brought to you by **CORE** provided by Universiti Teknologi Malaysia Institutional Repository

vii

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiv
	LIST OF ABBREVIATIONS	XV
	LIST OF APPENDICES	xvii
1	INTRODUCTION	
	1.1 Background	1
	1.2 Problem Statement	2
	1.3 The Objectives	4
	1.4 Scope of the Work	4
	1.5 Significance of the Study	5
	1.6 Contributions of the Thesis	5
	1.7 Research Outline	6

LITERATURE REVIEW

2.1 Introduction	7
2.2 Types of Routing Protocol in WSN	8
2.3 IEEE 802.15.4 Specification	10
2.3.1 Physical Layer	12
2.3.2 Medium Access Control (MAC) Layer	14
2.4 Overview of WUSN	17
2.4.1 Tunnel Environment	18
2.4.2 Challenges in TWSN	19
2.4.3 Application in TWSN	20
2.5 Related Research Work	20
2.5.1 The Nonuniform Clustering Routing Protocol	21
2.5.2 Frequency Diversity (FD) Technique	21
2.5.3 Bounce Routing in Tunnels (BRIT)	22
2.5.4 Reviews on Real Time Load Distribution (RTLD)	23
Protocol	
2.5.5 Comparison The Related Works with The	24
Proposed Work	
2.6 Biological Inspired Techniques	25
2.7 Ant Colony Optimization (ACO)	26
2.6.1 Method of Finding Food in Ant Colony	27
2.6.2 Rules and Conditions	32
2.8 Summary	33
RESEARCH METHODOLOGY	
3.1 Introduction	34

5.1 Introduction	
3.2 Structure of TunyOS 1.x	
3.2.1 The Value of RSSI and LQI	38
3.3 System Design of Biological Tunnel Routing Protocol	
(BIOTROP)	
3.4 Cross Layer Design in BIOTROP	
3.5 Structures of BIOTROP	

3.5.1 Routing Management Module	44
3.5.1.1 Optimal Forwarding Calculation	47
3.5.1.2 Unicast Forwarding Mechanism	53
3.5.1.3 Routing Problem Handler	54
3.5.1.4 ACO Routing Process	56
3.5.2 Neighbourhood Management Module	60
3.6 Experiment Test Bed	
3.6.1 Hardware Component	
3.6.2 Software Component	66
3.7 Summary	

RESULT AND ANALYSIS

4.1 Introduction	
4.2 Programming Codes Size	74
4.3 The Result's Interface	75
4.4 Discussion on Experiment 1 at TWSN testbed	77
4.5 Discussion on Experiment 2 at TWSN testbed	80
4.6 Comparison between Experiment 1 and 2 Setup at	
TWSN testbed	
4.7 Free-space Condition	86
4.8 Comparison between Tunnel Environment and Free-	
space Condition	
4.9 Summary	97

5 CONCLUSIONS AND RECOMMENDATIONS 5.1 Conclusions 99

REFERENCES

4

Appendices A – C

106-120

102

LIST OF TABLES

TABLE NO. TITLE PAGE 2.1 The Comparison of ZigBee with Two Others IEEE 802 11 **Standards** 2.2 Physical layer description in IEEE 802.15.4 13 2.3 Comparison between the previous works and BIOTROP 25 2.4 Simple Rule of Ant Approach 32 3.1 Overall design of experimentation 35 74 4.1 Comparison of code size 4.2 The value of PDR (%) at -25 dBm power transmission 77 4.3 The value of PDropR (%) at -25 dBm power transmission 78 The value of PRR at -25 dBm power transmission 4.4 79 4.5 The value of PDR (%) at -15 dBm power transmission 81 The value of PDropR (%) at -15 dBm power transmission 4.6 82 4.7 The value of PRR at -15 dBm power transmission 83 4.8 The value of PRR at -25 dBm power transmission in free-87 space 4.9 The value of PRR at -15 dBm power transmission in free-88 space 4.10 The value of PRR for node 1 89 4.11 The value of PRR for node 2 91 4.12 The value of PRR for node 3 92 4.13 The value of PRR for node 4 94 The value of PRR for node 5 4.14 95 4.15 The value of PRR for node 6 97

LIST OF FIGURES

FIGURES NO.

TITLE

2.1	Routing protocols in WSNs	8
2.2	Routing topologies of (a) flat, (b) hierarchical and (c)	9
	location-based	
2.3	Wireless Network Groups	10
2.4	IEEE 802.15.4 star and peer-to-peer	12
2.5	Operating frequency bands in IEEE 802.15.4	13
2.6	IEEE 802.15.4 operational modes	14
2.7	The super-frame structure without GTSs	16
2.8	The super-frame structure with GTSs	16
2.9	Overview of WUSN architectures	17
2.10	Topology of TWSN with nonuniform clustering	21
2.11	Top view of the measurement geometry of FD technique	22
2.12	RTLD routing protocol architecture	24
2.13	Detail Category of ACO in Routing Protocol	27
2.14	Four ants wander to get the food	28
2.15	Ant A reach the nest and laying down more pheromone	29
2.16	Two trail created by ant A and ant B	29
2.17	Each ant act with different role at this stage	30
2.18	All ants select the shortest path	30
3.1	The overall research process	36
3.2	Packet format of the LQI and RSSI	39
3.3	Proposed BIOTROP design approach	41
3.4	Cross-layer concepts in BIOTROP	42

PAGE

3.5	Functional Components of BIOTROP	43
3.6	State Machine Diagram of BIOTROP	44
3.7	Routing management functional module	45
3.8	State Machine Diagram of Routing Management Module	45
3.9	The programming codes of PRR	50
3.10	Method to get strength value in PRR calculation	51
3.11	Method to get lqi value in LQI calculation	52
3.12	The programming codes of LQI calculation	52
3.13	The programming codes of battery voltage calculation	53
3.14	Node 6 meets its route to destination by Forward Ant	54
	agent	
3.15	Base station fail to reply Backward Ant with same route	55
	to Node 6	
3.16	Node 6 broadcast again RTR message when not receives	55
	Backward Ant	
3.17	Visualization of Ant Agent structure	56
3.18	Forward Ant agent process	58
3.19	Backward Ant reads the table inversely	59
3.20	Data Ant sends data with same route recorded in the	59
	table	
3.21	Neighbour table format	60
3.22	State Machine Diagram of Neighbourhood Management	61
	Module	
3.23	TelosB block diagram	63
3.24	Front view of culvert	64
3.25	The side view of experiment setup	64
3.26	The base component for each node	65
3.27	The location of node 1, node 3 and node 5 at right edge	65
	of the tunnel	
3.28	The location of node 2, node 4 and node 6 at left edge of	66
	the tunnel	
3.29	Components of the SurgeTelos application	67
3.30	Components of the SurgeTelosRTLD application	67

3.31	Components of the proposed application	68
3.32	Surge application interface	70
4.1	The experiment setup in TWSN and free-space testbed	73
4.2	The Surge application interface for 2 meter in	76
	experiment 1 at (a) $t=0$ s and (b) $t=300$ s	
4.3	Packet Delivery Ratio (PDR) at -25 dBm power	77
	transmission	
4.4	Packets Dropped Ratio (PDropR) at -25 dBm power	78
	transmission	
4.5	Packets Received Rate (PRR) at -25 dBm power	79
	transmission	
4.6	Packet Delivery Ratio (PDR) at -15 dBm power	81
	transmission	
4.7	Packet Dropped Ratio (PDropR) at -15 dBm power	82
	transmission	
4.8	Packets Received Rate (PRR) at -15 dBm power	83
	transmission	
4.9	The PRR in free-space condition at -25 dBm power	86
	transmission	
4.10	The PRR in free-space condition at -15 dBm power	87
	transmission	
4.11	The PRR of node 1 at two different areas with (a) -25	89
	dBm and (b) -15 dBm power transmission	
4.12	The PRR of node 2 at two different areas with (a) -25	90
	dBm and (b) -15 dBm power transmission	
4.13	The PRR of node 3 at two different areas with (a) -25	92
	dBm and (b) -15 dBm power transmission	
4.14	The PRR of node 4 at two different areas with (a) -25	93
	dBm and (b) -15 dBm power transmission	
4.15	The PRR of node 5 at two different areas with (a) -25	95
	dBm and (b) -15 dBm power transmission	
4.16	The PRR of node 6 at two different areas with (a) -25	96
	dBm and (b) -15 dBm power transmission	

LIST OF SYMBOLS

V _{mbatt}	-	Maximum battery volt
\mathbf{V}_{m}	-	Maximum velocity
V_{batt}	-	Battery voltage
V_{ref}	-	Internal voltage reference

LIST OF ABBREVIATIONS

WSN	-	Wireless Sensor Network
WUSN	-	Wireless Underground Sensor Network
TWSN	-	Tunnel Wireless Sensor Network
EM	-	Electromagnetic
ACO	-	Ant Colony Optimization
RTLD	-	Real-time Routing Protocol with Load Distribution
FFD	-	Full Function Device
RFD	-	Reduce Function Device
BIOTROP	-	Biological of Tunnel Routing Protocol
QoS	-	Quality of Service
BS	-	Base Station
СН	-	Cluster Head
WPAN	-	Wireless Personal Area Network
PAN	-	Personal Area Network
LMSC	-	Local and Metropolitan Area Network Standards Committee
LoWPAN	-	Low-rate Wireless Personal Area Network
PHY	-	Physical
MAC	-	Medium Access Control
ISM	-	Industrial Scientific Medical
DSSS	-	Direct Sequence Spread Spectrum
CSMA/CA	-	Carrier Sense Multiple Access / Contention Avoidance
RTS	-	Request-to-send
CTS	-	Clear-to-send
CAP	-	Contention Access Period

CFP	-	Contention Free Period
GTSs	-	Guaranteed Time Slot
MI	-	Magnetic Induction
FD	-	Frequency Diversity
AODV	-	Ad hoc On-Demand Distance Vector
BRIT	-	Bounce Routing in Tunnel
RREQ	-	Route Request
RREP	-	Route Reply
PRR	-	Packet Reception Rate
RSSI	-	Received Signal Strength Indicator
LQI	-	Link Quality Indicator
SFD	-	Starts of Frame Delimiter
RTR	-	Request To Reply
FA	-	Forward Ant
BA	-	Backward Ant
DA	-	Data Ant
OF	-	Optimal Forwarding
SNR	-	Signal to Noise Ratio
ITI	-	Industrial Training Institute
PDR	-	Packet Delivery Ratio
PDropR	-	Packets Dropped Ratio
O-QPSK	-	Offset – Quadrature Phase Shift Keying
DSR	-	The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Datasheet of TelosB Mote Platform and CC2420	106
	Transceiver	
В	Source Code of BIOTROP	108
С	Screen Shot of TinyOS 1.x Result at TWSN Testbed	114