmetic with SSE

In order to use Intel’s Streaming SIMD Extensions to accelerate the computation required

when using the Fast Multipole Method, the arithmetic of complex numbers has to be trans-

lated into SSE Intrinsics. Therefore we implemented a C++ class, called ComplexDouble

for complex numbers, which depends on the compiler ability to inline functions. Basically,

this class is used as wrapper for SSE and does not store any persistent data for a complex

number. Instead, an instance has a reference to a 128-bit register, where the real and

imaginary part is stored during a computation.

Listing 2.1 shows the basic structure of the class with the implementation of the con-

structors, the addition and multiplication operators, and a function to store the value

back to memory. The first constructor is used to load two 16-byte aligned double preci-

sion values into the 128-bit register, where the lower 64 bit represent the real part. To

load the real and imaginary part from standard variables the second constructor can be

used. After initializing an instance, it can be used for normal computation. This allows us

to write code, which executes SSE intrinsics and still benefits from the comfortable C++’s

operator overloading mechanism.

As an example for motivating the usefulness of such a class, Listing 2.2 shows the

implementation of the rather simple function fast_multipole_p2m, which computes the

multipole coefficients for a point charge and adds them to an existing set of coefficients

using the multipole expansion theorem. Considering the multiplication of two complex

numbers alone, it is obvious that using such a wrapper class results in cleaner and less

error-prone code in non trivial computations.

2.3. COMPLEX ARITHMETIC WITH SSE 21

1 class ComplexDouble
2 {
3 public :
4 m128d reg ;
5
6 inl ine ComplexDouble (m128d r)
7 {
8 reg = r ;
9 } ;

10
11 inl ine ComplexDouble (double∗ ptr)
12 {
13 reg = mm load pd(ptr) ;
14 } ;
15
16 inl ine ComplexDouble (double x , double y)
17 {
18 reg = mm setr pd ((x) , (y)) ;
19 } ;
20
21 inl ine ComplexDouble operator+(const ComplexDouble& other) const

22 {
23 return ComplexDouble (mm add pd(reg , other . reg)) ;
24 } ;
25
26 inl ine void s t o r e (double∗ ptr) const

27 {
28 mm store pd (ptr , reg) ;
29 } ;
30
31 inl ine ComplexDouble operator ∗(const ComplexDouble& other) const

32 {
33 m128d b t = mm shuffle pd (other . reg , other . reg ,

MM SHUFFLE2(0 , 1)) ;
34 m128d l e f t = mm mul pd(reg , other . reg) ;
35 m128d r i g h t = mm mul pd(reg , b t) ;
36 l e f t = mm mul pd(l e f t , mm setr pd (1 . 0 , −1.0)) ;
37 return ComplexDouble (mm hadd pd(l e f t , r i g h t)) ;
38 } ;
39
40 . . .
41 }

Listing 2.1: Parts of the implementation of the wrapper class for complex number arithmetic
using SSE Intrinsics.

22 CHAPTER 2. THE FAST MULTIPOLE METHOD

1 void f a s t mu l t ipo l e p2m (double∗ c o e f f ,
2 u i n t 3 2 numCoeff ,
3 f loat centerX ,
4 f loat centerY ,
5 f loat x ,
6 f loat y ,
7 f loat q)
8 {
9 // a0 += q i

10 c o e f f [0] += q ;
11 // a 1 . .m;
12 ComplexDouble ak ;
13 // p − z0
14 ComplexDouble de l t a (ComplexDouble (x , y) − ComplexDouble (centerX ,

centerY)) ;
15 // (p − z0) ˆk
16 ComplexDouble d e l t a k (d e l t a) ;
17 for (u i n t 3 2 k=1; k<numCoeff ; k++)
18 {
19 // load ak from the c o e f f c i e n t array
20 ak . load (c o e f f +(k<<1)) ;
21 // add the c o e f f i c i e n t (−q (p − z0) ˆk) / k f o r t h i s p a r t i c l e
22 ak −= d e l t a k ∗ ((double) q /(double) k) ;
23 // s t o r e the value back
24 ak . s t o r e (c o e f f +(k<<1)) ;
25 // next power o f (p − z0)
26 d e l t a k ∗= d e l t a ;
27 } ;
28 } ;

Listing 2.2: Implementation of the function which is used to compute the multipole coefficients
for a point charge.

Chapter 3

The Quadtree

First, we will give a brief introduction to quadtrees in general and define some terms for

later use. Then we present an algorithm to construct a reduced quadtree for points located

on an integer grid. Unlike other approaches, our algorithm can handle very large grids,

like for example 232 × 232, to exploit the fact that the bit representation of the integer

coordinates can be used for construction. The running time of the algorithm is O(n log n)

for a fixed grid size. The algorithm depends on the distribution of the points, because it is

required that only a constant number of points share the same grid position. Otherwise,

the algorithm will still produce a valid result and achieve the given runtime, but the overall

performance of the force directed algorithm is no longer sub-quadratic.

3.1 Preliminaries

The quadtree belongs to the family of spatial-space decomposition data structures and has

a wide range of applications. In our application we want to decompose a set of points in

the plane. These types of quadtrees are called Point-Region Quadtrees (PR-Quadtrees).

The basic idea is to recursively subdividing a square into four equal sized sub-squares until

a special condition is met. Since in literature many different terms exist for the same type

of quadtree, we will stick to the ones defined [Hac05]. In the following a graph node is

referred to as a point to avoid confusing graph nodes and tree nodes. However, we will

first introduce a type of quadtree that splits each square until a given depth is reached,

regardless of any points.

Definition 3.1.1 (Truncated Quadtree). The quadtree which results in recursively sub-

dividing a square into four sub-squares until depth D is reached, is called a truncated

quadtree with depth D.

It is easy to see that the leaves of such a quadtree form a regular 2D × 2D grid. Suppose,

we split a square with size 2D and a set of n points (x1, y1), . . . , (xn, yn) is given, then

23

24 CHAPTER 3. THE QUADTREE

we can assign each point a grid coordinate (x′, y′) ∈ {0 . . . 2D − 1} × {0 . . . 2D − 1} and

therefore a leaf in the truncated quadtree. First the bounding box (xmin, ymin, xmax, ymax)

is calculated by iterating over all points. Then we set lbb = max{xmax−xmin, ymax− ymin}
to the longest side length. Finally, we translate and scale each point, so it fits on the grid:(

p′x
p′y

)
=

⌊(
px − xmin

py − ymin

)
· 2D − 1

lbb

⌋

Obviously, this can be done in time O(n) for all points. Note, when point coordinates

are given in floating point representation, this affine transformation is not that simple,

because of precision problems due to the fact that floating points do not form a regular

grid. In practice, it is sufficient to use a 32-bit regular grid for 32-bit floating points,

because in our application all points repulse each other, unlike in other areas like for

example gravitational simulations, where particles will form clusters. Since a truncated

quadtree of depth D contains 4D nodes, it is not practical for D = 32. Instead another

type of quadtree is used, whose node count is linear in the number of points.

Definition 3.1.2 (Reduced Quadtree). Given a set of n distinct points located on a

grid such that pi ∈ {0, . . . , 2D − 1} × {0, . . . , 2D − 1} for a constant D ∈ N. The quadtree

T = (V,E) which results from splitting each node until exactly one point is contained

in each leaf, and then replacing each degenerated path P = {v1, . . . , vk} where the nodes

v1, . . . , vk−1 only have one child with an edge (v1, vk), is called a reduced quadtree.

Instead of reproving some important properties of a reduced quadtree, we refer the reader

to [Hac05] for details and get:

• Each inner node of a reduced quadtree has at least two children and therefore con-

tains at least two points in its subtree.

• Given n points, the reduced quadtree T = (V,E) contains 4
3n − 1

3 ≤ |V | ≤ 2n − 1

nodes, which is linearly bounded by the number of points.

Furthermore, we can construct a reduced quadtree from a truncated quadtree by deleting

recursively all empty subtrees, and then removing all inner nodes with only one child by

assigning the child to its grandparent. The result is a quadtree, where all leaves contain

at least one point and all inner nodes have at least two children. For later use we define

the level of a node.

Definition 3.1.3 (Level of a Node). Given a node v ∈ T of a truncated quadtree, the

level(v) is defined as the distance from the leaf level. Therefore the root has level D − 1

and all leaves have level 0.

Note that the level of a node in a reduced quadtree is based on the corresponding node

of the truncated quadtree. Suppose v is a node in the truncated quadtree, and u is

3.1. PRELIMINARIES 25

0 1 2 3

0

1

2

3

4

(a) Morton Order

0 1 2 3

0

1

2

3

4

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

(b) Morton Numbers

00|00 00|01

00|10 00|11

01|00 01|01

01|10 01|11

10|00 10|01

10|10 10|11

11|00 11|01

11|10 11|11

(c) Binary Representation

Figure 3.1: Morton order on a 4× 4 grid (a) and the corresponding decimal morton numbers (b)
and binary representation (c).

the parent of v, then obviously level(u) = level(v) + 1, whereas in a reduced quadtree

level(u) ≥ level(v) + 1 holds. Unlike [Hac05], we do not construct a truncated quadtree as

part of the construction process. Instead we compute for each point the path in this tree

to construct the reduced quadtree.

Therefore, we introduce the concept of space filling curves. Especially the morton

order, sometimes also referred to as Z-order or DFS -order. Figure 3.1 shows the principle

of the morton order on a 4 × 4 grid. Basically a space filling curve describes a principle,

how to map a point from the plane (or from higher dimensions) to a one dimensional

interval. In our case we map a point on a 2D × 2D grid to an integer in the range of

{0..4D − 1}. We refer to this number as the morton number of the point. There exist a

lot of other space filling curves. However, we use the morton order, because the morton

number can be easily calculated by alternately taking the bits of x and y from the most

significant to the least significant bit [BET93].

x
y

x + 2l

y + 2l

x + 2l+1

y + 2l+1

yl = 0

xl = 0

yl = 0

xl = 1

yl = 1

xl = 0

yl = 1

xl = 1

Figure 3.2: A subdivision of a quadtree cell at level l+ 1 with coordinates (cx, cy) at the bottom
left and size 2l+1; xi and yi denote the i-th bit of x and y respectively, where x1 is the least
significant bit.

26 CHAPTER 3. THE QUADTREE

0 . . . 15

0 . . . 3

00

4 . . . 7

01

4 = 01|00

00

5 = 01|01

01

6 = 01|10

10

7 = 01|11

11

8 . . . 11

10

12 . . . 15

11

Figure 3.3: The path from the root to the leaf in the truncated quadtree described by the morton
numbers 4..7. For each level two bits are required.

Definition 3.1.4 (Calculating the Morton Number). Let p be a point with D-bit in-

teger coordinates (x, y) ∈ {0 . . . 2D − 1} × {0 . . . 2D − 1} and let xi be the i-th bit of x

(analogue yi). Then the morton number m with 2D bits is calculated by interleaving the

bits of x and y:

m := yD, xD, . . . , y1, x1

Like in [Gar82] and [BET93], the morton number describes for each grid cell the path

from the root to the leaf in our truncated tree with exactly two bits for each level of the

tree (see Figure 3.2).

Suppose we have given a point set, then we can calculate for each point the morton

number in time O(D). We can sort the points by their morton numbers in time O(n log n)

(assuming comparing two morton numbers takes constant time). Then the points form the

same sequence as if they would be discovered in an inorder traversal of the tree. As stated

above the morton number describes the path in the truncated quadtree. Suppose, we

have given two points p, q and their morton numbers, comparing the bits and determining

the index of the most significant bit that differs enables the computation of the level of

their common ancestors in the truncated quadtree. For example, assume that the 5 most

significant bits are equal and the sixth bit differs, then the first b5/2c = 2 nodes (excluding

the root) are common ancestors of p and q (see Figure 3.4). We define the lowest common

ancestor level of p and q as follows:

Definition 3.1.5 (Lowest Common Ancestor (LCA)). Given two points p and q on

a 2D × 2D grid. The root of the smallest subtree containing p and q is called the lowest

3.2. QUADTREE CONSTRUCTION 27

root

b

01

LCA(p, q)

10

b

10

m(p) = 01|10|10|01
01

b

11

m(q) = 01|10|11|01
01

Figure 3.4: Example for two points p = (9, 6) and q = (11, 6) and their morton numbers (105
and 109) on a 16× 16 grid

common ancestor LCA(p, q). The level of this node is referred to as LCAL(p, q). By

calculating the morton numbers m(p) and m(q) of p and q, LCAL(p,q) can be obtained by

LCAL(p, q) =
⌊

msb(m(p)⊗m(q))
2

⌋
+ 1,

where msb denotes the index of the most significant bit and ⊗ the bitwise XOR.

The bitwise XOR of the two morton numbers sets all bits that differ to 1 and all equal

bits to 0. Therefore, the index of the most significant bit of this sequence is the first place

where the two morton numbers differ. This needs to be divided by two because we have

two bits for each level, and incremented by one to receive the index of the first equal 2-bit

block.

3.2 Quadtree Construction

Now, we have all tools to construct a reduced quadtree from the information provided by

LCAL. Listing 3.1 shows the main algorithm. First, for each point the morton number

mi is computed, and then the points are sorted by ascending morton numbers. Since the

morton order defines the order of the leaves in the truncated quadtree, it also defines the

order in the reduced quadtree. The basic idea is to iterate over all points and to construct

the tree bottom-up (see Algorithm 3.2). Suppose three consecutive points pk−1, pk, pk+1

are given and we have already constructed a valid reduced quadtree for p1 to pk−1. Two

cases can arise when comparing LCA(pk−1, pk) and LCAL(pk, pk+1).

28 CHAPTER 3. THE QUADTREE

Algorithm 3.1 Main Quadtree Construction Function
Input: point sequence P = {p1, . . . , pk}
Global: point index k

Output: root of reduced quadtree

1: function buildTree

2: for i← 1, .., n do

3: m[i]← computeMortonNr(pi)

4: end for

5: sortPointsByMortonNr(P)

6: k ← 1

7: return buildTreeUntil(LCAL(1, n) + 1)

8: end function

Algorithm 3.2 Recursive Bottom-Up Construction
Input: point sequence p1, . . . , pk sorted by morton number

Global: current point index k

Output: root v of subtree with level < maxLevel

1: function buildTreeUntil(maxLevel)

2: v ← newLeaf(pk)

3: k ← k + 1

4: while k ≤ n ∧ LCAL(pk−1, pk) < maxLevel do

5: Lleft = LCAL(pk−1, pk)

6: Lright = LCAL(pk, pk+1)

7: if Lleft > Lright then

8: w ←buildTreeUntil(Lleft) // Case 2

9: else

10: w ← newLeaf(pk) // Case 1

11: k ← k + 1

12: end if

13: v ←merge(v, w, Lleft)

14: end while

15: return v

16: end function

3.2. QUADTREE CONSTRUCTION 29

b

LCA(pk, pk+1)

LCA(pk−1, pk)

p1 . . . pk−1

pk
pk+1 . . . pn

(a) First Case

b

LCA(pk−1, pk)

p1 . . . pk−1

LCA(pk, pk+1)

recursive call

pk
pk+1 . . . pn

(b) Second Case

Figure 3.5: The two cases for point pk: (a) the point can be merged in our current subtree, (b)
the right subtree has to be constructed first by a recursive call before merging it.

In the first case (Figure 3.5(a)), when LCAL(pk−1, pk) ≤ LCAL(pk, pk+1), then the

node LCA(pk−1, pk) can be created before LCA(pk, pk+1). Hence pk can be merged into

the current subtree by either creating a new common ancestor for the current root v and

the leaf containing pk or appending the leaf to v (Algorithm 3.3). Note that the parent of

pk cannot be in the already constructed quadtree on a lower level than the current root.

Otherwise, it becomes clear that this potential parent has to be a common ancestor of

pk−1 and pk, because the points are sorted, and the current root is a common ancestor of

pk−1 and one of its predecessors. However, the algorithm has visited pk−1 before and then

the second case would have been applied.

In the second case LCAL(pk−1, pk) > LCAL(pk, pk+1) holds (see Figure 3.5(b)), the

subtree containing pk and pk+1 has to be constructed first, since their common ancestor

is on a lower level than the common ancestor of the current root and the leaf of pk. We

start a recursive call to construct the subtree starting with pk until the tree is not higher

than our current root. Then we can merge the root of this subtree with our current root

by calling merge to check if the result of the recursive call is either a sibling or a child of

our current root.

Lemma 3.2.1. Given n distinct points on a {0, . . . , 2D − 1} × {0, . . . , 2D − 1} grid with

fixed D, then Algorithm 3.1 constructs a reduced quadtree in time O(n log n).

Proof. As stated above the interleaving of bits for calculating the morton number of two

integer coordinates can be done in constant time for a fixed bitlength. Sorting takes

O(n log n) time. It remains to show the time needed by the recursive construction. First,

the subroutine merge takes O(1). Note, each recursive call to BuiltTreeUntil creates

at least one leaf and increments the point index k by one. It follows that in each iteration

30 CHAPTER 3. THE QUADTREE

Algorithm 3.3 Recursive Bottom-Up Construction Merge
Input: Two nodes a, b which are either siblings or a is the parent of b, level of their

common ancestor

Output: Common ancestor of a and b

1: function merge(a, b,LCALab)

2: if LCALab = level(a) then

3: a.appendChild(b)

4: return a

5: else

6: c← newNodeWithChildren(a, b)

7: level(c)← LCALab

8: return c

9: end if

10: end function

inside the while loop, k is incremented. Since there are only n points, the running time

for BuildTreeUntil is linear.

Since the level of a reduced quadtree node v, referred to as level(v), is based on the

level in the truncated quadtree, it can be used to determine the size of the cell and, in

combination with the morton number of a point contained in v, to compute the center of

the cell. Given a node v, the size is obtained by

size(v) = 2level(v) · lbb
2D − 1

.

We can calculate the center of a quadtree cell from the level and the morton number of any

point inside the cell by taking the first 2 · level(v) bits (which are the same for all points

inside the cell), and reverse the interleaving of bits. As a result we get the bottom-left

coordinate (x′, y′) of the cell on the grid. Hence, the center is computed by transforming

the grid coordinates and adding half of the previously computed side length:

center(v) =

(
x′

y′

)
· lbb

2D − 1
+

(
size(v)

size(v)

)
· 1

2

The presented method results in a rather short implementation. However, the al-

gorithm has a few disadvantages. The computational cost of both the computation of

LCAL and the tree construction functions are very expensive (in relation to the remaining

functionality used inside the recursive function). When it comes to parallel execution of

code, the recursive function is a problem. On the one hand the algorithm performs good

in practice because it does not need to read data ahead. We can start a recursive call

without knowing the index of the last point in the subtree. On the other hand this leads

to the problem of estimating the amount of work which will be done by a recursive call.

3.2. QUADTREE CONSTRUCTION 31

Inner Node Layer

n i + n i + n + m
next

2n − 1

Leaf Layer

0 i i + m
next

n− 1

i0 n− 1

Point Layer

m points with equal grid coordinates

Figure 3.6: Initial memory layout for the quadtree construction.

This leads to the idea of preparing the tree in parallel as far as possible. Then a similar

recursive algorithm is used to just link the prepared nodes to each other which will result

in the desired tree. Like in the previous algorithm, we assume that n points are given,

which are sorted by their morton numbers. In the following we refer to the sorted point

sequence as point layer. For the tree structure, memory for 2n nodes is allocated. Each

node record consists of the following attributes:

• level: the level of the node

• next: the index of the next node

• children: a list or array of children

Note that 2n − 1 nodes would be enough, but for simplicity and a feature which is not

needed here but useful for other applications, one more is allocated. The leaves are located

in the first n entries of the array; we refer to this part as the leaf layer. The remaining

last n entries are used for the inner nodes and referred to as the inner node layer. Since

in our quadtree each leaf corresponds to a grid cell and not to a point we still have to

deal with the problem of handling the special case where more than one point is contained

in a cell. If two points are located in the same cell, they have equal grid coordinates.

Thus, the resulting morton numbers have to be the same. Since the points are sorted by

their morton numbers, all points sharing the same cell form a continuous sequence in the

32 CHAPTER 3. THE QUADTREE

a
b
c

d

e f

g

(a) Example Distribution

a b c d e f g

a b,c d e f g

1 2 1 1 2

(b) Initial Memory

Figure 3.7: Example for a point distribution and the resulting prepared tree: (a) seven points
a, . . . , g located in grid cells, (b) the corresponding prepared tree and its memory layout.

point layer. For each occurring morton number in the point layer, a leaf is created in the

leaf layer at position i of the first point in this sequence. The leaf is linked via the next

reference to its succeeding leaf at position i+m.

On the inner node layer a node is placed at position i + m + n and the two leaves at

position i and i+m are assigned to the node as children. The level of the inner node is set

to the LCAL(pi, pi+m). Basically, an inner node is created as lowest common ancestor for

two adjacent leaves. Like the leaves they are linked by a next reference to form a chain.

Figure 3.6 illustrates the procedure for each layer and the space wasted by this ap-

proach. In Figure 3.7 an example point distribution and the resulting memory of prepared

tree is displayed. The question arising is, why wasting this amount of space? In this appli-

cation the quadtree has to be built several times for the same amount of points but with

different coordinates. Thus, it is useful to preallocate memory for 2n nodes to avoid the

use of expensive memory allocation during the tree construction process. Furthermore,

the positions of the leaves and inner nodes in the above described procedure depend only

on the point layer and not on any preceding leaves or inner nodes. This is very useful in

order to prepare the tree in parallel. The points are evenly distributed among the threads,

so an interval is assigned to each thread which the thread can then prepare. The unused

array entries between two leaves and two inner nodes are caused by the number of points

in one grid cell. In this application a large grid is used, thus, in practice the number

of points sharing one grid cell is very small. However, in other applications this might

not be the case, therefore we outline the basic idea. The gaps on the two layers induced

by m points sharing the same grid cell can be used to construct a tree for the m points

recursively. Each gap consists of m − 1 unused entries plus the leaf (or respectively the

inner node) resulting in a total of m available entries on each layer for m points. Like in

the bigger problem where n array entries on each layer are available for n points, we have

3.2. QUADTREE CONSTRUCTION 33

Algorithm 3.4 Recursive Linking of the Tree

1: function linkTree(v, levelmax)

2: w ← next(v)

3: while (w 6= 2n− 1) ∧ (level(w) < levelmax) do

4: case level(v) < level(w) :

5: firstChild(w)← v

6: v ← w

7: case level(v) = level(w) :

8: append all children of w to v, except the first

9: next(v)← next(w)

10: case level(v) > level(w) :

11: w ← linkTree(w,next(v))

12: lastChild(v)← w

13: next(v)← next(w)

14: end cases

15: w ← next(v)

16: end while

17: return v

18: end function

m entries on each layer for m points. Now the complete procedure of sorting the points

and preparing the tree is repeated for the points pi, . . . , pi+m−1, consisting of the following

steps:

1. Instead of calculating the bounding box of the m points, the size and position of the

leaf containing the points is used.

2. Recompute the morton numbers using the new bounding box.

3. Sort the points pi, . . . , pi+m−1 by their new morton numbers.

4. Prepare the tree inside the existing array.

However, in the following this version is not used and we assume the number of points

in a grid cell is sufficiently small. Instead we focus on Algorithm 3.4 which recursively

adjusts the links of the inner nodes so that we obtain the quadtree. Like in the first

version, the basic idea is to iterate from the left to the right, but instead of iterating over

the point layer, we follow the inner node chain and adjust the children. To achieve this,

the level of the current node v is compared with the level of its successor w in the chain.

Furthermore, the following invariant holds: At the end of each iteration, the last leaf in

the subtree rooted at v equals the first leaf of the subtree rooted at w. Obviously the

34 CHAPTER 3. THE QUADTREE

invariant holds in the beginning for all inner nodes, because each inner node shares a leaf

with its successor. When comparing level(v) and level(w), three cases can arise.

1. The current node v is on a lower level than the succeeding node w. Thus, v becomes

the first child of w, and w becomes the new current node. Since the algorithm

advances in the chain, v will never be visited again.

2. The current node v is on the same level as w and has to be merged (this merge is

similar to the one in the first algorithm). All children of w, except for the first, are

added to v, then w is removed from the chain by linking v to the successor of w.

3. The current node v is on a higher level than w. Since w may not be the root of

this subtree which will become the last child of v, we have to construct the complete

subtree first in order to obtain the root, which is then linked to v. Therefore, a

recursive call is made with the condition to construct the subtree starting with w

which is not higher than v. When the recursion terminates, it returns the root of

this subtree, which replaces the last child of v. Furthermore, the successor of v is set

to the successor of the returned root, because all elements between v and the root

have been processed.

In the following, an example is given to clarify the algorithm. Figures 3.8 - 3.14 show a

detailed example for the seven points and their distribution shown earlier in Figure 3.7.

a b,c d e f g

1 2 1 1 2

Figure 3.8: The initial tree structure with the prepared leaf and inner node layer. The point
layer is not shown for reasons of clarity. The algorithm starts at the first inner node (highlighted
in gray). For this node and its successor the first case applies. Thus, the node becomes the first
child of its successor and the algorithm advances in the chain.

3.2. QUADTREE CONSTRUCTION 35

a b,c d e f g

1

2

1 1 2

Figure 3.10: In the first step of the recursive call the second case applies, because the succeeding
node is on the same level. The list of children of the current node is augmented by the children of
the next node. The successor is then removed from the chain by relinking the current node to the
target of the successor’s next pointer.

a b,c d e f g

1

2

1 2

Figure 3.11: The level of the successor is no longer lower than the level of the node in the chain
from where the recursive call was initiated. The recursion terminates and returns back to the node
which is either on the same level or on a lower level, then the root of the subtree is assigned as
last child to the higher node. Each time the recursion terminates, the next link is handed to the
higher level.

a b,c d e f g

1

2 1 1 2

Figure 3.9: Second Step of the example: The next node in the chain is on a lower level than the
current one, therefore the third case applies. A recursive call is initiated to build a subtree from
the chain until a node is found which is at least on the level of the current node.

36 CHAPTER 3. THE QUADTREE

a b,c d e f g

1

2

1

2

Figure 3.12: The next node is on the same level as our current root. Like before, the second case
applies where the lists of children are merged, and the successor is removed from the chain.

a b,c d e f g

1

2

1

Figure 3.13: The last step of the algorithm. The algorithm terminates and returns the root of
the tree as result, since the current node has no longer a valid successor in the chain. The resulting
tree is the final quadtree.

a
b
c

d

e f

g

Figure 3.14: The resulting subdivision induced by the quadtree.

Chapter 4

The Well-Separated Pair

Decomposition

In order to approximate forces between quadtree cells, these cells must have a minimum

distance. Like in [Hac05] we call such two cells well-separated. The basic idea is to find

for each cell a set of well separated cells. Then we can apply the fast multipole method in

order to approximate long distance repulsive forces for a set of points.

4.1 Previous Work

Most other approaches like [Hac05], [APG94] and [GR87] use a so called interaction list,

which holds for each node a set of well-separated nodes. These nodes are found by a special

tree traversal. Instead of using an interaction list for each quadtree node, we reduce the

problem of finding these cells to a problem in computational geometry named the well-

separated pair decomposition (WSPD). The problem consists of decomposing a set of n

points into a set of pairs, where each pair represents two sets of points which are well-

separated. Callahan and Kosaraju [Cal95, CK95] have shown that this can be done in time

O(n log n) and the number of pairs is O(n) using a fair-split tree. Our approach is very

similar to [CK95], where it is already mentioned that a well-separated pair decomposition

can be used for the Fast Multipole Method by [GR87]. However, we will not use the fair-

split tree, because it depends heavily on linked lists. Instead, the reduced quadtree is used

and the presented algorithm is adapted for finding a well-separated pair decomposition.

4.2 Preliminaries

First we define the term well-separated for two point sets like in [Cal95]; see Figure 4.1

for an example.

37

38 CHAPTER 4. THE WELL-SEPARATED PAIR DECOMPOSITION

A

b

b

b

b

b

r

B

b

b

b

b

b

r

> sr

Figure 4.1: Example of two well-separated point sets A and B.

Definition 4.2.1 (Well-Separated). Given two point sets A, B, we call A and B well-

separated if they can be contained in circles with radius r whose distance to each other is

more than s · r, where s > 0 is the separation factor.

The basic idea is, when we managed to find such a pair (A,B), then we can recursively

handle the two sets separately. Consider two subsets A′ ⊂ A and B′ ⊂ B. If A and B

are well-separated, then obviously A′ and B′ are well-separated too by choosing the same

circles. The goal is to find a set of pairs which covers all points, meaning when we consider

any two points then there exists a pair in the decomposition which implies that these two

points are well-separated. Note that two points are well-separated by defintion since they

can be enclosed in two infinitely small circles. We formalize this in the following definition

taken from [CK95]

Definition 4.2.2 (Well-Separated Pair Decomposition). A well-separated pair de-

composition W of a point set P is a a set of pairs

W = {(A1, B1), . . . , (An, Bn)}

such that

• ∀i ∈ 1, . . . , n : Ai, Bi ⊂ P ;

• ∀i ∈ 1, . . . , n : Ai ∩Bi = ∅;

• Ai and Bi are well-separated;

• for each pair of points (p, q) ∈ P × P there exists a pair (Ai, Bi) with p ∈ Ai and

q ∈ Bi or p ∈ Bi and q ∈ Ai.

In the following, the nodes of the reduced quadtree are used as point sets, resulting in the

problem of finding a decomposition where W ⊂ (V × V). To be more concrete, we define

the term well-seperated for two quadtree cells.

4.2. PRELIMINARIES 39

u

size(u)

r

v

size(v)

r

> sr

Figure 4.2: Two well separated quadtree cells u and v. The radius r of the enclosing circle is for
both cells the maximum.

Definition 4.2.3 (Well-Separated Quadtree Cells). Given a pair (u, v) of two quadtree

nodes and a separation factor s > 0. If u and v only contain one point they are well-

separated. Otherwise let d(u, v) denote the distance between the centers of u and v and

lmax = max{size(u), size(v)}. The pair (u, v) is called well-separated when the following

condition holds:

d(u, v) > (s+ 2) · lmax√
2

Furthermore, if the pair (u, v) is well-separated, we say u is well-separated from v and vice

versa.

Considering Figure 4.2, we have

r =

√
2 ·
(
lmax

2

)2

=
lmax√

2
.

Since the two enclosing circles with radius r should have a distance greater than sr

d(u, v)− 2r > sr

d(u, v) > (s+ 2)
lmax√

2
.

Note, instead of using for each cell its own enclosing circle induced by the size of the node,

we use for the smaller cell the circle of the bigger one. The reason for this is a condition

induced by Lemma 2.2.3 from Chapter 2. Given a pair of two well-separated cells (u, v),

our goal is to do a symmetric approximation, meaning we want to calculate the force for

all points contained in u induced by the points in v and vice versa. Since the condition for

using Lemma 2.2.3 to convert a p-term multipole expansion into a p-term local expansion

is not symmetric, we need to ensure that it holds both ways.

40 CHAPTER 4. THE WELL-SEPARATED PAIR DECOMPOSITION

Algorithm 4.1 Recursive Well-Separated Pair Decomposition

1: function computeWSPD(u, v)

2: if size(u) > size(v) then

3: swap(u, v)

4: end if

5: if wellSeparated(u, v) then

6: W ←W ∪ {(u, v)}
7: else

8: for all w ∈ children(v) do

9: computeWSPD(u,w)

10: end for

11: end if

12: end function

The basic idea of a well-separated pair decomposition is to find a set of pairs of nodes

that covers the complete quadtree. Considering only one node v, the goal is to find all

nodes that are well-separated from v but not well-separated from the parent of v.

In [CK95] it has been shown that the size of such a decomposition is O(n) using

a fairsplit tree. However, the same principle can be applied to quadtrees, because the

proof in [CK95] relies on a packing argument which can also be used for a quadtree.

Before we prove the size of the decomposition we present the algorithm to calculate such

a decomposition.

4.3 Algorithm

Given a point set and the corresponding reduced quadtree, we can now compute the

WSPD. We use the same algorithm like in [CK95] with some minor modifications for a

quadtree.

The recursive function computeWSPD (Algorithm 4.1) works as follows: Suppose

we have given two distinct subtrees rooted at u and v. If the pair (u, v) is well-separated

Algorithm 4.2 Well-Separated Pair Decomposition for a Reduced Quadtree

1: function quadtreeWSPD(T)

2: for all u ∈ innerNodes(T) do

3: for all (v, w) ∈ orderedPairsOfChildren(u) do

4: computeWSPD(v, w)

5: end for

6: end for

7: end function

4.3. ALGORITHM 41

then we add it to our set of pairs. Otherwise assume v is the larger cell and its children

are {v1, . . . , vn}. Then we start recursive calls for the pairs (u, v1), . . . , (u, vn). In order to

compute a WSPD for a complete quadtree (Algorithm 4.2), we try for each inner node to

”separate the node from itself”. This is achieved by calling the recursive algorithm on all

ordered pairs of its children.

Lemma 4.3.1. Algorithm 4.2 computes a well-separated pair decomposition W for the

reduced quadtree T .

Proof. It is easy to see that each pair which is added to W is well-separated. It remains

to show that for a pair (u, v) ∈ W the two point sets covered by u and v do not overlap.

Furthermore each pair of points has to be covered by one pair in W .

First, we observe that a call to Algorithm 4.1 is only done for two nodes (v, w) where

v and w are siblings. Algorithm 4.1 may result in some recursive calls but still in distinct

subtrees. Therefore a pair (u, v) ∈ W generated by Algorithm 4.1 satisfies the condition

Ai ∩Bi = ∅
Since we start Algorithm 4.1 on all ordered pairs of children for each internal node of

T , the call terminates only when a complete decomposition for the children is generated.

Consider the lowest common ancestor v of two points. Algorithm 4.2 tries to separate

the children from each other and, because the two points are contained in two different

children (otherwise v is not their LCA), the call will generate a pair covering the two

points.

Consider a well-separated pair decomposition W for n points. Obviously |W | can be

bounded by O(n2). But like mentioned above the size of W can be bounded by O(n).

In [CK95] this bound has been proven for the fair-split tree and in [HP08] it is done for

quadtrees as well. However, we reprove this result by following the basic ideas used there,

because we use a slightly different definition of well-separated.

Lemma 4.3.2. The number of pairs generated by Algorithm 4.2 is O(n) where n is the

number of points.

Proof. Consider a recursive sequence of calls to computeWSPD, which results in a well-

separated pair (u, v). Without loss of generality let this sequence of calls be

1. computeWSPD(u, v′), not well-separated, split v′

2. computeWSPD(u, v), well-separated

where v′ is the parent of v and u′ the parent of u, respectively; see Figure 4.3(a). We will

charge the pair (u, v) ∈ W to v′ and claim that v′ is only charged constant times. Let v′

be fixed. From the sequence of calls we observe:

size(u′) ≥ size(v′) ≥ size(u)

42 CHAPTER 4. THE WELL-SEPARATED PAIR DECOMPOSITION

u′

u

v′

v

computeW
SPD(u, v

′)

computeWSPD(u, v)

(a)

0 1 2 3 4

0

1

2

3

4

5

v′
v

u′
u

(b)

Figure 4.3: The sequence of two calls leading to a well-separated pair (u, v) (a) and the circle
around v′ overlapping all not well-separated cells (b).

The first call implies that u′ has been split before v′. Therefore, u′ is at least the size of

v′, because the algorithm always splits the bigger node. Then we split v′ instead of u with

the same argument. Now it remains to show that v′ is charged only constant times. To

achieve this we show that the number of pairs (u′, v′) is constant for a fixed v′. From the

fact that (u′, v′) is not well-separated, it follows that

d(u′, v′) ≤ (s+ 2)
size(u′)√

2
.

We can conclude:

• all u′ are at least the size of v′

• all u′ have to be sufficiently near to v′ to be not well-separated

From these two facts it is easy to see that, if we want to maximize the number of u′,

they have to be as small as possible. Hence we assume they have the same size as v′.

This reduces the problem to bounding the number of cells with side length size(v′) that

overlap a circle of radius (s + 2) size(v′)√
2

; see Figure 4.3(b). Instead of proving that this

number is constant, we refer the reader to [CK95] for details and only outline a simple

idea. Suppose, we rescale the problem so that size(v′) = 1, then the circle has a constant

radius of (s+2) 1√
2
, assuming s is fixed. Therefore it can only intersect a constant number

of unit cells.

Thus, there are only a constant number of u′ and only a constant number of pairs

(u′, v′) for a fixed v′. Since both nodes have at most 4 children, the number of pairs (u, v)

is constant and v′ is only charged constant times. Furthermore, the reduced quadtree has

O(n) nodes and the lemma follows.

4.4. IMPROVING THE ALGORITHM 43

Note that the above lemma delivers a bound for the size of the entire decomposition

and not for the number of nodes being well-separated from a single node. However, the

result can be used to bound the runtime of the algorithm:

Lemma 4.3.3. Given a reduced quadtree, Algorithm 4.2 computes a well-sparated pair

decomposition in time O(n).

Proof. Consider the calls to computeWSPD(u, v) as tree structure, then the main func-

tion creates a forest of calls to computeWSPD(u, v). A call might result in recursive

calls, creating a tree of calls. The recursion terminates when a well-separated pair is added

to the set. Each call not resulting in a pair generates at least two calls because all inner

nodes in the reduced quadtree have at least two children. Therefore, the forest of recursive

calls has O(n) leaves (a leaf corresponds to a well-separated pair) and each inner node has

at least two children. Thus, the total number of inner nodes is bounded by O(n), and the

time bound follows.

The algorithm described above delivers a set of pairs of quadtree nodes which are well-

separated for a given separation s. The basic idea is to apply the fast multipole theorems

and lemmata from Chapter 2 (especially Lemma 2.2.3) in order to approximate forces

between the two cells of a pair. Suppose the multipole coefficients are given for all quadtree

cells and a well-separated pair decomposition W for a separation factor s = ε. Then the

local coefficients can be obtained by iterating over all pairs and for each pair (u, v) ∈ W
converting the multipole coefficients of u to local coefficients of v using Lemma 2.2.3 and

vice versa.

4.4 Improving the Algorithm

Algorithm 4.2 computes a well-separated pair decomposition with a size of O(n). However,

using this decomposition in practice would result in a very slow algorithm. The reason for

this is the large constants hidden in the bound of the size and the costs for approximating

forces between two sets of points.

Consider a pair of distinct cells (u, v). If the number of covered points of both u and v

is relatively small, it is cheaper to calculate the forces directly instead of finding a WSPD

and approximating them using the Fast Multipole Method. Note, the direct computation

does not require a pair to be well-separated. Therefore we can stop the recursion when

the number of points contained in the two cells is small enough. Suppose we only want to

approximate forces when both point sets have at least Cpairs points. Then we can modify

the WSPD algorithm in a way so it skips

• a subtree if it has less than Cnodes points; and

• a pair if both cells contain less than Cpairs points.

44 CHAPTER 4. THE WELL-SEPARATED PAIR DECOMPOSITION

When we skip a node or a pair, we need to evaluate the forces directly; therefore we

maintain two additional sets Dnodes and Dpairs for this purpose. The modified versions

are Algorithm 4.3 and 4.4. The values of Cnodes and Cpairs are heavily implementation

dependent and can only be found by experiments. In our implementation, we set Cnodes =

25 and Cpairs = 16. However, the bounds for both runtime and size of the original algorithm

remain valid, because this version terminates only earlier resulting in a chopped forest of

calls.

Algorithm 4.3 Recursive Bounded Well-Separated Pair Decomposition

1: function computeWSPD(u, v, Cpairs)

2: if numPoints(u) ≤ Cpairs ∧ numPoints(v) ≤ Cpairs then

3: Dpairs ← Dpairs ∪ {(u, v)}
4: else

5: if size(u) > size(v) then

6: swap(u, v)

7: end if

8: if wellSeparated(u, v) then

9: W ←W ∪ {(u, v)}
10: else

11: for all w ∈ children(v) do

12: computeWSPD(u,w,Cpairs)

13: end for

14: end if

15: end if

16: end function

Algorithm 4.4 Bounded Well-Separated Pair Decomposition

1: function computeWSPD(T,Cnodes, Cpairs)

2: for all u ∈ innerNodes(T) do

3: if numPoints(u) > Cnodes then

4: for all (v, w) ∈ orderedPairsOfChildren(u) do

5: computeWSPD(v, w,Cpairs)

6: end for

7: else

8: Dnodes ← Dnodes ∪ {u}
9: end if

10: end for

11: end function

Chapter 5

The Fast Multipole Embedder

In this chapter, all the previous described pieces are put together and result in a force-

directed layout algorithm named the Fast Multipole Embedder (FME). First, the basic

structure with the different steps will be explained, then we present how this can be done

in parallel using multiple threads. The algorithm roughly consists of two phases:

First, a preprocessing step in the beginning, which calculates only the attractive forces

and applies them by moving the nodes accordingly. In our implementation, this step is

repeated 20 times regardless of any other conditions. The idea is to provide a better initial

placement for the main step without using the expensive repulsive force calculation of the

main step. However, in the following the preprocessing step is skipped, because the main

step covers it.

Second, the main step follows the basic scheme of every force directed layout algorithm.

In each iteration the repulsive and attractive forces are calculated, and then applied as a

displacement vector. This is repeated until a fixed number of iterations is done or the max-

imum force acting on a single node falls under a given threshold. In our implementation

we use the same repulsive force function like in [Hac05], because the multipole framework

is based on it. Like mentioned in the introduction, the attractive force function differs

and we use:

~Fattr(u) =
1

deg(u)

∑
(u,v)∈E

(pu − pv) · log
|pu − pv|
euv

Dividing by the degree of the node relieves us from implementing a mechanism to prevent

oscillation or other unpredictable behavior. Furthermore, the simulation seems to converge

faster, thus fewer iterations are needed. In order to calculate the attractive forces, we do

not iterate over the nodes. Instead, we calculate for each edge the force vectors for the

two incident nodes and add these to the current force of the nodes. Obviously, the total

running time of the attractive force computation is bounded by O(|E|). In difference to the

attractive force calculation, the repulsive force approximation is more difficult. Therefore,

we describe it in a separate section.

45

46 CHAPTER 5. THE FAST MULTIPOLE EMBEDDER

Calculate Morton Number

Sort by Morton Number

Prepare Tree

Link Tree

Update Node Center, Size Update Point Data

Quadtree

Figure 5.1: Detailed excerpt of the quadtree construction phase.

5.1 Repulsive Force Approximation

In order to approximate the repulsive forces in an iteration, we will follow the basic scheme:

1. Reduced quadtree construction (Chapter 3)

2. Well-separated pair decomposition (Chapter 4)

3. Repulsive force approximation using the Fast Multipole Method (Chapter 2)

4. Direct repulsive force evaluation

The first task is the construction of the reduced quadtree.

Like described in Chapter 3, first the morton number for each point is calculated, and

then we sort the points by their morton numbers. This results in the fact that we have to

deal with two different orders:

• The graph order, where the index i describes the i-th node in the graph.

• The tree order, defined by the morton order.

It will become clear later that the entire repulsive force computation can be done based on

the tree order and does not require the graph order. Therefore it is useful to keep a copy

of the point data, like coordinates and size, in this order. To avoid sorting the complete

point data, an array is used which contains for each point only the morton number and the

index of the node in the graph order. The copy of the point data is stored in a separate

array and is updated after the morton numbers are sorted. We refer to this step as the

Update Point Data step. The update is done by iterating over the sorted array and using

the index which refers back to the original data.

5.1. REPULSIVE FORCE APPROXIMATION 47

This procedure has another side effect: In the next iteration we can reuse the array

with the presorted morton numbers as the initial permutation for the sorting algorithm.

Since this order “does not change much” after moving the nodes at the end of an iteration,

we can benefit from this by using a sorting algorithm which is faster on a nearly sorted

order.

Furthermore, the quadtree construction method only requires the sorted morton num-

bers as input, and not the coordinates of the points. As a result we can defer the update

and build the quadtree first by preparing the tree nodes and adjusting the links. The

center and size of each quadtree node are then calculated in the so called Update Node

Center, Size step as described in Chapter 3. All these steps can be done in O(n) time

except for the sorting which requires O(n log n) time, where n is the number of points or

graph nodes. Figure 5.1 displays an overview of the entire quadtree construction phase.

In order to use the Fast Multipole Method from Chapter 2, we first have to calculate

the well-separated pair decomposition from Chapter 4. We use Algorithm 4.4 that takes

time O(n) and delivers, besides the decomposition W , the two sets Dpairs and Dnodes.

All the pairs and nodes in Dpairs and Dnodes have to be evaluated directly. For each

node v ∈ Dnodes, we have to do a direct evaluation of the forces acting between the points

contained in v. Since the number of points contained in v is bounded by Cnodes this takes

time O(C2
nodes). With the same argument we can bound the time needed for a pair of

Dpairs. Furthermore, since Algorithm 4.4 terminates earlier than the original one, the

number of pairs in Dpairs is O(n). The size of Dnodes is bounded by O(n) as well, because

the quadtree has only O(n) nodes. Thus, the total time needed for the direct evaluation

step is O(n · (C2
nodes + C2

pairs)). The resulting force vectors are stored in an array in tree

order. We will map them back to graph order after the Fast Multipole phase is finished.

We can now use the theorems and lemmata from Chapter 2 together with the reduced

quadtree and the well-separated pair decomposition to approximate the rest of the repul-

sive forces. Like in [Hac05, GR87] and most of the other works using the Fast Multipole

Method, the following steps are done:

1. P2M (Point-to-Multipole) pass: Computes for each leaf the p-term multipole coef-

ficients by using the multipole expansion theorem. The pass reads the point data

(position and size), the leaf center, and modifies the multipole coefficients. This

takes time O(n · p) for all points.

2. M2M (Multipole-to-Multipole) pass: Computes for each inner node the multipole

coefficients by traversing the tree bottom up. At each node, the p-term multipole

coefficients of the children are translated to the center of the current cell and then

added to the existing ones. Each translation takes time O(p2), resulting in a total

running time of O(n · p2).

48 CHAPTER 5. THE FAST MULTIPOLE EMBEDDER

u v

P2M

M2M

M2L

L2L

L2P

Figure 5.2: The five passes of the multipole framework and how a well-separated pair (u, v) ∈W
is used to approximate forces acting on the points of v due to the points of u.

3. M2L (Multipole-to-Local) pass: The final approximation pass. For each pair (u, v) ∈
W we convert the multipole coefficients of u to local coefficients of v and vice versa.

The alternative way to do this is to iterate over all well-separated nodes of a node

and convert their multipole coefficients, which has the advantage that only the local

coefficients of this particular node are modified. From Chapter 4 it follows that the

total size of the WSPD is O(n) and since conversion takes time O(p2) the total time

needed for this pass is O(n · p2).

4. L2L (Local-to-Local) pass: Accumulates the local coefficients for the leaves by a top

down traversal of the tree. For each node the shifted local coefficients of the parent

are added. Like in the M2L pass, the time needed is O(n · p2).

5. L2P (Local-to-Point) pass: For each point the forces induced by the fast multipole

approximation are evaluated by using the local coefficients of the corresponding leaf.

For all points, this takes time O(n · p).

Figure 5.3 shows a detailed outline of the different passes and their dependencies to the

previous stages. Obviously, the running time of the multipole phase is O(n) for a fixed p.

The result of both the multipole and direct evaluation are the repelling force vectors

for each point. Since the vectors are needed when moving the graph nodes at the end of

the iteration, they have to be stored in graph order rather than in tree order. Therefore,

we map them back using the reference stored in the array we sorted in the beginning,

which takes time O(n) for all points.

5.1. REPULSIVE FORCE APPROXIMATION 49

Update Node Center, Size Update Point Data

WSPD

Point-to-Multipole

Multipole-to-Multipole

Multipole-to-Local

Local-to-Local

Local-to-PointDirect Evaluation

Map Rep. Forces to Graph Order

Multipole

Figure 5.3: Detail excerpt of the Fast Multipole phase

In the last step of an iteration, the previously calculated forces are applied by moving

the nodes. In our implementation we just multiply the force vector with the time step and

use it as a displacement vector. Therefore this step can be done in time O(n).

We summarize the running time of the repulsive force computation. For

• a fixed bitlength D during the quadtree construction,

• a fixed number of coefficients p in the multipole step,

• two constants Cnodes and Cpairs used by the WSPD,

• a point distribution such that the number of points in each leaf of the reduced

quadtree is less than min{Cnodes, Cpairs},

the total running time is O(n log n). Furthermore, every step except the sorting by morton

numbers takes time O(n).

From the fact that n equals the number of nodes |V | in the graph and that the calcu-

lation of the attractive forces due to the edges takes time O(|E|) it follows that:

Corollary 5.1.1. An iteration of the main step takes time O(|E|+ |V | · log |V |).

Before we focus on the computation in parallel, we refer the reader to Figure 5.4 where

all previously described steps and their dependencies are shown.

50 CHAPTER 5. THE FAST MULTIPOLE EMBEDDER

Calculate Morton Numbers

Sort by Morton Numbers

Prepare Tree

Link Tree

Update Node Center, Size Update Point Data

WSPD

Point-to-Multipole

Multipole-to-Multipole

Multipole-to-Local

Local-to-Local

Local-to-PointDirect Evaluation

Map Rep. Forces to Graph Order

Move Nodes

Attractive Forces

Multipole

Quadtree

Figure 5.4: Detail excerpt of the steps in one iteration

5.2. PARALLEL COMPUTATION 51

5.2 Parallel Computation

In order to benefit from mulitcore architectures, the previously described algorithm has

to be executed in parallel. Therefore, we first give a brief overview of problems arising

during the procedure.

Many of the above described steps, e.g., the calculation of the morton number, are sim-

ple array or sequence operations. Such an operation can be characterized in the following

way:

• Each operation depends only on the element it is called for and not on any other

element in the sequence.

• The computational cost for each element is roughly the same.

• The result from one element is stored at a location in memory, which is exclusive for

this element or the thread the element is assigned to.

Any operations that meet these requirements can be easily executed in parallel by parti-

tioning the sequence into equally sized intervals, which are then assigned to the threads.

Most of the steps during the quadtree construction process can be classified as a

simple array operation. The aforementioned morton number computation includes the

computation of the bounding box, which is a simple min-max operation. Basically, each

thread computes a bounding box for the points assigned to it, then the main thread uses

these bounding boxes to obtain the bounding box for all points. The calculation of the

grid coordinates and the interleaving of bits is then a point exclusive operation, because it

uses as input the point coordinates and bounding box and only stores the resulting morton

number for the point.

The preparation of the tree nodes is a little bit different, because we need to partition

the array of points so that the boundaries of the interval do not divide a grid cell containing

multiple points. In order to do this we use the standard partitioning and adjust the interval

boundaries so that two points with the same morton number belong to the same partition.

Then the tree nodes can be prepared in parallel. However, the linking of the tree nodes

(Algorithm 3.4) is not executed in parallel, because it is very fast in practice and would

require a lot of synchronizations due to the fact that it is a recursive function. The

algorithm destroys the chain of inner nodes and leaves that we constructed earlier in the

tree preparation step. Therefore, we restore it by a simple tree traversal in order to obtain

a kind of linked-list of all nodes.

The obtained list is used to run the node update in parallel as simple sequence partition

as well. On the other hand, the point data update is a simple array operation and does

not require any special treatment.

When considering the calculation of the attractive forces, the problem arises that the

resulting vectors for the source and target node have to be stored at a location in memory

52 CHAPTER 5. THE FAST MULTIPOLE EMBEDDER

Algorithm 5.1 Tree Partitioning

1: function partitionTree(v, Lpar)

2: if numPoints(v) <
⌊
n/p2

⌋
then

3: Lpar ← Lpar ∪ {v}
4: else

5: for all w ∈ children(v) do

6: partitionTree(v, Lpar)

7: end for

8: end if

9: end function

that may be accessed by multiple threads. The alternative is to use the nodes as a sequence

and collect all forces due to incident edges. In that case the computational cost depends on

the degree of the node which might differ a lot depending on the input graph. In order to

keep things simple and to avoid difficult scheduling problems, we allocate for each thread a

so called local force array, where we can store force vectors during an iteration. At the end

of each force calculation, we add the forces calculated by the different threads and store

them in the global force array, which is a simple sequence operation itself. Furthermore,

the concept of the local force array allows us to use it in tree order during the repulsive

force approximation. At the end of the repulsive force approximation, when we map the

forces back to the graph order, we add all forces calculated by the threads and store the

resulting vector at the corresponding position in the global force array in graph order.

Another important class of operations are the ones that are tree based, like a bottom-

up or top-down traversal of the quadtree during the M2M pass or L2L pass. In order to

run these in parallel we divide the tree into a serial and parallel part. The serial part

consists of the top of the tree, whereas the parallel part consists of a number of distinct

subtrees which are evenly distributed among the threads. The arising problem is that

on the one hand the serial part should be as small as possible, but on the other hand,

the distinct subtrees have to be small enough in order to distribute them fairly. This

problem, however, is quite difficult and one can easily construct an example where such a

partitioning becomes worthless, because the serial part consists of O(n) nodes. Therefore,

we will assume that the points are somehow evenly distributed in order to apply an easy

and fast approach.

Given p threads, n points, and a reduced quadtree T , we recursively calculate a set

of nodes containing less than
⌊
n/p2

⌋
points by just splitting a node until we find nodes

that contain a sufficient small amount of points. Algorithm 5.1 describes the procedure in

detail. Each node visited by Algorithm 5.1 and not added to the set Lpar belongs to the

serial part that is rooted at the root of the tree. The nodes contained in Lpar represent

5.2. PARALLEL COMPUTATION 53

the roots of the distinct subtrees which have to be distributed among the threads. Every

node in Lpar contains less than
⌊
n/p2

⌋
, thus the number of nodes in Lpar is at least p2.

It remains the problem, how we distribute the previously calculated set among the

threads such that the total number of points is roughly the same for each thread. There

are several ways to do that, e.g., a first-fit or best-fit strategy can be used.

However, when considering the memory layout of the quadtree presented in Chapter 3,

where all points contained in a subtree form a continuous interval in memory, it becomes

clear that it is more beneficial to assign a thread the subtrees in the order in which they

are discovered by Algorithm 5.1. Therefore, we assume that the list of children and Lpar

in Algorithm 5.1 is ordered and we distribute the nodes in Lpar by the number of points

contained in their subtrees using the following strategy: Each thread is assigned at most⌊
n

p

⌋
+
⌊

1
2
· n
p2

⌋
points in total, except for the last thread which we assign the rest. As long as the current

subtrees point count fits, we assign it to the current thread. Otherwise, we continue with

the next thread.

Since the upper and lower bound for the number of points of the last thread are not

that obvious, a more detailed description is given. First, for the lower bound we assign

the maximum number of points to the first p − 1 threads, then the rest left over for the

last thread is

n− (p− 1) ·
(⌊

n

p

⌋
+
⌊

1
2
· n
p2

⌋)
≥ n− (p− 1) ·

(
n

p
+

1
2
· n
p2

)
=

1
2

(
n

p
+
n

p2

)
.

For the upper bound, we assign each thread the minimum number of points, which is⌊
n

p

⌋
+
⌊

1
2
· n
p2

⌋
−
(⌊

n

p2

⌋
− 2
)
≥ n

p
− 1 +

1
2
· n
p2
− 1−

(
n

p2
− 2
)

=
n

p
− 1

2
· n
p2
.

Otherwise, one more subtree would fit in the partition, because each subtree in Lpar

contains at most
⌊
n/p2

⌋
− 1 points. Thus, the rest left over for the last thread is bounded

by

n− (p− 1) ·
(
n

p
− 1

2
· n
p2

)
≤ 1

2

(
3n
p
− n

p2

)
.

The runtime of this algorithm can only be bounded by O(n), because one can construct

an unbalanced binary tree which looks like a chain. In this case the algorithm has to add

nearly all leaves along the chain.

As a result, the bottom-up traversal used in the M2M pass can now be run in parallel.

Since the P2M pass modifies the p-term multipole coefficients of the leaves, we execute

this step when the bottom-up traversal reaches a leaf.

54 CHAPTER 5. THE FAST MULTIPOLE EMBEDDER

The M2M pass is done by a top-down traversal that follows the basic principle. In

difference to the P2M pass, the L2P pass does not modify any tree node related data.

Therefore, we can classify it as a simple point array operation.

It remains the well-separated pair decomposition in combination with the M2L pass

and the direct evaluation step. Algorithm 4.4 iterates over all inner nodes and computes

a decomposition for the corresponding subtree. Doing this in parallel with only a few

synchronizations is quite difficult. However, in the following we present a simple and fast

solution. Instead of iterating over all nodes we divide the procedure into two parts.

First, the serial part where the main thread iterates over all nodes contained in the

serial part of the tree partitioning and starts the recursive Algorithm 4.3 for all ordered

pairs of children. The result is a partial decomposition W ′ and two partial sets D′pairs and

D′nodes for the serial part of the tree. We run the M2L pass on W ′ to obtain the local

coefficients and do a direct force calculation for D′pairs and D′nodes.

In the second part, the above described procedure is repeated by the threads for the

subtrees rooted at Lpar. All recursive calls made during the well-separated pair decom-

position (Algorithm 4.3) affect only nodes which are contained in the subtree rooted at

the node from which the call was initiated. This ensures that both, the affected node and

point sets are distinct because the subtrees rooted Lpar are distinct.

The above described solution leaves room for improvements, because the work which

is done in the serial part can be quite a lot. However, experiments have shown that this

approach is superior to the alternative solution, which is to compute the WSPD with a

single thread and to run only the M2L pass and the direct evaluation step in parallel.

Chapter 6

The Fast Multipole Multilevel

Embedder

Like shortly mentioned in the introduction, a so called multilevel method can be used to

determine a good initial placement of the nodes. The basic idea is to create multiple

graphs G1, . . . , Gm from the original graph G = G0 with different resolutions. In order to

achieve this, a coarser graph Gt+1 is created based on the finer graph Gt, which serves as

input graph for the next level. This is repeated until the actual graph Gm contains only

a fixed number of nodes or some other condition is met.

This phase is called the coarsenning phase, in which a partitioning strategy is deployed

to create the coarser graphs. Common requirements such a strategy should met are:

1. The number of multilevels is bounded by O(log |V |).

2. The number of multilevels is not too small in order to find a good initial placement

for the nodes.

3. The runtime of the coarsening phase is bounded by O(|Vt| · log |Vt|+ |Et|)

A force-directed layout algorithm is then used to calculate a layout for each level, starting

with the coarsest level. This phase is referred to as refinement phase. At each step

the previously calculated layout of the coarser graph Gt+1 is used to find a good initial

placement for Gt. This precoedure is repeated until a layout for G0, the original input

graph, has been calculated. Figure 6.1 displays both phases.

In the following, we first describe the coarsening phase and the strategy. The idea

follows the basic principle of [Hac05]. Second, we give a brief description of the refinement

phase. The resulting algorithm is called the Fast Multipole Multilevel Embedder (FMME),

which deploys the Fast Multipole Embedder, described in the previous chapter.

55

56 CHAPTER 6. THE FAST MULTIPOLE MULTILEVEL EMBEDDER

Galaxy Partitioning

Random Initial Placement

Fast Multipole Embedder

Coarsening Phase

Refinement Phase

Figure 6.1: Excerpt of the Fast Multipole Multilevel Embedder

6.1 Coarsening Phase

As a partition strategy, a slightly modified version of the galaxy partitioning from [Hac05]

is used. The name is based on the principle of selecting a set of nodes as suns and labeling

adjacent nodes as planets. Nodes that are only adjacent to planets and not to a sun,

are referred to as moons. Figure 6.2 shows a small example of a galaxy partitioning.

Furthermore, two suns are not allowed to be adjacent and a planet must not be adjacent

to more than one sun. A moon is adjacent to at least one planet. As a result each node

is part of a so called solar system. An edge which connects two solar systems is referred

to as inter-system edge, whereas the rest is called inner-system edges.

The basic idea is to label a graph Gt and construct a coarser graph Gt+1 in which each

solar system of Gt is represented by a node. If two systems are connected by at least one

inter-system edge in Gt, then there exists an edge between the two nodes in Gt+1 which

represent the two systems. During the coarsening process each node has a property called

the mass of the node. All nodes of the original graph G0 have a mass of one, whereas the

node mass in a coarser graph is defined as the sum of all masses contained in the system

that the node represents.

The original approach described in [Hac05] creates the coarse graph by collapsing each

solar system. Since we need the original graph that approach requires to make a copy of

6.1. COARSENING PHASE 57

Sun Node

Planet Node

Moon Node

Inter-System Edge

Inner-System Edge

Figure 6.2: Example for a galaxy partitioning consisting of two systems

the input graph before we modify it. A sun is selected by a randomized algorithm that

first chooses a set of nodes randomly and then selects the node with the lowest mass from

the set. The principle of choosing a node with a low sun mass is important in order to

prevent an unbalanced coarsening of the graph. The resulting algorithm is a linear time

algorithm for partitioning.

In the following, an algorithm is presented without the need of a copy, instead it labels

the nodes of the input graph and creates the output graph from scratch. Furthermore,

we sacrifice the linear run time of the original algorithm in order to obtain a better sun

selection. The algorithm is displayed in Algorithm 6.1 and works as follows:

At the beginning of each coarsening step, we estimate for each node the system mass

if we would choose it as a sun. The estimation is done by adding the node’s current mass

and the mass of all adjacent nodes, since these would be the planets of the system, whereas

possible moons are not taken into account.

mest(v) = m(v) +
∑

(v,w)∈Et

m(w)

Then we sort all nodes by their estimated sun mass mest. One problem arising during this

step is caused by the initial permutation of the nodes. For example consider a regular

grid graph, in the first coarsening step the estimated sun mass mest of all nodes that are

not part of the border is 5. When using a stable sorting algorithm these nodes occur in

the same order like in the input graph. There might be some scenarios where this is an

advantage, however, experiments have shown that it is usually not beneficial because the

partitioning relies too much on the input permutation. For this reason we sort the nodes

in the following way: The array that has to be sorted, consisting of the keys mest and the

references to the nodes, is initialized by randomly choosing the nodes from the original

sequence.

58 CHAPTER 6. THE FAST MULTIPOLE MULTILEVEL EMBEDDER

Algorithm 6.1 Coarsening Step

1: function createCoarseGraph(Gt = (Vt, Et),m : Vt 7→ N)

2: for all v ∈ Vt do

3: label(v)← 0

4: mest(v)← m(v) +
∑

(v,w)∈Et
m(w)

5: end for

6: a1, . . . , an ← sort nodes of Gt by mest in ascending order

7: for v ← a1, . . . , an do

8: if label(v) = 0 then

9: label(v)← 3

10: sun(v)← v

11: labelSystem(v, v, 2)

12: end if

13: end for

14: for all suns in V do

15: create a corresponding node in Gt+1 and calculate the exact node mass

16: end for

17: for all edges e = (u, v) ∈ Et with sun(u) 6= sun(v) do

18: create an edge in Gt+1 between the nodes representing sun(u) and sun(w)

19: end for

20: remove parallel edges in Gt+1

21: return Gt+1

22: end function

After sorting the nodes by their estimated sun mass, we iterate over the sorted order

and assign the nodes their role. Each node is labeled with a number label(v) ∈ {0, 1, 2, 3}
which corresponds to {Not Labeled = 0,Moon = 1,Planet = 2,Sun = 3}. If the current

node has not been labeled before, meaning the node is not a sun, planet, or moon, we

choose it as a sun and start a recursive labeling procedure in order to label the rest of the

solar system. Algorithm 6.2 describes the recursive labeling in detail and works as follows:

The function labelSystem is first called for the sun itself. It iterates over all adjacent

nodes and assigns them the label 2 (Planet). Note that some of these nodes might be

moons of another system. In this case the moon is promoted to a planet and the solar

system it belongs to is changed. However, none of these nodes can be a planet because

the call labeling these as planets would have labeled the current sun as a moon, which

is a contradiction to our assumption that the current sun has not been labeled before.

Therefore, all nodes adjacent to our current sun have to be a moon or are not labeled

yet. After assigning the node the planet label, a recursive call is made in order to label

surrounding nodes as moons (label(v) = 1). This is only done for nodes which have never

6.1. COARSENING PHASE 59

Algorithm 6.2 DFS-Based Labeling of a Solar System

1: function labelSystem(s, v, l)

2: for all e = (v, w) ∈ E do

3: if label(w) < l then // if the node can be promoted

4: if sun(w) 6= s then // and belongs to another system

5: sun(w)← s // then it becomes part of the current system

6: end if

7: label(w)← l // promote it by assigning a greater label

8: if l > 1 then

9: labelSystem(s, w, l − 1) // continue labeling

10: end if

11: end if

12: end for

13: end function

been labeled before. An example for the labeling procedure is given in Figure 6.3. Since

it is not obvious that the time needed by this procedure can be bound by O(|Vt|+ |Et|),
we formalize this in a lemma.

Lemma 6.1.1. The labeling procedure of Algorithm 6.1 takes time O(|Vt|+ |Et|).

Proof. Before a recursive call inside labelSystem (Algorithm 6.2) is made, the source

node has been promoted from either zero to a moon or from a moon to a planet. From

the fact that the two incident nodes of an edge can only be promoted constant times, it

follows that the edge is only used constant times by labelSystem and the bound for the

time follows.

When all nodes are labeled, we have to construct the coarser graph Gt+1. For each node

that is labeled as a sun, we create a corresponding node in the coarser graph and calculate

the exact mass. Then we add for each inter-system edge a corresponding edge to Et+1,

which may result in some parallel edges. As an example, consider Figure 6.3, where we

obtain four inter-system edges incident to the two systems. Therefore, we remove all

parallel edges from Gt+1 at the end of Algorithm 6.1.

We can summarize the time needed for the coarsening step. At each level the sorting

step takes time O(|Vt| log |Vt|), all other steps can be done in time O(|Vt|+ |Et|), including

the parallel edge removal. Furthermore, since we do not introduce any new edges, |Et+1| ≤
|Et| holds. Like in [Hac05] the number of suns is at most |Vt|/2 in each step, because each

solar system consists of at least one sun and one planet. Thus, the total number of

multilevels is bounded by O(log |V |) and each level requires time O(|Vt| log |Vt|+ |Et|),

Lemma 6.1.2. The time needed by the coarsening step is O(log |V | · (|V |+ |E|)).

60 CHAPTER 6. THE FAST MULTIPOLE MULTILEVEL EMBEDDER

4
f

4
g

3 c 5 d 3e

4
a

4
b

(a) Initial Graph Gt

f g

c d e

a b

(b) Result of labeling c

f g

c d e

a b

(c) Result of labeling e

4
c

3
e

(d) Final Gt+1

Figure 6.3: Small example for labelling a system. At the beginning a new system has been
labeled with c as sun. In the second figure(b) the last remaining node is labeled as a sun. Clearly
visible the two moons b, g become planets of e, whereas d remains a moon of c

Proof. From the fact that |Vt+1| ≤ |Vt|/2 and that sorting takes time O(|Vt| log |Vt|) it

follows that the time needed to sort the nodes of all m+ 1 multilevels is bounded by
m∑

k=0

|V |
2k

log
|V |
2k

= |V | ·
m∑

k=0

log |V | − k
2k

= |V | ·
(

log |V | ·
m∑

k=0

1
2k
−

m∑
k=0

k

2k

)
< |V | · 2 log |V |
= O(|V | log |V |)

Thus, the total runtime is O(log |V | · (|V |+ |E|)).

6.2 Refinement Phase

In the refinement phase the actual layout of the graph is computed. At the beginning

a random initial placement for the coarsest graph is generated and the Fast Multipole

Embedder is used to layout that level. The resulting layout is then used to calculate a

good inital placement for the next finer level before running the layout algorithm.

Unlike to the method used in [Hac05], we just place the nodes randomly near the

position of their sun’s representative in the coarser level. For one multilevel this can be

6.2. REFINEMENT PHASE 61

done in time O(|Vt|), resulting in a total time of O(|V |). In addition the Fast Multipole

Embedder consists of a preprocessing step, which calculates only the edge forces and moves

the nodes accordingly. This is repeated for a fixed number of iterations, in order to find

a good placement for the nodes before running the main step that includes the expensive

repulsive force approximation. The total time needed by the Fast Multipole Embedder

for all levels is bounded by O(log |V | · (|V |+ |E|)). We do not need to prove the runtime,

because the proof of Lemma 6.1.2 from the previous section deals with the same runtime

for the coarsening step.

Furthermore, the layout is rescaled by a constant factor (in our implementation 1.4)

to relieve the Fast Multipole Embedder of this task to scale during the simulation since it

would cost a lot of iterations. Figure 6.4 shows an example of two resulting layouts during

the refinement phase.

62 CHAPTER 6. THE FAST MULTIPOLE MULTILEVEL EMBEDDER

(a) Layout of G1

(b) Layout of G2

Figure 6.4: Example layout of two levels, G1 and G2, during the refinement phase. The graph is
fe elt2 from the benchmark set.

Chapter 7

Experimental Results

In this chapter the results of the Fast Multipole Multilevel Embedder are presented. The

first section deals with the test environment and gives some interesting insights into mod-

ern multicore systems. Then the actual layout algorithm is tested on a given set of

commonly used benchmark graphs. Furthermore, a graph generator is used to investigate

the runtime of the algorithm even for very large graphs with nearly one million nodes.

7.1 Test Environment

For all experiments a machine with two Intel Xeon E5430 processors clocked at 2.66GHz

has been used. Each physical processor is a quadcore CPU (see Figure 7.1) and machine

is running Ubuntu Linux with Kernel Version 2.6.24-16-generic. The compiler used is

the GCC Version 4.2.3 (Ubuntu 4.2.3-2ubuntu7) with optimization level 1 (-O1) for the

OGDF and level 3 (-O3) for the benchmark in this section. Before we present the results

of the actual algorithm, the memory performance of the platform is investigated. Consider

Bus Interface Bus Interface

6 MB Cache 6 MB Cache

Core 0 Core 1 Core 2 Core 3

Physical Processor 0

Bus Interface Bus Interface

6 MB Cache 6 MB Cache

Core 4 Core 5 Core 6 Core 7

Physical Processor 1

System Bus

Figure 7.1: Dual Socket Intel Xeon E5430 schematic view.

63

64 CHAPTER 7. EXPERIMENTAL RESULTS

the function which moves the nodes at the end of each iteration. Basically this function

iterates over all nodes and modifies the position using only a few arithmetic instructions.

The function runs in linear time and intuitively one would assume that the execution in

parallel will result in a good speedup. But instead the speedup is limited by the memory

bandwidth between RAM and processor. The reason for this is that the time needed for

a small number of instructions on a modern CPU can be neglected compared to the time

required to fetch the data from RAM. This function, like many others, just needs each

array entry once, therefore the cache is useless and the bus to the memory becomes the

bottleneck. Note that this is independent of the amount of data. In our application a

graph might be so small that all data structures used during an iteration fit in the cache.

However, in this case the overhead for running it in parallel becomes too high, and thus

this case does not matter.

A simple way to measure the actual memory bandwidth between RAM and CPU is to

write a small benchmark which creates a large array of floats (here 1 GB). Then we iterate

over the array and add to each floating point value a constant. Therefore each element has

to be loaded into the cache and stored back at the end. The resulting traffic is then two

times the size of the array. Furthermore, this benchmark is repeated using multiple threads

placed on different cores and on different physical processors for measuring the memory

bandwidth. The test consists of using 1, 2, 4 and 8 threads which are then assigned to

the cores using two different strategies. Considering Figure 7.1, the first strategy consists

of assigning thread 0 to core 0, thread 1 to core 1, etc.

The second strategy scatters the threads as much as possible by placing them according

to the following pattern:

CPU 0 CPU 1

Number of Threads core 0 core 1 core 2 core 3 core 4 core 5 core 6 core 7

1 0

2 0 1

4 0 1 2 3

8 0 1 2 3 4 5 6 7

Table 7.1: The pattern used in the scatter strategy

In addition the test is run with and without utilizing SSE. Instead of using OGDF’s

thread API, OpenMP is used and a thread is placed on the corresponding core using

the sched_setaffinity function for setting the threads processor affinity. Note that

the actual system core enumeration on which the affinity mask is based, differs from

our enumeration. Table 7.2 displays the result of the benchmark, which are obtained

by running the test for each configuration a hundred times and taking the best result.

Obviously the use of SSE does not have a big impact on the performance except the single-

7.1. TEST ENVIRONMENT 65

Number of

Threads

In Order Scattered

normal with SSE normal with SSE
1 0.484 0.459 0.484 0.459

2 0.425 0.419 0.259 0.258

4 0.388 0.387 0.262 0.261

8 0.271 0.271 0.267 0.266

Table 7.2: Benchmark result times for adding a constant to each entry (1 floating point operation)
of a 1 GB floating point array (≈ 268 million floating points).

threaded run where it performs slightly better. In the following the results without SSE

acceleration are discarded, and a closer look at the two different strategies is taken instead.

Since this chapter is not about measuring the performance of multicore architectures in

general, but the performance of the Fast Multipole Multilevel Embedder, these results

should only clarify the problems arising during the execution of the algorithm’s code.

However, the results are conclusive and can be used to explain the memory bandwidth

bottleneck.

Number of

physical CPUs
Number of

Threads

Time in

seconds
Speedup

Speed in

Gflop/s
Bandwidth in GB/s

per core total

1

1 0.459 1.00 0.58 4.36 4.36

2 0.419 1.10 0.64 2.39 4.77

4 0.387 1.19 0.69 1.29 5.17

2 8 0.271 1.69 0.99 0.92 7.37

Table 7.3: Bandwidth benchmark results using SSE and the first strategy where the threads are
assigned to the cores in order.

Number of

physical CPUs
Number of

Threads

Time in

seconds
Speedup

Speed in

Gflop/s
Bandwidth in GB/s

per core total

1 1 0.459 1.00 0.58 4.35 4.35

2

2 0.258 1.78 1.04 3.88 7.75

4 0.261 1.76 1.03 1.91 7.65

8 0.266 1.72 1.01 0.94 7.51

Table 7.4: Bandwidth benchmark results using SSE for the scatter strategy.

Table 7.3 displays the bandwidth and the resulting CPU speed when using the first

strategy. Only when using eight threads, the second processor is used. Interestingly, even

when using four threads on the first processor, the system is still not able to achieve the

maximum bandwidth. The technical specification of the processor state a bus bandwidth

66 CHAPTER 7. EXPERIMENTAL RESULTS

of 10.6 GB/s, which is not nearly achieved in any of the tested configuration. The practical

maximum bandwidth is about 7.7 GB/s in this benchmark. However, it seems the two

processors have to share the bus bandwidth at a fixed rate and therefore each processor

can only achieve a maximum bandwidth of about 5.3 GB/s. The results of the scattering

strategy shown in Table 7.4 support this claim. The best throughput of all configurations

is achieved using two threads running on different physical processors and, therefore, are

not limited in bandwidth. This value is the maximum and governs the performance, when

increasing the number of used cores. As a conclusion it can be said that the overall perfor-

mance of this rather simple task on this particular machine is not good. When considering

the achieved speedup factor it becomes clear that this type of platform performs good for

tasks which use less memory but require a lot of computational power. Furthermore, when

considering Table 7.2 it becomes clear that using SSE does not solve this problem.

7.2 Runtime

In the following the results of the experiments with the Fast Multipole Multilevel Em-

bedder are presented and compared to the results of the FM3 and the graphics processor

(GPU) based algorithm from [GHGH09]. Both, our FMME and the FM3 implemention

are part of OGDF and compiled with the same options to guarantee a fair test. The

resulting times for the GPU implementation have been taken from the corresponding

article[GHGH09], because the implementation requires special hardware.

The graphs are taken from [Wal, Hac05] and are commonly used as benchmark in-

stances for layout algorithm. The selection of graphs from the Walshaw Graph Collection

[Wal] is based on the size of the instances, in order to test our algorithm for large in-

puts. Furthermore, we selected some artificial generated graphs from [Hac05] to test the

scalability of our algorithm.

Unlike FM3, our algorithm requires that the graph is connected. Since two of the

benchmark graphs (fe body and bcsstk29) contain more than one connected component,

a module from OGDF is used that calls for each connected component the FMME and

packs the resulting layouts. However, we have not selected any graphs with a large number

of connected components, because each component has to be run separately and our

algorithm is not optimized for small instances.

The number of coefficients during the multipole step is 4 for the FMME and the GPU

algorithm, whereas the FM3 is set to run as fast as possible, which corresponds to a count

of 2. Furthermore, if not stated otherwise, the maximum number of threads for the FMME

is set to eight and SSE is used during the multipole phase. The threads are assigned to

the cores by using the scatter strategy from the previous section.

Table 7.5 shows the results for the FMME, the FM3, and if available, for the GPU-based

algorithm. The results show that our algorithm is superior in runtime for all instances.

7.2. RUNTIME 67

Graph Information Runtime

Type Name |V | |E| FMME FM3 GPU
A

rt
ifi

ci
al

G
en

er
at

ed
grid rnd 010 97 169 0.015 0.039

grid rnd 032 985 1834 0.120 0.460

grid rnd 100 9497 17849 0.328 5.392 1.72

grid rnd 320 97359 184532 1.187 68.197

cylinder rnd 010 010 97 178 0.016 0.040

cylinder rnd 032 032 985 1866 0.158 0.453

cylinder rnd 100 100 9497 17941 0.321 5.595

cylinder rnd 320 320 97359 184821 1.202 67.523

sierpinski 04 123 243 0.044 0.063

sierpinski 06 1095 2187 0.215 0.486

sierpinski 08 9843 19683 0.285 4.535 0.984

sierpinski 10 88575 177147 1.014 49.925

flower 005 930 13521 0.265 0.383

flower 050 9030 131241 0.279 3.874 0.547

flower 500 90030 1308441 1.561 47.684

spider A 100 160 0.039 0.048

spider B 1000 1600 0.398 0.531

spider C 10000 22000 0.328 4.625 1.49

spider D 100000 220000 1.340 54.255

W
al

sh
aw

G
ra

ph
C

ol
le

ct
io

n

bcsstk29 13992 302748 0.947 11.094

bcsstk31 connected 35586 572913 0.977 27.612 1.31

bcsstk32 44609 985046 1.382 37.722 1.99

bcsstk33 8738 291583 0.640 8.003 0.968

4elt 15606 45878 0.362 9.377 1.58

crack 10240 30380 0.365 5.635 0.937

data 2851 15093 0.234 1.330

t60k 60005 89440 0.836 41.398

fe body 44775 163734 4.165 29.806

fe 4elt2 11143 32818 0.336 6.482

fe pwt 36463 144794 0.589 21.035 2.48

fe ocean 143437 409593 2.092 105.989 7.97

dg 1087 7602 7601 1.513 4.546

Table 7.5: Selected Graphs and the runtime needed to calculate the layout.

68 CHAPTER 7. EXPERIMENTAL RESULTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200000 400000 600000 800000 1e+006

T
im

e
in

 S
ec

o
n
d
s

Number of Nodes

1 Thread

2 Threads

4 Threads

8 Threads

Figure 7.2: The runtime of the FMME for a series of grid graphs when using multiple threads.

When considering the small graphs it becomes clear that our algorithm does not perform so

well in comparison to the bigger instances. Almost every graph of the artificial generated

ones (flower, spider, . . .) with approximately 1000 nodes takes the same time as one from

the same type but ten times the size.

For bigger instances, e.g. fe ocean, the algorithm benefits from the parallel execution

and the array-based quadtree construction. The factor for fe ocean compared with the

FM3 and GPU implementation increases up to 50 and 3.8, respectively.

In addition to the above described graphs, we implemented a random grid graph gen-

erator in order to be able to test graphs larger than the ones in the benchmark set. The

grid graphs are generated by first creating a regular square grid, then 3% of the nodes are

randomly deleted. In case the graph is no longer connected, additional edges are inserted

to obtain a connected graph. The generator is used to measure the runtime for very large

graphs depending on the number of cores used. Figure 7.2 shows the time for a series

of grids ranging from approximately one hundred thousand to one million nodes. The

corresponding speedup factor is shown in Figure 7.3. The maximum achieved speedup

factor is close to 2.0 when using all eight cores.

7.2. RUNTIME 69

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 200000 400000 600000 800000 1e+006

S
p
ee

d
u
p
 F

ac
to

r

Number of Nodes

2 Threads

4 Threads

8 Threads

Figure 7.3: The resulting speed up for the grid graphs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1
 T

h
read

1
 T

h
read

 S
S

E

2
 T

h
read

s

2
 T

h
read

s S
S

E

4
 T

h
read

s

4
 T

h
read

s S
S

E

8
 T

h
read

s

8
 T

h
read

s S
S

E

It
er

at
io

n
 T

im
e

in
 S

ec
o
n
d
s

Quadtree Construction

Repulsive Force Approximation

Attractive Forces

Collect and Move Nodes

Other

Figure 7.4: The time spent in the different phases during an iteration of the FME for fe ocean
with 143437 nodes and 409593 edges.

70 CHAPTER 7. EXPERIMENTAL RESULTS

In order to give an impression how the runtime is distributed during an iteration of

the Fast Multipole Embedder, we pick fe ocean as an example graph and analyze the time

needed by the different phases during one iteration. Figure 7.4 shows the time spent in

the different phases depending on the number of threads used.

The times are captured during a random iteration, while calculating the layout of the

finest multilevel with a size of |V | = 143437 and |E| = 409593. Furthermore, the time is

measured for a run with and without using SSE for the multipole steps.

The quadtree construction includes everything from the calculation of the morton num-

bers to the Point Update and Node Center, Size step. The repulsive force approximation

step consists of the well-separated pair decomposition, the direct force evaluation, the five

passes of the fast multipole method, and the step which collects the repulsive forces and

maps them back to the graph order. The time needed to calculate the edge forces is rep-

resented by the attractive force step. In the last step, the previously calculated attractive

forces are collected and added to the repulsive forces, then the nodes are moved by the

displacement vector. Anything else, like reseting variables, capturing these results, and so

on is represented by the category named other.

Clearly visible is the price we have to pay for the local force array concept. The

runtime for the collect and move step increases with the number of used cores. However,

this concept simplifies the edge force calculation, which results in good speedup for the

attractive forces.

The benefits of SSE are noticeable and do not stagnate while the number of threads

increases. Together with an acceptable speedup factor of the approximation phase, this

indicates that the required amount of time is governed by the calculations and not by the

memory bandwidth.

Unlike the approximation phase, the quadtree construction consists of many compu-

tationally cheap, but memory expensive steps, which results in a speedup factor below

two.

As a conclusion it can be said that, when considering the memory bandwidth bottleneck

of the test system, the scalability of the Fast Multipole Embedder is acceptable, especially

for large input sizes. However, from the fact that the algorithm is called for small instances

during the refinement phase of the multilevel step, it follows that the speedup decreases

when it comes to the total runtime of FMME.

7.3 Resulting Layouts

In the following the drawings calculated by our algorithm are displayed. All drawings have

been rotated manually to fit better into the document. Furthermore, the edges in graphs

with a high edge-node ratio, e.g. bcsstk33, are drawn with a lesser opacity in order to

display the structure more clearly.

7.3. RESULTING LAYOUTS 71

Figure 7.5: Layout of cylinder 320 320 with 97359 nodes and 184821 edges (1.202s).

Figure 7.6: Layout of bcsstk29 with 13992 nodes and 302748 edges (0.947s).

72 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.7: Layout of bcsstk31 connected with 35586 nodes and 572913 edges (0.977s).

7.3. RESULTING LAYOUTS 73

Figure 7.8: Layout of bcsstk32 with 44609 nodes and 985046 edges (1.382s).

Figure 7.9: Layout of bcsstk33 with 8738 nodes and 291583 edges (0.640s).

74 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.10: Layout of 4elt with 15606 nodes and 45878 edges (0.362s).

Figure 7.11: Layout of crack with 10240 nodes and 30380 edges (0.365s).

7.3. RESULTING LAYOUTS 75

Figure 7.12: Layout of dg 1087 with 7602 nodes and 7601 edges (1.513s).

Figure 7.13: Layout of flower 050 with 9030 nodes and 131241 edges (0.279s).

76 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.14: Layout of spider B with 1000 nodes and 1600 edges (0.398s).

7.3. RESULTING LAYOUTS 77

Figure 7.15: Layout of data with 2851 nodes and 15093 edges (0.234s).

Figure 7.16: Layout of t60k with 60005 nodes and 89440 edges (0.836s).

78 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.17: Layout of fe pwt with 36463 nodes and 144794 edges (0.589s).

7.3. RESULTING LAYOUTS 79

Figure 7.18: Layout of fe body with 44775 nodes and 163734 edges (4.165s).

80 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.19: Layout of fe ocean with 143437 nodes and 409593 edges (2.092s).

Chapter 8

Summary and Outlook

In this thesis a new variant of the fast-multipole-multilevel method for drawing large

graphs has been developed. The presented algorithm follows only the basic principles of

the original method from [Hac05].

We described a new quadtree construction method including a memory layout, the

presented method is practically fast and most parts can be easily executed in parallel.

The given theoretical runtime of O(n log n) is domintated by the sorting step, in which we

use a standard sorting algorithm. Since, we basically have to sort D-bit integer numbers,

one might use a linear time algorithm like radix sort. Furthermore, the algorithm does

not depend on anything related to graph drawing, thus it can be easily used for other

applications.

This leads to the idea of taking advantage of the computational power provided by

modern graphics processors as done in [GHGH09]. The recursive linking function is the

only step during the construction process, which prevents the algorithm to run on a modern

graphics card. All tools required for the rest of the quadtree construction process already

exist, like for example the sorting of the morton numbers.

Furthermore, the presented method is a special version for two dimensions. The prin-

ciple of the bit interleaving and the computation of the least common ancestor can be

easily extended to work in, e.g., three or higher dimensions. The rest of the steps does

not have to be modified at all.

We successfully applied the well-separated pair decomposition in combination with the

quadtree for the Fast Multipole Method. Which, to our best knowledge, has not been done

so far. Again, this approach can easily be modified for higher dimensions.

The multilevel step described in Chapter 6 is not executed in parallel. The reason

for this is mainly the high usage of synchronization needed to label or build a graph in

parallel. For the future, it remains to find a solution which does not create any parallel

edges. Although the removal of parallel edges is fast in practice, the resulting graph

fragments the memory since it has to be a dynamic data structure.

81

82 CHAPTER 8. SUMMARY AND OUTLOOK

List of Figures

1.1 Force-directed spring model . 3

1.2 Excerpt force-directed algorithm . 5

1.3 Plots of the various force functions . 6

1.4 Schematic of a symmetric multiprocessor . 8

1.5 Basic excerpt of our Fast Multipole Multilevel Method 12

2.1 Example plot of a force field and a potential field 16

3.1 Morton Numbering of a Grid . 25

3.2 A Subdivision of a Quadtree Cell and the Bits of the Coordinates 25

3.3 Path in a Truncated Quadtree with the Bits along the Path 26

3.4 Example for the Common Ancestor Node of two Points 27

3.5 Excerpt of the two Cases . 29

3.6 Quadtree construction memory layout . 31

3.7 Example point distribution and corresponding memory layout 32

3.8 Quadtree construction example step 1 . 34

3.10 Quadtree construction example step 3 . 35

3.11 Quadtree construction example step 4 . 35

3.9 Quadtree construction example step 2 . 35

3.12 Quadtree construction example step 5 . 36

3.13 Quadtree construction example step 6 . 36

3.14 Quadtree construction example resulting subdivisions 36

4.1 Two well-separated point sets . 38

4.2 Two well-separated quadtree cells . 39

4.3 Sequence of two calls and unit cells overlapping a circle 42

5.1 Excerpt of the quadtree construction . 46

5.2 The five passes of the multipole framework 48

5.3 Excerpt of the multipole Phase . 49

5.4 Excerpt of the Fast Multipole Multilevel Embedder 50

83

84 LIST OF FIGURES

6.1 Excerpt of the Multilevel Phase . 56

6.2 Example for a Galaxy Partitioning . 57

6.3 Example for Labeling a Graph . 60

6.4 Example of two Layouts during the Refinement Phase 62

7.1 Dual Socket Intel Xeon E5430 schematic view 63

7.2 CPU Time for the random grid graphs . 68

7.3 Speedup factor for the random grid graphs 69

7.4 Time distrubtion for the different phases during an iteration 69

7.5 Layout of cylinder 320 320 with 97359 nodes and 184821 edges (1.202s). . . 71

7.6 Layout of bcsstk29 with 13992 nodes and 302748 edges (0.947s). 71

7.7 Layout of bcsstk31 connected with 35586 nodes and 572913 edges (0.977s). 72

7.8 Layout of bcsstk32 with 44609 nodes and 985046 edges (1.382s). 73

7.9 Layout of bcsstk33 with 8738 nodes and 291583 edges (0.640s). 73

7.10 Result 4elt . 74

7.11 Layout of crack with 10240 nodes and 30380 edges (0.365s). 74

7.12 Layout of dg 1087 with 7602 nodes and 7601 edges (1.513s). 75

7.13 Layout of flower 050 with 9030 nodes and 131241 edges (0.279s). 75

7.14 Layout of spider B with 1000 nodes and 1600 edges (0.398s). 76

7.15 Layout of data with 2851 nodes and 15093 edges (0.234s). 77

7.16 Layout of t60k with 60005 nodes and 89440 edges (0.836s). 77

7.17 Layout of fe pwt with 36463 nodes and 144794 edges (0.589s). 78

7.18 Layout of fe body with 44775 nodes and 163734 edges (4.165s). 79

7.19 Layout of fe ocean with 143437 nodes and 409593 edges (2.092s). 80

List of Algorithms

1.1 Force-Directed Layout Algorithm . 4

3.1 Main Quadtree Construction Function . 28

3.2 Recursive Bottom-Up Construction . 28

3.3 Recursive Bottom-Up Construction Merge 30

3.4 Recursive Linking of the Tree . 33

4.1 Recursive Well-Separated Pair Decomposition 40

4.2 Well-Separated Pair Decomposition for a Reduced Quadtree 40

4.3 Recursive Bounded Well-Separated Pair Decomposition 44

4.4 Bounded Well-Separated Pair Decomposition 44

5.1 Tree Partitioning . 52

6.1 Coarsening Step . 58

6.2 DFS-Based Labeling of a Solar System . 59

85

86 LIST OF ALGORITHMS

Bibliography

[APG94] S. Aluru, G. M. Prabhu, and J. Gustafson. Truly distribution-independent

algorithms for the n-body problem. In Supercomputing ’94: Proceedings of the

1994 conference on Supercomputing, 1994.

[BET93] M. Bern, D. Eppstein, and S. Teng. Parallel construction of quadtrees and

quality triangulations. In In Proc. 3rd Workshop Algorithms Data Struct,

pages 188–199. Springer-Verlag, 1993.

[Cal95] P. B. Callahan. Dealing with Higher Dimensions: The Well-Separated Pair

Decomposition and Its Applications. PhD thesis, John Hopkins University,

Baltimore, Maryland, 1995.

[CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multi-dimensional point

sets with applications to k-nearest-neighbors and n-body potential fields. J.

ACM, 42:546–556, 1995.

[CwAG99] D. E. Culler and J. P. Singh with A. Gupta. Parallel Computer Architecture:

A Hardware/Software Approach. Morgan Kaufmann Publishers, Inc, 1999.

[Ead84] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–

160, 1984.

[FR91] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed

placement. Software - Practice and Experience, 21, 1991.

[Gar82] I. Gargantini. An effective way to represent quadtrees. Commun. ACM,

25(12):905–910, 1982.

[GHGH09] A. Godiyal, J. Hoberock, M. Garlandy, and J. C. Hart. Rapid multipole graph

drawing on the gpu. In Graph Drawing 2009, volume 5417 of Lecture Notes in

Computer Science, 2009.

[GR87] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Jour-

nal of Computational Physics, 73:325–348, 1987.

87

88 BIBLIOGRAPHY

[Hac05] S. Hachul. A Potential-Field-Based Multilevel Algorithm for Drawing Large

Graphs. PhD thesis, Institut für Informatik, Universität zu Köln, Germany,

http://kups.ub.uni-koeln.de/volltexte/2005/1409, 2005.

[HJ04] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-based

multilevel algorithm. In Graph Drawing 2004, volume 3383 of Lecture Notes

in Computer Science, pages 285 –295, 2004. Extended Abstract.

[HP08] S. Har-Peled. Geometric Approximation Algorithms (unpublished). http://

valis.cs.uiuc.edu/~sariel/teach/notes/aprx/book.pdf, 2008.

[HRW05] D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics. John Wiley

and Sons, 7th edition, 2005.

[Int08a] Intel Coorperation, http://download.intel.com/design/processor/

manuals/253666.pdf. Intel 64 and IA-32 Architectures Software Developers

Manual Volume 2A: Instruction Set Reference, A-M, August 2008. version

028.

[Int08b] Intel Coorperation, http://download.intel.com/design/processor/

manuals/253667.pdf. Intel 64 and IA-32 Architectures Software Developers

Manual Volume 2B: Instruction Set Reference, N-Z, August 2008. version

028.

[JM04] M. Jünger and P. Mutzel. Graph Drawing Software. Springer-Verlag, 2004.

[mil] Millennium simulation project. http://www.mpa-garching.mpg.de/

galform/virgo/millennium/.

[OGD] Open Graph Drawing Framework (OGDF). http://www.ogdf.net/.

[PAC01] H. C. Purchase, J.-A. Adler, and D. Carrington. User preference of graph

layout aesthetics: A UML study. In J. Marks, editor, Graph Drawing 2000,

volume 1984 of Lecture Notes in Computer Science, pages 5–18. Springer-

Verlag, 2001.

[Pur97] H. C. Purchase. Which aesthetic has the greatest effect on human understand-

ing? In G. Di Battista, editor, Graph Drawing 1997, volume 1353 of Lecture

Notes in Computer Science, pages 248–261. Springer-Verlag, 1997.

[Tut63] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, 3(13):743–768, 1963.

[Wal] Walshaw graph collection. http://staffweb.cms.gre.ac.uk/~c.walshaw/

partition/.

