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[1] A novel method is presented for conditioning rainfall-runoff models for ungauged
catchment and land use impact applications. The method conditions the model on information
from multiple regionalized response indices using a formal Bayesian approach. Two indices
that hold information about soil type and land use effects are the base flow index from the
Hydrology of Soil Type (HOST) classification and curve number from the U.S. Department of
Agriculture’s Soil Conservation Service soil and land use classification. These indices are used
to constrain a five-parameter probability distributed moisture model for subcatchments of the
Wye (grazed grassland) and Severn (mainly afforested) catchments in the United Kingdom.
The base flow index and curve number constrain only two of the five model parameters,
indicating that ideally, other sources of information would be sought. Nevertheless, the
procedure significantly reduces the prior uncertainty in runoff prediction and gives predictions
close to those of the calibrated models. For the case study, the introduction of the curve
number in addition to the base flow index has only a small effect on model performance and
uncertainty; however, it allows a distinction between the effects of soil type and land
management for the purpose of scenario analysis. The principal assumptions used in the
method are the applicability of the curve number classification system and its mapping to UK
soil types and the likelihood function used for Bayesian conditioning.
Citation: Bulygina, N., N. McIntyre, and H. Wheater (2011), Bayesian conditioning of a rainfall-runoff model for predicting flows in

ungauged catchments and under land use changes, Water Resour. Res., 47, W02503, doi:10.1029/2010WR009240.

1. Introduction
[2] Although there has been a 40 year history of success-

ful application of hydrological models to simulate rainfall-
runoff processes in gauged catchments, several problems
remain fundamental challenges. Two of these are the repre-
sentation of flow in ungauged catchments and the represen-
tation of nonstationarity in catchment response, in
particular, the effects of rural land use and land manage-
ment change. There has been extensive discussion of the
role and limitations of physics-based models in addressing
these problems [e.g., Beven and Binley, 1992; Wheater
et al., 1993; Beven, 2000, 2001; Wheater, 2002]. While
Jackson et al. [2008] provide a strategy for the use of
physics-based models to represent the effects of land use
and land management change based on detailed experimen-
tal data, in general, the data support for such approaches is
limited, and the application of such models to ungauged
catchments is associated with high levels of uncertainty,
reflecting uncertainty in the prior distribution of parameter
values [e.g., Lukey et al., 2000]. In this paper we focus on
the use of simpler, conceptual model structures, with more
parsimonious parameterizations, and consider the potential
for conditioning based on regional data.

[3] In conceptual modeling, it is well known that catch-
ment physical properties cannot be used directly as model
parameters ; hence, an alternative strategy for parameter
specification is required. The problem is made harder by
the fact that the strategy often cannot rely on fitting the
model to observed hydrological data since a common pur-
pose of modeling is not just to emulate observed responses
but also to predict responses at ungauged locations or under
future land use or land management changes. Conse-
quently, parameters are often estimated using statistical
relationships between parameter values and physical prop-
erties of the catchment, called parameter regionalization.
This has been tackled using at least two different general
approaches. The first links model parameters directly to
physical catchment characteristics (e.g., catchment area,
steepness, soil permeability, and geographical location
[Lamb and Kay, 2004; Lee et al., 2006; McIntyre et al.,
2005; Young, 2006]), and the second conditions parameters
on flow response indices (e.g., mean annual discharge and
daily discharge standard deviation) that have previously
been regionalized [Bardossy, 2007; Yadav et al., 2007;
Zhang et al., 2008]. While the former approach has been
more common, an advantage of the latter is that a number
of regional models linking flow indices to catchment prop-
erties are available [e.g., Boorman et al., 1995; U.S.
Department of Agriculture (USDA), 1986], hence avoiding,
or at least reducing, the need to build new regional models.

[4] Despite the considerable research into rainfall-runoff
model regionalization, arguably, there are no satisfactory
methods for modeling the effects of rural land use and land
management. This is because there are few data on the
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effects of rural land management on physical properties (for
example, soil-plant hydrology) and even less data on how
relevant changes affect catchment-scale response [O’Con-
nell et al., 2004; Parrott et al., 2009]. Interpretation of data
from comparative catchment studies has been difficult
because of differences in catchment and climate characteris-
tics (e.g., geology, soil, topography, and rainfall [Calder,
1993; Kirby et al., 1991; McIntyre and Marshall, 2010]),
and in catchments that have undergone significant land use
change, the confounding effects of climatic variability and
data uncertainty make the effects of these changes difficult
to identify [Beven et al., 2008]. Because of the uncertainties
of physics-based approaches for predicting land use effects
[Jackson et al., 2008] and the lack of catchment-scale evi-
dence, modeling studies of land use effects have been based
on speculative changes to catchment-scale model parame-
ters [e.g., Packman et al., 2004; Rose and Rosolova, 2007].

[5] A resource that may help avoid such speculation is
the USDA’s Soil Conservation Service curve number sys-
tem [USDA, 1986]. The Soil Conservation Service model
was originally derived using data from small agricultural
basins in the Midwest, including extensive areas of single
land uses. As they were derived under specific conditions,
the importability and relevance of curve number values to
other locations is a hypothesis that has been suggested by
several previous studies [Godwin and Dresser, 2003; Hol-
man et al., 2003]. Note that curve numbers are not intended
here to be applied directly for simulation of design rainfall-
runoff events but as values that characterize the asymptotic
features of rainfall-runoff time series [Hawkins, 1993; Van
Mullem et al., 2002]. Moreover, estimating curve number
values with sufficient accuracy appears to be difficult espe-
cially considering that the estimated runoff amount may be
more sensitive to the curve number value than to the rain-
fall depth [Hawkins, 1975]. Because of the uncertainty in
the suitable values of curve number for any particular
catchment, we propose treating it as a random variable with
published values treated as its sample mean [USDA, 1986].

[6] The curve number index adaptation extends our pre-
vious work [Bulygina et al., 2009], where models were con-
ditioned on the base flow index, as regionalized by the
Hydrology of Soil Type (HOST) classification [Boorman
et al., 1995]. Using the regionalized base flow index alone
proved a powerful method of conditioning models of unga-
uged catchments; however, there was considerable uncer-
tainty in results, and land use change effects could only be
introduced using speculative changes in the base flow index
values [Bulygina et al., 2009]. The information in the curve
number data will, we propose, reduce prediction uncertainty
and allow evidence-based representation of land use change.
We test the proposition by applying a Bayesian regionaliza-
tion method that integrates the information in the HOST
and curve number databases while formally considering the
dependencies between these two data sources. To the best
of our knowledge, this is the first time that the curve number
(CN) has been treated as a stochastic variable within a for-
mal conditioning method and the first time the dependencies
between two regionalized sources of information have been
explicitly treated. With the exception of the concurrent
work of Hess et al. [2010], it also seems to be the first eval-
uation of whether the CN data, derived in the United States,
can usefully contribute to land management impacts analy-

sis in the United Kingdom. The method is tested on the
Plynlimon paired catchments in Wales [Beven and Binley,
1992; Kirby et al., 1991; Marc and Robinson, 2006; Robin-
son and Dupeyrat, 2005]. The catchments are similar in
terms of topography, soil, and climate but are distinctively
different in terms of land use: one of the catchments is
mainly afforested, while the other is grazed pasture. The
Probability distributed moisture (PDM) conceptual rainfall-
runoff model [Moore, 2007] is used to represent hourly time
scale catchment hydrological response.

2. Method
[7] The proposed parameter conditioning method uses

uncertain and limited information about the catchment
response in a formal Bayesian framework. This information
is represented as hydrological indices that describe differ-
ent aspects of the expected rainfall-runoff time series
behavior. The indices must be derived from a regionaliza-
tion procedure, thus allowing model parameter estimation
for ungauged catchments both in current and future (hypo-
thetical) conditions. In this study, we rely on two regional-
ized indices: base flow index (BFI) and CN. The indices
are treated as random variables due to natural variability in
hydrological response (aleatory uncertainty) and the limited
number of physical properties being considered in their
estimation (epistemic uncertainty).

2.1. Regionalized Indices as Sources of Information

[8] BFI is the proportion of the total catchment discharge
that is considered to be base flow. BFI has been regional-
ized in the United Kingdom as a part of the HOST classifi-
cation system [Boorman et al., 1995] on the basis of the
following soil characteristics: depth to gleyed/slowly per-
meable layer, depth to groundwater, presence of a peaty
surface layer, and soil substrate. This results in 29 soil
classes with expected BFI values (BFI�HOST) and corre-
sponding standard deviations (Table S1 in the auxiliary ma-
terial).1 In this study, BFI values for the simulated flow are
defined using the hydrograph separation procedure of Gus-
tard et al. [1992]: the procedure used in the HOST
classification.

[9] The CN relates rainfall volume to corresponding
storm runoff volume. Adopting the CN derivation
described by Hawkins [1993] and Van Mullem et al. [2002]
for each catchment, our procedure is as follows.

[10] 1. Partition the rainfall-runoff time series into indi-
vidual events and calculate rainfall and storm runoff depths
[Boorman et al., 1995].

[11] 2. Order the data, i.e., sort the individual rainfall
and runoff depths independently in descending order to
match rainfall and runoff return periods.

[12] 3. Determine the CN for each event using the fol-
lowing equations:

Q ¼ P� Iað Þ2

P� Ia þ S
; ð1aÞ

Ia ¼ 0:2S ; ð1bÞ

1Auxiliary materials are available in the HTML. doi:10.1029/
2010WR009240.
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S ¼ 1000

CN
� 10 ; ð1cÞ

where Q is the direct surface runoff depth (inches), P is the
rainfall depth (inches), Ia is the initial abstraction (inches),
and S is the potential maximum retention (inches). CN is
dimensionless and can vary between 0 (no storm runoff) to
100 (all rainfall becomes storm runoff).

[13] 4. Fit the equation CNðPÞ ¼ CN�USDA þ ð100�
CN�USDAÞe�kP to the fP, CNg pairs by optimizing parame-

ters CN�USDA and k using least squares.
[14] On the basis of data from experimental catchments,

estimated values of CN�USDA were regionalized within the
Soil Conservation Service runoff curve number system
[USDA, 1986] based on hydrological soil group, land use,
and land management (where the latter is expressed as a
land ‘‘condition’’). Table S2 in the auxiliary material gives
the hydrologic soil group description, and Table S3 gives
selected CN�USDA values.

2.2. Parameter Conditioning to Satisfy Soil
Hydrology and Land Use Specifications

[15] If the hydrology of soil type class (HOST�) and land
use type (LU�) are known, then following Bayes’ law the
posterior distribution of model parameter set � (for model
structure M) is

pð�jLU�;HOST�;MÞ ¼ pðLU�;HOST�j�;MÞ�pð�jMÞ
pðLU�;HOST�jMÞ ; ð2Þ

where pð� jMÞ is a prior model parameter distribution,
pðLU�;HOST�j �;MÞ is the likelihood that a parameter set �
represents soil type HOST� and land use LU�, and
pðLU�;HOST�jMÞ is a normalizing constant. The likelihood
equals the following product of two conditional distributions:

pðLU�;HOST�j�;MÞ ¼ pðLU�jHOST�; �;MÞ�pðHOST�j�;MÞ ;
ð3Þ

where pðHOST�j �;MÞ is the likelihood that parameter set
� represents soil type HOST� and pðLU�jHOST�; �;MÞ is
the likelihood that parameter set � characterizes land use
LU� on soil of type HOST�.

[16] Application of equation (3) first requires us to estimate
pðHOST�j�;MÞ and pðLU�jHOST�; �;MÞ using knowledge
of expected flow responses under given soil and land use
types. Although other choices might be made (e.g., other indi-
ces from the HOST classification system), this knowledge is
derived here from the two regionalized flow response indices
already described, BFI�HOST and CN�USDA, which are treated as
observed data from Bayesian point of view, so that

p HOST� �;Mjð Þ ¼ p BFI�HOST �;Mj
� �

; ð4aÞ

pðLU�jHOST�; �;MÞ ¼ pðCN�USDAjHOST�; �;MÞ : ð4bÞ

[17] The first likelihood function (4a) may be rewritten as
p BFI�HOST �;Mj
� �

¼ p BFI�HOSTjBFIM ;�

� �
, where BFIM ;� is the

base flow index simulated by model M using a parameter set
� and is treated as a ‘‘true’’ value of base flow index for soil
type HOST�. The likelihood function p BFI�HOSTjBFIM ;�

� �
is

defined separately for each of the 29 HOST types and is

assumed to be proportional to a normal probability density
function with the expected value BFIM ;� (true value of base
flow value index for soil type HOST�) and standard deviation

��HOST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

HOST þ �2
CV

q
, where �HOST is provided by the

HOST classification (Table S1 in the auxiliary material),
reflecting the epistemic uncertainty, and �CV ¼ 0:05 [Gus-
tard et al., 1992], reflecting aleatory uncertainty. The standard
deviation ��

HOST
is not simply set to each of the HOST type

standard deviations ��
HOST

because a short-term BFI estimate
varies around a long-term BFI value (as in the case study in
section 3). In situations when a long-term (decadal) flow time
series is available, �CV might be set to zero.

[18] The second likelihood function (4b) may be written
pðLU�jHOST�; �;MÞ ¼ pðCN�USDAjCNM ;�Þ, where CNM ;� is
the curve number simulated by model M using a parameter
set � and treated as a true value of curve number for given
soil type and land use. Although there is no direct transla-
tion between hydrologic soil types in the United States and
the United Kingdom would allow estimation of a suitable
value of CN�USDA, we propose a mapping based on compar-
ing the HOST and USDA soil descriptions. The HOST clas-
sification is based on a number of conceptual models (11
models, from model A to model K) that describe dominant
pathways of water movement through the soil and, where
appropriate, substrate [Boorman et al., 1995]. For example,
model A describes the dominant water movement in permea-
ble, well-drained soils with permeable substrates and deep
groundwater table. On the basis of the USDA soil group
description (see USDA [1986] and Table S2 in the auxiliary
material), these soils might be classified as USDA hydrologi-
cal soil group A. Often, the link is not that straightforward;
for example, often, HOST does not explicitly provide infor-
mation about the water transmission rate, one of the key
USDA soil class descriptors. In these cases the BFI�HOST value
might be used for guidance. For the purpose of this study,
soils with BFI�HOST higher than 0.79 are classified as belong-
ing to the USDA hydrological group A, soils with BFI�HOST
between 0.61 and 0.79 are classified as belonging to USDA
hydrological group B, soils with BFI�HOST between 0.38 and
0.61 are classified as belonging to the USDA hydrological
group C, and the rest are classified as the USDA hydrological
group D (see Table 1 and Table S1 in the auxiliary material).
Soils with BFI�HOST close to the cutoffs are classified as either
of two USDA classes, e.g., HOST type 15 is classified as the
USDA soil type C or D. Although this mapping contains sig-
nificant uncertainty, it is presumed to be useful in that it

Table 1. Proposed Mapping Between U.S. Department of Agri-
culture (USDA) and Hydrology of Soil Type (HOST) Soil
Classifications

USDA Classa HOST Class

A 1, 2, 3, 5, 11, 13
A, B 4, 7
B 6, 8, 9, 10, 16
B, C 17
C 18, 19, 20
C, D 14, 15, 28
D 12, 21-27, 29

aTwo letters indicate uncertainty in mapping from the HOST to USDA
soil classification.
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provides information about land use and management effects
that would otherwise not be available for UK applications.
The proposed HOST to USDA soil group mapping is similar
to the mapping hypothesized by Hess et al. [2010].

[19] The likelihood function (4b) is then assumed to be
proportional to a normal distribution centered on the land use
and management and soil type specific CNM ;� with some
chosen standard deviation, which gives equal weights to val-
ues that are higher or lower than CNM ;�. Since there is
no quantification of standard deviation in the USDA report,
subjective choices need to be made. On the basis of the inter-
separation of CN�USDA values across land use and manage-
ment classes [USDA, 1986] we chose a standard deviation of
3 so that the overlap of the normal distributions is limited
(although still significant, as will be seen in the case study
results). This value is arbitrary, representing a judgment
about how much weight should be given to a CNM ;� value.
An analysis of the sensitivity of model performance to differ-
ent standard deviations ranging from 0.5 to 15 (using the
case study data) suggests that the performance is insensitive
to this assumption, but parameter distributions for some
soil– land use combinations are sensitive (see section 3.4 for
more details), indicating that the assumption about standard
deviation might be critical for some catchments. In cases
where the suitable USDA soil class is uncertain, the likeli-
hood function (4b) is assumed to be proportional to a bimodal
normal distribution with the modes corresponding to the two
curve numbers thought to be equally suitable (e.g., soils
under HOST class 4; see Table 1). An illustrative example is
shown in Figure 1, where the modes have the same BFI�HOST
value but different CN�USDA values because of the mapping
uncertainty. The likelihood function is unimodal where sig-
nificant mapping uncertainty is not thought to exist.

3. Case Study
3.1. Catchment Description

[20] The proposed parameter regionalization method is
demonstrated using data from the Plynlimon experimental

catchments [Beven and Binley, 1992; Kirby et al., 1991;
Marc and Robinson, 2006; Robinson and Dupeyrat,
2005]. The Plynlimon catchments are located in Wales
and comprise the Wye and Severn river headwaters
(Figure 2), herein called the ‘‘upper Wye’’ and ‘‘upper
Severn.’’ The altitude ranges between 319 and 738 m, and
average slopes are 67 m/km in the upper Severn and 36 m/
km in the upper Wye. The upper Wye catchment (10.55
km2) is almost exclusively under extensively grazed grass-
land, while for the upper Severn catchment (8.7 km2) most
of the area is covered with mature coniferous forest (Table
2), although this coverage declined after the mid-1980s
when tree felling started. Both catchments are humid: the
annual average precipitation is about 2500 mm, and the
ratio of long-term precipitation to potential evapotranspira-
tion is about 5. The soils in both catchments are dominated
by blanket peats, with peat topsoils >40 cm thick at higher
altitudes, podzols at lower altitudes, and valley bottom al-
luvium, peat, and stagnohumic gleys along the stream
channels. Data from Boorman et al. [1995] and Kirby
et al. [1991] are used to tabulate the distributions of
land use classification and HOST (Table 2) in the catch-
ments. Land use is classified as forest and pasture in good
condition for the Severn and as pasture in fair condition
for Wye.

[21] Automatic weather stations in the catchments (Figure
2) provide hourly records of precipitation, incoming solar
and net radiation, wet and dry bulb temperature, and wind
speed and direction, allowing estimation of potential evapo-
transpiration using the Food and Agriculture Organisation
(FAO) recommendations for implementing the Penman-
Monteith equation with crop coefficients representing exten-
sive grazing (0.75) and coniferous forest (1) [Allen et al.,
1998]. Streamflow is measured by a trapezoidal critical
depth flume on the Severn and a Crump weir on the Wye, as
well as by six flumes on tributary streams (Figure 2). This
paper uses hourly data from May 1980 through June 1981,
before the Severn tree felling started and when gap-free
AWS data are available.

Figure 1. An illustrative example of likelihood function (3) based on base flow index (BFI) and curve
number (CN) information with two modes, (CN�1USDA, BFI�HOST) and (CN�2USDA, BFI�HOST).

W02503 BULYGINA ET AL.: BAYESIAN CONDITIONING OF A RAINFALL-RUNOFF MODEL W02503

4 of 13



3.2. Model Description

[22] The chosen rainfall-runoff model is the PDM model
with two parallel linear routing stores [Moore, 2007]. The
choice of the PDM model has two motivations: its struc-
tural simplicity is thought appropriate given the imposed
data limitations (i.e., the information used to condition the
model comes from only two flow indices), and it has been
extensively applied to other catchments in upland Wales
and other UK regions [Calver et al., 2005; Lamb and Kay,
2004; Lee et al., 2005]. This model has five parameters:
Cmax is the maximum soil water storage capacity within the
modeled element, b is a shape parameter defining the stor-
age capacity distribution, Kf and Ks are fast and slow rout-
ing store residence times, and � is the proportion of the
total flow going through the fast routing store. Although �

is conceptually close to BFI, the BFI�HOST values originate
from an empirical streamflow disaggregation procedure
[Boorman et al., 1995], and the relationship � ¼ 1�
BFI�HOST cannot be presumed to hold [e.g., Wagener and
McIntyre, 2005; Lee et al., 2006]. The initial soil storage
(at the start of May 1980) was assumed equal to Cmax, and
the subsequent month was neglected when assessing per-
formance to reduce sensitivity to this assumption.

[23] Prior ranges for the model parameters are given in
Table 3. Parameter Kf is restricted to vary between 1 and 10 h
because of the low fast runoff residence times typically found
for small, steep catchments in this region [e.g., Lees, 2000;
Young and Beven, 1994; McIntyre and Marshall, 2010].
Other parameter ranges are defined within broad bounds
based on UK catchment experience [Wagener et al., 2004].

Figure 2. Plynlimon catchments, Wales, UK. Stars represent automatic weather stations, and diamonds
are streamflow stations: 1, Severn; 2, Tanllwyth; 3, Hafren; 4, Hore; 5, Wye; 6, Gwy; 7, Cyff; 8, Iago.
Adapted from Kirchner [2009].

Table 2. Plynlimon Catchment Statistics and HOST Type Distributiona

Severn Tanllwyth, Hafren Hore Wye Gwy Cyff Iago

Area (km2) 8.7 0.89 3.67 3.08 10.55 3.98 3.13 1.02
Main channel slope (m/km) 63 109.5 59.4 70.5 36.3 20.3 27.6 30.7
Forest (%) 67 100 48 78 1 0 0 3
Soil (HOST) (%)

15 58 75 42 64 64 67 70 69
17 1 0 3 0 13 0 16 0
22 0 0 0 0 2 0 2 0
26 15 14 15 14 12 14 11 14

aSee Kirby et al. [1991] and Hudson et al. [1999] for Plynlimon and Boorman et al. [1995] for HOST.
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3.3. Model Conditioning Procedure

[24] To represent the five-dimensional posterior parame-
ter distribution, the importance sampling technique is
implemented [Doucet et al., 2000]. Ten thousand parameter
sets are sampled uniformly from the prior distributions (Ta-
ble 3) using the Latin hypercube method. The model is run
for each sample, and the BFIM ;� and CNM ;� values are cal-
culated. Then, each parameter set is prescribed a weight
(which is equal to parameter likelihood described in equa-
tions (2) –equations (4)) on the basis of the closeness of
BFI�HOST and CN�USDA to the corresponding BFIM ;� and
CNM ;� values. Hence, the posterior parameter distribution
for each soil type – land use – land management combina-
tion is approximated as a discrete multivariate distribution
with values defined by the sampled 10,000 parameter sets
and corresponding probabilities equal to the (normalized)
prescribed weights.

[25] For each sampled parameter set, the simulated
response for a catchment is the average of the responses for
all relevant soil type– land use–land management combina-
tions weighted by their relative contributing areas. Averag-
ing of responses in this way does not explicitly consider
possible time lag differences between the response compo-
nents. Identified time lags in the Plynlimon catchments and
similarly small and steep catchments in Wales have varied
between 0 and 1.5 h [Kirby et al., 1991; Young and Beven,
1994; Lees, 2000; McIntyre and Marshall, 2010]; therefore,

the timing errors introduced are expected to be one time step
at the most (and the possibility of using a distributed model
to resolve this is discussed in section 4). The posterior distri-
bution of simulated flow for each catchment is then approxi-
mated by the sample of simulated responses and their
associated likelihoods.

3.4. Results

[26] An example of the resulting marginal distribution
for each of the parameters is shown in Figure 3 and 4. Fig-
ure 3 represents HOST class 15, the most abundant soil
type in both catchments, and three different land use–man-
agement types: pasture in fair condition, pasture in good
condition, and forest in good condition. Figure 4 represents
only pasture in good condition but with all the soils present
in Plynlimon: HOST classes 15, 17, 22, 26, and 29. In both
sets of results, the two parameters for which the marginal
distributions are most clearly different from the prior distri-
butions are the split coefficient � and the slow residence
time Ks. These two parameters interact somewhat for low
values of Ks (see Figure 3, bottom right, which represents
projection on the (�, Ks) plane of resampled parameter sets
from the approximating discrete multivariate distribution
described in section 3.3). The median values of parameter
� for HOST class 15 under forest in good condition and
pasture in good and fair conditions are approximately 0.6,
0.63, and 0.68 (Figure 3), indicating that there is more fast
flow under pasture in fair condition than under either pas-
ture or forest in good condition. The median values of pa-
rameter � under pasture in good condition for the five soil
types (HOST classes 15, 17, 22, 26, and 29) are 0.63, 0.36,
0.66, 0.69, and 0.69, respectively, illustrating that the val-
ues are close to 1� BFI�HOST for all classes, except classes

Figure 3. Marginal posterior distributions of the probability distributed moisture (PDM) model param-
eters for Hydrology of Soil Type (HOST) class 15 under three different land uses and management con-
ditions, and sample draws from joint distribution of parameters � and Ks.

Table 3. Parameter Ranges Used in Analysis

Parameter Cmax (mmol) b � Kf (h) Ks (h)

Range 0 –500 0– 2 0 – 1 1 –10 50–1000
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26 and 29, and hence illustrating that � is more or less
equivalent to 1� BFI�HOST in this case.

[27] The influence of using BFI, CN, and both indices to-
gether in the parameter conditioning is shown in Figure 5a.
CN information adds sharpness to the � and Ks parameter
distributions previously conditioned on BFI only. The mar-
ginal parameter distributions derived using parameter
regionalization (using both CN and BFI) were also com-
pared with those derived by conditioning the parameters
directly on observed flows (Figure 5b), defining behavioral
parameter sets as those that give results with Nash-Sutcliffe
efficiency (NS) values greater than 0.7 (using the method
of generalized likelihood uncertainty estimation [Beven
and Binley, 1992]). Neither the direct conditioning nor the
regionalization restrict the Cmax and b parameters (which
will be discussed in section 4). The posterior distribution
for the other parameters varies between the two methods,
as would be expected when fundamentally changing the fit
criterion, for example, we expect the NS values to be espe-
cially sensitive to timing of flow peaks and this is reflected
in the better defined posterior for Kf when using this crite-
rion. If the criterion used for direct conditioning is altered
(to log-transformed flow fitting), as expected, significantly
different posteriors for Kf, � and Ks are obtained again.

[28] Figure 6a and 6b show the predictions for the Sev-
ern and Wye catchments, respectively, for 2 weeks in
March 1981, using a sample of 100 parameter sets (using
all 10,000 sets was not practicable because of computer
memory limitations, and a random sample of 100 was
found to provide a good approximation to larger samples in
terms of derived confidence intervals). Figure 6 compares
the 95% prediction intervals after the parameter condition-
ing on BFI and CN information (dark gray) with those con-
ditioned on BFI only (medium gray) and with those that are

unconditioned (light gray) for the Severn and Wye catch-
ments. Figure 6 also compares the conditioned predictions
with the optimized deterministic prediction. The optimiza-
tion was carried out using the NS as the objective function
and the shuffled complex evolution algorithm of Duan
et al. [1992]. The performances of the conditioned model
for the data period June 1980 to June 1981 were assessed
using the probabilistic formulation of the NS [Bulygina
et al., 2009] (also see Appendix A).

[29] Performance with respect to observed flow was con-
sidered generally good: the prior uncertainty was reduced
by a large degree throughout the simulated periods (Figure
6 and Table 4); the confidence intervals, with exceptions,
enclosed the observations. The exceptions were mainly at
flow peaks where the simulations tended to underestimate
the large flow peaks while overestimating the smaller peaks
(this is discussed in section 4). The performance relative to
the calibrated model was very good, with the NS values
approaching the optimized values (Table 4), and with the
estimated confidence intervals quite consistently enclosing
the optimized simulation. Table 4 compares the perform-
ance of three regionalization strategies: (1) using BFI in-
formation only, (2) using CN information only, and (3)
using information from both indices together. The probabil-
istic NS as well as the median 95% prediction interval
width (i.e., the median interval width over the 1 year simu-
lation period) is similar for the three methods, with predic-
tion intervals being somewhat tighter for the Wye
catchment when both indices are used.

[30] A primary assumption in the method is the standard
deviation assigned to CN�USDA values. The use of alterna-
tive values ranging from 0.5 to 15 suggests that the NS per-
formance measure is insensitive to this assumption when
BFI�HOST and CN�USDA are used together (the maximum

Figure 4. Marginal posterior distributions of the PDM model parameters for HOST classes 15, 17, 22,
26, and 29 under pasture in good condition.
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difference in NS is 0.02; see Table S4 in the auxiliary ma-
terial). Under these circumstances, prediction uncertainty
remains constrained by BFI�HOST, independent of the level
of constraint provided by CN�USDA. Of course, when only
CN�USDA is used for conditioning and corresponding stand-
ard deviations grow, the posterior parameter distribution
approaches the prior distribution, and NS efficiency drops
to the prior distribution efficiency (Table 4). Furthermore,

changing the standard deviation of CN�USDA considerably
influences posterior parameter distributions for certain
combinations of soil type and land use. For example, while
the parameters for HOST class 15 under forest in good con-
dition were found to be insensitive (Figure 7a), the parame-
ters for HOST class 29 were sensitive (Figure 7b). This
might be explained by the prior (model specific) BFI-CN
joint distribution (see Figure S1 in the auxiliary material),

Figure 5. Marginal posterior distributions of the PDM model parameters for HOST class 29 (a) condi-
tioned on BFI information only, CN information only, and on both BFI and CN information and (b) con-
ditioned on both CN and BFI and on observed flow using NS as an objective function applied to raw or
log-transformed streamflow data.
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which is generated by running the PDM model with samples
of parameter sets from the uniform priors. If the regionalized
(BFI, CN) pair is (0.23, 77) (HOST class 29 and forest in
good condition), then the prior BFI-CN joint probability den-
sity function value is very small (close to 0) because of the
nature of the model and the parameter priors and is strongly
skewed around this value. The posterior CN distribution also
becomes significantly skewed toward higher values of (BFI,
CN) when standard deviation for curve number is high
enough. Hence, for HOST class 29, median values of the
posterior CN and parameter distributions become dependent

on the curve number standard deviation (Figure 7b). While
HOST class 29 is not dominant in the case study, in other
cases the assumption about the CN�USDA standard deviation
may become more critical.

[31] As an illustration of the potential applicability of the
method, two simple land use change scenarios were consid-
ered: (1) the upper Severn becomes pasture in good condi-
tion and (2) the upper Wye becomes forest in good
condition. For each scenario the appropriate potential evap-
oration for the changed land use was used, and the prior
model was conditioned on the appropriate CN�USDA and

Figure 6. Prediction uncertainty bounds for (a) the Severn and (b) Wye for 2 weeks in March 1981.
The prior 95% confidence intervals are represented by the light gray area; the BFI-based 95% confidence
intervals are shown as the medium gray area; and the BFI- and CN-based 95% confidence intervals are
shown as the dark gray area. The light gray circles are measured data, and the connected black dots are
calibrated model predictions
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BFI�HOST values taken from the classifications in Table 1–
Table 3. Ten thousand parameter sets were sampled, and
likelihoods were assigned to each as described in section
3.3. For each sampled parameter set the model was run
over the May 1980 to June 1981 period. Figure 8 shows
predictions for the event with the highest flow peak (5 –6
October 1980) for which the modeled initial soil moisture
deficit was low with little variability between realizations.
In Figure 8, black lines represent 95% confidence intervals
for the existing land use conditions, and gray lines repre-
sent 95% confidence intervals for the scenario. The median
peak flow in the Severn increases by 9% when the affor-
ested area becomes pasture; in the Wye it reduces by 13%
when the pastureland is afforested.

4. Discussion and Conclusions
[32] This study proposed a probabilistic method for condi-

tioning rainfall-runoff models on regionalized flow indices.
The method was developed around two indices in particular:
BFI (as estimated by the UK HOST soil classification sys-
tem) and CN (as estimated from the USDA Soil Conserva-
tion Service soil and land use–management classification
system). The methodological advance made over previous
work is that information in interdependent regionalized flow
indices has been assimilated into a model using a formal

Bayesian approach to uncertainty analysis (although we do
not attempt to include all sources of uncertainty, only those
in the flow indices). Previous efforts at model conditioning
using regionalized flow indices have either used only one
regionalized index [Bulygina et al., 2009] or have neither
formally treated uncertainty in indices nor formally treated
dependencies between indices [McIntyre et al., 2005; Yadav
et al., 2007; Zhang et al., 2008].

[33] The practical value of introducing regionalized in-
formation about soil hydrology and land use effects is the
potential for improved predictions of runoff in ungauged
catchments and under land use change scenarios. Previous
UK work on catchment-scale land use effects is based on
the assumption that land use effects can be represented by
analog changes to soil classification [Packman et al., 2004;
Rose and Rosolova, 2007]. By integrating measured effects
of land use as contained in the CN data, our new method
allows a more evidence-based approach to land use effect
analysis. The evidence stems from Soil Conservation Serv-
ice research in the United States [USDA, 1986] under the
bold assumption that the U.S. soil and land use classifica-
tion can be usefully mapped to the UK classifications. This
assumption of intercontinental applicability of the CN system
to estimating storm runoff is quite commonly used [Godwin
and Dresser, 2003; Holman et al., 2003; Young et al., 1987;

Table 4. Nash-Sutcliffe Efficiency and Median Width of 95% Prediction Interval for Different Parameter Estimation Methods

Parameter Estimation Methoda

Severn Wye

Severn Tanllwyth Hafren Hore Wye Gwy Cyff Iago

NS Efficiency
Prior uncertainty 0.59 0.55 0.56 0.57 0.62 0.58 0.63 0.6
Regionalized BFI 0.78 0.71 0.73 0.77 0.8 0.76 0.8 0.78
Regionalized CN 0.78 0.68 0.76 0.74 0.81 0.76 0.82 0.79
Regionalized BFI and CN 0.78 0.7 0.76 0.76 0.81 0.76 0.81 0.79
Calibration 0.78 0.74 0.75 0.76 0.85 0.81 0.88 0.83

Median Width of 95% Prediction Interval (mmol/h)
Prior uncertainty 0.62 0.06 0.26 0.22 0.80 0.30 0.24 0.08
Regionalized BFI 0.19 0.03 0.07 0.08 0.30 0.12 0.10 0.03
Regionalized CN 0.17 0.03 0.06 0.07 0.25 0.10 0.08 0.03
Regionalized BFI and CN 0.17 0.03 0.06 0.07 0.22 0.09 0.07 0.02

aBFI, base flow index; CN, curve number.

Figure 7. Parameter sensitivity to standard deviations in the CN likelihood: (a) HOST ¼ 15, under for-
est in good condition, and (b) HOST ¼ 29, under forest in good condition.
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Williams, 1995; Arnold et al., 1996], although in a manner
that neglects the uncertainty in the mapping and the uncer-
tainty in the original CN data. Treating the CN information
as stochastic and integrating it with the more local BFI index
from HOST allows the available evidence about ungauged
catchments and land use effects to be exploited in a more sci-
entifically defendable manner.

[34] Demonstrating the practical value of the approach
relies on being able to show that the CN adds new informa-
tion over and above that derived from HOST and that infor-
mation is consistent with measured evidence of land use
effects in UK catchments. In an attempt to do so, the
approach was applied to a data set from the Plynlimon
paired catchment study in Wales. The paired catchments
(the upper Wye and upper Severn) have similar topography,
soil distribution, and climate but different land use: the
upper Wye catchment is under pasture, and the upper Severn
catchment is mainly under forest. Observed flows from eight
gauges, four in the Wye and four in the Severn, were used to
test the method. The results show that the Bayesian approach
that uses regionalized CN and BFI information significantly
reduces uncertainty in runoff prediction when compared to
prior (unrestricted) uncertainty. Furthermore, the posterior
predictions are close to calibrated model predictions in terms
of visual assessment (Figure 6) and NS values (Table 4).
The posterior predictions capture low flows better than the
NS-calibrated model, providing a ‘‘trade-off’’ between fit-
ting to high and low flows, which the NS is renowned for
failing to do [e.g., Wagener and McIntyre, 2005]. When CN
and BFI are used together the NS values are similar to those
when using just BFI or just CN (Table 4), with some further
reduction in prediction bound width. The marginal differ-
ence in prediction quality arises partly because of the over-
lap in the information contained within the BFI and CN data
sets, as defined by the mapping (Table 1), partly because the
high uncertainty in both indices does not allow noticeable
improvements in performance (as measured by the stochas-
tic NS), and also because of the model structure and/or data
uncertainty, which prevents good performance even for the
calibrated model. This is consistent with former findings
[e.g., Beven et al., 2008] that land use signals are easily dis-
guised by measurement noise, model error, and lack of in-
formation on catchment properties.

[35] It was noted that the performance of the approach,
despite being impressive compared to the performance of a
calibrated model, was not especially impressive compared to
the observed flow with the NS values ranging from 0.70 to
0.81 (Table 4). In particular, the simulated flow responses
(using both regionalized and calibrated model parameters)
are generally flashier than the observed responses for small
events, and large peak flows are usually underestimated with
a significant number of observations outside the confidence
limits (Figure 6). This may be attributed to nonlinearity,
which was not included in the PDM model. For example,
nonlinear kinematic effects would tend to increase flashiness
of larger events while limiting flashiness of smaller events.
Another reason for high peak flow underestimation could be
the presence of pipe flow in the peat which can introduce
significant variability into high-flow response [Chapman,
1994]. However, attempts to include additional complexity
were not fruitful, and improving the model structure remains
a challenge. Notwithstanding the potential for improving the
model structure, the use of the simple PDM model was suffi-
cient to demonstrate the theoretical and practical attractions
of the conditioning approach.

[36] The methodology mainly restricted two of the five
PDM model parameters: the flow split coefficient � and
slow flow residence time Ks (Figures 3 and Figure 4).
Hence, the marginal distributions refine their shapes when
CN information is added to information on BFI (Figure 5)
and are sensitive to land use and management types (Figure
3). Apparently, the CN and BFI indices applied to the Plyn-
limon catchments do not contain sufficient information to
restrict all the model parameters, calling for the inclusion of
some other sources of information. The lack of restriction of
parameters Cmax and b (also barely restricted by direct cali-
bration and also showing insignificant sensitivity if varied
while fixing the other parameters) describing available soil
moisture storage might be due to the wet climatic conditions
(the long-term precipitation to potential evaporation ratio is
approximately 5), so that soil remains near saturated for
most of the time and so the role of Cmax and b is small. The
lack of restriction of these parameters also exposes a limita-
tion of the indices: BFI is designed to distinguish between
storm runoff and base flow, and CN is designed to provide
information about runoff coefficients under asymptotically

Figure 8. Predictions during a large flood event. (a) Severn becomes pasture in good condition; (b)
Wye becomes forest in good condition. Black lines represent 95% confidence intervals for the existing
land use, and gray lines represent 95% confidence intervals for the scenario.
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wet conditions. Neither can be expected to provide much in-
formation about soil moisture accounting parameters. In our
application, this means that the increased evapotranspiration
expected in forest is mainly represented by higher potential
evapotranspiration rates and that the value of the regional-
ized indices for distinguishing between land use effects lies
only in the information it provides about the partitioning
coefficient and residence time. Another poorly identifiable
parameter was the fast flow residence time Kf. This was
partly because it had been restricted a priori on the basis of
the range of values previously found for comparable catch-
ments [Young and Beven, 1994; Lees, 2000; McIntyre and
Marshall, 2010] and may have also been because of the
trade-off between fitting the smaller and larger flow peaks,
as discussed. If a more spatially discretized catchment repre-
sentation had been used [see, e.g., Bulygina et al., 2009],
then surface topography, in particular the channel network
characteristics, may have been used to add some physics-
based constraints to this parameter. This was not attempted
here because of the lack of high-resolution spatial data, but it
provides opportunity for refining the application in future. In
general, it is likely that further constraints could be found for
the model parameters without resorting to calibration: either
physics-based prior constraints, additional regionalized flow
indices [Winsemius et al., 2009], or information generated
by a metamodeling procedure [e.g., Bulygina et al., 2010]. A
general challenge would be the increasing difficulty of esti-
mating the dependencies between multiple sources of infor-
mation and including them in the Bayes’ equation.

[37] On the basis of the conclusion that the Bayesian
approach using CN and BFI indices can distinguish between
the Wye and Severn responses, we tentatively estimated the
effects of hypothetical land use changes: the afforested area
of the Severn becomes pasture, and the Wye becomes fully
afforested. The estimation of effects was facilitated by a
change in expected curve numbers under current and future
land use and management, avoiding the arbitrary changes to
base flow index used in previous work [Bulygina et al.,
2009]. The former scenario led to 9% median increase in the
highest flow rate (June 1980 to June 1981 period), and the
latter scenario led to a 13% median decrease in the peak
flow. There is a significant uncertainty in these values; for
example, the lower and upper 90% confidence intervals for
change in peak flow for the afforestation scenario were
�49% (decrease) and 28% (increase). That mature forest is
predicted to increase peak flows in some realizations is per-
haps surprising. This arises because the normal distributions
of BFI and CN used to represent uncertainty lead to overlaps
in the range of possible responses from one land use to
another. Following Bulygina et al. [2009], we could simply
reject all parameter samples that caused outcomes that we
perceive to be unrealistic. For example, in our Wye affores-
tation scenario, if we rejected all parameter set samples that
caused an increase in peak flows, our new median result
would be a 22% decrease. This, however, places a lot of
weight on prior perceptions of what is realistic.

[38] It may be noted that the estimated 13% difference
between peak flow for the Wye catchment under the 1980
conditions and after full afforestation is consistent with the
difference in event-averaged unit hydrographs between the
Wye and Severn catchments found by the Institute of Hydrol-
ogy in their Plynlimon study [Kirby et al., 1991, Figure 28].

However, because of the uncertainties involved, Kirby et al.
did not conclude that there is a statistically significant differ-
ence in unit hydrograph peaks between the catchments. The
significance of our 13% result is also questionable consider-
ing its high uncertainty and that it is based on only a single
event. To apply the method in a practical context for assess-
ing land use effects on flooding, the uncertainty would need
to be addressed by using additional sources of information
and potentially more complex models.

[39] In conclusion, this paper has presented an approach
to integrating regionalized information into model condi-
tioning. While previous work had approached this task
using either a single source of information or by using arbi-
trary rules for combining sources of information, we have
combined dual sources of information (from the CN and
HOST classification systems) in a more formal Bayesian
approach. Applied to the Plynlimon paired catchment data
set (representing grazed and forested upland catchments), it
was concluded that both CN and HOST are potentially valu-
able sources of information for hydrological modeling of
ungauged catchments and the effects of land use change if
used appropriately within a stochastic modeling framework.
By including information on CN in addition to information
on BFI, the method allows a more evidence-based approach
to parameter estimation analysis under land management
change, avoiding the arbitrary changes to base flow index
used in previous work [Bulygina et al., 2009]. The primary
assumptions used relate to the applicability of the curve
number classification system to the United Kingdom, in par-
ticular, the mapping between the HOST and curve number
classifications and the likelihood function structure. A more
extensive evaluation under this framework, introducing
more sources of information and covering a range of UK
conditions, is recommended.

Appendix A
[40] Bulygina et al. [2009] describe the Nash-Sutcliffe ef-

ficiency (NS) analog for probabilistic predictions given by
a sequence of random variables f�tg as

NS¼ 1�
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t Þ
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where q0
t is a data point at time t, q0 is an average value for

the fq0
t g data series, Var:½ � denotes variance, E½ � denotes

mathematical expectation, and T is the number of time
steps in the sequence. In the current context, f�tg is the
simulated time series of flow and q0

t is the time series of
observed flow.
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