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Accelerating and

abruptly-autofocusing

beam waves in the Fresnel zone

of antenna arrays

Ioannis D. Chremmos, George Fikioris, and Nikolaos K. Efremidis

Abstract

We introduce the concept of spatially accelerating (curved) beam
waves in the Fresnel region of properly designed antenna arrays. These
are transversely localized EM waves that propagate in free space in
a diffraction-resisting manner, while at the same time laterally shift-
ing their amplitude pattern along a curved trajectory. The proposed
beams are the radiowave analogue of Airy and related accelerating op-
tical waves, which, in contrast to their optical counterparts, are pro-
duced by the interference of discrete radiating elements rather than by
the evolution of a continuous wavefront. Two dyadic array configura-
tions are proposed comprising 2D line antennas: linear phased arrays
with a power-law phase variation and curved power-law arrays with
in-phase radiating elements. Through analysis and numerical simula-
tions, the formation of broadside accelerating beams with power-law
trajectories is studied versus the array parameters. Furthermore, the
abrupt autofocusing effect, that occurs when beams of this kind inter-
fere with opposite acceleration, is investigated. The concept and the
related antenna setups can be of use in radar and wireless communi-
cations applications.

1 Introduction

The concept of accelerating wavepackets emerged in 1979 in the context
of quantum mechanics [1]. It was then shown that the time-dependent
Schrödinger equation for a one-dimensional (1D) free particle (ih̄ut = −h̄2uxx/2m,
m being the mass) accepts the solution
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u (x, t) = Ai

(

κx− κ4h̄2t2

4m2

)

exp

(

i
κ3h̄tx

2m
− i

κ6h̄3t3

12m3

)

(1)

where u(x, 0) = Ai(κx), Ai is the Airy function and κ (m−1) is an arbitrary
real constant. There are two remarkable properties about the solution (1)
which is illustrated in Fig. 1(a). First, the shape of the probability den-
sity |u|2 remains constant with time, i.e. it represents a wavepacket that
evolves without dispersing. In fact, (1) is the only dispersion-free solution
of Schrödinger equation in 1D free space [2] that is localized in the sense
u → 0 as x → ±∞. Second, this wavepacket moves at a constant acceler-
ation as implied by the law x = κ3h̄2t2/4m2, which is quite peculiar taking
into account the absence of forces acting on the particle. This apparent con-
tradiction to Ehrenfest’s theorem [3] (the quantum-mechanical analogue of
Newton’s law of motion) is resolved if one notes that the Airy wavepacket
has infinite energy (L2-norm), hence its centroid (‖u‖−1

2

∫

x|u|2dx) cannot be
defined.

Despite being physically unrealizable, the self-accelerating Airy wavepacket
stimulated the interest of physicists and engineers who embarked on the idea
of introducing these waves into the field of electromagnetics. The critical
breakthrough was in 2007 when the possibility of diffraction-free optical Airy
beams was proposed [4], based on the equivalence of Schrödinger equation
with Helmholtz equation for paraxial optical beams in free space (e.g. [5]).
Indeed, for a y-independent EM wave (termed (1+1)D) that propagates in
the z direction and varies along x much slower than the wavelength (λ),
the Helmholtz equation for any field component reduces to uz = iuxx/(2k)
(k = 2π/λ). The latter is often called the paraxial wave equation and is
identical to the free-particle Schrödinger equation, if the propagation dis-
tance is interpreted as time and after appropriate normalization. Taking
a step further, it was also found that exponentially truncated Airy wave-
fronts of the form u(x, 0) = Ai (x) exp (ax) (a > 0 being a small real pa-
rameter) evolve like finite-energy approximations of the ideal Airy solution,
maintaining a diffraction-resisting (or quasi-diffraction-free) and accelerat-
ing quality over long propagation distances compared to the diffraction (or
Rayleigh) length [Fig. 1(b)]. For these finite-energy wavepackets too, the
acceleration is perceived as a quadratic lateral shift of their intensity pat-
tern, which is an interference phenomenon and not a violation of Ehren-
fest’s theorem, as their centroid remains fixed with range [6]. Soon, the
new optical beams were produced in the laboratory [7] based on the key re-
mark that the function Ai (x) exp (ax) has a closed-form Fourier transform

U (ω) = exp
[

i(ω + ia)3/3
]

. Therefore, it can be easily realized in the Fourier
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Figure 1: Evolution of (1+1)D Airy waves according to the normalized
Schrödinger equation uz = iuxx/2. (a) Ideal Airy wave with u(x, 0) =
Ai(x). (b) Finite-energy Airy beam with u(x, 0) = Ai(x) exp(0.05x). (c)
Two opposite accelerating finite-energy Airy beams with u(x, 0) = Ai(x +
10) exp[0.05(x+10)]+Ai(10−x) exp[0.05(10−x)]. The color code represents
the normalized intensity |u|2. Variable z represents the propagation distance
for paraxial optical beams and time for quantum mechanical wavepackets

space by reflecting the Gaussian beam exp (−aω2) on a spatial light modu-
lator (SLM) programmed with the cubic phase ω3/3 and by inverse-Fourier
transforming back to the real space by simple means of a lens. (2+1)D
Airy optical beams with input wavefronts of the form Ai(x)Ai(y) were also
produced by taking advantage of the separability of the wave equation. A
thorough operator analysis of the paraxial wave equation also revealed that
Airy beams are members of a broader class of accelerating and diffraction-free
waves [8]. Interestingly, the trajectory of any wave with these two properties
can only be a parabola.

Soon after their inception, accelerating beams (mainly of the Airy type)
captured the attention of the optics community by enabling a broad range of
applications, such as light trajectory control, wavefront self-healing, optical
micromanipulation, diffraction-free plasmon-polaritons, and curved plasma
filaments, to name a few. For a self-contained presentation of these applica-
tions, the reader is referred to the recent review [9].

One of the impressive possibilities empowered by accelerating waves (and
of interest to this paper) is that of producing abruptly autofocusing (AAF)
beams [10], namely beams capable of focusing their power right before a tar-
get while maintaining a constant and low maximum intensity along the entire
path propagated from the source. The associated field structure is based on
a circularly symmetric wavefront with Airy radial dependence Ai(r0 − r).
As the radial Airy wavepacket accelerates inward without diffracting, its
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intensity remains constant and, just before the point of collapse, the power
focuses by orders of magnitude. Experimental tests showed that these beams
can outperform standard Gaussians of comparable initial width in scenarios
where the laser power has to be tightly focused at long distances [11]. AAF
beams have thus far been used for the generation of ablation spots in trans-
parent media [11] and for particle manipulation [12]. An AAF effect with
two interfering (1+1)D Airy beams is depicted in Fig. 1(c).

A ray-optics analysis of Airy beams [13] reveals that their spatial accel-
eration results from the curved caustic that envelopes the rays emitted from
the input aperture (Fig. 2). Such a caustic is termed the fold in the frame-
work of catastrophe theory [14]. The phase of the Airy wavefront varies as
(−x)3/2, which makes the rays’ slope vary as (−x)1/2, which is exactly the
law required for a parabolic caustic x ∝ z2. This principle can be generalized
to produce waves with general power-law trajectories. As shown in [15], a
x ∝ zν caustic is produced by an input wavefront with phase (−x)β with
the powers connected as β = 2− 1

ν
. Further extension to arbitrary trajecto-

ries, such as exponential and polynomial, was experimentally demonstrated
in [16]. Such waves have also been used to define AAF and autodefocus-
ing circular beams with arbitrary caustic surfaces of revolution [15, 17]. It
should be remembered though that truly diffractionless propagation can only
occur along straight or parabolic trajectories, hence waves accelerating along
arbitrary trajectories are by definition not diffraction-free.

To date, the concept of accelerating EM waves has remained within the
confines of optics and it is for that reason unfamiliar to the vast majority
of the radiowaves community. It is of course true that the interest focuses
mainly on the far field of antenna systems for wireless communication pur-
poses and less often on phenomena occurring in the near field and, in particu-
lar, in the Fresnel zone, as is the case of accelerating beams. Nevertheless, the
Fresnel regime is of importance in many radiowave scenarios, as for example
in the Fresnel zone clearance of wireless links or in the design of Fresnel zone
plate antennas [18]. And undoubtedly, near EM fields are always of interest
either for assessing the safety of radiating systems or for manipulating the
interference and coupling of wireless devices [19, 20]. Therefore near field
phenomena can be of importance in radio engineering too.

The aim of this work is to introduce accelerating EM waves to the ra-
diowaves regime. In principle, this is possible owing to the scaling properties
of Maxwell equations. However, in order that the new waves can actually
be used in wireless applications, the concept should be adapted to the cor-
responding disciplines which involve the transmission and reception of EM
waves through antenna systems. To this end, we focus on the generation
of accelerating EM beams in the Fresnel zone of properly designed antenna
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Figure 2: Ray-optics interpretation of an accelerating beam. The input
wavefront is confined in the negative x axis and is modulated by the phase
q (x) = −2

3
(−κx)3/2. In normalized coordinates X = κx, Z = κ2z/k, the

ray starting from (X, 0) has a slope X1/2 with respect to the vertical. The
rays’ envelope rays is the parabolic caustic X = Z2/4, or equivalently xc =
κ3z2c/4k

2. The ray equation (3) has two solutions in the shaded area, one in
X < 0 and zero below the caustic.

arrays. Being essentially a group of independently controllable radiators, an
antenna array offers the possibility to produce a discretized approximation
of the input wavefront associated with Airy and other types of accelerating
waves. As will be shown, there are at least two ways for doing so, using either
linear phased arrays with an appropriate phase law, or accordingly curved
arrays with in-phase elements. For the sake of simplicity, our attention will
be mainly on monochromatic transverse-magnetic (TM) waves evolving in
2D and produced by infinitely long and infinitely thin line antennas, leaving
some more realistic simulations for the end.

2 Theory

2.1 Accelerating Beam Dynamics

Before addressing antenna arrays, we here go over some basic theory un-
derlying accelerating beams. As mentioned in the introduction, the propa-
gation of (1+1)D paraxial beams is governed by the Schrödinger equation
uz = iuxx/2k. In deriving this from Maxwell’s equations, it is assumed that
the amplitude of any field component, e.g. the electric, can be expressed
as Ey(x, z) = u(x, z) exp[ik(z − ct)] (c being the speed of light) where the
envelope varies so slowly that |uzz| ≪ k|uz|. Given the boundary condition
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on z = 0, the solution is obtained in terms of the Fresnel convolution integral
[21]

u (x, z) =
1

(iλz)1/2

+∞
∫

−∞

u (ξ, 0) exp

[

ik(x− ξ)2

2z

]

dξ (2)

An accelerating beam results from the formation of a curved caustic which in
turn follows from a chirped-phase modulation of the input condition u(x, 0)
[13]. To see this, assume that the latter can be described by a slowly-varying
envelope A(x) modulated by the phase q(x), i.e. u(x, 0) = A(x) exp(iq(x)),
and substitute into (2), to obtain an integrand of the form A(ξ) exp(iQ(ξ)),
where Q is the total phase Q (ξ) = q (ξ) + k(x− ξ)2/2z. This form is use-
ful because it lends itself to a stationary-phase approximation of the Fresnel
integral, from which the ray-optics interpretation of the propagation phe-
nomenon derives. Explicitly, the condition of phase stationarity (Qξ = 0)
yields

x = ξ + z
q′ (ξ)

k
(3)

(the prime denotes a derivative), that is, the ray emitted from point ξ on
the input aperture travels at a slope dx/dz = q′(ξ)/k to contribute the main
portion of the field observed at (x, z). Inversely, for a given point (x, z),
the ray equation (3) must be solved for ξ to determine the contributing
ray(s). Without loss of generality, we assume that the input condition is
mainly confined in the negative x axis as happens with the Airy function.
In addition, we assume that q′(ξ) > 0 and q′′(ξ) < 0 so that the rays are
directed toward positive x values and with increasing slope for increasing
negative ξ. Then it is easy to see from a graphical presentation that (3) can
have zero, one or two roots depending on (x, z) (Fig. 2). The separatrix
between the regions with zero and two solutions is a caustic of the fold type,
along which a single ξ solution exists and the total phase Q is second-order
stationary (Qξξ = 0), due to the collapse of two first-order stationary points
(see also [22]). From the latter condition and (3), the caustic is parametrically
expressed as

(xc, zc) =

(

ξ − q′ (ξ)

q′′ (ξ)
,− k

q′′ (ξ)

)

(4)

where ξ < 0 works here as a parameter. The above formula can be used
to design beams with arbitrary caustic trajectories. An interesting case is
that of power laws where the phase is of the form q (x) = −γ(−x)β with
γ > 0 and 1 < β < 2. Substituting into (4) and eliminating ξ, the equation
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of the caustic is found to be xc = δzνc where ν = (2− β)−1 > 1 and δ =
(ν − 1)−1[γβ (β − 1) /k]ν . Therefore, a power-law phase results in a power-
law caustic. Note also that, since β < 2, the input wavefront is sublinearly
chirped and that the closer β gets to 2 (the linear chirp) the higher is the
order ν of the caustic.

In the case of an Airy beam (ideal or finite-energy), u(x, 0) ∝ Ai(κx)
(κ controls the transverse beam width) and the Airy function is replaced by
its well-known asymptotic expression for large negative arguments Ai(κx) ∼
(−π2κx)

−1/4
sin

[

(2/3)(−κx)3/2 + π/4
]

. Surprisingly, the latter provides an
excellent approximation of the function for κx < −2. Breaking the sine
function into two complex conjugate exponentials and after the previous dis-
cussion, it is easy to see that the term ∝ exp

[

−i(2/3)(−κx)3/2
]

is responsible

for the formation of the parabolic caustic xc = κ3z2c/4k
2 (Fig. 2). The com-

plex conjugate term gives rise to symmetric rays propagating toward negative
x, as follows from (3) if q is replaced by −q. These rays contribute to the
total non-diffracting Airy wave in x < 0 but not to the formation of its caus-
tic. This is a useful remark because, when working with accelerating beams
in practice, one is mainly interested in the field close to the caustic where
most of the beam power is confined. For that reason, accelerating optical
beams are most conveniently produced from chirped traveling-wave input
conditions of the form ∝ exp[iq(x)] [16, 17], rather than from chirped stand-
ing waves ∝ sin(q(x)) which are more difficult to produce experimentally.
Interestingly, with antenna arrays, traveling and standing input conditions
can be implemented with equal effort, as we will see.

Finally it is interesting to see how the field in the neighborhood of a fold
caustic can be determined analytically. To this end, we consider an arbitrary
point (xc, zc) on the caustic and expand Q(ξ, x) in a Taylor series for small
increments ∆ξ,∆x around (ξc, xc), where ξc is the corresponding (unique)
solution of (3) and z = zc is fixed. We obtain up to third order

Q (ξc +∆ξ, xc +∆x) =
[

Qc +Qc
x∆x+ Qc

xx

2
(∆x)2

]

+Qc
ξx∆x∆ξ +

Qc
ξξξ

6
(∆ξ)3 + o

(

(∆ξ)3
) (5)

where the superscript c means that the function is evaluated at (xc, zc) and
we have also taken into account that Qc

ξ = Qc
ξξ = 0 due to the second-order

stationarity of Q at ξc. Also, Q
c
ξξx = Qc

ξxx = Qc
xxx = 0, Qc

ξx = −k/zc = q′′(ξc)
and Qc

ξξξ = q′′′(ξc) are obvious from the explicit expression of Q. Substituting
(5) into (2) and assuming a slow variation of A(ξ), we obtain after integrating
over ∆ξ
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Figure 3: Two antenna array concepts for producing accelerating beams. (a)
A linear phased array of equispaced elements with a chirp phase variation
indicated by a color gradient. (b) A curved array of in-phase elements. The
arrows indicate the z-displacement of the elements.

u(xc +∆x, zc) ≈
2πAce

iθ(∆x)

(izcλ)
1/2(q′′′

c /2)
1/3

Ai

(

q
′′

c∆x

(q′′′

c /2)
1/3

)

(6)

where the subscript c means that the function is evaluated at ξc, θ(∆x)
is the term in brackets in (5) and we have also used the inverse Fourier
transform of the Airy function [23]. Therefore the field near the caustic is
distributed like an Airy function irrespective of the caustic’s shape. Addi-
tionally, (6) shows that the width of this Airy-like beam generally varies
with ξc, or equivalently with the propagation distance zc, in agreement with
our previous comment that accelerating beams with arbitrary trajectories
are generally not diffraction-free. Quasi-diffractionless propagation occurs
only when q

′′

c /(q
′′′

c )
1/3 is independent of ξc, which is easily integrated to yield

q(ξc) = −γ(−ξc)
3/2 + µξc with γ > 0 and µ real. This is exactly the phase

modulation of an Airy beam plus a linear phase that simply alters its initial
launch angle and is usually used to control the beam trajectory in a ballistic
manner [9]). We have thus confirmed in a simple way that diffractionless
propagation of paraxial accelerating beams can only occur along parabolic
trajectories (refer to [8] for a rigorous proof).

2.2 Antenna arrays

We now proceed to see how accelerated radio beams can be produced by the
interference of discrete radiating elements. Consider the setting of Fig. 3(a)
or (b), where an array of N parallel ideal line antennas radiate monochro-
matic TM waves. The electric field observed at any point (x, z) is expressed
as
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Ey (x, z) =
N
∑

n=1

InH
(1)
0

(

k
[

(x− xn)
2 + (z − zn)

2
]1/2

)

(7)

where (xn, zn) is the position of the n-th antenna, in is the complex amplitude
of its electric current (in amperes), and In = −(kZ/4)in, where Z is the wave

impedance of free space. Also, H
(1)
0 is the Hankel function of the first kind

in concordance with the time dependence exp(−ikct). Note that for a linear
array zn = 0. To handle (7), we replace the Hankel function by its well-known

large-argument formula H
(1)
0 (kr) ∼ (2/iπkr)1/2 exp (ikr) [23]. In fact, this

expression provides an excellent approximation of H
(1)
0 (kr) for kr > 2 and

thus can be used interchangeably for distances r > λ, which is perfect for all
practical calculations.

In order to design accelerating beams, we have to express in a convenient
form the field radiated produced in the Fresnel zone of the array. According
to the antenna designers’ rule of thumb, this zone exceeds up to a distance
kD2/π, which roughly delimits the transition to the Fraunhofer (far-field)
region of an antenna with maximum dimension D [24]. For accurate field
calculations, the critical point is to treat correctly the phase k|(x, z)−(xn, zn)|
with which each element contributes to the total field at (x, z). Our focus
here is on broadside beams, i.e. emitted perpendicular to the array axis,
that propagate in a paraxial manner, i.e. with small transverse wavevector
components. We find that the most appropriate approach draws from optical
Fresnel diffraction [21]. In this context, the phase is approximated as

k
[

(x− xn)
2 + (z − zn)

2
]1/2 ≈

k |z|+ k(x− xn)
2

2 |z| − sgn (z) kzn

(8)

where propagation toward z > 0 or z < 0 has been accounted for. Note that
the term kz2n/2|z| has been ignored, since zn will be of the order of few λ. In
general, the approximation (8) holds under the condition |zn| ≪ |x− xn| ≪
|z|, i.e. when the transverse array dimension is much larger than the wave-
length which in turn is comparable to the z displacement of the elements (if
zn 6= 0). Note also that, since we are interested in broadside beams, z is the
large parameter in (8). This is different from the standard antenna engineer-
ing approach which involves Taylor-expanding the phase in powers of rn/r
[r = (x2+y2)1/2, rn = (x2

n+y2n)
1/2] and is appropriate for monitoring the EM

field at increasing distances r all around the antenna. Being an asymptotic
approximation for large z, (8) is also increasingly accurate throughout the
far-field region and for that reason appropriate for all practical calculations.
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In addition to the phase, the amplitudes of the field terms have to be
approximated. In Fresnel diffraction, the amplitude is handled similarly to
antenna radiation problems, where all distances are set equal to r, which can
be here approximated by |z|. After the above, (7) yields

Ey (x, z) ∼=
π−1λeik|z|

(iλ |z|)1/2
N
∑

n=1

Ine
−isgn(z)kzne

ik(x−xn)2

2|z| (9)

The result shows that the cylindrical wavefronts emitted by each array ele-
ment behave in the Fresnel region like exponentials with a quadratic phase,
exactly in the same way that a short circular arc can be locally approxi-
mated by a parabola. Additionally, if an element is displaced by zn along the
propagation axis, its field contribution is advanced or delayed in time approx-
imately by |zn|/c, as implied by the extra phase ±k|zn|. Now by comparing
(9) and (2), it is apparent that the total array field provides a discretized
approximation to the evolution of a paraxial beam. The analogy is apparent
if the continuous variable ξ is discretized by the element positions xn and
the continuous boundary condition u(ξ, 0) by the phase-modulated current
amplitudes In exp (∓ikzn).

It is now obvious how the array should be designed to produce accelerating
beams. A first possibility is to have a linear array with currents that are
tuned to discretize the chirped input condition, i.e. In = u(xn, 0) (Fig.
2(a)). Individual attenuating and phase-shifting circuits must be attached
to each element for this purpose. The input condition can be either standing,
e.g. In ∝ Ai(κxn) exp(κxn), or traveling, e.g. In = A(xn) exp(iq(xn)). With
this configuration, the x axis is a symmetry axis and two mirror-symmetric
beams are produced in the z > 0 and z < 0 half-spaces.

A second possibility, suggested by (9), is to let the array elements radiate
in unison and assign the phase modulation to their zn displacements, as
shown in Fig.3(b). This configuration can only discretize traveling input
conditions and produces an asymmetric field distribution. To produce an
accelerating beam in the z > 0 or z < 0 half-space, the displacements must
satisfy zn = ∓q(xn)/k, respectively. For a caustic like that of Fig. 2 we get
zn > 0, i.e. the array bends toward the half-space in which the accelerating
beam evolves. Such a design relieves the need for phase-shifting circuits,
which is a significant reduction in the complexity of the antenna feed system.
Individual attenuators may still be used to modulate the current amplitudes
according to In = A(xn), keeping though in mind that this envelope function
can be chosen quite freely not affecting the beam’s trajectory. Moreover,
the curved shape of the array may be advantageous in applications where
a conformal design is desirable. Additional freedom in shaping the array
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exists if one notes that the displacements zn can also be wrapped modulo λ,
as the exponents exp(±ikzn) remain intact. This results in a scattered-like
distribution of the elements within a λ-wide strip adjacent to the x axis.

It should be stressed that the above designs are straightforward to imple-
ment if the mutual coupling between the array elements is negligible, which is
a realistic assumption when the elements are several wavelengths apart. This
becomes evident if one realizes that paraxial EM beams vary in the trans-
verse direction on a length scale κ−1 ≫ λ. For example, the finite-energy Airy
wavefront Ai(κx) exp(aκx) has a Fourier transform ∝ exp(−aω2/κ2), namely
a (spatial) bandwidth B ≈ 2κ/

√
a. Since the array performs a sampling of

this wavefront, an upper limit for the inter-element spacing (s) is provided
by the Nyquist rate s < π/B = π

√
a/2κ. Now a is typically in the range

0.05-0.2 [4], while κ−1 > 10λ, which obviously allows the elements to be few
to several wavelengths apart. Under these conditions, each element can be
treated as being isolated and its driving voltage should simply be vn = inZnn,
where Znn is its self-impedance. Nevertheless, such a convenience does not
come for free. Increasing the inter-element spacing results in the emission
of an increasing number of secondary (non-broadside) caustics, at the angles
dictated by the diffraction orders of the array as a grating sin θm = mλ/s,
m = ±1,±2, ..., where θ is with respect to the z axis [24]. Suppressing all
these grating lobes requires that s < λ, hence a large number of elements
is needed to sample a paraxial wavefront. In addition, mutual coupling has
to be taken into account and the voltage excitations have to be determined
using the complete interaction matrix of the elements mutual impedances
Zmn. Finally note that, even in the absence of higher-order diffraction (when
s < λ), there may still be some appreciable power radiated parallel to the
array. The field of these endfire beams is proportional to

∑

n
Inexp (∓ikxn) for

x → ±∞, and it can be shown to vanish under the more stringent condition
s < λ(1 +B/k)−1 (proof omitted). The final choice of the spacing is thus
left to the designer’s trade-off.

2.3 Numerical examples

In this section the proposed idea is demonstrated numerically. The logic
underlying the examples is simple. For a given accelerating beam, the array
is designed according to the explained analogy between (2) and (9), adopting
either the linear or the curved array configuration. For a fair evaluation, the
resulting parameters (In and xn) are substituted into the rigorous expression
(7) and the produced electric field is plotted from the antenna to the Fresnel
zone.
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Figure 4: A linear array producing a finite-energy Airy beam. (a) The current
amplitudes are In = Ai(0.1λ−1xn) exp(0.005λ

−1xn), with the element sites at
xn = (20− 0.85n)λ, n = 0, 1, ..., 249. (a) Time-averaged electric-field energy
density ǫ0|Ey|2/4 scaled to its maximum value. The dashed curve is the
analytically expected caustic x = z2/16000π2 (x, z in wavelength units). Also
indicated with white dots are the radiating elements, appearing like a line
segment due to their dense spacing. The inset shows the far-field radiation
pattern.

As a first example, consider a linear array that produces a broadside finite-
energy Airy beam with a = 0.05, κ = (10λ)−1 (bandwidth B ≈ 0.14k), under
the stringent specification of suppressed higher-order and endfire beams. Ac-
cording to the previous discussion, the array spacing is taken s = 0.85λ. With
this sampling rate, a number ofN = 250 elements has been chosen to allow 18
amplitude extrema of the discretized Airy function. The distribution of cur-
rent amplitudes across the array is shown in Fig. 4(a), while Fig. 4(b) depicts
the result of (7) in terms of the time-averaged electric-field energy density.
The radiation pattern is also shown in the inset. The image clearly veri-
fies our expectations for the formation of two mirror-symmetric Airy beams,
with respect to the array plane, writing a parabola in space. Note that,
due to its paraxial nature, the beam evolves much slower in the z (covering
thousands of λ) than in the x direction. Note also the absence of endfire
or higher diffraction order radiation, due to the chosen spacing s. It might
also be interesting to mention that, for this array with length D ≈ 200λ, the
reactive near-field region extends to around 0.62(D3/λ)1/2 ≈ 1750λ, while
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Figure 5: A linear array producing a finite-energy Airy beam. (a) The current
amplitudes In = Ai(0.1λ−1xn) exp(0.005λ

−1xn), with the element sites at
xn = (20−3n)λ, n = 0, 1, ..., 69. (a) Time-averaged electric-field energy den-
sity. The dashed curve is the analytically expected caustic x = z2/16000π2

(x, z in wavelength units). The signed numbers ±1,±2,±3 indicate the
diffraction order of the corresponding beams. The white dots are the ar-
ray elements. The inset shows the far-field radiation pattern.

the radiating near-field (or Fresnel) region to 2D2/λ = 80000λ [24]. Hence
the formation of the accelerating beam is clearly a near-field phenomenon.

Let us now see the effect of producing the same Airy beam under a less
stringent specification for the inter-element spacing. This is the case of Fig.
5 where s = 3λ, which is around 1.17 times the Nyquist spacing π/B. Fewer
elements (N = 70) are now required to discretize the same extent of the
Airy function. In addition to the desired broadside Airy beam, a number
of higher-order grating beams now emerge at angles 190, 420 and 900 (end-
fire) with respect to the (positive or negative) z axis (radiation pattern in
the inset). A closer look at these beams reveals that they are too acceler-
ating along parabolas. To see this, rotate the frame of coordinates by the
corresponding diffraction angle θm, whereby the element positions become
(x′

n, z
′
n) = (xn cos θm, xn sin θm). By manipulating the phase in the new frame

(x′, z′) for large z′ in a way similar to (8) and noting that kz′n = −2mnπ (grat-
ing condition), one finds the same equation with the broadside beam (θ0 = 0)
except a factor (cos(θm))

−1 that stretches the parabola in the x′ direction. A
more detailed analysis of these beams is beyond the scope of this introduc-
tory paper. What is here to be emphasized is that the spacing (and number
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Figure 6: A curved array of in-phase elements producing a parabolic acceler-
ating beam. (a) Solid line (left ordinate): The elements lie on the curve
zn = (λ/3π)(−0.1λ−1xn)

3/2, where xn = −0.85λn and n = 1, 2, ..., 299.
Dashed line (right ordinate): Exponentially decaying current amplitudes.
(b) Electric-field energy density. The dashed line is the parabolic caustic
x = z2/16000π2 (x, z in wavelengths). The white dots are the array ele-
ments. The inset shows the far-field radiation pattern.

of elements) of the array should be chosen by the designer on the base of a
trade-off: larger spacings result in less and weaker-coupled elements but also
in radiated power lost in grating lobes.

Next we examine the formation of a beam with the same parabolic tra-
jectory using a curved array of in-phase elements, i.e. In = An, An being
real and exponentially decaying. According to Section 2, the displacements
zn should obey zn = −q(xn)/k where the phase follows the 3/2-chirp of the
Airy function, i.e. q(xn) = −(2/3)(−κxn)

3/2. The result is shown in Fig. 6
for κ = (10λ)−1, xn = −0.85nλ and N = 300 elements. Note that, due to
the break of symmetry with respect to the z = 0 plane, the beam forms only
in z > 0. Indeed, for the waves evolving in z < 0, the phase chirp is opposite
(due to the sign function in (9)) hence the rays fan out instead of converging
to create a caustic. Notable is also the difference between the energy images
of Fig. 4(b) and Fig. 6(b). In the former case, the element currents discretize
the exact Airy wavefront resulting in an almost perfect approximation of the
finite-energy Airy beam. In the latter case, the array reproduces only the
rays responsible for the creation of the caustic, hence the beam is Airy-like
only close to this curve.

Going beyond parabolic trajectories, Fig. 7 examines the case of a beam
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Figure 7: A curved array of in-phase elements producing a cubic acceler-
ating beam. (a) Solid line (left ordinate): The elements lie on the curve
zn = (9λ/50π)(−0.1λ−1xn)

5/3, where xn = −0.85λn and n = 1, 2, ..., 399.
Dashed line (right ordinate): Exponentially decaying current amplitudes.
(b) Electric-field energy density. The dashed line is the cubic caustic
x = z3/2.5 × 107π3 (x, z in wavelengths). The white dots are the array
elements. The inset shows the far-field radiation pattern.

with a cubic caustic. This is produced by a curved array whose zn follow a
5/3-power law (β = 2 − 1/3). Comparing with Fig. 6, one sees that, while
the width of the field lobe near the parabolic caustic remains almost constant
over several thousands of wavelengths, the lobe near the cubic caustic gets
narrower. This agrees with (6) and the discussed diffraction-resisting quality
of parabolic caustics.

Regarding the radiation diagrams of the previous arrays, it might be
interesting to note that they are quite rippled (as a closer look at the po-
lar plots reveals). It should be stressed that such arrays are designed to
produce curved beams in the Fresnel zone, a requirement that is generally
incompatible with producing a smooth radiation diagram. Also note that
the formation of a curved beam is a rays’ interference phenomenon that is
not necessarily accompanied with higher directivity of the array toward this
direction. Hence Figs. 6 and 7 should not mislead one to assume that most
of the power is radiated toward z > 0 where the caustic forms, since there
is an almost equally strong backward lobe toward z < 0, as the radiation
diagram shows. Achieving a desired field pattern both in the Fresnel and in
the Fraunhofer region is a much more complicated task that certainly merits
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Figure 8: Electric field energy density |Ey|2 on the H-plane of a linear array
of 150 half-wave dipoles with (a) λ and (b) λ/2 spacing. In both cases

the dipoles are center driven by voltages Vn = exp
(

0.1κxn + i2
3
(−κxn)

3/2
)

where κ = 0.25λ in (a) and 0.5λ in (b). The full EM simulation has been
performed in z ≥ λ to avoid excessively high field values. Some pixelization
of the images is evident due to the used 200× 200 spatial grid. Superposed
with dashed curve are the analytically expected parabolic caustics.

further investigation.
Let us now consider a realistic setting of a linear phased array of half-

wave (λ/2) dipoles. A full EM thin-wire simulation [24] is applied in order to
take into account the effects of mutual coupling between the elements. The
dipoles are assumed to be center-driven by voltages that obey the 3/2-chirp
phase law of Fig. 6, which act as the inputs to our system. Figure 8 depicts
the obtained electric-field energy density |Ey|2 on the H-plane y = 0 of the
array for two different array spacings λ and λ/2. In both cases the formation
of the Airy-like beam is clear. Some distortion is evident particularly in
the near field which is due to the fact that, as mutual impedances between
elements increase, the currents In are no longer proportional to the applied
voltages Vn. After experimenting with several settings, we could say as a rule
of thumb that fine accelerating beams can be produced by half-wave dipole
arrays with spacings as low as λ/2.

We finally investigate the possibility of AAF beams through the interfer-
ence of two arrays producing opposite accelerating beams, like that of Fig.
1(c). An example is shown in Fig. 8(a), where two finite-energy Airy beams
produced by two identical arrays with the parameters of Fig. 4 collide. What
is interesting in such a focusing scenario is to monitor the maximum inten-
sity of the wave in the transverse plane versus the propagation distance, i.e.
Imax(z) = max

x
(|Ey(x, z)|2). As shown in Fig. 9(c), Imax exhibits a behaviour
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Figure 9: (a) AAF waves from interfering arrays producing opposite acceler-
ating Airy beams. The array parameters are the same with Fig. 4 and their
separation is 60 wavelengths. (b) Focusing with an array of 500 elements
and currents In = exp (−x2

n/(80λ)
2) cos (kx2

n/6000λ). The top plots show
the array currents. (c) Maximum intensity versus propagation distance for
the beams of (a) (solid line) and (b) (dashed line).

analogue to AAF optical beams of the circular-Airy kind [10], namely it main-
tains a fairly constant value and focuses abruptly only right before the target.
In optics, the performance of such beams is appreciated by comparing them
to standard Gaussian beams which focus due to the quadratic phase modu-
lation obtained after passing through a thin spherical lens. An antenna array
counterpart of that case would be an array centered at x = 0 with currents
of the form In = exp (−x2

n/w
2) cos (kx2

n/2f), where f is the intended focal
distance. The result is shown in Fig. 9(b) and the corresponding Imax is
superposed in Fig. 9(c). For a fair comparison, the e−1 width w was chosen
so that the L2-norm of the currents (

∑

n
|In|2) is the same for the two arrays,

assuming the same number of elements (and spacing) and that both current
sets are scaled so that max(|In|) = 1. This is analogous to two optical beams
with equal power. Furthermore notice that the quadratic phase was imposed
on the currents through a ”standing” cosine factor instead of a ”traveling”
exponential factor, so that we fairly compare two waves with a ”standing”
input conditions (recall that half of the rays emanating from a standing input
condition fan out without contributing to focusing). The comparison clearly
illustrates the difference between AAF from interfering ray caustics and the
(classic) smooth Lorentzian focusing from a converging Gaussian pencil of
rays.

17



3 Conclusion

Accelerating EM beams have been introduced into the radiowaves realm.
After making a review of accelerating waves in the optics domain, we have
gone through the basic theory underlying the evolution of these waves in
the Fresnel regime of diffraction. By applying the same reasoning to the
2D field radiated in the Fresnel zone of line antenna arrays, we have physi-
cally been led to a simple method to generate accelerating radio beams with
pre-specified caustic trajectories. The array should be designed so that the
element currents perform a discretization (or sampling) of the continuous
wavefront that is associated with an accelerating beam through the Fresnel
convolution integral. Linear and curved array configurations have been pro-
posed. In the second type, the elements radiate in phase, while the chirped
phase variation is assigned to their arrangement along a power-law curve in
space. Proof-of-concept numerical examples have provided positive evidence
for the feasibility of these designs. Design issues related to the sampling rate
and the suppression of endfire and grating lobes have also been addressed.
We have finally showed that when such beams interfere at opposite acceler-
ations, an effect is obtained similar to the recently introduced AAF optical
beams. Several issues are still to be addressed in future works, such as the
(non-trivial) extention to 3D radiation from dipole arrays, the efficient de-
sign under mutual inter-element coupling, the simultaneous optimization of
the far-field pattern and the extreme beam bending at non-paraxial angles,
which is already attracting attention in the optics field [25, 26, 27]. Emerg-
ing ideas for accelerating optical beams with symmetric Bessel-like profiles
[28, 29] can also be explored in the RF domain.

Accelerating beams have so far been studied only within the domain of
optics. The present work aims to draw the attention of the radio-engineering
community to this intriguing class of EM waves by investigating simple
2D antenna configurations capable of producing them. By virtue of their
diffraction-resisting quality, such waves (and mainly of the Airy type) can be
useful in wireless communications or remote sensing applications for deliver-
ing power within tightly focused beams at a Fresnel range.
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