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Cloud Computing, Contractibility, and Network Architecture 
Christopher S. Yoo* 

ABSTRACT 

 The emergence of the cloud is heightening the demands on the network in 
terms of bandwidth, ubiquity, reliability, latency, and route control.  
Unfortunately, the current architecture was not designed to offer full support for 
all of these services or to permit money to flow through it.  Instead of modifying 
or adding specific services, the architecture could redesigned to make Internet 
services contractible by making the relevant information associated with these 
services both observable and verifiable.  Indeed, several on-going research 
programs are exploring such strategies, including the NSF’s NEBULA, 
eXpressive Internet Architecture (XIA), ChoiceNet, and the IEEE’s Intercloud 
projects 
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INTRODUCTION 

One of the fundamental changes effected by the emergence of cloud computing is to take 

functions previously performed by resources contained within a user’s personal computer or 

laptop and transfer them to servers located in a distant data center. For users running virtual 

desktops, every single keystroke must pass through the network and be remotely registered by a 

virtual machine. 

Such a drastic rearrangement of where particular tasks are performed creates pressure for 

the architecture to evolve to meet these new demands. For example, the fact that data that 

previously did not need to leave the personal computer sitting on the user’s desk must now pass 

through a transmission network may lead to increased demand for bandwidth and decreased 

tolerance for latency. Moreover, because the path over which the data may travel may not be 

secure and the legal requirements of various jurisdictions may be diverse, cloud computing may 

lead users to demand the ability to verify the source of a packet and to exercise a greater degree 

of control over the path over which their data will travel and the locations where their data will 

be hosted. 

In short, the advent of cloud computing is placing new demands on the Internet and other 

communications networks that users are employing to access cloud-based services and resources. 

Unfortunately, the services that the Internet is designed to provide are rather limited in both 

number and scope. Moreover, the types of services being provided over the cloud are constantly 

changing. Any attempt to modify the Internet to incorporate a discrete set of new services risks 

being rendered obsolete by the next wave of innovation. 

Rather than try to restructure the network to provide a particular set of services needed by 

the current iteration of the cloud, an alternative approach would seek to reengineer the 
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architecture to provide the necessary primitives sufficient to enable present and future cloud 

service providers to support a wide range of policies. If properly designed, these primitives 

should allow both users and providers to create and monitor the services that they need by 

contract. Basic principles of contract theory have revealed two prerequisites that must be 

satisfied if contracts are to be effective. First, the information that is subject to the contract must 

be observable, in that both parties can perceive the relevant states of the world with respect to 

that information. Second, the relevant information must be verifiable, in that the parties must be 

able to prove after the fact in a court of law or to some other third party that the relevant state of 

the world did or did not occur (see, e.g., Hölmstrom 1979; Hart and Moore 1988). A classic 

example of a matter that is observable but not verifiable is effort exercised by an employee in the 

context of an employment contract. Both the employer and the employee may be well aware of 

the employee’s level of effort or lack thereof, but it may be unable to be prove in a court of law. 

If the architecture is to allow private actors to contract for certain levels of quality of 

service or data security, the minimum information needed for parties to be able to enforce their 

bargains must be observable and verifiable by the parties. The logical solution is to locate the 

primitives to make Internet transactions contractible in the network layer, which is the spanning 

layer visible to all network participants. The problem is that the Internet’s current architecture 

does not satisfy either criterion. Users can observe or verify neither the source of data nor the 

precise path that a given transmission will take through the network. Moreover, the network 

layer of the Internet, which consists of the Internet Protocol (IP), is notoriously difficult to 

change. 

Ongoing research sponsored by the National Science Foundation (NSF) and the Institute 

of Electrical and Electronics Engineers (IEEE) is exploring ways to redesign the architecture to 
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provide the primitives necessary to make the network services demanded by cloud computing 

contractible. Such a revision would enable network providers and users to make their own 

arrangements regarding new network services required by the cloud, which would be more 

consistent with the Internet’s traditional approach of relying on decentralized decision making 

and would preserve the flexibility to adapt to new developments and increases in scale. 

I. THE CLOUD’S NEED FOR NEW NETWORK SERVICES 

As noted previously, cloud computing takes functions that used to involve the interaction 

of physical resources connected directly to a personal computer or a laptop and distributes them 

to a remote data center. This reconfiguration will place new demands on the access network in 

terms of bandwidth, ubiquity, reliability, latency, and route control. The access networks’ ability 

to meet these demands will go a long way toward determining cloud computing’s attractiveness 

as an option. 

A. Bandwidth 

Cloud computing is likely to increase the demands that are placed on the local access 

network. As an initial matter, new cloud computing customers must have some means for 

uploading their data to the data centers when setting up new applications. At this point, however, 

the access network does not have sufficient bandwidth to support this level of utilization. 

Because data sets in the terabyte range would take weeks to upload, cloud computing providers 

currently recommend that customers download their data onto a physical storage medium and 

send it via an overnight mail service (Brodkin 2010). Eventually, the hope is that network 

capacity will increase to the point where large data sets can be provisioned through the network 

itself. 
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Even after data has been provisioned to a new cloud computing facility, the fact that 

processing that used to occur locally is now being performed in the data center typically means 

that a greater volume of traffic must pass to and from the client that the user is operating. Cloud 

computing may thus cause an increase in the total bandwidth required from the network on a 

day-to-day basis as well. 

B. Ubiquity 

Cloud computing requires a higher degree of ubiquity than traditional computing 

solutions. When the software and the data needed to run a particular application reside on the 

users’ hard disk, the unavailability of a network connection may inconvenience them and reduce 

the application’s functionality, but it does not necessarily stop them from being productive in any 

way. When the software and data reside in the cloud, however, the absence of a network 

connection has more serious consequences, effectively preventing them from running the 

application at all. As a result, cloud computing customers regard ubiquitous access to network 

connections as critical. 

C. Reliability 

A related concern is access network reliability. The availability of an access network 

connection is meaningless if it is not functioning properly. Even when the application and the 

data reside on a user’s hard disk, the failure of a network connection can severely limit the user’s 

ability to perform productive work. Network failure becomes an even more serious obstacle 

when these elements are hosted in the cloud. Indeed, Gmail, Salesforce.com, and Amazon’s 

Simple Storage Service (S3) and Elastic Compute Cloud (EC2) have suffered from well-

publicized service outages that imposed severe difficulties on their customers. These higher 
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stakes mean that some customers are likely to demand that access networks offer higher levels of 

guaranteed uptime. 

D. Quality of Service 

Users’ willingness to offload services that used to be provided locally into the cloud 

depends in no small part on how quickly the cloud is able to perform those functions. Aside from 

bandwidth, the most frequently discussed aspect of quality of service is latency, which is the 

delay that an application takes to register a change. Someone typing on a virtual desktop is likely 

to insist on latencies that are no more than a few hundred milliseconds. Other relevant aspects of 

quality of service include reliability (measured in terms of the accuracy of records) and jitter 

(measured in terms of variations in the spacing between packets). Different applications have 

different tolerances for each aspect of quality of service. As a result, cloud computing customers 

are likely to insist on service level agreements (SLAs) that guarantee them certain minimum 

levels of quality of service on those dimensions that matter most to them. These demands will 

likely vary in different cases. For example, financial services companies typically require perfect 

transactions, with latency guarantees measured in microseconds. In addition, these companies 

require the cloud provider to audit the accuracy and delivery time of every transaction after the 

fact. 

Cloud computing is likely to require sophisticated network management techniques to 

provide minimum levels of quality of service. One way that cloud computing systems can 

improve the quality of service of network services is by taking advantage of the presence of 

multiple connections between two points. The Internet currently relies on protocols such as the 

Border Gateway Protocol (BGP) to determine the route that any particular stream of packets may 

take between domains. BGP is limited in its ability to manage multiple paths, routing all traffic 
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along a single route instead of balancing traffic across multiple paths. BGP, moreover, is 

controlled by the core routers rather than by users. A new architecture for cloud computing could 

improve network performance by providing greater ability to allocate traffic across multiple 

paths and to allow faster recovery from congestion and network failure. It could also increase 

functionality by giving users control over the particular routes taken by their traffic. 

E. Control Over Routing 

Cloud computing necessarily requires large amounts of data that previously did not leave 

a company’s computer or internal network to be transported via a series of networks to a data 

center. The fact that this data must pass outside the company’s firewall and through the access 

network renders it vulnerable to attack vectors that are different from those that plague corporate 

campuses. 

As a result, cloud-based solutions must be able to assure these institutions that their data 

are being handled in a way that preserves confidentiality by giving users greater ability to control 

which networks their traffic passes through. Because cloud computing requires that sensitive 

information must pass over a network connection, users may demand the ability to verify a 

packet’s source, as well as the means to ensure that their data will pass only over networks they 

deem trustworthy. 

Moreover, the ability to shift data from one data center to another potentially makes that 

data subject to another country’s privacy laws. Current data protection requirements vary widely 

across jurisdictions. For example, US law holds all institutions that maintain health or 

educational records responsible for maintaining their privacy. The fact that such records are now 

housed in the cloud does not obviate those responsibilities. However, in the European Union, the 

law requires that data be retained only for limited purposes and for limited times. Because 
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customers are ultimately responsible for any such violations, they are likely to insist on a 

significant degree of control over where their data reside at any particular moment. In addition, 

cloud computing may require an architecture that permits the exact routes that particular traffic 

takes to be auditable and verifiable after the fact. 

The emergence of the cloud is thus causing users to place a different set of demands on 

the network. Moreover, not all cloud users will need the same combination of services. Word 

processing does not require significant bandwidth, but it is extremely sensitive to latency. Users 

who use the cloud to store video or music can tolerate the latency needed to buffer streaming 

media, but they demand significantly more bandwidth. 

This heterogeneity has led many commentators to recognize that it is not appropriate to 

fold cloud computing into the conceptual framework traditionally applied to public utilities 

(Brynjolfsson, Hoffman, and Jordan 2010, Kushida, Murray, and Zysman. 2011, Bayrak, Conley, 

and Wilkie 2011; also see chapter 3, “Reliability and the Internet Cloud,” in this volume). 

History has shown that public utility regulation is ill suited to technologies where the product 

attributes are complex and where the production technology varies and is undergoing rapid 

technological change (Yoo 2013b). It comes as no surprise, then, that early commentators who 

first conceived the computing utility typically acknowledged that it did not fit within the classic 

conception of public utilities (see, e.g., Irwin 1966, Parkhill 1966, Baran 1967, Barnett et al. 

1967, President’s Task Force on Communications Policy 1968, Smith 1969). 

II. LIMITS OF THE CURRENT ARCHITECTURE 

Cloud computing may demand quality of service guarantees, as well as the ability to 

control the routes that particular data will pass through the network. The existing architecture 

does provide some tools to facilitate the provision of these services. For example, the 
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engineering community has devised a wide range of protocols to help provide defined levels of 

quality of service. Indeed, the inclusion of a type-of-service field in the original Internet Protocol 

version 4 (IPv4) header reveals that quality of service through prioritization was part of the 

Internet’s original design. Subsequently, the Internet community has developed a wide array of 

protocols to promote quality of service, including Integrated Services (IntServ), Differentiated 

Services (DiffServ), and MultiProtocol Label Switching (MPLS). More recent efforts include 

virtual circuit services such as Internet2’s Interoperable On-demand Network (ION) and 

deprioritization regimes such as the Low Extra Delay Batch Transport (LEDBAT) from the 

Internet Engineering Task Force (IETF), both of which represent fairly substantial deviations 

from the principles around which the current Internet is organized (Yoo 2011a). The problem is 

that to date, none has attained sufficiently broad acceptance to support cloud services.  The 

retention of the type-of-service field (renamed “Traffic Class”) in Internet Protocol version 6 

(IPv6)  underscores the continuing importance of quality of service. 

Regarding routing, the original IPv4 header includes an optional field to allow the source 

to determine the route that packets will take. This option is not mandatory and has largely been 

ignored. In addition, the BGP-based system responsible for routing traffic on the current Internet 

employs an algorithm that allows each router to make independent decisions about the path that 

particular packets will take through the network. In general, BGP by default simply sends traffic 

along the path that transverses the fewest autonomous systems. Although BGP is intended to 

permit networks to implement routing policies, these policies tend to be implemented by altering 

the routing table by hand by increasing the apparent length of a path in an effort to make certain 

routes unattractive. The fact that each firm makes such individualized adjustments on a 
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distributed basis can lead to interactions that make such policies difficult to implement and even 

harder to guarantee. 

Cloud computing providers and users wishing to exercise greater control over the paths 

that are taken by traffic that passes between data centers may rely on MPLS or some other 

protocol to exercise control over the precise paths that are taken by particular traffic. In fact, 

IPv6 added a “Flow Label” field to incorporate this functionality into the network layer itself. 

Such control mechanisms are essential to ensuring that flows between data centers maintain the 

required levels of quality of service, protect network security, and maintain the privacy of users’ 

data. As of today, such services are provided as overlays rather than being designed into the 

network itself. 

Most important in terms of contractibility, even if labels allow users to specify paths 

taken through the Internet, the Internet’s architecture does not provide any basis for verifying a 

packet’s source or the path that it traversed. Nor is there any basis for verifying whether any 

particular prioritization regime was followed. Stated in terms of contract theory, the information 

needed to make quality of service and route control contractible is neither observable nor 

verifiable.  

In addition, with the Internet’s current architecture, the information needed to make 

Internet privacy contractible is not observable or verifiable either. First, consider information 

about the source of Internet transmissions. One of the foundational principles on which the 

Internet is based is that every administrative domain connected to the Internet exchange packets 

through a single, uniform spanning layer, represented by the IP, in which each machine is 

identified by a unique address that is visible to every other machine connected to the network 

(Cerf and Kahn 1974). One problem is that the source address included in the IP header is 
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insecure and can be misrepresented (spoofed), making it impossible to verify the source of any 

communication under the network’s basic design. Although additional features, such as Internet 

Protocol Security (IPSec), have subsequently been developed that can support source 

authentication, they are not mandatory and are not widely deployed in IPv4. Although the 

specification for Internet Protocol version 6 (IPv6) makes IPSec mandatory, not all IPv6 

implementations support IPSec. 

Another core principle of the Internet is that routers operating in the network’s core 

operate on a store-and-forward basis, with each router making its own independent decision 

about the path that any particular packet should take. As a result, users typically cannot specify 

the path that a particular packet should take through the network, as the source routing option 

included in the Internet’s original design is not mandatory and remains nearly universally 

unused. Even if users were able to do this, the localized nature of information on the Internet 

makes path information difficult to observe and verify. Any component network of the Internet 

can only observe the identity of the network residing immediately upstream and downstream of 

its location. The store-and-forward nature of the Internet’s architecture provides no mechanism 

through which the user can observe the path actually taken through the network. Thus, even if an 

user enters into an SLA with its Internet service provider (ISP) specifying the paths that its traffic 

must traverse, it has no reliable way to determine whether the ISP actually honored the terms of 

the SLA with respect to a specific transaction. Even if all of the relevant parties were able to 

observe the relevant information, the absence of any authoritative record of the path traversed by 

any particular packet makes this information difficult, if not impossible, to verify in a court of 

law. 
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Finally, the architecture restricts the configuration of economic relationships on the 

Internet. Money enters the network from the edge, typically as a payment to a last-mile network 

provider, but the network architecture provides no flow-based mechanism to allocate it among 

the different entities involved in providing service. Simply put, the Internet’s design does not 

place the information needed to allocate value in the network layer which, as noted previously, is 

the spanning layer visible to all network actors. Restated in terms of contractibility theory, the 

economic information needed to support complex contracts is not observable, let alone 

verifiable. Or, as MIT computer scientist and former DARPA chief protocol architect David 

Clark is reported to have quipped, “We never learned how to route money” (McTaggart 2006). 

The absence of any mechanism within the architecture itself for accounting for and 

distributing value among different actors forces money to flow through mechanisms that exist 

outside the network. Constraining value to flow exclusively through contracts between ISPs 

makes ISPs the irreducible unit of economic analysis and reinforces the current hierarchy of 

transit providers. Turning ISPs into indivisible artifacts for economic purposes also severely 

limits the flexibility with which services can be provided and contracted. Early proposals to 

create smart markets that would have permitted the money flow to follow the traffic flow were 

never adopted (Mackie-Mason and Varian 1995). 

III. CONTRACTIBILITY AS A POTENTIAL NONREGULATORY SOLUTION 

The current network architecture thus restricts the services that the network can provide, 

as well as the flexibility with which economic relationships among different network elements 

can be configured. The emergence of new phenomena such as the cloud has prompted a wide 

range of new research initiatives designed to make the Internet more contractible. 
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A. NEBULA 

The need to explore ways that the Internet may need to evolve to respond to new use 

cases has led the NSF to launch its Future Internet Architecture (FIA) project. One new 

architecture known as NEBULA is specifically designed to support the new demands placed on 

the network by cloud computing (Anderson et al. 2013, 2014). The challenge is to strike a 

balance between flexibility and efficiency by creating a minimal spanning set of features that can 

support an arbitrarily broad set of transit policies. The aspects of the NEBULA design that make 

the services on which cloud computing depends contractible are a control plane, known as the 

NEBULA Virtual and Extensible Networking Techniques (NVENT), and the NEBULA Data 

Plane (NDP), which is being adapted from a technology known as ICING (Naous et al. 2011). 

A communication begins when the sending network places a request for a path to 

NVENT. NVENT envisions that each administrative domain comprising the Internet will 

maintain a policy engine that reciprocally exchanges information with other policy engines about 

the available services, resources, and paths. The policy engine identifies paths to reach requested 

destinations in ways that comply with any preferred transit policies governing the entities 

permitted to constitute the path, bandwidth, latency, reliability, and other considerations. The 

path or paths and the associated policies are then embodied in a token in a manner similar to 

MPLS. Any noncompliant paths are considered rejected by default. Once a path has been 

discovered, NVENT consults a consent engine maintained by each administrative domain and 

collects cryptographic proofs of consent from each of the administrative domains comprising the 

path. The fact that the policy and consent engines are distributed across the administrative 

domains comprising the network facilitates this system’s flexibility and extensibility. It also 

provides flexibility in the specific policies being implemented. 
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The proofs of consent are then inserted into the NDP, which in effect replaces IP with a 

new spanning layer that supports source and path authentication. NDP reserves 42 bytes in its 

header (depicted in Figure 4.1) for four elements with respect to each administrative domain 

contained in the path constructed by NVENT: (1) the domain identifier; (2) a cryptographic 

proof that the domain has authorized being included in the path, called the proof of consent 

(PoC); (3) a cryptographic proof that the packet has actually followed that path, called the proof 

of provenance (PoP); and (4) the MPLS-style token associated with this path. 

Figure 4.1:  NDP packet format 

 

These four elements are sufficient to allow networked entities to both express and enforce 

a broad range of policies about packet carriage. Decisions about policies are relegated to the 

control plane (NVENT), which remains distributed and flexible. Once those policies are 

embodied in the MPLS-style token, the four features embedded in the data plane (NDP) 

described previously are sufficient to allow these policies to be enforced. When a packet arrives 

at an administrative domain, that domain can check the PoC to verify that the packet was 

authorized by the policy. As the packet traverses the domain, the domain attaches its PoP to 

verify to all other network participants that it actually traversed that domain. The fact that both 

the PoC and PoP are cryptographically protected using public-key encryption allows every entity 

to authenticate the accuracy of the information contained therein. An added feature of NDP is 

payload  counter other 
fields 

domain ID proof of 
provenance 

proof of 
consent 

MPLS-style 
token 



 

15 

that the key for decrypting the PoC and PoP is the domain identifier, which obviates the need to 

manage keys or maintain certificate authorities. 

The four basic primitives contained in NDP are sufficient to encompass the functions 

enabled by a wide range of other efforts to make networks more secure. Specifically, NDP can 

determine that all communications traverse an assured path, prevent the entry of unauthorized 

communications, support the establishment of multiple paths to ensure availability and 

reliability, permit each administrative domain to exercise autonomous control, and enhance 

privacy by ensuring that communications only traverse trusted providers. In so doing, they 

provide a parsimonious set of information that provides the same functions as a wide range of 

more complex designs already appearing in the literature. Preliminary experiments and 

prototypes indicate that the architecture is feasible (Naous et al. 2010, 2011). 

The cryptographically protected PoCs permit each administrative domain to authenticate 

that the particular transaction has been authorized ex ante. At the same time, the 

cryptographically protected PoPs permit each administrative domain to authenticate ex post that 

the approved path was followed. 

These innovations have a dramatic impact on contractibility. By making the specific 

administrative domains traversed and the policies being applied visible, NEBULA renders the 

information needed to enforce privacy observable. In addition, the application of cryptographic 

signatures as each packet crosses an administrative domain makes any agreements as to paths to 

be used and policies to be honored verifiable. 

Like any architecture, NEBULA is not without its potential concerns. As an initial matter, 

NDP requires the incurrence of significant overhead. For example, the inclusion in the network 

layer of the additional information associated with the four elements described here in the 
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network layer header makes packets roughly 20 percent larger. Because NDP’s functions are 

parallelizable, it appears that NDP can operate at backbone speeds. NDP-enabled routers would 

cost roughly 90 percent more than a bare-bones IP router but slightly less than a commercial IP 

router (Naous et al. 2010, 2011). These initial efforts are simply to provide proof of the concept. 

As was the case with the Internet itself, additional improvements on operating efficiency are 

likely to be realized once the network is refined and deployed. NDP is by no means the only 

approach to enhancing contractibility. In fact, NEBULA explored approaches based around 

alternative technologies(Anderson et al. 2013). 

Although NDP enhances observability and verifiability, a trusted entity may nonetheless 

evade its limitations by subcontracting responsibility for transmission to another, unapproved 

entity or using tunneling to allow the communication to use unapproved routes. Moreover, 

although the information contained in the NDP header is designed to verify the path, it is less 

effective at revealing whether other policies were honored. NDP thus may require additional 

enforcement mechanisms outside its current design. Because contracting entities may not be in 

privity with these other parties, full enforcement may require recognizing a property interest in 

private information that is good against enforceable against all parties regardless of whether they 

have a contractual relationship. 

The preliminary nature of the NEBULA project suggests that it is too soon to expect 

definitive answers to each of these issues. All of these considerations are the subject of future 

research. Any evaluation of its potential must bear in mind that it is the first implementation of 

such an architecture and is put forward as a proof of concept, not as an operational business 

model. One can reasonably expect performance improvements should the architecture be fully 

deployed. 
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B. IEEE Intercloud 

Another research project that would provide the primitives needed to make cloud 

connectivity contractible is the IEEE’s Intercloud working group (IEEE 2012, 2013). The 

primary goal of the Intercloud initiative is to standardize cloud services. Not only would this 

make them more portable; it would allow providers to combine cloud services offered by 

different providers and dynamically integrate them into a single offering. 

The basic architecture of the Intercloud is modeled on the Internet. The architecture 

centers on community-governed Intercloud root providers that serve as the naming authority for 

the Intercloud in much the same manner as the domain name system does for the Internet. The 

Intercloud root providers also serve as the trust authority for the public key infrastructure (PKI) 

used to authenticate each entity. Presumably, the Intercloud root would not be a single entity. 

Instead, there would be multiple Intercloud roots that would host the cloud computing resource 

catalog in a federated manner. 

In addition to performing these functions, the Intercloud root providers offer other 

services needed to support contracts for cloud services. Most important, they maintain cloud 

computing resource catalogs that make visible the available cloud resources. These 

advertisements are made using uniform semantics that describe not only physical resources, such 

as servers, disks, and connectivity, but also other less tangible attributes, including SLAs, pricing 

policies, and security and compliance policies. It thus provides visibility and access to the 

information needed to form contracts through the Intercloud (Bernstein and Vij 2010). 

The architecture also envisions the Intercloud exchanges that provide locations where 

multiple cloud providers can interoperate in a manner similar to the role currently served by 
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Internet exchanges for the Internet. These exchanges draw on the catalog information hosted by 

the root providers to broker cloud transactions with users. 

The typical transaction falls into the following pattern: Cloud 1 uses its Intercloud 

gateway to query the cloud computing resources catalog maintained by the Intercloud root server 

to determine if the resources needed to support a particular cloud service are available. If Cloud 

1 finds out from the catalog that the resources needed to meet its requirements and constraints 

are available from Cloud 2, the Intercloud exchange brokers an agreement between the two 

clouds. If an agreement is successfully reached, the clouds bilaterally establish the web sockets 

and other protocols needed for Cloud 2 to provide services to Cloud 1. Cloud 1 then uses Cloud 

2’s resources as part of its federated architecture, while Cloud 2 meters resource usage and 

compliance with the terms of the SLA. 

Once this happens, most of the primitives needed for contractibility will be met. The 

cloud computing resource catalog makes the necessary resources observable to others prior to 

performance. Importantly, this includes not just the physical elements of the cloud, but also the 

SLAs, pricing, and other terms needed for contacts to operate. Each cloud conducts its own 

metering. 

The only thing missing is ex post auditability. The Intercloud’s architects recognize that 

an audit trail constitutes an essential part of the architecture. These responsibilities are supposed 

to be borne by the Intercloud root servers, although the necessary implementations have not been 

designed yet. Deployment of this auditing capability would make these transactions observable 

and verifiable during and after performance. 
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C. eXpressive Internet Architecture 

Other NSF-sponsored FIA projects are pursuing architectures that enhance contractibility 

in different ways. For example, the eXpressive Internet Architecture (XIA) project has developed 

an architecture known as Scalability, Control, and Isolation On Next-generation networks 

(SCION) that relies more on trust than explicit enforcement (Zhang et al. 2011; Naylor et al. 

2014). 

SCION envisions that each autonomous system (AS) joins with other ASes to form a 

trusted domain (TD) that separates trusted from distrusted entities. Each TD designates an AS to 

represent the TD in the TD core, which initiates path construction, disseminates policy-complaint 

paths, allows destinations to choose their preferred paths, and uses cryptographic methods to 

ensure the authenticity of end-to-end paths. 

Once the route has been joined, the source domain embeds “opaque fields” into each 

packet that encode the path information. Because SCION does not require each domain to 

cryptographically sign each packet as it traverses the domain, this solution does not fully support 

verifiability. Instead, SCION relies on trust or some other mechanism outside the information 

contained in each packet to authenticate the source and to determine whether the domains 

actually honored the selected path. 

D. ChoiceNet 

The research program that most explicitly attempts to make Internet-based transactions 

contractible is ChoiceNet, which was also funded by the NSF’s FIA program (Wolf et al. 2014). 

The current architecture imposes a number of constraints on the network. Money enters the 

network only through its edges and flows outside the network architecture. Moreover, traffic is 
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constrained to move through the network in accordance with the economic relationships between 

network providers implicitly reflected in BGP routing policies. The result is that both users and 

content providers have little control over how their traffic is handled within networks. 

ChoiceNet is designed to create an “economy plane” that enables actors to create 

contracts that dynamically integrate the offerings of multiple providers of network components 

into a single service offering. The goal is to allow the money flow to follow the traffic flow 

instead of vice versa. The resulting flexibility in configuring services from different providers 

should enable new entities to combine the underlying network elements in new ways, which can 

promote innovation and competition. 

ChoiceNet provides a uniform address architecture and a minimal set of service 

semantics sufficient to permit network providers to advertise the nature of the services they are 

offering. The semantics must cover not only the physical services being provided, but also other 

contractual terms such as quality of service and price. ChoiceNet entities then act as 

intermediaries to combine and bundle these services into end-to-end offerings. ChoiceNet then 

provides a marketplace where customers can shop for different end-to-end service offerings that 

the intermediaries have created. The semantics of the marketplace advertisements must be 

general enough to be searchable, yet specific enough to specify the necessary dimensions of 

performance. Finally, ChoiceNet envisions a verification process through which customers can 

determine whether actual performance lived up to the contract specifications. While ChoiceNet’s 

designers are rather vague about the details of how to implement this function, suggesting that it 

might be fulfilled by third-party measurement providers or by the exchange of measurement data 

within the research community, they have acknowledged that verification plays an indispensable 

role in their scheme. 
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A ChoiceNet transaction can be envisioned as a five-step process. In the advertisement 

step, the intermediary advertises in the marketplace the end-to-end offering that it has created. In 

the planning step, prospective customers use algorithms to search the marketplace and explore 

the bundles of services created by the intermediaries. In the provisioning step, the customers and 

intermediaries establish contracts, exchange consideration, commit the resources to provide the 

agreed-upon service, and generate tokens that serve as credentials to obtain access to the 

contracted-for resources and to prove policy compliance. In the usage step, each resource 

examines the token to verify that usage has been authorized in the economy plane. In the 

verification step, the customer employs a verification service to confirm that it received the 

promised level of performance. 

ChoiceNet was not designed specifically for the cloud, although cloud computing would 

be able to employ its architecture to the same extent as other Internet-based applications. 

Admittedly, the ChoiceNet architecture is not yet well developed. But the basic approach is fully 

consistent with the concerns raised in this chapter. The ChoiceNet architecture is designed to 

provide the elements needed for contractibility. Creating semantics and loci for sharing 

information about service attributes makes the necessary information observable prior to 

performance. The envisioned verification mechanism would make the actual performance both 

observable and verifiable. 

At this early stage, one must be careful not to become overly distracted by debates over 

the relative merits of any particular proposal. The principle of making Internet transmissions 

contractible by making key information both observable and verifiable is ultimately more 

important than the details of how that is done in any particular implementation. 
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CONCLUSION 

Cloud computing is creating new demands for network services that the current 

architecture was not designed to support. The increasing diversity of new technologies and 

applications and the accelerating rate of innovation suggest that direct regulation will continue to 

lag behind the current environment and will struggle to scale as use cases continue to proliferate. 

A more fruitful approach may be to focus instead on supporting more contract-oriented 

governance by making Internet transactions more contractible. Rather than envisioning any 

particular type of contractual relationship, this approach revises the network layer visible to all 

Internet-connected actors to provide sufficient primitives to permit individual actors to construct 

a wide range of interconnection relationships. The resulting ability to authenticate the source of 

packets as well as the path they used to traverse the network should greatly enhance Internet 

privacy. 

Clean-slate redesigns of network architecture are notoriously difficult to implement. The 

presence of a large installed base creates significant inertia behind the existing architecture. Such 

inertia can be overcome if the new architecture provides sufficient value. Even so, such 

transitions are likely to pose significant multilayer coordination problems (Yoo 2013a). The 

details of the specific implementation are less important than the need to refocus the privacy 

debate away from command-and-control regulation in favor of a more flexible, decentralized, 

and evolvable regime that is more consistent with the Internet philosophy and relies primarily on 

private ordering. 
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