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Open Source, Modular Platforms, and the Challenge of 
Fragmentation 

Christopher S. Yoo* 

Abstract 

 Open source and modular platforms represent two powerful conceptual 
paradigms that have fundamentally transformed the software industry.  While 
generally regarded complementary, the freedom inherent in open source rests in 
uneasy tension with the strict structural requirements required by modularity 
theory.  In particular, third party providers can produce noncompliant 
components, and excessive experimentation can fragment the platform in ways 
that reduce its economic benefits for end users and app providers and force app 
providers to spend resources customizing their code for each variant.  The classic 
solutions to these problems are to rely on some form of testing to ensure that the 
components provided by third parties comply with a compatibility standard and to 
subject the overall system to some form of governance.  The history of the three 
leading open source operating systems (Unix, Symbian, and Linux) confirms this 
insight.  The question is thus not whether some constraints will apply, but rather 
how restrictive those constraints will be.  Finally, the governance regimes range 
from very restrictive to relatively open and permissive.  Competition policy 
authorities should take into account where certain practices fall along that 
spectrum when enforcing competition law.  Exposing the more permissive 
practices to demanding scrutiny runs the risk of causing operating systems to turn 
to more restrictive approaches. 
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1 Introduction 

 The past few decades have borne witness to the emergence of two conceptual paradigms 

that have fundamentally transformed the software industry.  The first is the open source 

movement.  Open source is based on the principle that every user should be able to modify 

software freely.  In so doing, open source seeks to mobilize the entire community of end users to 

volunteer their time to debug the code.  The freedom to build freely on existing software also 

enhances competition by enabling anyone being charged excessive prices to develop their own 

alternative.  The flexibility provided by open source also promises to promote innovation by 

empowering all users to add new functionality to the system. 

 The second is the idea of platforms.  Platforms are standardized architectures that divide 

complex systems into modules and define the interfaces that link these modules.  Modular 

platforms represent a break from the traditional approach to managing complexity in which a 

single actor manages the software development process.  In a modular platform, any interested 
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third party can create a component for the overall system so long as the resulting component 

complies with the standardized interface.  In so doing, platforms allow multiple actors to pursue 

parallel innovation, which can improve the quality of the technical solution as well as increase 

the rate of technological change.  The standardization inherent in modular platforms also allows 

device manufacturers and app providers to unlock the economic potential of their innovation by 

allowing them to reach large user bases without having to constantly create new versions for 

each new hardware device.  

 These two concepts can be powerfully complementary in certain settings.  Indeed, 

commentators have long recognized that the distributed development model underlying the open 

source movement necessarily depends on modularity to divide the system into parts small 

enough to be improved by individual work groups and programmers and to enable multiple 

actors to work to improve different parts of the system simultaneously.1  The compatibility and 

affinity between these two concepts is demonstrated eloquently by the fact that two of the most 

important operating systems, Unix and Linux, are simultaneously platforms for third-party apps 

and open source. 

 What is less well recognized is the extent to which these two concepts rest in uneasy 

tension with one another.  While the freedom of open source suggests unlimited flexibility to 

change parts of the system, to function properly modular platforms require that all components 

adhere strictly to a predetermined set of standards that govern how the different components 

interconnect and interact.  This tension is well illustrated by the problem of fragmentation, which 

has long been recognized as a major problem for many open source projects.  The most extreme 

form of fragmentation, known as forking, occurs when a contributor to an open source project 
                                                 

1 See, e.g., Feller and Fitzgerald (2002, 76-79, 170-71); Weber (2004, 172-74). 
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customizes a non-application layer of a platform to an extent that it is no longer fully 

interoperable with the rest of the project.  The result is to divide the system into two distinct and 

incompatible versions. 

 Such fragmentation represents a conundrum for open source.  On the one hand, users’ 

freedom to customize software is integral to the open source movement.  Indeed, absent 

constraints, the freedom inherent in open source effectively gives users the ability to fragment 

the system.2  On the other hand, infinite flexibility creates costs for the open source community 

by requiring the diffusion of effort and the duplication of work across multiple projects.  

Fragmentation also harms device manufacturers and app developers by limiting interoperability 

and by requiring them to adapt their products for what are now separate platforms (a process 

called porting).  End users are often disappointed to find that particular software works only on 

some platforms. 

 The success of an open source platform thus depends on reconciling the freedom inherent 

in open source with the compatibility required by modular platforms.  Some constraints on the 

flexibility of open source are thus inevitable.  The real policy question is what type of constraints 

are appropriate. 

 This Article analyzes the complex relationship between open source and modular 

platforms by describing the basic principles underlying each approach and examining the extent 

to which they are simultaneously fundamentally interconnected and in inherent tension.  It then 

explores the history of three leading examples of open source operating systems—Unix, 

Symbian, and Linux—to illustrate how these dynamics work in practice.  It concludes by 

examining what lessons these histories have for the current debate over the propriety of 
                                                 

2 See, e.g., Weber (2004, 64, 89, 170); Corbett (2011). 
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restrictions to open source mobile operating systems, paying particular attention to Google’s 

Android Anti-Fragmentation Agreement.  It also lays out key features that make such restrictions 

less problematic from the standpoint of competition policy. 

 The core lesson is that some restrictions on what people can do with open source 

operating systems are necessary if consumers are to enjoy the full benefits of competition and 

innovation.  My point is not to suggest that open source software is inherently superior to 

proprietary software or vice versa.  Both approaches have distinct virtues that appeal to different 

users.  Moreover, any attempt to cast the policy debate as a choice between those polar extremes 

is based on a false dichotomy.  Instead, the different modes for producing software platforms are 

better regarded as occupying different locations along a continuum running from completely 

unrestricted open source to completely proprietary closed source.  Indeed, companies may even 

choose to pursue hybrid strategies that occupy multiple locations on this continuum 

simultaneously.  The diversity of advantages associated with these different approaches suggests 

that consumers benefit if different companies are given the latitude to experiment with different 

governance models, with the presence of one open source platform serving as an important 

competitive safety valve.  Moreover, the analytical framework suggests that a completely open 

source platform represents an ideal type that is inherently unrealistic.  The fact that open source 

platforms are subject to some constraints is thus not inherently problematic.  The proper role for 

competition policy is to provide a framework for determining when such constraints are 

reasonable. 

2 The Conceptual Underpinnings of Open Source and Modular Platforms 

 Understanding the simultaneous connection and tension between open source and 

modular platforms requires an appreciation of the principles underlying each concept. 
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2.1 Open Source 

 Open source software is often put forth as a new paradigm in software production.  

Computer programs can be distributed in two forms.3  The first is known as source code, which 

is written in a programming language such as Pascal and Fortran, to use two dated examples that 

have been replaced by newer languages such C++, Python, and Perl.  Although source code is 

quite technical, experienced programmers can read and modify it.  Source code is then compiled 

into object code or machine language, which consists of a series of 0s and 1s.  Object code can 

be read by computers, but cannot easily be read by human beings.   

 One of the main triggers for the open source movement was software companies’ practice 

of attempting to protect their software by distributing it only as object code and refusing to 

release the source code.  These companies also copyrighted their code and included clauses in 

end-user licenses prohibiting customers from modifying it.  The absence of the source code and 

the contractual restrictions on modifying the code made it difficult for end users who wished to 

customize the code to diagnose and resolve incompatibility problems. 

 Frustration over the inability to customize code led to the open source movement.  

Although numerous definitions of what constitutes open source exist, they generally agree that 

all software should be distributed with its source code or that the source code be made available 

on request.  Open source definitions also generally share the requirement that end users be 

permitted to modify the code and distribute their modifications.  Beyond these basic 

commitments, open source exhibit considerable variation.  For example, the GNU Public License 

(GPL) contains a viral provision that requires that any code that is combined with GPL-licensed 

                                                 

3 The foregoing discussion draws on Marella and Yoo (2007).   
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code to be governed by the GPL.  Because the GPL enforces openness through copyright 

licenses, the viral provisions are sometimes called copyleft requirements.  Other open source 

licenses, such as those used by Berkeley and Apache, take a more academic approach, simply 

requiring that any modification provide clear notice of the changes and give appropriate credit to 

the creators of the original code.  Other variants exist as well, with the Open Source Initiative 

currently listing seventy-eight approved licenses.   

 The existence of multiple licenses reflects a divergence of philosophies within the open 

source movement.4  Some early movement pioneers, such as Richard Stallman, emphasize the 

freedom to tinker and rely on the viral copyleft provisions to prevent proprietary and open source 

software from being combined.  Others, such as Bruce Perens and Eric Raymond, adopt a less 

hostile, more pragmatic approach that permits open source and proprietary software to be 

combined. 

 Beyond these formal attributes, open source projects depend on a vibrant community 

willing to volunteer their time to improve and extend the project.  The belief is that opening up 

the opportunity to improve the code to the entire user base will increase the total number of 

person-hours devoted to the project and will identify and fix problems more rapidly.  This spirit 

has been captured by Eric Raymond (1999) dubbed Linus’s Law:  “Given enough eyeballs, all 

bugs are shallow.”  

2.2 Modular Platforms 

 One of the biggest problems confronting any major software project is how to coordinate 

the various teams working on different parts of the system.  One of the most famous examples 

                                                 

4 See, e.g., DiBona et al. (1999, 8-9); Perens (1999, 80); Stallman (1999, 37); McGowan (2001, 260-65). 
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arose when IBM was developing the System/360 computer.  To make sure that the entire team 

understood the full intricacies of the design, the project managers required that every 

programmer maintain a workbook documenting all of the other parts of the system.  In just six 

months, the workbook was five feet long and required filing of 150 pages of updates each day.  

Worse yet, even when the project was running behind, managers found that adding more 

personnel actually slowed the project down.  This insight has led to the coining of what is known 

as Brooks’s Law (1975, 31), which holds that “adding manpower to a late software product 

makes it later.”5 

 In addition, one of the hallmarks of a complex system is the way that components can 

interact with one another in unexpected ways.6  Validating a complex system requires testing 

every possible combination of states of the world that each of the various components of the 

system can possibly occupy.  If the number of interdependencies is large, the number of unique 

combinations of parameters that must be tested can rapidly become immense, particularly if each 

component is permitted to occupy a large number of states.7  The problem becomes even more 

difficult if the interdependencies form a circuit that recursively loops back onto itself (e.g., if task 

A depends on task B, which in turn depends on task C, which depends on task A).  When that is 

the case, testing requires exploring not only every possible combination of states of the world, 

but also cycling through enough iterations until each combination reaches stability. 

 The traditional approach to managing the inherent complexity of large software projects 

is for a single actor to coordinate and control all of the design teams working on a project and to 

use managerial processes to ensure that the communication and testing needed for proper 

                                                 

5 Brooks (1975, 31).   
6 The analysis of modularity draws on Yoo (2016). 
7 Dijkstra (1968, 344).   
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integration of the design occurs.  The tightness of the control means that most firms either 

produce components themselves or maintain strict control over any third parties on which they 

rely to produce components of the overall system.   

 A new approach has emerged that replaces the strong integrated design with a modular 

architecture.  Modular architectures minimize system complexities by defining the modules so 

that highly interdependent tasks are clustered within the same module.8  Cross-module 

interdependencies are limited by requiring that modules interact with one another solely through 

predetermined interfaces that strictly cabin the amount of information that can pass between 

modules, the details of which are often defined in open standards.9 

 The existence of these standardized interfaces minimizes the need for firms producing 

components to coordinate with one another.  So long as a component manufacturer conforms to 

the standard, any third party can produce compatible components.  All of the information needed 

to coordinate with other modules is embodied in the standards.  This allows third parties to work 

on different components of the same system without having to worry that any changes made to 

any one component might create ripple effects throughout the entire system.  Moreover, it allows 

multiple teams working in parallel to experiment with different technical ways to implement a 

particular module, allowing greater latitude to experiment with different solutions and faster 

innovation. 

                                                 

8 For the classic statement, see Simon (1962). 
9 Parnas (1972). 
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3 The Complex Relationship Between Open Source and Modular Platforms 

 Open source and modularity are both recognized as important underpinnings of the 

modern Internet economy.  Indeed, modularity is often identified as a critical success factor for 

any open source project.  As Linux founder Linus Torvalds (1999, 108) succinctly noted, the 

open-source development model depends on “hav[ing] a system which is as modular as 

possible,” because without modularity, “you can’t have people working in parallel,” and “I 

would have to check every file that changed.”10 

 A closer examination reveals that the relationship between open source and modular 

platforms is more complex than this simple statement would lead one to believe.  Although open 

source cannot exist without modularity, the infinite flexibility inherent in open source exists in 

uneasy tension with the strict structural requirements upon which modular platforms depend.11 

3.1 The Synergies Between Open Source and Modularity 

 Open source and modularity are widely regarded as complementary concepts.  Indeed, 

modularity is essential for an open source project to succeed.  As Torvalds’s statement quoted 

above indicates, decomposing a larger system into subsystems connected by minimal 

interdependencies isolates each component in ways that make it easier for multiple groups to 

work on improving different components simultaneously.  This allows designers to experiment 

with improvements to particular parts of the code without having to worry continually about 

creating problems for other parts of the system. 

                                                 

10 For academic studies of the link between modularity and open source, see, e.g., Bonaccorsi and Rossi 
(2003, 1247); Feller and Fitzgerald (2002, 76-79); Weber (2004, 172-74); Clark and Baldwin (2006); Midha and 
Paliva (2012, 903). 
11 The discussion that follows draws heavily on the superb analysis in Weber (2004).  For other important 
accounts, see DiBona et al. (1999) and Feller and Fitzgerald (2002).  
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 Indeed, the rigid logical structure through which modules are interconnected is what 

allows multiple third parties to work on the same project.  Conway’s Law (1968), which has long 

been recognized as a central tenet of software production, holds that the architectural structure of 

technical systems mirrors the organizational structure that produces them.  This means that 

without the distributed nature inherent in a modular architecture, the distributed organizational 

production system that characterizes open source could not exist.   

3.2 The Tensions Between Open Source and Modularity 

 Open source advocates have acknowledged that the freedom to innovate that lies at the 

heart of open source software represents something of a two-edged sword.  Open source 

inherently gives end users complete latitude to customize software as they see fit.  Although such 

unfettered freedom is unproblematic when the code is run in isolation, it becomes more 

problematic when the code is supposed to interoperate with the other components of an 

interoperable platform.  As noted earlier, modular platforms depend on standardized interfaces 

that predefine how different modules will interact with one another.  Although one can 

experiment with different configurations of tasks within a module, interactions between modules 

must strictly adhere with the interfaces.  Any code that does not conform to the modular design 

becomes noninteroperable with the rest of the system. 

 The tension between flexibility and structure can lead to two characteristic problems with 

open source platforms.  The first is the temptation for people modifying individual components 

to introduce interdependencies that deviate from the modular architecture.  The second is the 

possibility that a subgroup of an open source project may fragment the project, in extreme cases 

dividing into two distinct and incompatible branches in a phenomenon called forking. 
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3.2.1 The Temptation to Create Noncompliant Modules and the Need for 
Testing 

 As noted earlier, the key design feature of a modular architecture is the clustering of 

highly interdependent tasks within the same module and ensuring that the interdependencies that 

are supposed to be encapsulated within that module do not affect other modules.  The key to 

ensuring that these interdependencies remain isolated within a module is to design the module 

interfaces so that they contain only information associated with interdependencies that are 

permitted by the design and to require that other modules restrict themselves to interact only with 

the information made visible by the interface.  All information about other independencies 

remains hidden within the module.  

 The tradeoff inherent in this approach means that “designers will lose the ability to 

explore some parts of the space of designs—in effect, the architects will restrict the search, 

declaring some parts of the design space to be out of bounds.”12  More specifically, the generality 

inherent in modularity inevitably leads to a degree of inefficiency.13  There will inevitably be 

occasions where one module finds that the most efficient way to solve the problem at hand 

would be to refer to information contained in an adjacent module, despite the fact that that 

information is excluded from the module interface and is thus associated with an 

interdependency that is supposed to remain encapsulated within the module.  Moreover, 

generality requires incurring the cost to support features that particular implementations may 

never need. 

                                                 

12 Baldwin and Clark (2000, 68). 
13 McGee (1959, 2); Clark (1982, 16). 
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 The inefficiency and inflexibility inherent in this result led early scholars to denounce the 

use of modular interfaces as “radical.”14  Over time, these critics began to concede that using 

information hiding to implement modularity created real benefits.15  This concession does not 

eliminate the reality that inefficiency remains an irreducible part of any modular platform and 

that open source module developers have both the ability and the incentive to access information 

associated with interdependencies that they are not supposed to take into account.  This dynamic 

explains why the number of interdependencies among Linux modules has increased 

exponentially with each release.16   

 A recent dispute between Skyhook Wireless and Google provides an apt illustration of 

these dynamics.17  Both Skyhook and Google provide location services, which are apps that 

identify the latitude and longitude coordinates for the location of the device.  Location services 

determine geolocation data from one of three sources:  (1) global positioning satellites (GPS), (2) 

WiFi access points whose locations have been stored in a manually compiled database, and (3) 

triangulation on cell tower locations.  Of these three, GPS is considered the most accurate, but is 

typically slower than the other methods.18  All location services incorporate the data they collect 

into the existing databases.  Because GPS data is considered more accurate, the Android GPS 

application programming interface (API) reports data collected from GPS, WiFi, and cell towers 

separately to give developers that rely on this data a clear understanding of its quality.19 

                                                 

14 Brooks (1975, 78). 
15 Brooks (1995). 
16 Feller and Fitzgerald (2002, 176). 
17 Skyhook Wireless, Inc. v. Google, Inc., 30 Mass. L. Rptr. 417 (Super. Ct. 2012). 
18 Id. at 418. 
19 Id. at 418, 419, 421. 
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 Both Google and Skyhook use all three methods to determine the location of a mobile 

device.  Motorola was considering including Skyhook’s location service, known as XPS, into 

one of its devices.  Google carefully differentiates between location data based on GPS and 

location data derived from network information, such as the location of WiFi access points and 

cell towers.20  XPS, however, reported both GPS-based and network-based data together.21  

When Google found out about these plans, it informed Motorola that XPS’s location services did 

not comply with the Android compatibility standard, although it did make clear that Motorola 

was free to include Skyhook if XPS was modified to stop returning network-based data into the 

GPS database.22  Eventually, Motorola removed XPS from its devices.23  Skyhook sued Google 

for intentional interference with contacts and business relationships.  The Massachusetts Superior 

Court granted summary judgment in favor of Google on all counts.24 

 Modularity theory provides a clear basis for understanding why the court’s decision was 

correct.  To function properly, every module must be able to trust that all of the information 

being sent by other modules comprising the system complies with the design architecture.  To 

ensure that is the case, some means must exist for identifying and excluding noncompliant 

modules.  Compliance and testing mechanisms ensure that each module can rely on the fact that 

all of the other modules are operating in the manner specified by the design.   

 When a mobile platform is proprietary, the subgroups designing individual modules rely 

on the command and control apparatus of the company to ensure that this is the case.  In contrast, 

when a mobile platform is open, there is no single actor exercising control over all of the 

                                                 

20 Id. at 418. 
21 Id. at 419. 
22 Id. at 425. 
23 Id. at 420–22, 423–24. 
24 Id. at 418, 424, 427.  
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modules.  Instead, the activities of the different modules are coordinated by the information 

structure of the architecture rather than a firm.  Modules must restrict themselves to sending only 

the information that the other modules expect if the architecture is to function properly.  All 

actors participating in an open platform depend on the presence of some governance mechanism 

for ensuring that all of the components created by the various third-party providers comply with 

the architecture.  Thus exclusion of a noncompliant app from the system should not 

automatically be regarded as a sign of anticompetitive or improper behavior.  On the contrary, it 

may be a necessary part of any open architecture.   

3.2.2 Fragmentation 

 The flexibility inherent in open source software can give rise to a problem more severe 

than noncompliant modules.  Sometimes participants in open source projects go beyond 

tinkering with the design of individual modules and take the architecture in a fundamentally new 

direction.  In extreme cases, the divergence can create a fork in the open source project that 

causes the project to divide into two different and noninteroperable branches, each pursuing its 

own path. 

 Some forms of fragmentation or differentiation are not without redeeming qualities.  For 

example, forking may represent a diversity of interests, typified by the fact that even-numbered 

Linux are experimental releases filled with new features that have not been fully debugged, 

while odd-numbered Linux releases constitute stable resales that have been thoroughly tested.  

The former is designed to appeal to sophisticated developers interested in conducting research on 

the cutting edge, while the latter is intended to meet the needs of commercial and less 

sophisticated users who are more interested in reliability and ease of use.  Moreover, forking can 

allow third-parties to reinvigorate open source projects that are stuck in inefficient designs.  
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More importantly, the flexibility integral to the open source movement in effect gives users the 

fundamental ability to fragment or fork. 

 At the same time, fragmentation can greatly impede the likely success of an open source 

project.  Fragmentation can force app developers to develop different version for each 

noncompliant module, a process called porting.  Dividing an open source project into separate 

forks forces what was once a single community working on one project to divide its energy and 

duplicate efforts across two separate projects.  In addition, the community developing apps for 

the operating system must now spend the time and effort to make sure that their products are 

compatible with both branches of the fork.  Developers would ideally prefer to operate in an 

environment in which they can “write once, run anywhere.”  Excessive fragmentation and 

noninteroperability would frustrate their ability to do so. 

 The tension represents what Martin Libicki (1995, 47) has called the “fundamental 

contradiction” between open source and modularity:   

The more open the system, the more it can be modified by vendors and users to 
their own ends, which is good.  The more a system is modified, however, the 
more likely that the modifications will be nonstandard.  With many nonstandard 
versions of UNIX available, software vendors need to disperse (perhaps dissipate) 
their software efforts among many systems, leading to fewer pieces of software 
available to any one system. . . . This result reduces choice, which is bad. 

3.2.3 Mechanisms for Resolving These Tensions:  Testing and Governance 

 How do open source projects manage the inherent tension between open source and 

modularity?  Whereas open source implies flexibility and freedom, modularity requires a highly 

structured and restrictive environment to ensure conformity with the architecture and to provide 

a sufficiently stable platform for the developer community.  What keeps open source projects 

from fragmenting in an inefficient manner? 
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 As an initial matter, some open source communities rely on a series of informal 

governance mechanisms to maintain their projects’ coherence.  For example, open source 

communities typically have produced a fairly strong norm against forking.  In the words of Eric 

Raymond, “There is strong social pressure against forking projects.  It does not happen except 

under plea of dire necessity, with much public self-justification, and with a renaming.”25  

Furthermore, the incentives confronting a person considering whether to create a fork can be 

quite daunting.  All participants in the new fork would be part of a smaller community, which 

would mean fewer collective benefits and a greater obligation to do work.  The magnitude of 

these liabilities increases when the existing open source project that is being forked is large.  

Moreover, if the new fork does not attract sufficient followers, it will fail. 

 While important, these informal mechanisms are too weak to ensure coherent 

management of an open source project.  With respect to noncompliant modules, modularity 

theorists regard the existence of a system for testing and verifying the performance of other 

components as an essential part of any modular system.  Harvard Business Professors Carliss 

Baldwin and Kim Clark (2000, 380) note that “the testable, verifiable dimensions of the module 

are the foundation that supports arm’s length-contracts and market transactions” and that 

“without tests, there is no way to know what is being bought and sold.” 

 To prevent excessive fragmentation, most open source projects rely on some form of 

strong formal governance.  This comes as a surprise to many observers.  The mythology holds 

that open source projects consist of widely dispersed communities organized from the bottom up, 

within which all members make their own small contributions to the overall project, excellence 
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is determined by peer review and who works the hardest, and the community adopts the 

pragmatic and meritocratic position of “letting the code decide.”   

 In practice, open source projects operate in a much more concentrated and hierarchical 

manner.  In fact, studies have indicated that 85% to 90% of contributed code is discarded.26  

Another study indicated that ten developers (less than 0.1% of the overall universe of 

developers) contribute almost 20% of the code base for each project.27   

 Decisions about which contributions are accepted are made in a similarly hierarchical 

manner.  For example, the oft-cited article by Harvard Business School Professor Josh Lerner 

and Nobel Laureate Jean Tirole noted that open source projects are characterized by “a strong 

centralization of authority.”28  Another early commentator noted, “Open source may sound 

democratic, but it isn’t.  Leaders of the best-known Open Source development efforts often 

explicitly stated that they function as dictators.”29   

 In fact, the term dictator has been used to describe the leadership of a wide variety of 

open source projects, such as Linux and Python (although in Linux, Torvalds has delegated a 

great deal of authority to two lieutenants).30  Perl has developed a rotating dictatorship, in which 

authority is passed among a small inner circle of Perl developers,31 with Perl creator Larry Wall 

serving as the final arbiter.32  Even the Apache server project, which has been called “as close to 

a democracy as one is likely to find in software development,” is controlled by two dozen 

                                                 

26 McKusick (1999); Mockus et al. (2000).   
27 Ghosh and Prakash (2000).   
28 Lerner and Tirole (2002, 221). 
29 Bezroukov (1999). 
30 DiBona et al. (1999, 12) (calling Linux a “benign dictatorship”); van Rossum (2008) (referring to the 
founder of Python as “benevolent dictator for life”);  
31 Weber (2004, 92).   
32 Feller and Fitzgerald (2002, 91). 
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developers, all of whom wield veto power.33  Many other open source projects are governed by a 

foundation. 

 Linux creator Linus Torvalds explicitly acknowledges that the control provided by 

Linux’s hierarchical governance structure allows him to take bolder action:  “[T]he fact that there 

is one person who everybody agrees is in charge (me) allows me to do more radical decisions 

than most other projects can allow.”34  Conversely, Unix collapsed in large part because no user 

group or actor had the authority to make decisions for the platform.   

 The presence of such governance hierarchies is fundamentally at odds with the 

collectivist mantle in which the open source movement tends to wrap itself.  Eric Raymond 

(1999) famously analogized the differences between proprietary and open source software to the 

differences between a cathedral and a bazaar.  Like proprietary software, cathedrals are top-down 

projects “carefully crafted by individual wizards or small bands of mages working in splendid 

isolation, with no beta to be released before its time.”  Open source communities, in contrast, are 

more like bazaars:  great babbling marketplaces “of differing agendas and approaches,” bustling 

about in apparent confusion.   

 As the presence of strong hierarchies reveals, the truth lies somewhere in between.  The 

presence of strong formal governance reveals that the so-called bazaar has many cathedral-like 

qualities and that the sharp distinction between cathedrals and bazaars may represent a false 

dichotomy.35  Even the most free-wheeling environments must have some rules and means for 

settling disputes, particularly if they must conform to a strict set of architectural rules in order to 

preserve interoperability.  Moreover, the type of open-source license can affect the strength of 
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the governance mechanism.  The viral copyleft provisions of the GPL ensure that any 

noninteroperable customizations will be available to the developer and user community.  

Consequently, open source projects that rely on the GPL have less need for governance 

mechanisms to protect against fragmentation.  BSD/Apache-type licenses permit software 

developers to assert proprietary control over their modifications.  As a result, open source 

projects relying on the latter type of license typically employ stronger forms of governance to 

ensure that the ecosystem remains interoperable. 

 The nature of leadership also takes on a different character in the context of open source.  

Success of an open source project depends on inspiring a community of people willing to work 

on it.  In a real sense, an open source leader’s authority depends on the existence of followers.  In 

a world where all contributions are voluntary and the community is always free to exit the 

community by forking the project, leaders’ ability to retain their positions depends largely on 

their responsiveness to the needs of those led.  These needs include providing fast feedback, 

serving as an effective moderator of technical disputes and personality conflicts, and realistic 

interim and long-term goals. 

 To say that open source projects require a type of leadership that is somewhat different 

from the leadership that characterizes commercial companies that produce proprietary software 

is not to say that they need no leadership at all.  On the contrary, ensuring that an open source 

platform does not fragment depends on the presence of an actor with sufficient authority to 

resolve disputes and to steer the platform in a beneficial direction. 

4 Lessons from the Past:  Unix, Linux, and Symbian 

 The concepts of open source software and modular platforms represent something of a 

paradox.  They are inextricably bound together, while at the same time resting in uneasy tension 
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with one another.  Although open source holds out the promise of unbridled freedom, to the 

extent that the software needs to interoperate with other components on a standardized basis, it is 

not completely free. 

 Fortunately, two classic solutions exist to this problem.  First, the fact that some 

components will be provided by third-parties requires the existence of some means to test 

components for compliance with the architecture.  Second, the possibility of forking requires 

some form of governance to help prevent the platform from fragmenting. 

 A review of the histories of three well-known open source operating systems—Unix, 

Symbian, and Linux—provides an eloquent illustration of these dynamics.  The case study of 

Linux serves as an example of how these dynamics can benefit end users.  Although Unix and 

Symbian have enjoyed some degree of success, their ultimate fate consigns them more to the role 

of cautionary tales. 

4.1 Unix 

 Unix exemplifies both the upsides and downsides of open source software.   On the one 

hand, it represents one of the first successful open source projects.  Indeed, some commentators 

have called it “perhaps the greatest software innovation of all time.”36  On the other hand, it 

eventually became so badly fragmented that it has become the classic example that everyone 

uses to illustrate what not to allow to happen to an open source project. 

 Unix was originally written by Ken Thompson of AT&T Bell Laboratories in a single 

month to enable him to play a computer game called Space Travel on a then-outdated PDP-7 
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computer.  It was designed to be a simple operating system that presented the same interface and 

functionality across a wide range of different types of machines.   

 At the time Unix was created, AT&T was operating under a 1956 antitrust consent decree 

that prohibited the company from entering into the computer business and required AT&T to 

license its patents.  As a result, AT&T initially did not try to commercialize Unix and instead 

licensed it to universities royalty free.  The University of California at Berkeley showed 

particularly strong interest in Unix, particularly after Thompson spent a semester teaching there 

in 1975.  Berkeley programmers began improving the operating system in the late 1970s and 

began releasing a package of tools and utilities called the Berkeley Software Distribution (BSD), 

subject to an open source license requiring clear notice of any modifications and appropriate 

credit to the creators of the original code. 

 During the late 1970s and 1980s, the collaboration between AT&T and Berkeley became 

wildly successful, as users ported it to a wide variety of different machines and it became a key 

platform for the TCP/IP suite of protocols.  Over time, however, AT&T began imposing greater 

restrictions on the distribution of the Unix source code.  In 1982, the settlement of the antitrust 

case that broke up AT&T led to the spinoff of Bell Labs and AT&T’s equipment manufacturing 

subsidiary, Western Electric, into a separate company that would eventually become known as 

Lucent Technologies.  The revisions to the consent decree lifted the restrictions that prevented 

Bell Labs from commercializing Unix.   

 The prospect that Unix might become proprietary led the Berkeley group to recruit a 

large group of volunteers to expand BSD into a complete version of Unix that was independent 

of any code created by AT&T.  Other companies began creating their own versions of Unix, 

some based on BSD (such as Apollo, DEC, Integration Solutions, and NSC), others based on 
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AT&T’s version (such as Altos, Apollo, Compaq, HP, IBM, Intel, Microsoft, and Silicon 

Graphics), and still other entirely new instances based on neither version (such as Cray, DEC, 

Data General, Motorola, and Unisys).  In 1987, AT&T attempted to end the fragmentation by 

entering into a strategic alliance with Sun Microsystems.  In 1988, Apollo, DEC, HP, IBM, Bull, 

Nixdorf, and Siemens responded by creating the Open Software Foundation with the stated (but 

ultimately unsuccessful) goal of creating a Unix version that did not depend on AT&T licenses.  

AT&T and Sun created a rival organization known as Unix International to promote the AT&T 

version.   

 By 1990, fragmentation had left the proprietary side of the Unix market in a state of 

crisis.  During the mid-1990s, differences of opinion regarding the technical direction of the 

platform and sharp personality clashes caused the academic side of the Unix market to fragment 

as well (with FreeBSD, OpenBSD, and NetBSD emerging as separate forks).  The protracted 

legal battle waged between AT&T and the Berkeley group from 1991 to 1994 over Berkeley’s 

use of the original Unix code added additional uncertainty to the future of Unix. 

 The result was the coexistence of multiple, incompatible versions of Unix, in direct 

contravention of the hope that Unix would provide a uniform platform that would not require app 

developers to port their software to each individual machine.  Larry McVoy of Sun 

Microsystems warned in late 1993 that “Unix is dying,” had “become stagnant,” and had “ceased 

to be the platform of choice for the development and deployment of innovative technology,” but 

his attempts to reunify the environment fell on deaf ears.37  Shortly thereafter, Unix was 

overtaken by Microsoft on the proprietary side and Linux on the open source side. 
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 The problems that led to Unix’s demise are summed up nicely by a 1985 Computerworld 

article, which asked, “What’s Wrong with UNIX?” and concluded that there were too many 

versions, each with its own unique tweaks.  In short, the flexibility that is on the one hand the 

greatest virtue of open source at the same time became Unix’s greatest vice.  In the words of one 

user, “Unix is larger and more flexible than it has to be. Systems with less flexibility can often 

provide better solutions .”38   

 The collapse of Unix represents a classic example of fragmentation.  The existence of 

multiple versions of Unix forced the software community dedicated to debugging and improving 

the operating system to disperse its energy across multiple, duplicative efforts.  Unix was also 

dogged by the lack of a standardized and friendly user interface.  The lack of a unified platform 

prevented app developers from leveraging compatibility and forced them to spend the resources 

needed to create specialized versions for each environment.39  The Unix universe also lacked a 

strong leader with the authority to resolve disputes and put the platform back on the right track.  

The lack of any mechanism or authority for offering some guidance over Unix’s evolution 

prevented the community from creating a solution even after these problems had been 

recognized.  

 Unfortunately, these problems emerged at a critical time in the computer industry.  The 

creation of Windows NT in 1993, which was the first version of Windows that was completely 

free from MS-DOS, led to its widespread adoption in the PC world.  IBM, Hewlett Packard, Sun 

Microsystems, Santa Cruz Operation, Univel, and UNIX System Laboratories made a last-ditch 

effort to unify the platform, but failed.  Novell tried to forestall the inevitable by making Unix 
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completely open, but to no avail.  At the same time, the developer community left for Linux.  

The Open Software Foundation attempted to stem the tide, merging first with Unix International 

and then with a consortium of European Unix system operators known as X/Open to form the 

Open Group.  The Open Group eventually joined with IEEE to certify a unified Unix 

specification in 2001.  By this time, however, Windows and Linux had displaced Unix as the 

operating system of choice.  The near total absence of new adoptions means that Unix’s future is 

quite bleak.   

4.2 Symbian 

 The second cautionary tale is Symbian.  Called “Android before Android,”40 Symbian 

dominated the early market for mobile operating systems, peaking at a market share of 67% in 

2006, and was the favored platform for Nokia, Samsung, Motorola, and Ericsson.  It continued to 

lead the market until 2010, when Android finally passed Symbian in terms of new shipments.  Its 

market position was once characterized as “total dominance,” but by 2013 was recognized as 

“sliding into obscurity.” 

 Symbian began in 1998 as a joint venture between Psion Software (the creator of the 

predecessor operating system EPOC) and three phone manufacturers, Ericsson, Motorola, and 

Nokia.  From the beginning, Symbian was badly fragmented.  The sheer variety of physical form 

factors and screen sizes meant that distinct versions of the operating systems had to be 

customized for each individual device.41  Moreover, although Symbian phones shared the same 

shell operating system, different groups of phone manufacturers created their own mutually 
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incompatible user interfaces.  As a result, the Symbian market was dominated by three distinct 

software platforms—S60, UIQ, and MOAP—with different companies viewing their version as a 

key differentiator.  The result was that apps written for one platform would not run on the other 

platforms.  This noninteroperability not only frustrated end users and increased app developers’ 

costs; it also meant that no unified app store could ever develop for Symbian.  

 The emergence of competition from the iPhone in 2007 signaled the beginning of 

Symbian’s demise.  In 2008, Nokia bought out its co-venturers’ interests in Symbian and created 

the Symbian Foundation in an unsuccessful attempt to turn Symbian into a royalty-free open 

source platform.  Symbian’s origins as a proprietary operating system made it difficult for it to 

attract the type of robust user and developer community upon which open source projects 

depend.  In addition, the Symbian Foundation did not release the operating system’s source code 

for another two years.  The Symbian Foundation folded shortly thereafter, and Nokia abandoned 

Symbian in February 2011 for Windows Phone.  On June 22, 2011, Nokia outsourced further 

development of the Symbian operating system to Accenture through 2016 and terminated 

support for Symbian on January 1, 2014. 

 Symbian’s history offers a number of warning signs for future efforts.  First, although 

support for a wide variety of form factors and screen sizes greatly enhances competition and 

consumer choice, it also presents significant challenges in terms of fragmentation.  Second, left 

to their own devices, the various Symbian device manufacturers each attempted to use aspects of 

the operating system and user interface as key differentiators instead of investing in 

compatibility and the viability of the platform as a whole.  The emergence of multiple user 

interfaces, each with its own mutually incompatible APIs, required app providers to undertake 
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the effort to port each app for each manufacturers’ device, which fragmented the Symbian 

ecosystem still further. 

4.3 Linux 

 In 1991, Helsinki University student Linus Torvalds released the kernel of a Unix-like 

operating system that he had developed based on a Unix clone called Minix.  His efforts 

dovetailed perfectly with the effort initiated by former MIT researcher Richard Stallman in 1984 

to create a completely open source operating system, which he called GNU (for “GNU’s not 

Unix”).  By 1991, Stallman finished the most of the operating system, but was unable to finish 

the kernel until 1996.  Torvalds stepped into the breach by combining the two.  In the process, he 

invited others to join him in improving the kernel and to help him reconfigure utilities created for 

Minix for the new operating system.  Torvalds released the first official version of Linux in 

1994.   

 Linux proved to be a tremendous success.  It filled the void left by the collapse of BSD, 

as former Unix vendors began to shift their emphasis to Linux.  That said, Linux has been faced 

with persistent concerns about forking, often phrased in terms of whether Linux would fall into 

the same trap as Unix.  As of August 2014, hundreds of different Linux distributions existed, and 

many of them contained different (and incompatible) program “libraries” used in running 

applications.  Calls for reducing the number of Linux distributions were met with criticism from 

those arguing that the right to experiment with software freely was the essence of the open 

source movement.  The fragmentation of Linux has been mitigated by the rise of for-profit 

companies such as RedHat and VA Linux, which help users manage the distributions.   
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 Commentators have been struck by the limited extent to which Linux has fragmented.42  

The primary reason is that, in stark contrast to Unix, Linux had a natural leader:  Linus Torvalds.  

As Linux’s founder, Torvalds was the natural person to exercise authority over the system.  He 

bolstered his authority by adopting a self-deprecating manner, going to great lengths to document 

and justify his decisions, and being willing to admit when he is wrong.   

 When necessary, Torvalds has not been afraid to take action.  For example, in 1992, 

when complaints arose that Fred van Kempen’s efforts to incorporate TCP/IP into Linux were 

taking too long (mostly because of his determination to make it work with all networking 

protocols and not just TCP/IP), Torvalds sanctioned a parallel coding effort by Alan Cox and 

ultimately declared Cox’s TCP/IP-only solution the winner by admitting it into the core Linux 

distribution.  The episode effectively anointed Cox as Torvalds’s de facto lieutenant for 

networking.  Although van Kempen could have forked the code by continuing to work on his 

version, the developer community remained loyal to Torvalds.   

 A second threat arose in 1998, when the operator of a mirror site complained that 

Torvalds was taking too long to accept patches to the code.  Torvalds obviated the threat by 

agreeing to a pyramid structure, which deputized key lieutenants to take the lead in reviewing 

submissions, while retaining Torvalds as the final authority to resolving disputes.  A similar 

dispute in 2002 led to the creation of additional layer of organizational decisionmaking.  

Torvalds’s status as Linux’s creator, the goodwill he earned for his dedication and good 

judgment in managing the community, and the deft touch he exercised in handling the 

interpersonal dynamics gave him the authority to prevent major forks from emerging. 
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 Thus, although Linux has achieved some success, it does not represent the world of total 

freedom, bottom-up spontaneous ordering, and technical meritocracy that the collectivist rhetoric 

surrounding open source might lead people to believe.  The history of Linux reveals that 

prevention of the fragmentation that can have such a devastating negative impact on open source 

projects was the result of an elaborate system of governance.  The result is a process that is quite 

formal and hierarchical, notwithstanding the fact that participation in any open source project is 

completely voluntary. 

5 Implications for Modern Smartphone Operating Systems 

 Taken together, the histories of Unix, Linux, and Symbian provide a number of insights 

into the dynamics surrounding open source operating systems.  As an initial matter, the desire to 

support multiple physical devices increases porting costs and causes a significant risk of 

fragmentation.  In addition, the participation of multiple device manufacturers, each pursuing its 

own interests, creates additional pressures towards fragmentation.  The case studies also illustrate 

the point made above that the best way to prevent fragmentation is through strong governance.  

Linux was able to resist these pressures because of the leadership of Linus Torvalds.  For Unix 

and Symbian, the absence of clear leadership led to a more difficult environment for both end 

users and app developers in terms of systems integration and maintaining a consistent end user 

experience. 

 Acknowledging the propriety of some form of governance leaves open the question of 

how much governance is appropriate.  The spirit of open source requires that any governance 

regime leave substantial room for experimentation.  In addition, the voluntary nature of open 

source projects and the example set by Linus Torvalds both counsel in favor of asserting as light 

a touch as possible.  The real question is not whether some actor should have been allowed to 
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exercise some degree of guidance over the platform, but rather how much and what type of 

governance should be considered a reasonable step to ensure that the mobile operating system 

achieves its potential. 

5.1 The Role of Hardware Diversity 

 The Symbian experience teaches us that hardware diversity is an important source of 

fragmentation.  Although a broad selection of phones creates real benefits to end users and can 

enhance competition, hardware variations create significant differences in operating context in 

terms of screen parameters (size, color depth, orientation, aspect ratio), memory size, processing 

power, input devices (keyboard, touch screen, etc.), cameras, and connectivity options (WiFi, 

Bluetooth, Infrared, Global Packet Radio Service), just to name a few.43  

5.2 The Need for Testing and Governance 

 Apart from the differences in hardware platforms, third-party provisioning and the 

divergence of incentives requires that end users must have some means for verifying that 

components comply with the design.  As noted above, some means for testing devices is 

necessary to have functioning markets for third-party provision and for end users to know that 

they are getting what is promised.  In most cases, the incentive structure and social norms 

surrounding open source projects discourage module creators from deviating from the 

architecture or creating incompatible forks.  That said, the desire to reduce costs by omitting 

certain APIs or other features suggests the existence of circumstances that can lead participants 

in the platform to deviate from the architecture.  The possibility exists that the cost of generality 
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and the incentives to make noncompliant devices may become sufficiently strong that device 

manufacturers cannot be expected to abide by the honor system.  This danger makes some 

system for verification essential.  Requiring end users to conduct such tests would be 

burdensome and unnecessarily duplicative.  The result is that some degree of provider-based 

testing appears inevitable.   

 Within provider-based testing, a range of alternative approaches to testing and 

governance exist, each one varying in terms of restrictiveness.  (1) The most restrictive approach 

is for the platform sponsor to manufacture all of its own smartphones.  While this approach gives 

the platform complete authority to ensure compatibility, this approach imposes limits on the 

variety of hardware devices and on competitive entry.  (2) A less restrictive approach would 

permit third parties to produce devices, but require that manufacturers to submit their devices to 

the platform sponsor for certification and testing.  While more permissive than the first option, 

this approach risks giving the platform sponsor gatekeeper control over all devices.  (3) An even 

less restrictive approach would provide a compatibility standard along with open testing tools for 

device manufacturers to self-certify that their devices comply with that standard.  This approach 

provides device manufacturers the most flexibility and offers the greatest benefits in terms of 

variety of devices and ease of competitive entry.  (4) In addition, a platform sponsor may adopt a 

hybrid approach that gives module creators a choice between (2) and (3). 

 In addition to testing regimes to ensure compatibility, open source projects must rely on 

some form of governance to prevent fragmentation and forking.  A nonexclusive requirement to 

maintain compatibility would seem to be the least restrictive approach. 

 The Android platform that is the current subject of antitrust scrutiny generally falls within 

the last and least restrictive of these options.  The following, more detailed review of Android’s 
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licensing practices reveals that within this regime, device manufacturers can choose among a 

range of possible licensing alternatives. 

5.2.1 The Android Open Source Project (AOSP) License Agreement 

 The least restrictive option is to license the Android Open Source Project (AOSP) source 

code without making any commitments as to the modification or implementation of the code.  

The software is royalty free under an Apache open source license, although some hardware is 

subject to patent licenses.  The Apache licenses ensure that device manufacturers remain free to 

modify the source code as they see fit.  They also remain free to produce other devices using 

other operating systems if they so choose.   

 The most prominent provider to go this route is Amazon, which has created its own 

operating system known as Fire OS, which is based on AOSP and runs the Amazon’s Kindle and 

Fire Phone.  Other prominent examples include Nokia’s X platform and the open source 

CyanogenMod operating systems, among others.  Samsung is attempting to avoid Android 

altogether by basing its new Tizen operating system on the original Linux kernel. 

 The Android license agreement for AOSP places device manufacturers under no 

obligations to carry any Android apps and leaves them free to add whatever apps they choose.  

Because there are no restrictions on the level of customization, the resulting devices may not be 

compatible with apps written for other Android devices. 

5.2.2 The Compatibility Definition Document (CDD) and the Compatibility 
Test Suite (CTS) 

 The second level of compatibility is for a device manufacturer to guarantee 

interoperability by ensuring that its device satisfies a published compatibility standard.  The 
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compatibility standard for each version of Android is embodied in a Compatibility Definition 

Document (CDD).  Google also provides a free Compatibility Test Suite (CTS) that device 

manufacturers may use to determine whether their device is compatible.  The goals of the CDD 

are to: 

 Provide a consistent application and hardware environment to application developers 
 Enable a consistent application experience for end users 
 Enable device manufacturers to differentiate while being compatible. 
 Minimize costs and overhead costs of compatibility.44 

 Devices that comply with the CDD must include nine core applications:  Desk Clock, 

Browser, Calendar, Contacts, Gallery, GlobalSearch, Launcher, Music, and Settings.  These 

applications tend to provide basic functions on which other applications draw, so their presence 

provides a consistent set of resources on which the app developer community can draw.  Device 

manufacturers can satisfy this requirement either by using the versions of these apps provided by 

Google or by providing their own apps so long as they satisfy the interoperability requirements.  

The CDD also requires that the device include a complete set of Android APIs and Android 

developer tools to ensure that the device will operate properly.  Device manufacturers remain 

free to develop and distribute their own APIs in addition to those required by the CDD. 

 The goal is to create a baseline of interoperability that helps app developers by creating a 

stable set of resources and by eliminating the porting costs/multiple versions for different builds, 

while at the same time preserving a degree of flexibility.  Devices that demonstrate compliance 

with the CDD by passing the CTS are regarded as Android compliant.  Importantly, device 

manufacturers may choose to comply with the CDD without signing any agreements. 
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 It bears noting that mandatory apps do not include any Google proprietary apps or apps 

alleged to be give rise to market power by competition regulators.  CDD compliant devices are 

under no obligation to install any of these services and remain free to include apps that compete 

directly with these services.  Device manufacturers may also use whatever search service they 

would like. 

5.2.3 The Anti-Fragmentation Agreement 

 Device manufacturers who would like greater certification of compatibility can sign the 

Anti-Fragmentation Agreement (AFA), which was first created in early 2008, when Android was 

nascent and one year prior to the launch of the first Android smartphone.  The AFA requires 

signatories to promise (1) that all Android devices it makes will fulfill the CDD requirements 

and (2) not to take any actions that may cause the fragmentation of Android. 

 As noted above, the first provision, requiring that all Android devices made by the 

signatory fulfill the CDD requirements, only requires the installation of basic services, such as 

Desk Clock, Browser, Calendar, Contacts, and Settings.  It does not prevent device 

manufacturers from substituting their own versions of the required apps so long as they pass the 

compatibility test.  The CDD also does not place any restrictions on the device manufacturer’s 

ability to market non-Android devices (i.e., devices based on other operating systems, such as 

Windows Phone, Blackberry, or Linux).   

 The second provision, prohibiting device manufacturers from taking any actions that 

would fragment Android, is effectively a reiteration of the first provision in that it prohibits 

manufacturers from creating Android phones that do not comply with the CDD.  The rationale is 

that permitting device manufacturers to sell both CDD-compliant and CDD-noncompliant 

Android phones can increase app developers’ costs by requiring them to port their apps to 
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multiple platforms and can create potential confusion among consumers over which phones are 

Android compliant and which ones are not. 

 Signatories that satisfy these requirements are eligible to declare their devices to be 

“Android Compatible Devices.”  The AFA requires pre-installation of only those basic apps 

included in the CDD (Desk Clock, Browser, Calendar, Contacts, Gallery, GlobalSearch, 

Launcher, Music, and Settings).  As noted above, AFA signatories can use any version of these 

apps (Google’s, their own, or a version provided by a third party) so long as they fulfill the basic 

functions.  AFA signatories can also benefit from additional technical support in the form of 

information about upcoming Android features, new APIs, Android security and performance, 

and new form factors. as well as assistance to patch bugs, address CTS failures, and implement 

new features.  

 Together, these provisions represent a fairly unrestrictive form of governance that ensures 

a minimum level of compatibility and interoperability across Android devices.  Importantly, the 

compatibility requirements covered by the AFA refer only to APIs and basic apps and do not 

contain any obligations with respect to Google Mobile Services (GMS) suite of apps, such as 

Google Play, YouTube, Maps, and Gmail, that have been the primary source of regulatory 

concern.  In essence, the AFA enables signatory device manufacturers to join together in a 

partnership committed to promoting a particular version of the Android open source project by 

creating mutually compatible devices and limited sharing information.  

5.3 Safety Valves 

 The terms of the AFA contain a number of features that make it much less likely that its 

terms can properly be regarded as problematic.  As an initial matter, the basic licensing 
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agreement for AOSP, the apps that the CDD requires to be installed, the CTS tool for evaluating 

compliance, and the AFA are all royalty free.   

 In addition, the AFA is nonmandatory:  many device manufacturers (especially in China) 

opt to comply with the CDD without signing the AFA.  Moreover, both the CDD and the AFA 

are nonexclusive in that device manufacturers can market any non-Android devices (see, e.g., 

Samsung and ZTE) and can substitute their own apps or otherwise customize the hardware and 

software so long as they comply with the CDD (see, e.g., Xiaomi, Huawei, ZTE, and HTC). 

 Finally, the presence of meaningful market options makes it unlikely that either the CDD 

or the AFA will harm competition.  Because Android’s is based on open source, any device 

manufacturer that is unwilling to comply with the CDD or sign the AFA remains free to produce 

its own version of Android.   

 Interestingly, both Apple and Microsoft are invoking Android’s greater supposed 

vulnerability to fragmentation as a potential reason to buy iOS or Windows Phone instead of 

Android.  This suggests that fragmentation is a product feature on which various operating 

system providers are competing.  Limiting any of these companies’ ability to manage 

fragmentation would place artificial limits on product features and would reduce one dimension 

of competition.   

 Indeed, focusing undue regulatory attention on open systems may have unfortunate 

unintended consequences.  If antitrust scrutiny restricts providers of open platforms from using 

less restrictive governance mechanisms to protect against fragmentation and noninteroperability, 

those providers may well be left with no choice but to adopt more restrictive alternatives.  

Specifically, adopting too restrictive a stance on the use of agreements like the AFA to limit 

fragmentation may force mobile operating systems seeking to avoid fragmentation either to 
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adopt Apple-style vertical integration or to require that all device manufacturers submit their 

phones for testing.  This would effectively bar mobile operating system providers from 

employing the least restrictive of these three alternatives.  If so, this would reduce the diversity 

and competitiveness of mobile operating systems and would substantially increase the barriers to 

entry for OEMs, developers, and other platform participants. 

 In short, all of the approaches have advantages and disadvantages that appeal to different 

types of consumers.  In addition, providers face a considerable amount of uncertainty over the 

best way to strike the proper balance the benefits to innovation associated with flexibility and 

concerns about fragmentation.  This underscores the error in regarding the selection of the ideal 

governance regime as an either-or choice.  On the contrary, end users benefit the most by being 

able to choose among different options that are exploring different approaches to preventing 

fragmentation.   

6 A Brief Comment on User Interfaces and the MADA 

 Although this analysis focuses primarily on the relationship between open source 

software and modularity theory and its implications for the AFA, I thought I would offer a few 

words about the other principal governance instrument for Android:  the Mobile Applications 

Distribution Agreement (MADA).45  MADAs typically require device manufacturers to preload 

all of the apps contained in GMS, including Play, YouTube, Maps, and Gmail.  MADA also 

require that the Google Search widget and the Play icon be accessible with at most one phone tap 

away from the home screen and that Google Search be the default for in-app searches, although 

                                                 

45 Although the terms of specific MADA are confidential, two MADA were made public as part of the record 
in Oracle America, Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012). 
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the MADA does not require that Google Search be the default search engine for the web 

browser.  MADA signatories may also use the Android green robot trademark.  All apps are 

provided royalty free except for patent royalties imposed by outside parties.  Device 

manufacturers are free to preload their own versions of these apps alongside the Google versions. 

 Unlike the AFA, the MADA is not designed to address the problems of fragmentation.  

Instead, it is designed to address another major weakness of open source systems:  the difficulty 

in providing a consistent user interface. 

 Open source is often described as “hackers writing for hackers.”46  It is known to function 

best in horizontal domains where there is widespread agreement on the design architecture and 

the general shape of the software requirements is well known and not problematic.  It is less 

effective in vertical domains where requirements are a function of domain specific knowledge 

acquired over time.  The sparse documentation and field support has long made open source 

better suited for experts operating on the server side than for end users.47   

 Because of these qualities, open source projects have faced particular difficulty with end-

user interfaces.  The design of end-user interfaces is dominated by tacit information that is hard 

to modularize.  Moreover, the acquisition of this information is associated with focus groups and 

physical contact, which contrasts starkly with the email chains that characterize open source 

projects.48 

 As a result, it comes as no surprise that Unix, Symbian and Linux have often been 

characterized as “esoteric and hard to use.”49  In particular, Unix was criticized for its lack of a 

                                                 

46 Weber (2004, 237-38). 
47 Feller and Fitzgerald (2002, 175-76). 
48 Feller and Fitzgerald (2002, 132, 175); Weber (2004, 237-38). 
49 Feller and Fitzgerald (2002, 22). 
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friendly interface easily implementable by a nontechnical person.50  Symbian suffered from 

similar problems.  As noted earlier, different groups of manufacturers each made their own 

proprietary enhancements to Symbian, which in turn created three distinct Symbian software 

platforms (S60, UIQ, and MOAP), each with its own user interface.  The result was an end-user 

interface that was quite inconsistent and did not provide app developers with a consistent 

platform for which to design their products.51  Linux users must choose from dozens of end-user 

interfaces, although Linux is attempting to standardize around the K Desktop Environment 

(KDE) and GNU Network Object Model Environment (“GNOME”).52  These challenges have 

prevented Linux from achieving significant penetration into the home desktop and laptop market. 

 While the diversity of form factors, screen sizes, and user interfaces among Android 

devices yields many benefits, the end-user experience also varies widely from device to device.  

Android users must adapt to every new device.  In contrast, the consistency of the end-user 

interface is often regarded as one of the primary advantages of the Apple iPhone. 

 The fragmentation of end-user interfaces poses difficulties for the developer community.  

The variations in code and format often force them to create versions for each environment in 

which they would like to operate, increasing their costs and making it more difficult for them to 

enter new markets. 

 The ideal solution would be to introduce some element that permits greater consistency to 

the end-user experience without losing the benefits of product diversity and entry by new firms 

associated with an open source environment.  The MADA represents one attempt to strike a 

balance between these two competing considerations.  Requiring signatories to use specific 

                                                 

50 Korzeniowski (1985); McKusick (1999, 56).   
51 Gilson (2012). 
52 Feller and Fitzgerald (2002, 22); Weber (2004, 102-03, 238). 
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Google-provided apps helps unify the end-user experience.  The goal is to provide end users with 

a consistent baseline of out-of-the-box functionality.  At the same time, the GMS apps provide a 

more consistent platform for the app community. 

 The need to remedy the lack of a consistent end-user experience that has long plagued the 

open source operating system provides a strong justification for the type of restrictions contained 

in the MADA.  The fact that the apps required by the MADA are royalty free and nonexclusive 

reduces the likelihood of any anticompetitive effects.  Most importantly, preventing open source 

projects from using agreements like the MADA to address this key weakness would leave them 

incentives to assert more direct control over end-user interfaces by adopting policies that place 

more restrictions on device manufacturers and app providers.  Thus, overly vigorous antitrust 

oversight imposed in the name of promoting competition and protecting consumers runs the risk 

of actually reducing competition and consumer choice. 

7 Conclusion 

 Open source operating systems thus something of a conundrum.  On the one hand, open 

source requires that developers have absolute freedom to modify the software as they see fit.  On 

the other hand, the software must obey certain architectural rules if it is to serve as a platform 

that can bring together different types of hardware and applications.  The flexibility inherent in 

open source can lead to incompatibility.  In extreme cases, it can even cause the open source 

project to fork into two or more different branches.   

 Such fragmentation dissipates the economic benefits of being able to access a large 

customer base through a single platform and forces app developers to expend the cost to make 

their products compatible with multiple versions of the operating system.  One classic solution to 

these problems is to rely on some form of testing to ensure that the components provided by third 
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parties are configured to comply with a compatibility standard.  Another is to subject the overall 

system to some form of governance.  Although both alternatives may seem to be somewhat 

inconsistent with the philosophy of open source, the academic literature indicates that both are a 

necessary aspect of any modular platform in which multiple parties provide separate 

components.  The question is thus not whether such restrictions must exist, but rather how 

restrictive they have to be. 

 The history of the three leading open source operating systems (Unix, Symbian, and 

Linux) confirms this insight.  Moreover, an approach that permits third parties to self-certify 

represents the least restrictive way to implement such requirements.  Any restrictions are also 

less likely to be problematic if they are royalty-free, nonexclusive, and open source.  It thus 

appears that solutions such as Google’s Anti-Fragmentation Agreement represent one way to 

strike a reasonable balance between ensuring that the operating system serves as a platform that 

brings together mobile devices and applications in a way that promotes the ability to “write once, 

run anywhere” and giving device manufacturers and app developers as much flexibility as 

possible.  Given the lingering uncertainty about the best way to balance these concerns, end users 

and technological progress would best be served by giving operating system providers 

considerable latitude in determining the best way to promote freedom without creating undue 

risks of fragmentation.  
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