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Abstract 

In order to implement reliable, safe and smooth human-robot 
object handover it will be necessary for service robots to 
identify non-verbal communication gestures in real-time. This 
study presents an analysis of the relative information content 
in the gestural features that together constitute a 
communication gesture. Based on this information theoretic 
analysis we propose that the computational complexity of 
gesture classification, for object handover, can be greatly 
reduced by applying attention filters focused on static hand 
shape and orientation. 

Keywords: gestures; Information Gain; object handover; 
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Introduction 

The development of service robots that assist humans in 

their homes and workplace will require fluent 

communication between humans and robots. Gestures, in 

particular, play an important part in human-human 

interactions. For example, people use hand gestures to 

convey messages when handing over objects (McNeill, 

1992). Gaze direction of a person also provides a useful cue 

for predicting forthcoming action (Kirchner, Alempijevic, & 

Dissanayake, 2011) and indicating whether a person is 

interested in a given activity (Argyle & Cook, 1976). Thus, 

in order to facilitate smooth, comfortable Human-Robot 

interaction (HRI), it will be necessary for robots to 

recognize, and produce, these various gestures (e.g. Riek et 

al, 2010). 

As part of the CogLaboration
1
 project, which aims to 

develop a robotics architecture for fluent HRI, we are 

studying the gestures that are commonly involved in object 

handover. Non-verbal communication of requests related to 

object handover was identified as a key competence 

requirement for the development of service robots (e.g. 

Nehaniv et al., 2005, Ou & Grupen, 2010). 

Smooth object handover relies on a combination of initial 

purely communicative gestures indicating a desired action, 

like “pass it faster” etc. and later adjusting of hand/body 

posture to indicate desired object orientation and placement 

during the transfer. Recent models of human-robot object 

handover have therefore attempted to incorporate non-

verbal cues in addition to the psychological aspects of the 

handover model in order to improve the success and safety 

of handover (e.g. Grigore et al., 2012) and facilitate its 

smoothness (Cakmak et al ,2011).  
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In the current study we focused on the purely 

communicative phase preceding the handover. The 

communication gestures in this phase can be classified into 

six main groups (Nehaniv et al., 2005; Strabala et al., 2013, 

Riek et al. 2010): indicating a desire for the partner to 

“Halt” (H), “Give the object they are holding” (G), “fetch an 

indicated, non-held, Object” (O), “Take ‘my’ object”  (T),  

“move Faster” (F) and “move Slower” (S). 

Despite great advances in computing power, computer 

vision algorithms and sensing systems, real-time processing 

of rich sensory information remains a challenge, especially 

when the computational hardware is limited by the on-board 

processing power of a mobile robot. At the same time 

people are very sensitive to slow responses by their 

interaction partners with delays leading to frustration and 

irritation. One of the most effective ways to reduce 

computational load is to reduce the amount of information 

that is analyzed, i.e. to apply attention filters that focus only 

on specific volumes of space and/or sensory features.  

In this study we therefore investigated which visual 

features contribute the most information during the purely 

communicative phase of object handover, thus qualifying 

for prioritized processing to achieve real-time behavior. We 

recorded and scored various features of hand/arm gestures 

that were produced during non-verbal requests related to 

object handover. The resulting data was analyzed to 

compute the relative Information Gain and conditional 

gesture probabilities associated with the various gestural 

features. Our primary finding is that close to 80% of the 

information provided by the participant’s gestures can be 

found by focusing on the static shape and orientation of the 

hand(s). This suggests that many computational resources 

can be saved by discounting regions that are not near the 

hands, and that movement dynamics need not be considered 

for the purposes of identifying desired behavioral responses.  

Method 

Participants 

Twelve healthy participants, six males and six females, 

volunteered for this study (age range 21 -37 years). The 

participants were: two Greek, two Italian, three British, one 

Dutch, two Malaysian and two Japanese. All participants 

with one exception were right-handed. Participants were 

paid and gave informed consent according to institutional 

guidelines, including an additional video consent form 

(Ethics Committee of the University of Birmingham). 
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Apparatus 

One video camera and a 12-camera motion tracking system 

(Qualisys, Sweden) recorded the kinematics of the hand and 

arm movements of the participants. Each task instruction 

was presented, one per trial, on a computer monitor that was 

placed on the left hand side next to the participant. 

Procedure 

Participants were told to produce hand/arm gestures to non-

verbally communicate a desired object handover related 

action to the experimenter (co-author JH). The six gesture 

instructions were: “Halt” (H), “Give ‘your’ object” (G), 

“give Other object” (O), “Take ‘my’ object” (T), “move 

Faster” (F) and “move Slower” (S). In order to make the 

task more realistic a real object (small black cup) was used 

for the handovers. Depending on the task the object was 

either held by the experimenter (action (H), (G), (O), (F), 

(S)) or by the participant (T). Each of the six actions was 

repeated four times. The order of these actions was pseudo-

randomized with avoidance of immediate repetition of the 

same action. The whole study lasted 30 minutes. 

Design and Analysis 

Each of the 288 (12 participants x 6 actions x 4 repetitions) 

recorded gestures was scored for each of the 18 gestural 

features indicated in figure 1. These features were chosen 

based on a combination of ease with which they might be 

identified by a robot and their intuitive appropriateness for 

communicating the six tasks. All scoring was done by one 

of the authors (AK) who had no prior knowledge of the 

action instruction of the particular trials. Scoring of the 

video sequences produced a 288x20 table indicating the 

presence/absence of each of the 18 features in each of the 

288 videos, with two extra columns to record the subject 

number and the action that was being non-verbally 

communicated. The latter was identified by experimenter JH 

after scoring was complete. In order to identify the relative 

informativeness of each gestural feature we computed the 

relative Information Gains (IG) for gesture classification. 

 

Information Gain         is an Information Theoretic 

measure of the reduction in Information Entropy      of a 

variable   due to knowing the state of variable   (MacKay 

D.J.C., 2003) 

                    
where Information Entropy, in bits, is 

                       

 

   

 

and conditional Information Entropy        is 

                        
 

 

                                        

 

   

 

IG is a popular measure in data mining for identifying the 

most efficient order in which to process data to reach a 

classification decision (Bramer, 2007).         measures 

the reduction in the average number of yes/no type 

questions that would be required to identify the correct 

classification of   assuming we can start with knowing  . 

 

Probability of correct classification. While IG is 

convenient for summarizing the increase in predictability of 

variable  , given knowledge of  variable  ,         alone 

does not provide direct insight into the probabilities with 

which we can expect to correctly classify any of the action 

communication gestures. To gain more insight into expected 

classification performance we therefore also looked at the 

conditional probabilities             . 

Results 

Relative IG for single gestural features 

Figure 1 depicts the Information Gain of knowing any one 

of the single gestural features relative to the Information 

Gain of knowing all 18 features,                       . 

 
Figure 1: Relative IG for single gestural features. 

 

Based on this analysis, the six most informative features are 

(1) holding an object, (2) hand parallel to frontal plane, (3) 

thumb(s) towards mid sagittal plane, (4) hand parallel to 

sagittal plane, (5) pointing with finger and (6) hand shaped 

like gripping an object. Of these six features all except 

“holding an object” are related to hand shape/orientation 

and none involves movement dynamics. Even “holding an 

object” is likely to be identifiable if visual processing is 

focused on hand shape. The most information rich dynamic 

gesture property is “repetitive movement”, which appears as 

the 7
th

 most informative feature. Even the most informative 

feature however had an Information Gain of less than 30% 

relative to knowing all features. We therefore analyzed the 

IG for knowing combinations of static hand features. 

Relative IG for static hand features 

Figure 2 depicts the relative Information Gain of knowing a 

combination of static hand shape and/or orientation.  



 
Figure 2: Relative IG for selected combinations of gesture 

features related to hand orientation and/or shape. 

 

We note that while knowledge of “hand orientation” alone 

produces just over 30% of the IG over all features, adding 

only additional information concerning the relative position 

of the thumb (i.e. disambiguating between 180deg torsional 

rotations of the hand) brings the relative IG up to almost 

50%. A slightly better performance is achieved by adding 

information about an object in the participant’s hand, while 

adding both thumb position and object holding raises the 

relative IG to almost 70%. An additional identification of 

“pointing“ behavior raises the relative IG to almost 80%, 

while information about grip like hand shaping has very 

little additional impact on gesture classification. 

Conditional probabilities of correct classification  

Figures 3-6 show the conditional probabilities for the six 

task conditions (Take, Give, Other object, Faster, Slower, 

Halt) given knowledge about gestural features. The 

conditional probabilities              were computed 

directly from the score table as the ratio of trials with feature 

   that belong to task condition    over the total number of 

trials with that gestural feature. 

             
                  

            
 

 
Figure 3: Conditional task probabilities given knowledge 

of a single gesture feature. 

 

The results in figure 3 clearly reveal that the gestural 

features “holding an object”, “pointing”, “closed hand” and 

“single finger” are highly indicative of specific task 

conditions at p(X|A)=1, 0.81, 0.81 and 0.79, respectively. 

The latter two features do not have high IG however due to 

their low probability of occurrence (                 
   ;                    ). 

 
Figure 4: Conditional task probabilities given knowledge 

of (A) only hand, (B) thumb and hand orientation. 

 

Figure 4A focuses in on the hand orientation features, 

showing how fronto-parallel orientation is clearly indicative 

of gestures related to movement speed (Faster, Slower, Halt) 

while sideways tilted hand(s) (sagittal orientation) are 

generally related to requests for initiation of interaction 

(Take, Give, pass the Other). Horizontal hand gestures 

however appear to fall in both categories. 

The addition of knowledge about the relative location of 

the thumb (figure 4B) disambiguates between palm up, 

down inwards or outwards, separating the fronto-parallel 

hand gestures into a “Faster” group and the “Slower or 

Halt” group. Figure 5 finally, when compared to figure 4B, 

shows how the high IG feature of “holding an object” 

greatly improves the probability of identifying “Take mine” 

but makes no obvious contribution towards disambiguating 

any of the other gestures. 

 
Figure 5: Conditional task probabilities given knowledge 

of thumb and hand orientation and presence of held objects. 

Discussion 

In this paper we set out to evaluate the relative information 

gains that can be had from observing various gestural 

features. The ultimate purpose is to identify those features 

that should be prioritized for reliable gesture recognition, 

under the temporal and computational limitations of real-

time processing by service robots. 

The gesture tasks in this study focused on non-verbal 

communication of behavior requests related to object 

handover. Based on the relative frequency with which our 

participants produced each of 18 gestural features to signal 

six handover related request, we computed the information 



theoretic measure of (relative) Information Gain (IG) for 

each feature, and various combinations thereof. The IG 

analysis revealed that close to 80% of the information that 

would be gained by knowing the full 18 features could be 

achieved purely from static hand and thumb posture 

information in combination with detecting if the participant 

is holding an object. This result was further supported by 

the strongly peaked conditional probability distributions for 

identifying the task condition, given knowledge of this 

subset of gestural features (figure 5), indicative of 

(relatively) unambiguous classification.  

Focusing of computational resources on the small spatial 

regions of the hands, while classifying only static hand 

shape and orientations, holds the promise of greatly 

reducing the computational load and required time windows 

of information gathering. By not having to track dynamic 

movement aspects it is possible to work at lower frame rates 

and avoid the use of time derivatives (velocity, acceleration, 

jerk) of the information time series, which are increasingly 

prone to noise. 

It should be noted however that there are a number of 

caveats that need to be addressed in follow up studies. 

Firstly, this study has focused only on the issue of 

determining which visual cues to prioritize for real-time 

gesture recognition. This does not address all possible 

techniques for improving rapid non-verbal communication 

recognition. Gesture classification will obviously be greatly 

improved by including various types of prior knowledge, 

e.g. knowledge that gestures for “halt” or “slower” are much 

less likely to occur when the handover  action has not (yet) 

started. Secondly, in the current experiments, identifying if 

the partner is “holding an object” is very highly predictive 

of a “take ‘my’ object” gesture because participants were 

only holding objects for that specific task condition. By the 

nature of the “take object” condition this will probably also 

be true in most realistic settings, but not always. For natural 

settings, the predictive power of “holding an object” should 

therefore be considered as overestimated in our current 

study.  

Another issue that will require further study concerns 

variability in inter subject behavior. Even among our 12 

participants some task conditions produced a wide 

variability in the gestures. One possible source of this 

variability may be cultural differences, since the participants 

in our study originally came from both northern and 

southern Europe as well as Asia. The general importance of 

cultural differences for non-verbal communication is well 

recognized (Morris, et. al., 1979). Gesture recognition 

performance might therefore be greatly improved through 

region specific tuning. In recognition of this possibility we 

are now engaged in an internet based study
2
 to have people 

from across the world  rate how they would interpret (re-

enactments of) the gestures we observed in our participants. 

Finally, as part of the Behavior Informatics project, 

aimed at increasing accessibility to behavior related data, we 

are making our labeled and scored database of object 
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transfer gestures (the re-enactments used in our on-line 

study) available for download
3
. 
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