
University of Pennsylvania Carey Law School University of Pennsylvania Carey Law School

Penn Law: Legal Scholarship Repository Penn Law: Legal Scholarship Repository

Faculty Scholarship at Penn Law

11-7-2016

Open Source, Modular Platforms, and the Challenge of Open Source, Modular Platforms, and the Challenge of

Fragmentation Fragmentation

Christopher S. Yoo
University of Pennsylvania Carey Law School

Follow this and additional works at: https://scholarship.law.upenn.edu/faculty_scholarship

 Part of the Antitrust and Trade Regulation Commons, Communication Technology and New Media

Commons, Computer and Systems Architecture Commons, Computer Law Commons, Digital

Communications and Networking Commons, Law and Economics Commons, Mass Communication

Commons, Policy Design, Analysis, and Evaluation Commons, Science and Technology Law Commons,

and the Science and Technology Policy Commons

Repository Citation Repository Citation
Yoo, Christopher S., "Open Source, Modular Platforms, and the Challenge of Fragmentation" (2016).
Faculty Scholarship at Penn Law. 1693.
https://scholarship.law.upenn.edu/faculty_scholarship/1693

This Article is brought to you for free and open access by Penn Law: Legal Scholarship Repository. It has been
accepted for inclusion in Faculty Scholarship at Penn Law by an authorized administrator of Penn Law: Legal
Scholarship Repository. For more information, please contact PennlawIR@law.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Penn Law: Legal Scholarship Repository

https://core.ac.uk/display/151695741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.law.upenn.edu/
https://scholarship.law.upenn.edu/faculty_scholarship
https://scholarship.law.upenn.edu/faculty_scholarship?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/911?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/612?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/334?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/334?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1032?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1029?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.upenn.edu/faculty_scholarship/1693?utm_source=scholarship.law.upenn.edu%2Ffaculty_scholarship%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:PennlawIR@law.upenn.edu

1

Open Source, Modular Platforms, and the Challenge of
Fragmentation

Christopher S. Yoo*

Abstract

 Open source and modular platforms represent two powerful conceptual
paradigms that have fundamentally transformed the software industry. While
generally regarded complementary, the freedom inherent in open source rests in
uneasy tension with the strict structural requirements required by modularity
theory. In particular, third party providers can produce noncompliant
components, and excessive experimentation can fragment the platform in ways
that reduce its economic benefits for end users and app providers and force app
providers to spend resources customizing their code for each variant. The classic
solutions to these problems are to rely on some form of testing to ensure that the
components provided by third parties comply with a compatibility standard and to
subject the overall system to some form of governance. The history of the three
leading open source operating systems (Unix, Symbian, and Linux) confirms this
insight. The question is thus not whether some constraints will apply, but rather
how restrictive those constraints will be. Finally, the governance regimes range
from very restrictive to relatively open and permissive. Competition policy
authorities should take into account where certain practices fall along that
spectrum when enforcing competition law. Exposing the more permissive
practices to demanding scrutiny runs the risk of causing operating systems to turn
to more restrictive approaches.

1 Introduction ... 2
2 The Conceptual Underpinnings of Open Source and Modular Platforms 5

2.1 Open Source .. 6
2.2 Modular Platforms .. 7

3 The Complex Relationship Between Open Source and Modular Platforms 10
3.1 The Synergies Between Open Source and Modularity ... 10
3.2 The Tensions Between Open Source and Modularity .. 11

* John H. Chestnut Professor of Law, Communication, and Computer & Information Science and Founding
Director of the Center for Technology, Innovation and Competition, University of Pennsylvania. This paper
benefitted from comments at seminars at the Center for Global Communications of the International University of
Japan, ICT Law & Economy Institute and Social Science Korea (SSK) Research, Group at Sogang University, the
Roundtable on “Platforms and Mobile Competition” co-sponsored by the London School of Economics and Political
Science and the University of Leeds, and the University of Pennsylvania Law School. The author also thanks the
Milton and Miriam Handler Foundation and Google for their financial support. All views and any errors contained
in this paper are the responsibility of the author.

2

3.2.1 The Temptation to Create Noncompliant Modules and the Need for
Testing... 12

3.2.2 Fragmentation ... 15
3.2.3 Mechanisms for Resolving These Tensions: Testing and Governance ... 16

4 Lessons from the Past: Unix, Linux, and Symbian .. 20
4.1 Unix... 21
4.2 Symbian .. 25
4.3 Linux ... 27

5 Implications for Modern Smartphone Operating Systems .. 29
5.1 The Role of Hardware Diversity ... 30
5.2 The Need for Testing and Governance ... 30

5.2.1 The Android Open Source Project (AOSP) License Agreement 32
5.2.2 The Compatibility Definition Document (CDD) and the Compatibility

Test Suite (CTS) ... 32
5.2.3 The Anti-Fragmentation Agreement ... 34

5.3 Safety Valves .. 35
6 A Brief Comment on User Interfaces and the MADA ... 37
7 Conclusion .. 40

1 Introduction

 The past few decades have borne witness to the emergence of two conceptual paradigms

that have fundamentally transformed the software industry. The first is the open source

movement. Open source is based on the principle that every user should be able to modify

software freely. In so doing, open source seeks to mobilize the entire community of end users to

volunteer their time to debug the code. The freedom to build freely on existing software also

enhances competition by enabling anyone being charged excessive prices to develop their own

alternative. The flexibility provided by open source also promises to promote innovation by

empowering all users to add new functionality to the system.

 The second is the idea of platforms. Platforms are standardized architectures that divide

complex systems into modules and define the interfaces that link these modules. Modular

platforms represent a break from the traditional approach to managing complexity in which a

single actor manages the software development process. In a modular platform, any interested

3

third party can create a component for the overall system so long as the resulting component

complies with the standardized interface. In so doing, platforms allow multiple actors to pursue

parallel innovation, which can improve the quality of the technical solution as well as increase

the rate of technological change. The standardization inherent in modular platforms also allows

device manufacturers and app providers to unlock the economic potential of their innovation by

allowing them to reach large user bases without having to constantly create new versions for

each new hardware device.

 These two concepts can be powerfully complementary in certain settings. Indeed,

commentators have long recognized that the distributed development model underlying the open

source movement necessarily depends on modularity to divide the system into parts small

enough to be improved by individual work groups and programmers and to enable multiple

actors to work to improve different parts of the system simultaneously.1 The compatibility and

affinity between these two concepts is demonstrated eloquently by the fact that two of the most

important operating systems, Unix and Linux, are simultaneously platforms for third-party apps

and open source.

 What is less well recognized is the extent to which these two concepts rest in uneasy

tension with one another. While the freedom of open source suggests unlimited flexibility to

change parts of the system, to function properly modular platforms require that all components

adhere strictly to a predetermined set of standards that govern how the different components

interconnect and interact. This tension is well illustrated by the problem of fragmentation, which

has long been recognized as a major problem for many open source projects. The most extreme

form of fragmentation, known as forking, occurs when a contributor to an open source project

1 See, e.g., Feller and Fitzgerald (2002, 76-79, 170-71); Weber (2004, 172-74).

4

customizes a non-application layer of a platform to an extent that it is no longer fully

interoperable with the rest of the project. The result is to divide the system into two distinct and

incompatible versions.

 Such fragmentation represents a conundrum for open source. On the one hand, users’

freedom to customize software is integral to the open source movement. Indeed, absent

constraints, the freedom inherent in open source effectively gives users the ability to fragment

the system.2 On the other hand, infinite flexibility creates costs for the open source community

by requiring the diffusion of effort and the duplication of work across multiple projects.

Fragmentation also harms device manufacturers and app developers by limiting interoperability

and by requiring them to adapt their products for what are now separate platforms (a process

called porting). End users are often disappointed to find that particular software works only on

some platforms.

 The success of an open source platform thus depends on reconciling the freedom inherent

in open source with the compatibility required by modular platforms. Some constraints on the

flexibility of open source are thus inevitable. The real policy question is what type of constraints

are appropriate.

 This Article analyzes the complex relationship between open source and modular

platforms by describing the basic principles underlying each approach and examining the extent

to which they are simultaneously fundamentally interconnected and in inherent tension. It then

explores the history of three leading examples of open source operating systems—Unix,

Symbian, and Linux—to illustrate how these dynamics work in practice. It concludes by

examining what lessons these histories have for the current debate over the propriety of

2 See, e.g., Weber (2004, 64, 89, 170); Corbett (2011).

5

restrictions to open source mobile operating systems, paying particular attention to Google’s

Android Anti-Fragmentation Agreement. It also lays out key features that make such restrictions

less problematic from the standpoint of competition policy.

 The core lesson is that some restrictions on what people can do with open source

operating systems are necessary if consumers are to enjoy the full benefits of competition and

innovation. My point is not to suggest that open source software is inherently superior to

proprietary software or vice versa. Both approaches have distinct virtues that appeal to different

users. Moreover, any attempt to cast the policy debate as a choice between those polar extremes

is based on a false dichotomy. Instead, the different modes for producing software platforms are

better regarded as occupying different locations along a continuum running from completely

unrestricted open source to completely proprietary closed source. Indeed, companies may even

choose to pursue hybrid strategies that occupy multiple locations on this continuum

simultaneously. The diversity of advantages associated with these different approaches suggests

that consumers benefit if different companies are given the latitude to experiment with different

governance models, with the presence of one open source platform serving as an important

competitive safety valve. Moreover, the analytical framework suggests that a completely open

source platform represents an ideal type that is inherently unrealistic. The fact that open source

platforms are subject to some constraints is thus not inherently problematic. The proper role for

competition policy is to provide a framework for determining when such constraints are

reasonable.

2 The Conceptual Underpinnings of Open Source and Modular Platforms

 Understanding the simultaneous connection and tension between open source and

modular platforms requires an appreciation of the principles underlying each concept.

6

2.1 Open Source

 Open source software is often put forth as a new paradigm in software production.

Computer programs can be distributed in two forms.3 The first is known as source code, which

is written in a programming language such as Pascal and Fortran, to use two dated examples that

have been replaced by newer languages such C++, Python, and Perl. Although source code is

quite technical, experienced programmers can read and modify it. Source code is then compiled

into object code or machine language, which consists of a series of 0s and 1s. Object code can

be read by computers, but cannot easily be read by human beings.

 One of the main triggers for the open source movement was software companies’ practice

of attempting to protect their software by distributing it only as object code and refusing to

release the source code. These companies also copyrighted their code and included clauses in

end-user licenses prohibiting customers from modifying it. The absence of the source code and

the contractual restrictions on modifying the code made it difficult for end users who wished to

customize the code to diagnose and resolve incompatibility problems.

 Frustration over the inability to customize code led to the open source movement.

Although numerous definitions of what constitutes open source exist, they generally agree that

all software should be distributed with its source code or that the source code be made available

on request. Open source definitions also generally share the requirement that end users be

permitted to modify the code and distribute their modifications. Beyond these basic

commitments, open source exhibit considerable variation. For example, the GNU Public License

(GPL) contains a viral provision that requires that any code that is combined with GPL-licensed

3 The foregoing discussion draws on Marella and Yoo (2007).

7

code to be governed by the GPL. Because the GPL enforces openness through copyright

licenses, the viral provisions are sometimes called copyleft requirements. Other open source

licenses, such as those used by Berkeley and Apache, take a more academic approach, simply

requiring that any modification provide clear notice of the changes and give appropriate credit to

the creators of the original code. Other variants exist as well, with the Open Source Initiative

currently listing seventy-eight approved licenses.

 The existence of multiple licenses reflects a divergence of philosophies within the open

source movement.4 Some early movement pioneers, such as Richard Stallman, emphasize the

freedom to tinker and rely on the viral copyleft provisions to prevent proprietary and open source

software from being combined. Others, such as Bruce Perens and Eric Raymond, adopt a less

hostile, more pragmatic approach that permits open source and proprietary software to be

combined.

 Beyond these formal attributes, open source projects depend on a vibrant community

willing to volunteer their time to improve and extend the project. The belief is that opening up

the opportunity to improve the code to the entire user base will increase the total number of

person-hours devoted to the project and will identify and fix problems more rapidly. This spirit

has been captured by Eric Raymond (1999) dubbed Linus’s Law: “Given enough eyeballs, all

bugs are shallow.”

2.2 Modular Platforms

 One of the biggest problems confronting any major software project is how to coordinate

the various teams working on different parts of the system. One of the most famous examples

4 See, e.g., DiBona et al. (1999, 8-9); Perens (1999, 80); Stallman (1999, 37); McGowan (2001, 260-65).

8

arose when IBM was developing the System/360 computer. To make sure that the entire team

understood the full intricacies of the design, the project managers required that every

programmer maintain a workbook documenting all of the other parts of the system. In just six

months, the workbook was five feet long and required filing of 150 pages of updates each day.

Worse yet, even when the project was running behind, managers found that adding more

personnel actually slowed the project down. This insight has led to the coining of what is known

as Brooks’s Law (1975, 31), which holds that “adding manpower to a late software product

makes it later.”5

 In addition, one of the hallmarks of a complex system is the way that components can

interact with one another in unexpected ways.6 Validating a complex system requires testing

every possible combination of states of the world that each of the various components of the

system can possibly occupy. If the number of interdependencies is large, the number of unique

combinations of parameters that must be tested can rapidly become immense, particularly if each

component is permitted to occupy a large number of states.7 The problem becomes even more

difficult if the interdependencies form a circuit that recursively loops back onto itself (e.g., if task

A depends on task B, which in turn depends on task C, which depends on task A). When that is

the case, testing requires exploring not only every possible combination of states of the world,

but also cycling through enough iterations until each combination reaches stability.

 The traditional approach to managing the inherent complexity of large software projects

is for a single actor to coordinate and control all of the design teams working on a project and to

use managerial processes to ensure that the communication and testing needed for proper

5 Brooks (1975, 31).
6 The analysis of modularity draws on Yoo (2016).
7 Dijkstra (1968, 344).

9

integration of the design occurs. The tightness of the control means that most firms either

produce components themselves or maintain strict control over any third parties on which they

rely to produce components of the overall system.

 A new approach has emerged that replaces the strong integrated design with a modular

architecture. Modular architectures minimize system complexities by defining the modules so

that highly interdependent tasks are clustered within the same module.8 Cross-module

interdependencies are limited by requiring that modules interact with one another solely through

predetermined interfaces that strictly cabin the amount of information that can pass between

modules, the details of which are often defined in open standards.9

 The existence of these standardized interfaces minimizes the need for firms producing

components to coordinate with one another. So long as a component manufacturer conforms to

the standard, any third party can produce compatible components. All of the information needed

to coordinate with other modules is embodied in the standards. This allows third parties to work

on different components of the same system without having to worry that any changes made to

any one component might create ripple effects throughout the entire system. Moreover, it allows

multiple teams working in parallel to experiment with different technical ways to implement a

particular module, allowing greater latitude to experiment with different solutions and faster

innovation.

8 For the classic statement, see Simon (1962).
9 Parnas (1972).

10

3 The Complex Relationship Between Open Source and Modular Platforms

 Open source and modularity are both recognized as important underpinnings of the

modern Internet economy. Indeed, modularity is often identified as a critical success factor for

any open source project. As Linux founder Linus Torvalds (1999, 108) succinctly noted, the

open-source development model depends on “hav[ing] a system which is as modular as

possible,” because without modularity, “you can’t have people working in parallel,” and “I

would have to check every file that changed.”10

 A closer examination reveals that the relationship between open source and modular

platforms is more complex than this simple statement would lead one to believe. Although open

source cannot exist without modularity, the infinite flexibility inherent in open source exists in

uneasy tension with the strict structural requirements upon which modular platforms depend.11

3.1 The Synergies Between Open Source and Modularity

 Open source and modularity are widely regarded as complementary concepts. Indeed,

modularity is essential for an open source project to succeed. As Torvalds’s statement quoted

above indicates, decomposing a larger system into subsystems connected by minimal

interdependencies isolates each component in ways that make it easier for multiple groups to

work on improving different components simultaneously. This allows designers to experiment

with improvements to particular parts of the code without having to worry continually about

creating problems for other parts of the system.

10 For academic studies of the link between modularity and open source, see, e.g., Bonaccorsi and Rossi
(2003, 1247); Feller and Fitzgerald (2002, 76-79); Weber (2004, 172-74); Clark and Baldwin (2006); Midha and
Paliva (2012, 903).
11 The discussion that follows draws heavily on the superb analysis in Weber (2004). For other important
accounts, see DiBona et al. (1999) and Feller and Fitzgerald (2002).

11

 Indeed, the rigid logical structure through which modules are interconnected is what

allows multiple third parties to work on the same project. Conway’s Law (1968), which has long

been recognized as a central tenet of software production, holds that the architectural structure of

technical systems mirrors the organizational structure that produces them. This means that

without the distributed nature inherent in a modular architecture, the distributed organizational

production system that characterizes open source could not exist.

3.2 The Tensions Between Open Source and Modularity

 Open source advocates have acknowledged that the freedom to innovate that lies at the

heart of open source software represents something of a two-edged sword. Open source

inherently gives end users complete latitude to customize software as they see fit. Although such

unfettered freedom is unproblematic when the code is run in isolation, it becomes more

problematic when the code is supposed to interoperate with the other components of an

interoperable platform. As noted earlier, modular platforms depend on standardized interfaces

that predefine how different modules will interact with one another. Although one can

experiment with different configurations of tasks within a module, interactions between modules

must strictly adhere with the interfaces. Any code that does not conform to the modular design

becomes noninteroperable with the rest of the system.

 The tension between flexibility and structure can lead to two characteristic problems with

open source platforms. The first is the temptation for people modifying individual components

to introduce interdependencies that deviate from the modular architecture. The second is the

possibility that a subgroup of an open source project may fragment the project, in extreme cases

dividing into two distinct and incompatible branches in a phenomenon called forking.

12

3.2.1 The Temptation to Create Noncompliant Modules and the Need for
Testing

 As noted earlier, the key design feature of a modular architecture is the clustering of

highly interdependent tasks within the same module and ensuring that the interdependencies that

are supposed to be encapsulated within that module do not affect other modules. The key to

ensuring that these interdependencies remain isolated within a module is to design the module

interfaces so that they contain only information associated with interdependencies that are

permitted by the design and to require that other modules restrict themselves to interact only with

the information made visible by the interface. All information about other independencies

remains hidden within the module.

 The tradeoff inherent in this approach means that “designers will lose the ability to

explore some parts of the space of designs—in effect, the architects will restrict the search,

declaring some parts of the design space to be out of bounds.”12 More specifically, the generality

inherent in modularity inevitably leads to a degree of inefficiency.13 There will inevitably be

occasions where one module finds that the most efficient way to solve the problem at hand

would be to refer to information contained in an adjacent module, despite the fact that that

information is excluded from the module interface and is thus associated with an

interdependency that is supposed to remain encapsulated within the module. Moreover,

generality requires incurring the cost to support features that particular implementations may

never need.

12 Baldwin and Clark (2000, 68).
13 McGee (1959, 2); Clark (1982, 16).

13

 The inefficiency and inflexibility inherent in this result led early scholars to denounce the

use of modular interfaces as “radical.”14 Over time, these critics began to concede that using

information hiding to implement modularity created real benefits.15 This concession does not

eliminate the reality that inefficiency remains an irreducible part of any modular platform and

that open source module developers have both the ability and the incentive to access information

associated with interdependencies that they are not supposed to take into account. This dynamic

explains why the number of interdependencies among Linux modules has increased

exponentially with each release.16

 A recent dispute between Skyhook Wireless and Google provides an apt illustration of

these dynamics.17 Both Skyhook and Google provide location services, which are apps that

identify the latitude and longitude coordinates for the location of the device. Location services

determine geolocation data from one of three sources: (1) global positioning satellites (GPS), (2)

WiFi access points whose locations have been stored in a manually compiled database, and (3)

triangulation on cell tower locations. Of these three, GPS is considered the most accurate, but is

typically slower than the other methods.18 All location services incorporate the data they collect

into the existing databases. Because GPS data is considered more accurate, the Android GPS

application programming interface (API) reports data collected from GPS, WiFi, and cell towers

separately to give developers that rely on this data a clear understanding of its quality.19

14 Brooks (1975, 78).
15 Brooks (1995).
16 Feller and Fitzgerald (2002, 176).
17 Skyhook Wireless, Inc. v. Google, Inc., 30 Mass. L. Rptr. 417 (Super. Ct. 2012).
18 Id. at 418.
19 Id. at 418, 419, 421.

14

 Both Google and Skyhook use all three methods to determine the location of a mobile

device. Motorola was considering including Skyhook’s location service, known as XPS, into

one of its devices. Google carefully differentiates between location data based on GPS and

location data derived from network information, such as the location of WiFi access points and

cell towers.20 XPS, however, reported both GPS-based and network-based data together.21

When Google found out about these plans, it informed Motorola that XPS’s location services did

not comply with the Android compatibility standard, although it did make clear that Motorola

was free to include Skyhook if XPS was modified to stop returning network-based data into the

GPS database.22 Eventually, Motorola removed XPS from its devices.23 Skyhook sued Google

for intentional interference with contacts and business relationships. The Massachusetts Superior

Court granted summary judgment in favor of Google on all counts.24

 Modularity theory provides a clear basis for understanding why the court’s decision was

correct. To function properly, every module must be able to trust that all of the information

being sent by other modules comprising the system complies with the design architecture. To

ensure that is the case, some means must exist for identifying and excluding noncompliant

modules. Compliance and testing mechanisms ensure that each module can rely on the fact that

all of the other modules are operating in the manner specified by the design.

 When a mobile platform is proprietary, the subgroups designing individual modules rely

on the command and control apparatus of the company to ensure that this is the case. In contrast,

when a mobile platform is open, there is no single actor exercising control over all of the

20 Id. at 418.
21 Id. at 419.
22 Id. at 425.
23 Id. at 420–22, 423–24.
24 Id. at 418, 424, 427.

15

modules. Instead, the activities of the different modules are coordinated by the information

structure of the architecture rather than a firm. Modules must restrict themselves to sending only

the information that the other modules expect if the architecture is to function properly. All

actors participating in an open platform depend on the presence of some governance mechanism

for ensuring that all of the components created by the various third-party providers comply with

the architecture. Thus exclusion of a noncompliant app from the system should not

automatically be regarded as a sign of anticompetitive or improper behavior. On the contrary, it

may be a necessary part of any open architecture.

3.2.2 Fragmentation

 The flexibility inherent in open source software can give rise to a problem more severe

than noncompliant modules. Sometimes participants in open source projects go beyond

tinkering with the design of individual modules and take the architecture in a fundamentally new

direction. In extreme cases, the divergence can create a fork in the open source project that

causes the project to divide into two different and noninteroperable branches, each pursuing its

own path.

 Some forms of fragmentation or differentiation are not without redeeming qualities. For

example, forking may represent a diversity of interests, typified by the fact that even-numbered

Linux are experimental releases filled with new features that have not been fully debugged,

while odd-numbered Linux releases constitute stable resales that have been thoroughly tested.

The former is designed to appeal to sophisticated developers interested in conducting research on

the cutting edge, while the latter is intended to meet the needs of commercial and less

sophisticated users who are more interested in reliability and ease of use. Moreover, forking can

allow third-parties to reinvigorate open source projects that are stuck in inefficient designs.

16

More importantly, the flexibility integral to the open source movement in effect gives users the

fundamental ability to fragment or fork.

 At the same time, fragmentation can greatly impede the likely success of an open source

project. Fragmentation can force app developers to develop different version for each

noncompliant module, a process called porting. Dividing an open source project into separate

forks forces what was once a single community working on one project to divide its energy and

duplicate efforts across two separate projects. In addition, the community developing apps for

the operating system must now spend the time and effort to make sure that their products are

compatible with both branches of the fork. Developers would ideally prefer to operate in an

environment in which they can “write once, run anywhere.” Excessive fragmentation and

noninteroperability would frustrate their ability to do so.

 The tension represents what Martin Libicki (1995, 47) has called the “fundamental

contradiction” between open source and modularity:

The more open the system, the more it can be modified by vendors and users to
their own ends, which is good. The more a system is modified, however, the
more likely that the modifications will be nonstandard. With many nonstandard
versions of UNIX available, software vendors need to disperse (perhaps dissipate)
their software efforts among many systems, leading to fewer pieces of software
available to any one system. . . . This result reduces choice, which is bad.

3.2.3 Mechanisms for Resolving These Tensions: Testing and Governance

 How do open source projects manage the inherent tension between open source and

modularity? Whereas open source implies flexibility and freedom, modularity requires a highly

structured and restrictive environment to ensure conformity with the architecture and to provide

a sufficiently stable platform for the developer community. What keeps open source projects

from fragmenting in an inefficient manner?

17

 As an initial matter, some open source communities rely on a series of informal

governance mechanisms to maintain their projects’ coherence. For example, open source

communities typically have produced a fairly strong norm against forking. In the words of Eric

Raymond, “There is strong social pressure against forking projects. It does not happen except

under plea of dire necessity, with much public self-justification, and with a renaming.”25

Furthermore, the incentives confronting a person considering whether to create a fork can be

quite daunting. All participants in the new fork would be part of a smaller community, which

would mean fewer collective benefits and a greater obligation to do work. The magnitude of

these liabilities increases when the existing open source project that is being forked is large.

Moreover, if the new fork does not attract sufficient followers, it will fail.

 While important, these informal mechanisms are too weak to ensure coherent

management of an open source project. With respect to noncompliant modules, modularity

theorists regard the existence of a system for testing and verifying the performance of other

components as an essential part of any modular system. Harvard Business Professors Carliss

Baldwin and Kim Clark (2000, 380) note that “the testable, verifiable dimensions of the module

are the foundation that supports arm’s length-contracts and market transactions” and that

“without tests, there is no way to know what is being bought and sold.”

 To prevent excessive fragmentation, most open source projects rely on some form of

strong formal governance. This comes as a surprise to many observers. The mythology holds

that open source projects consist of widely dispersed communities organized from the bottom up,

within which all members make their own small contributions to the overall project, excellence

25 Feller and Fitzgerald (2002, 96).

18

is determined by peer review and who works the hardest, and the community adopts the

pragmatic and meritocratic position of “letting the code decide.”

 In practice, open source projects operate in a much more concentrated and hierarchical

manner. In fact, studies have indicated that 85% to 90% of contributed code is discarded.26

Another study indicated that ten developers (less than 0.1% of the overall universe of

developers) contribute almost 20% of the code base for each project.27

 Decisions about which contributions are accepted are made in a similarly hierarchical

manner. For example, the oft-cited article by Harvard Business School Professor Josh Lerner

and Nobel Laureate Jean Tirole noted that open source projects are characterized by “a strong

centralization of authority.”28 Another early commentator noted, “Open source may sound

democratic, but it isn’t. Leaders of the best-known Open Source development efforts often

explicitly stated that they function as dictators.”29

 In fact, the term dictator has been used to describe the leadership of a wide variety of

open source projects, such as Linux and Python (although in Linux, Torvalds has delegated a

great deal of authority to two lieutenants).30 Perl has developed a rotating dictatorship, in which

authority is passed among a small inner circle of Perl developers,31 with Perl creator Larry Wall

serving as the final arbiter.32 Even the Apache server project, which has been called “as close to

a democracy as one is likely to find in software development,” is controlled by two dozen

26 McKusick (1999); Mockus et al. (2000).
27 Ghosh and Prakash (2000).
28 Lerner and Tirole (2002, 221).
29 Bezroukov (1999).
30 DiBona et al. (1999, 12) (calling Linux a “benign dictatorship”); van Rossum (2008) (referring to the
founder of Python as “benevolent dictator for life”);
31 Weber (2004, 92).
32 Feller and Fitzgerald (2002, 91).

19

developers, all of whom wield veto power.33 Many other open source projects are governed by a

foundation.

 Linux creator Linus Torvalds explicitly acknowledges that the control provided by

Linux’s hierarchical governance structure allows him to take bolder action: “[T]he fact that there

is one person who everybody agrees is in charge (me) allows me to do more radical decisions

than most other projects can allow.”34 Conversely, Unix collapsed in large part because no user

group or actor had the authority to make decisions for the platform.

 The presence of such governance hierarchies is fundamentally at odds with the

collectivist mantle in which the open source movement tends to wrap itself. Eric Raymond

(1999) famously analogized the differences between proprietary and open source software to the

differences between a cathedral and a bazaar. Like proprietary software, cathedrals are top-down

projects “carefully crafted by individual wizards or small bands of mages working in splendid

isolation, with no beta to be released before its time.” Open source communities, in contrast, are

more like bazaars: great babbling marketplaces “of differing agendas and approaches,” bustling

about in apparent confusion.

 As the presence of strong hierarchies reveals, the truth lies somewhere in between. The

presence of strong formal governance reveals that the so-called bazaar has many cathedral-like

qualities and that the sharp distinction between cathedrals and bazaars may represent a false

dichotomy.35 Even the most free-wheeling environments must have some rules and means for

settling disputes, particularly if they must conform to a strict set of architectural rules in order to

preserve interoperability. Moreover, the type of open-source license can affect the strength of

33 Maclachlan (1999).
34 Yamagata (1997).
35 Feller and Fitzgerald (2002, 159-60).

20

the governance mechanism. The viral copyleft provisions of the GPL ensure that any

noninteroperable customizations will be available to the developer and user community.

Consequently, open source projects that rely on the GPL have less need for governance

mechanisms to protect against fragmentation. BSD/Apache-type licenses permit software

developers to assert proprietary control over their modifications. As a result, open source

projects relying on the latter type of license typically employ stronger forms of governance to

ensure that the ecosystem remains interoperable.

 The nature of leadership also takes on a different character in the context of open source.

Success of an open source project depends on inspiring a community of people willing to work

on it. In a real sense, an open source leader’s authority depends on the existence of followers. In

a world where all contributions are voluntary and the community is always free to exit the

community by forking the project, leaders’ ability to retain their positions depends largely on

their responsiveness to the needs of those led. These needs include providing fast feedback,

serving as an effective moderator of technical disputes and personality conflicts, and realistic

interim and long-term goals.

 To say that open source projects require a type of leadership that is somewhat different

from the leadership that characterizes commercial companies that produce proprietary software

is not to say that they need no leadership at all. On the contrary, ensuring that an open source

platform does not fragment depends on the presence of an actor with sufficient authority to

resolve disputes and to steer the platform in a beneficial direction.

4 Lessons from the Past: Unix, Linux, and Symbian

 The concepts of open source software and modular platforms represent something of a

paradox. They are inextricably bound together, while at the same time resting in uneasy tension

21

with one another. Although open source holds out the promise of unbridled freedom, to the

extent that the software needs to interoperate with other components on a standardized basis, it is

not completely free.

 Fortunately, two classic solutions exist to this problem. First, the fact that some

components will be provided by third-parties requires the existence of some means to test

components for compliance with the architecture. Second, the possibility of forking requires

some form of governance to help prevent the platform from fragmenting.

 A review of the histories of three well-known open source operating systems—Unix,

Symbian, and Linux—provides an eloquent illustration of these dynamics. The case study of

Linux serves as an example of how these dynamics can benefit end users. Although Unix and

Symbian have enjoyed some degree of success, their ultimate fate consigns them more to the role

of cautionary tales.

4.1 Unix

 Unix exemplifies both the upsides and downsides of open source software. On the one

hand, it represents one of the first successful open source projects. Indeed, some commentators

have called it “perhaps the greatest software innovation of all time.”36 On the other hand, it

eventually became so badly fragmented that it has become the classic example that everyone

uses to illustrate what not to allow to happen to an open source project.

 Unix was originally written by Ken Thompson of AT&T Bell Laboratories in a single

month to enable him to play a computer game called Space Travel on a then-outdated PDP-7

36 Libicki (1995, 47).

22

computer. It was designed to be a simple operating system that presented the same interface and

functionality across a wide range of different types of machines.

 At the time Unix was created, AT&T was operating under a 1956 antitrust consent decree

that prohibited the company from entering into the computer business and required AT&T to

license its patents. As a result, AT&T initially did not try to commercialize Unix and instead

licensed it to universities royalty free. The University of California at Berkeley showed

particularly strong interest in Unix, particularly after Thompson spent a semester teaching there

in 1975. Berkeley programmers began improving the operating system in the late 1970s and

began releasing a package of tools and utilities called the Berkeley Software Distribution (BSD),

subject to an open source license requiring clear notice of any modifications and appropriate

credit to the creators of the original code.

 During the late 1970s and 1980s, the collaboration between AT&T and Berkeley became

wildly successful, as users ported it to a wide variety of different machines and it became a key

platform for the TCP/IP suite of protocols. Over time, however, AT&T began imposing greater

restrictions on the distribution of the Unix source code. In 1982, the settlement of the antitrust

case that broke up AT&T led to the spinoff of Bell Labs and AT&T’s equipment manufacturing

subsidiary, Western Electric, into a separate company that would eventually become known as

Lucent Technologies. The revisions to the consent decree lifted the restrictions that prevented

Bell Labs from commercializing Unix.

 The prospect that Unix might become proprietary led the Berkeley group to recruit a

large group of volunteers to expand BSD into a complete version of Unix that was independent

of any code created by AT&T. Other companies began creating their own versions of Unix,

some based on BSD (such as Apollo, DEC, Integration Solutions, and NSC), others based on

23

AT&T’s version (such as Altos, Apollo, Compaq, HP, IBM, Intel, Microsoft, and Silicon

Graphics), and still other entirely new instances based on neither version (such as Cray, DEC,

Data General, Motorola, and Unisys). In 1987, AT&T attempted to end the fragmentation by

entering into a strategic alliance with Sun Microsystems. In 1988, Apollo, DEC, HP, IBM, Bull,

Nixdorf, and Siemens responded by creating the Open Software Foundation with the stated (but

ultimately unsuccessful) goal of creating a Unix version that did not depend on AT&T licenses.

AT&T and Sun created a rival organization known as Unix International to promote the AT&T

version.

 By 1990, fragmentation had left the proprietary side of the Unix market in a state of

crisis. During the mid-1990s, differences of opinion regarding the technical direction of the

platform and sharp personality clashes caused the academic side of the Unix market to fragment

as well (with FreeBSD, OpenBSD, and NetBSD emerging as separate forks). The protracted

legal battle waged between AT&T and the Berkeley group from 1991 to 1994 over Berkeley’s

use of the original Unix code added additional uncertainty to the future of Unix.

 The result was the coexistence of multiple, incompatible versions of Unix, in direct

contravention of the hope that Unix would provide a uniform platform that would not require app

developers to port their software to each individual machine. Larry McVoy of Sun

Microsystems warned in late 1993 that “Unix is dying,” had “become stagnant,” and had “ceased

to be the platform of choice for the development and deployment of innovative technology,” but

his attempts to reunify the environment fell on deaf ears.37 Shortly thereafter, Unix was

overtaken by Microsoft on the proprietary side and Linux on the open source side.

37 Weber (2004, 98).

24

 The problems that led to Unix’s demise are summed up nicely by a 1985 Computerworld

article, which asked, “What’s Wrong with UNIX?” and concluded that there were too many

versions, each with its own unique tweaks. In short, the flexibility that is on the one hand the

greatest virtue of open source at the same time became Unix’s greatest vice. In the words of one

user, “Unix is larger and more flexible than it has to be. Systems with less flexibility can often

provide better solutions .”38

 The collapse of Unix represents a classic example of fragmentation. The existence of

multiple versions of Unix forced the software community dedicated to debugging and improving

the operating system to disperse its energy across multiple, duplicative efforts. Unix was also

dogged by the lack of a standardized and friendly user interface. The lack of a unified platform

prevented app developers from leveraging compatibility and forced them to spend the resources

needed to create specialized versions for each environment.39 The Unix universe also lacked a

strong leader with the authority to resolve disputes and put the platform back on the right track.

The lack of any mechanism or authority for offering some guidance over Unix’s evolution

prevented the community from creating a solution even after these problems had been

recognized.

 Unfortunately, these problems emerged at a critical time in the computer industry. The

creation of Windows NT in 1993, which was the first version of Windows that was completely

free from MS-DOS, led to its widespread adoption in the PC world. IBM, Hewlett Packard, Sun

Microsystems, Santa Cruz Operation, Univel, and UNIX System Laboratories made a last-ditch

effort to unify the platform, but failed. Novell tried to forestall the inevitable by making Unix

38 Korzeniowski (1985).
39 Weber (2004, 98)

25

completely open, but to no avail. At the same time, the developer community left for Linux.

The Open Software Foundation attempted to stem the tide, merging first with Unix International

and then with a consortium of European Unix system operators known as X/Open to form the

Open Group. The Open Group eventually joined with IEEE to certify a unified Unix

specification in 2001. By this time, however, Windows and Linux had displaced Unix as the

operating system of choice. The near total absence of new adoptions means that Unix’s future is

quite bleak.

4.2 Symbian

 The second cautionary tale is Symbian. Called “Android before Android,”40 Symbian

dominated the early market for mobile operating systems, peaking at a market share of 67% in

2006, and was the favored platform for Nokia, Samsung, Motorola, and Ericsson. It continued to

lead the market until 2010, when Android finally passed Symbian in terms of new shipments. Its

market position was once characterized as “total dominance,” but by 2013 was recognized as

“sliding into obscurity.”

 Symbian began in 1998 as a joint venture between Psion Software (the creator of the

predecessor operating system EPOC) and three phone manufacturers, Ericsson, Motorola, and

Nokia. From the beginning, Symbian was badly fragmented. The sheer variety of physical form

factors and screen sizes meant that distinct versions of the operating systems had to be

customized for each individual device.41 Moreover, although Symbian phones shared the same

shell operating system, different groups of phone manufacturers created their own mutually

40 Best (2013).
41 For an excellent overview of how device diversity leads to fragmentation, see Rajapakse (2008).

26

incompatible user interfaces. As a result, the Symbian market was dominated by three distinct

software platforms—S60, UIQ, and MOAP—with different companies viewing their version as a

key differentiator. The result was that apps written for one platform would not run on the other

platforms. This noninteroperability not only frustrated end users and increased app developers’

costs; it also meant that no unified app store could ever develop for Symbian.

 The emergence of competition from the iPhone in 2007 signaled the beginning of

Symbian’s demise. In 2008, Nokia bought out its co-venturers’ interests in Symbian and created

the Symbian Foundation in an unsuccessful attempt to turn Symbian into a royalty-free open

source platform. Symbian’s origins as a proprietary operating system made it difficult for it to

attract the type of robust user and developer community upon which open source projects

depend. In addition, the Symbian Foundation did not release the operating system’s source code

for another two years. The Symbian Foundation folded shortly thereafter, and Nokia abandoned

Symbian in February 2011 for Windows Phone. On June 22, 2011, Nokia outsourced further

development of the Symbian operating system to Accenture through 2016 and terminated

support for Symbian on January 1, 2014.

 Symbian’s history offers a number of warning signs for future efforts. First, although

support for a wide variety of form factors and screen sizes greatly enhances competition and

consumer choice, it also presents significant challenges in terms of fragmentation. Second, left

to their own devices, the various Symbian device manufacturers each attempted to use aspects of

the operating system and user interface as key differentiators instead of investing in

compatibility and the viability of the platform as a whole. The emergence of multiple user

interfaces, each with its own mutually incompatible APIs, required app providers to undertake

27

the effort to port each app for each manufacturers’ device, which fragmented the Symbian

ecosystem still further.

4.3 Linux

 In 1991, Helsinki University student Linus Torvalds released the kernel of a Unix-like

operating system that he had developed based on a Unix clone called Minix. His efforts

dovetailed perfectly with the effort initiated by former MIT researcher Richard Stallman in 1984

to create a completely open source operating system, which he called GNU (for “GNU’s not

Unix”). By 1991, Stallman finished the most of the operating system, but was unable to finish

the kernel until 1996. Torvalds stepped into the breach by combining the two. In the process, he

invited others to join him in improving the kernel and to help him reconfigure utilities created for

Minix for the new operating system. Torvalds released the first official version of Linux in

1994.

 Linux proved to be a tremendous success. It filled the void left by the collapse of BSD,

as former Unix vendors began to shift their emphasis to Linux. That said, Linux has been faced

with persistent concerns about forking, often phrased in terms of whether Linux would fall into

the same trap as Unix. As of August 2014, hundreds of different Linux distributions existed, and

many of them contained different (and incompatible) program “libraries” used in running

applications. Calls for reducing the number of Linux distributions were met with criticism from

those arguing that the right to experiment with software freely was the essence of the open

source movement. The fragmentation of Linux has been mitigated by the rise of for-profit

companies such as RedHat and VA Linux, which help users manage the distributions.

28

 Commentators have been struck by the limited extent to which Linux has fragmented.42

The primary reason is that, in stark contrast to Unix, Linux had a natural leader: Linus Torvalds.

As Linux’s founder, Torvalds was the natural person to exercise authority over the system. He

bolstered his authority by adopting a self-deprecating manner, going to great lengths to document

and justify his decisions, and being willing to admit when he is wrong.

 When necessary, Torvalds has not been afraid to take action. For example, in 1992,

when complaints arose that Fred van Kempen’s efforts to incorporate TCP/IP into Linux were

taking too long (mostly because of his determination to make it work with all networking

protocols and not just TCP/IP), Torvalds sanctioned a parallel coding effort by Alan Cox and

ultimately declared Cox’s TCP/IP-only solution the winner by admitting it into the core Linux

distribution. The episode effectively anointed Cox as Torvalds’s de facto lieutenant for

networking. Although van Kempen could have forked the code by continuing to work on his

version, the developer community remained loyal to Torvalds.

 A second threat arose in 1998, when the operator of a mirror site complained that

Torvalds was taking too long to accept patches to the code. Torvalds obviated the threat by

agreeing to a pyramid structure, which deputized key lieutenants to take the lead in reviewing

submissions, while retaining Torvalds as the final authority to resolving disputes. A similar

dispute in 2002 led to the creation of additional layer of organizational decisionmaking.

Torvalds’s status as Linux’s creator, the goodwill he earned for his dedication and good

judgment in managing the community, and the deft touch he exercised in handling the

interpersonal dynamics gave him the authority to prevent major forks from emerging.

42 See, e.g., DiBona et al. (1999, 12); Weber (2004, 158-59).

29

 Thus, although Linux has achieved some success, it does not represent the world of total

freedom, bottom-up spontaneous ordering, and technical meritocracy that the collectivist rhetoric

surrounding open source might lead people to believe. The history of Linux reveals that

prevention of the fragmentation that can have such a devastating negative impact on open source

projects was the result of an elaborate system of governance. The result is a process that is quite

formal and hierarchical, notwithstanding the fact that participation in any open source project is

completely voluntary.

5 Implications for Modern Smartphone Operating Systems

 Taken together, the histories of Unix, Linux, and Symbian provide a number of insights

into the dynamics surrounding open source operating systems. As an initial matter, the desire to

support multiple physical devices increases porting costs and causes a significant risk of

fragmentation. In addition, the participation of multiple device manufacturers, each pursuing its

own interests, creates additional pressures towards fragmentation. The case studies also illustrate

the point made above that the best way to prevent fragmentation is through strong governance.

Linux was able to resist these pressures because of the leadership of Linus Torvalds. For Unix

and Symbian, the absence of clear leadership led to a more difficult environment for both end

users and app developers in terms of systems integration and maintaining a consistent end user

experience.

 Acknowledging the propriety of some form of governance leaves open the question of

how much governance is appropriate. The spirit of open source requires that any governance

regime leave substantial room for experimentation. In addition, the voluntary nature of open

source projects and the example set by Linus Torvalds both counsel in favor of asserting as light

a touch as possible. The real question is not whether some actor should have been allowed to

30

exercise some degree of guidance over the platform, but rather how much and what type of

governance should be considered a reasonable step to ensure that the mobile operating system

achieves its potential.

5.1 The Role of Hardware Diversity

 The Symbian experience teaches us that hardware diversity is an important source of

fragmentation. Although a broad selection of phones creates real benefits to end users and can

enhance competition, hardware variations create significant differences in operating context in

terms of screen parameters (size, color depth, orientation, aspect ratio), memory size, processing

power, input devices (keyboard, touch screen, etc.), cameras, and connectivity options (WiFi,

Bluetooth, Infrared, Global Packet Radio Service), just to name a few.43

5.2 The Need for Testing and Governance

 Apart from the differences in hardware platforms, third-party provisioning and the

divergence of incentives requires that end users must have some means for verifying that

components comply with the design. As noted above, some means for testing devices is

necessary to have functioning markets for third-party provision and for end users to know that

they are getting what is promised. In most cases, the incentive structure and social norms

surrounding open source projects discourage module creators from deviating from the

architecture or creating incompatible forks. That said, the desire to reduce costs by omitting

certain APIs or other features suggests the existence of circumstances that can lead participants

in the platform to deviate from the architecture. The possibility exists that the cost of generality

43 Rajapakse (2008).

31

and the incentives to make noncompliant devices may become sufficiently strong that device

manufacturers cannot be expected to abide by the honor system. This danger makes some

system for verification essential. Requiring end users to conduct such tests would be

burdensome and unnecessarily duplicative. The result is that some degree of provider-based

testing appears inevitable.

 Within provider-based testing, a range of alternative approaches to testing and

governance exist, each one varying in terms of restrictiveness. (1) The most restrictive approach

is for the platform sponsor to manufacture all of its own smartphones. While this approach gives

the platform complete authority to ensure compatibility, this approach imposes limits on the

variety of hardware devices and on competitive entry. (2) A less restrictive approach would

permit third parties to produce devices, but require that manufacturers to submit their devices to

the platform sponsor for certification and testing. While more permissive than the first option,

this approach risks giving the platform sponsor gatekeeper control over all devices. (3) An even

less restrictive approach would provide a compatibility standard along with open testing tools for

device manufacturers to self-certify that their devices comply with that standard. This approach

provides device manufacturers the most flexibility and offers the greatest benefits in terms of

variety of devices and ease of competitive entry. (4) In addition, a platform sponsor may adopt a

hybrid approach that gives module creators a choice between (2) and (3).

 In addition to testing regimes to ensure compatibility, open source projects must rely on

some form of governance to prevent fragmentation and forking. A nonexclusive requirement to

maintain compatibility would seem to be the least restrictive approach.

 The Android platform that is the current subject of antitrust scrutiny generally falls within

the last and least restrictive of these options. The following, more detailed review of Android’s

32

licensing practices reveals that within this regime, device manufacturers can choose among a

range of possible licensing alternatives.

5.2.1 The Android Open Source Project (AOSP) License Agreement

 The least restrictive option is to license the Android Open Source Project (AOSP) source

code without making any commitments as to the modification or implementation of the code.

The software is royalty free under an Apache open source license, although some hardware is

subject to patent licenses. The Apache licenses ensure that device manufacturers remain free to

modify the source code as they see fit. They also remain free to produce other devices using

other operating systems if they so choose.

 The most prominent provider to go this route is Amazon, which has created its own

operating system known as Fire OS, which is based on AOSP and runs the Amazon’s Kindle and

Fire Phone. Other prominent examples include Nokia’s X platform and the open source

CyanogenMod operating systems, among others. Samsung is attempting to avoid Android

altogether by basing its new Tizen operating system on the original Linux kernel.

 The Android license agreement for AOSP places device manufacturers under no

obligations to carry any Android apps and leaves them free to add whatever apps they choose.

Because there are no restrictions on the level of customization, the resulting devices may not be

compatible with apps written for other Android devices.

5.2.2 The Compatibility Definition Document (CDD) and the Compatibility
Test Suite (CTS)

 The second level of compatibility is for a device manufacturer to guarantee

interoperability by ensuring that its device satisfies a published compatibility standard. The

33

compatibility standard for each version of Android is embodied in a Compatibility Definition

Document (CDD). Google also provides a free Compatibility Test Suite (CTS) that device

manufacturers may use to determine whether their device is compatible. The goals of the CDD

are to:

 Provide a consistent application and hardware environment to application developers
 Enable a consistent application experience for end users
 Enable device manufacturers to differentiate while being compatible.
 Minimize costs and overhead costs of compatibility.44

 Devices that comply with the CDD must include nine core applications: Desk Clock,

Browser, Calendar, Contacts, Gallery, GlobalSearch, Launcher, Music, and Settings. These

applications tend to provide basic functions on which other applications draw, so their presence

provides a consistent set of resources on which the app developer community can draw. Device

manufacturers can satisfy this requirement either by using the versions of these apps provided by

Google or by providing their own apps so long as they satisfy the interoperability requirements.

The CDD also requires that the device include a complete set of Android APIs and Android

developer tools to ensure that the device will operate properly. Device manufacturers remain

free to develop and distribute their own APIs in addition to those required by the CDD.

 The goal is to create a baseline of interoperability that helps app developers by creating a

stable set of resources and by eliminating the porting costs/multiple versions for different builds,

while at the same time preserving a degree of flexibility. Devices that demonstrate compliance

with the CDD by passing the CTS are regarded as Android compliant. Importantly, device

manufacturers may choose to comply with the CDD without signing any agreements.

44 Android (n.d.).

34

 It bears noting that mandatory apps do not include any Google proprietary apps or apps

alleged to be give rise to market power by competition regulators. CDD compliant devices are

under no obligation to install any of these services and remain free to include apps that compete

directly with these services. Device manufacturers may also use whatever search service they

would like.

5.2.3 The Anti-Fragmentation Agreement

 Device manufacturers who would like greater certification of compatibility can sign the

Anti-Fragmentation Agreement (AFA), which was first created in early 2008, when Android was

nascent and one year prior to the launch of the first Android smartphone. The AFA requires

signatories to promise (1) that all Android devices it makes will fulfill the CDD requirements

and (2) not to take any actions that may cause the fragmentation of Android.

 As noted above, the first provision, requiring that all Android devices made by the

signatory fulfill the CDD requirements, only requires the installation of basic services, such as

Desk Clock, Browser, Calendar, Contacts, and Settings. It does not prevent device

manufacturers from substituting their own versions of the required apps so long as they pass the

compatibility test. The CDD also does not place any restrictions on the device manufacturer’s

ability to market non-Android devices (i.e., devices based on other operating systems, such as

Windows Phone, Blackberry, or Linux).

 The second provision, prohibiting device manufacturers from taking any actions that

would fragment Android, is effectively a reiteration of the first provision in that it prohibits

manufacturers from creating Android phones that do not comply with the CDD. The rationale is

that permitting device manufacturers to sell both CDD-compliant and CDD-noncompliant

Android phones can increase app developers’ costs by requiring them to port their apps to

35

multiple platforms and can create potential confusion among consumers over which phones are

Android compliant and which ones are not.

 Signatories that satisfy these requirements are eligible to declare their devices to be

“Android Compatible Devices.” The AFA requires pre-installation of only those basic apps

included in the CDD (Desk Clock, Browser, Calendar, Contacts, Gallery, GlobalSearch,

Launcher, Music, and Settings). As noted above, AFA signatories can use any version of these

apps (Google’s, their own, or a version provided by a third party) so long as they fulfill the basic

functions. AFA signatories can also benefit from additional technical support in the form of

information about upcoming Android features, new APIs, Android security and performance,

and new form factors. as well as assistance to patch bugs, address CTS failures, and implement

new features.

 Together, these provisions represent a fairly unrestrictive form of governance that ensures

a minimum level of compatibility and interoperability across Android devices. Importantly, the

compatibility requirements covered by the AFA refer only to APIs and basic apps and do not

contain any obligations with respect to Google Mobile Services (GMS) suite of apps, such as

Google Play, YouTube, Maps, and Gmail, that have been the primary source of regulatory

concern. In essence, the AFA enables signatory device manufacturers to join together in a

partnership committed to promoting a particular version of the Android open source project by

creating mutually compatible devices and limited sharing information.

5.3 Safety Valves

 The terms of the AFA contain a number of features that make it much less likely that its

terms can properly be regarded as problematic. As an initial matter, the basic licensing

36

agreement for AOSP, the apps that the CDD requires to be installed, the CTS tool for evaluating

compliance, and the AFA are all royalty free.

 In addition, the AFA is nonmandatory: many device manufacturers (especially in China)

opt to comply with the CDD without signing the AFA. Moreover, both the CDD and the AFA

are nonexclusive in that device manufacturers can market any non-Android devices (see, e.g.,

Samsung and ZTE) and can substitute their own apps or otherwise customize the hardware and

software so long as they comply with the CDD (see, e.g., Xiaomi, Huawei, ZTE, and HTC).

 Finally, the presence of meaningful market options makes it unlikely that either the CDD

or the AFA will harm competition. Because Android’s is based on open source, any device

manufacturer that is unwilling to comply with the CDD or sign the AFA remains free to produce

its own version of Android.

 Interestingly, both Apple and Microsoft are invoking Android’s greater supposed

vulnerability to fragmentation as a potential reason to buy iOS or Windows Phone instead of

Android. This suggests that fragmentation is a product feature on which various operating

system providers are competing. Limiting any of these companies’ ability to manage

fragmentation would place artificial limits on product features and would reduce one dimension

of competition.

 Indeed, focusing undue regulatory attention on open systems may have unfortunate

unintended consequences. If antitrust scrutiny restricts providers of open platforms from using

less restrictive governance mechanisms to protect against fragmentation and noninteroperability,

those providers may well be left with no choice but to adopt more restrictive alternatives.

Specifically, adopting too restrictive a stance on the use of agreements like the AFA to limit

fragmentation may force mobile operating systems seeking to avoid fragmentation either to

37

adopt Apple-style vertical integration or to require that all device manufacturers submit their

phones for testing. This would effectively bar mobile operating system providers from

employing the least restrictive of these three alternatives. If so, this would reduce the diversity

and competitiveness of mobile operating systems and would substantially increase the barriers to

entry for OEMs, developers, and other platform participants.

 In short, all of the approaches have advantages and disadvantages that appeal to different

types of consumers. In addition, providers face a considerable amount of uncertainty over the

best way to strike the proper balance the benefits to innovation associated with flexibility and

concerns about fragmentation. This underscores the error in regarding the selection of the ideal

governance regime as an either-or choice. On the contrary, end users benefit the most by being

able to choose among different options that are exploring different approaches to preventing

fragmentation.

6 A Brief Comment on User Interfaces and the MADA

 Although this analysis focuses primarily on the relationship between open source

software and modularity theory and its implications for the AFA, I thought I would offer a few

words about the other principal governance instrument for Android: the Mobile Applications

Distribution Agreement (MADA).45 MADAs typically require device manufacturers to preload

all of the apps contained in GMS, including Play, YouTube, Maps, and Gmail. MADA also

require that the Google Search widget and the Play icon be accessible with at most one phone tap

away from the home screen and that Google Search be the default for in-app searches, although

45 Although the terms of specific MADA are confidential, two MADA were made public as part of the record
in Oracle America, Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012).

38

the MADA does not require that Google Search be the default search engine for the web

browser. MADA signatories may also use the Android green robot trademark. All apps are

provided royalty free except for patent royalties imposed by outside parties. Device

manufacturers are free to preload their own versions of these apps alongside the Google versions.

 Unlike the AFA, the MADA is not designed to address the problems of fragmentation.

Instead, it is designed to address another major weakness of open source systems: the difficulty

in providing a consistent user interface.

 Open source is often described as “hackers writing for hackers.”46 It is known to function

best in horizontal domains where there is widespread agreement on the design architecture and

the general shape of the software requirements is well known and not problematic. It is less

effective in vertical domains where requirements are a function of domain specific knowledge

acquired over time. The sparse documentation and field support has long made open source

better suited for experts operating on the server side than for end users.47

 Because of these qualities, open source projects have faced particular difficulty with end-

user interfaces. The design of end-user interfaces is dominated by tacit information that is hard

to modularize. Moreover, the acquisition of this information is associated with focus groups and

physical contact, which contrasts starkly with the email chains that characterize open source

projects.48

 As a result, it comes as no surprise that Unix, Symbian and Linux have often been

characterized as “esoteric and hard to use.”49 In particular, Unix was criticized for its lack of a

46 Weber (2004, 237-38).
47 Feller and Fitzgerald (2002, 175-76).
48 Feller and Fitzgerald (2002, 132, 175); Weber (2004, 237-38).
49 Feller and Fitzgerald (2002, 22).

39

friendly interface easily implementable by a nontechnical person.50 Symbian suffered from

similar problems. As noted earlier, different groups of manufacturers each made their own

proprietary enhancements to Symbian, which in turn created three distinct Symbian software

platforms (S60, UIQ, and MOAP), each with its own user interface. The result was an end-user

interface that was quite inconsistent and did not provide app developers with a consistent

platform for which to design their products.51 Linux users must choose from dozens of end-user

interfaces, although Linux is attempting to standardize around the K Desktop Environment

(KDE) and GNU Network Object Model Environment (“GNOME”).52 These challenges have

prevented Linux from achieving significant penetration into the home desktop and laptop market.

 While the diversity of form factors, screen sizes, and user interfaces among Android

devices yields many benefits, the end-user experience also varies widely from device to device.

Android users must adapt to every new device. In contrast, the consistency of the end-user

interface is often regarded as one of the primary advantages of the Apple iPhone.

 The fragmentation of end-user interfaces poses difficulties for the developer community.

The variations in code and format often force them to create versions for each environment in

which they would like to operate, increasing their costs and making it more difficult for them to

enter new markets.

 The ideal solution would be to introduce some element that permits greater consistency to

the end-user experience without losing the benefits of product diversity and entry by new firms

associated with an open source environment. The MADA represents one attempt to strike a

balance between these two competing considerations. Requiring signatories to use specific

50 Korzeniowski (1985); McKusick (1999, 56).
51 Gilson (2012).
52 Feller and Fitzgerald (2002, 22); Weber (2004, 102-03, 238).

40

Google-provided apps helps unify the end-user experience. The goal is to provide end users with

a consistent baseline of out-of-the-box functionality. At the same time, the GMS apps provide a

more consistent platform for the app community.

 The need to remedy the lack of a consistent end-user experience that has long plagued the

open source operating system provides a strong justification for the type of restrictions contained

in the MADA. The fact that the apps required by the MADA are royalty free and nonexclusive

reduces the likelihood of any anticompetitive effects. Most importantly, preventing open source

projects from using agreements like the MADA to address this key weakness would leave them

incentives to assert more direct control over end-user interfaces by adopting policies that place

more restrictions on device manufacturers and app providers. Thus, overly vigorous antitrust

oversight imposed in the name of promoting competition and protecting consumers runs the risk

of actually reducing competition and consumer choice.

7 Conclusion

 Open source operating systems thus something of a conundrum. On the one hand, open

source requires that developers have absolute freedom to modify the software as they see fit. On

the other hand, the software must obey certain architectural rules if it is to serve as a platform

that can bring together different types of hardware and applications. The flexibility inherent in

open source can lead to incompatibility. In extreme cases, it can even cause the open source

project to fork into two or more different branches.

 Such fragmentation dissipates the economic benefits of being able to access a large

customer base through a single platform and forces app developers to expend the cost to make

their products compatible with multiple versions of the operating system. One classic solution to

these problems is to rely on some form of testing to ensure that the components provided by third

41

parties are configured to comply with a compatibility standard. Another is to subject the overall

system to some form of governance. Although both alternatives may seem to be somewhat

inconsistent with the philosophy of open source, the academic literature indicates that both are a

necessary aspect of any modular platform in which multiple parties provide separate

components. The question is thus not whether such restrictions must exist, but rather how

restrictive they have to be.

 The history of the three leading open source operating systems (Unix, Symbian, and

Linux) confirms this insight. Moreover, an approach that permits third parties to self-certify

represents the least restrictive way to implement such requirements. Any restrictions are also

less likely to be problematic if they are royalty-free, nonexclusive, and open source. It thus

appears that solutions such as Google’s Anti-Fragmentation Agreement represent one way to

strike a reasonable balance between ensuring that the operating system serves as a platform that

brings together mobile devices and applications in a way that promotes the ability to “write once,

run anywhere” and giving device manufacturers and app developers as much flexibility as

possible. Given the lingering uncertainty about the best way to balance these concerns, end users

and technological progress would best be served by giving operating system providers

considerable latitude in determining the best way to promote freedom without creating undue

risks of fragmentation.

42

References

Android. n.d. Compatibility Program Overview.
https://source.android.com/compatibility/overview.html.

Baldwin, Carliss Y., and Kim B. Clark. 2000. Design Rules: The Power of Modularity

Cambridge, MA: MIT Press.

Best, Jo. 2013. “‘Android before Android’: The long, strange history of Symbian and why it

matters for Nokia’s future.” ZDNet. http://www.zdnet.com/article/android-before-
android-the-long-strange-history-of-symbian-and-why-it-matters-for-nokias-future/

Bezroukov, Nikolai. 1999. “Open Source Software Development as a Special Type of Academic

Research (Critique of Vulgar Raymondism).” First Monday 4(10).
http://firstmonday.org/article/view/696/606.

Bonaccorsi, Andrea, and Cristina Rossi. 2003. “Why Open Source Software Can Succeed.”

Research Policy 32(7): 1243-58.

Brooks, Frederick P. 1975. The Mythical Man-Month: Essays on Software Engineering Boston,

MA: Addison-Wesley Professional.

——— 1995. The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary

Edition. Reading, MA: Addison-Wesley.

Clark, David D. 1982. “Modularity and Efficiency in Protocol Implementation.” Network

Working Group Request for Comments 817. http://tools.ietf.org/pdf/rfc817.

Clark, Kim, and Carliss Y. Baldwin. 2006. “The Architecture of Participation: Does Code

Architecture Mitigate Free Riding in the Open Source Development Model.”
Management Science 52(7): 1116-27.

Conway, Melvin E. 1968. “How Do Committees Invent?” Datamation 14(4): 28-31.

Corbett, Jonathan. 2011. “Android, forking, and control.” https://lwn.net/Articles/446297/.

DiBona, Chris, Sam Ockman, and Mark Stone. 1999. “Introduction.” In Chris DiBona, Sam

Ockman, and Mark Stone, eds., Open Sources: Voices from the Open Source Revolution,
8-15. Sebastopol, CA: O’Reilly Media.

Dijkstra, Edsger W. 1968. “The Structure of the ‘The’-Multiprogramming System.”

Communications of the ACM 46(11): 341, 343.

Feller, Joseph, and Brian Fitzgerald. 2002. Understanding Open Source Software Development.

Boston, MA: Addison-Wesley Professional.

43

Ghosh, Rishab, and V. V. Prakash. 2000. “The Orbiten Free Software Survey.” First Monday
5(7). http://www.firstmonday.org/ojs/index.php/fm/article/view/769/678.

Gilson, David. 2012. “The History of Symbian’s Secret Fragmentation.” All About Symbian.

http://www.allaboutsymbian.com/features/item/14405_The_History_of_Symbians_Secret
.php.

Korzeniowski, Paul. 1985. “Users Laud UNIX Portability, Call Flexibility a Weakness.”

Computerworld 11.

Libicki, Martin C. 1995. Information Technology Standards: Quest for the Common Byte.

Newton, MA: Digital Press.

Lerner, Josh, and Jean Tirole. 2002. “Some Simple Economics of Open Source.” Journal of

Industrial Economics 50(2): 197-234.

Maclachlan, Malcolm. 1999. “Panelist Describe Open Source Dictatorships.” TechWeb.com.

http://web.archive.org/web/20060313204003/http://www.techweb.com/wire/story/TWB1
9990812S0003.

Marella, Fabrizio, and Christopher S. Yoo. 2007. “Is Open Source Software the New Lex

Mercatoria?” Virginia Journal of International Law 47807–36.

McGee, W. C. 1959. “Generalization: Key to Successful Electronic Data Processing.” Journal of

the ACM 6(1): 1-23.

McGowan, David. 2001. “Legal Implications of Open-Source Software.” University of Illinois

Law Review (1) 241-304.

McKusick, Marshall Kirk. 1999. “Twenty Years of Berkeley Unix: From AT&T-Owned to

Freely Redistributable.” In Chris DiBona, Sam Ockman, and Mark Stone, eds., Open
Sources: Voices from the Open Source Revolution, 31-46. Sebastopol, CA: O’Reilly
Media.

Midha, Vishal, and Prashan Palvia. 2012. “Factors Affecting the Success of Open Source

Software.” Journal of Systems and Software 85(4): 895–905.

Mockus, Audris, Roy Fielding, and James Herbsleb. 2000. “A Case Study of Open Source

Software Development: The Apache Server.” Proceedings of the 22nd International
Conference on Software Engineering 263-72.

Open Source Initiative. 2007. The Approved Licenses. http://www.opensource.org/licenses.

Parnas, D. L. 1972. "On the Criteria To Be Used in Decomposing Systems into Modules.”

Communications of the ACM 15(12): 1053–58.

44

Perens, Bruce. 1999. “The Open Source Definition.” In Chris DiBona, Sam Ockman, and Mark
Stone, eds., Open Sources: Voices from the Open Source Revolution, 79-86. Sebastopol,
CA: O’Reilly Media.

Raymond, Eric S. 1998. “Homesteading the Noosphere.” First Monday 3: 10.2.

http://www.firstmonday.dk/issues/issue3-10/raymond/.

———. 1999. The Cathedral & the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. Sebastopol, CA: O’Reilly Media.

Simon, Herbert A. 1962. “The Architecture of Complexity.” Proceedings of the American

Philosophical Society 106(6): 467-482.

Skyhook Wireless, Inc. v. Google, Inc., 30 Massachusetts Law Reporter 417 (Super. Ct. 2012).

Stallman, Richard. 1999. “The GNU Operating System and the Free Software Movement.” In

Chris DiBona, Sam Ockman, and Mark Stone, eds., Open Sources: Voices from the Open
Source Revolution, 31-38. Sebastopol, CA: O’Reilly Media.

Torvalds, Linus. 1999. “The Linux Edge.” In Chris DiBona, Sam Ockman, and Mark Stone, eds.,

Open Sources: Voices from the Open Source Revolution, 101-11. Sebastopol, CA:
O’Reilly Media.

van Rossum, Guido. 2008. “Origin of BDFL.” All Things Pythonic Weblogs.

http://www.artima.com/weblogs/viewpost.jsp?thread=235725.

Weber, Steven. 2004. The Success of Open Source. Cambridge, MA: Harvard University Press.

Yamagata, Hiroo. 1997. The Pragmatist of Free Software: Linus Torvalds Interview.

http://www.tlug.jp/docs/linus.html.

Yoo, Christopher S. 2016. “Modularity Theory and Internet Policy.” University of Illinois Law

Review (1): 1–62.

	Open Source, Modular Platforms, and the Challenge of Fragmentation
	Repository Citation

	Microsoft Word - Yoo SSRN revision 2016-11-09.docx

