
Pathway analysis methods in transcriptomics
Over the past two decades, microarray technologies have 
been used to characterize gene expression in various 
contexts, notably complex human disease and corres-
ponding animal models. Many, perhaps most, analyses 
could be enriched by comparison with other experiments 
across species and platforms. However, experimental and 
platform biases tend to drown out changes in biological 
signal [1], and comparison across species presents a 
further challenge: it is diffi  cult to accurately identify 
orthologs. Aggregating gene sets based on function is 
known to improve consistency [2], but fewer than half of 
human genes are represented in pathway databases. In a 
recent article published in Genome Medicine [3], Winston 
Hide and colleagues describe Pathprinting, a statistics-
based approach to map gene expression to function in 
humans and the main animal models of disease (mouse, 
rat, zebrafi sh, fruit fl y and nematode). By standardizing 
path way analysis, basing it more globally across func tional 
interactions and controlling for biases, Pathprinting will 

enable researchers and clinicians to use data from 
multiple platforms, experiments and animal models to 
explore complex disease.

Th e Pathprinting analysis pipeline can be classifi ed as a 
second-generation method according to the criteria of 
Atul Butte and colleagues [4], who recognized three 
generations of these methods. First-generation methods 
take a list of genes over-, under- or diff erentially ex-
pressed in a study, compute the proportion of pathway 
members therein compared with the proportion in a 
background dataset, and statistically test for enrichment. 
Second-generation methods improve on this by using 
information from the entire experiment (all genes, 
ranked according to a gene-level statistic) to generate 
pathway-level statistics that capture coordinated changes 
in the expression of genes in a pathway or gene set. Th ird-
generation methods move beyond treating pathways as 
lists of genes, adding information about the connectivity 
and directionality of interactions. In this sense, Path-
printing is a second-generation method, but in moving 
beyond canonical pathways and including information 
from nearly the entire corpus of microarray data to 
generate pathway statistics (fi ngerprints), it captures 
crucial information on conserved and divergent co-
expres sion that is absent from other methods.

Expression-based pathway signatures across 
platforms and species
Hide and colleagues’ approach [3] was to retrieve 
normalized data (176,971 arrays) for six species, spanning 
31 single-channel array platforms, from Gene Expression 
Omnibus (GEO) and to map probes to Entrez Gene 
identifi ers. Th ey computed a mean expression level for 
each gene by combining values for multiple probes 
representing single Entrez genes. Th ey sourced pathway 
gene sets from KEGG, Reactome, Wikipathways and 
Netpath. To avoid introducing a bias towards well-
annotated pathways, the authors used interactions 
derived from gene co-expression, protein-protein and 
protein-domain databases, Gene Ontology annotations 
and text mining to generate a ‘functional interaction 
network’ covering 181,706 interactions involving 9,452 
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human genes. They then applied Markov clustering to 
decompose the connected portion of this graph into 144 
functional interaction clusters (static modules) covering 
6,458 genes, 1,542 of which are not found in these 
pathway databases. This process yields 633 human 
pathways and static modules. Using NCBI Homologene, 
they then mapped the corresponding gene sets in the 
other five species.

Figure  1 illustrates a key part of the workflow. The 
authors ranked genes by expression level and computed 
the mean squared rank. The null hypothesis was 
generated by sample permutation of all arrays of the same 
platform type, thereby preserving gene-expression 
correlation structure within gene sets, particularly within 
pathways. As the expected distribution is unknown, 
background distributions were fitted to a two-component 
mixture model, with the normal component corres pond-
ing to the core distribution of pathway scores and the 
uniform distribution corresponding to expression out-
liers. From these they calculated a probability of expres-
sion, that is, the probability that a pathway expression 
score belongs to the uniform component, and assigned it 
a score of +1, zero or -1. These ternary scores formed 
components of the Pathprinting vector. Within a group of 
fingerprints (such as for a tissue type) the mean score of 
each extended pathway was then binarized (+1 if above 
the threshold, -1 if below) and summarized in a vector 
(consensus fingerprint) that represents the set of 
functional modules significantly over- and under-
expressed in a cell type or condition. This associated a set 
of pathway activities with a phenotype.

It is straightforward to calculate a ‘functional distance’ 
between fingerprint vectors. This distance is necessarily 
threshold-dependent, and the authors [3] considered at 
some length how thresholds might be optimized for the 
problem at hand. By seeding a consensus fingerprint 
profile, phenotypes can be matched into an expression 
database (here, GEO). The question of threshold signifi-
cance is also relevant at this point, and the authors 
present a simple but appealing approach that assumes 
that the database contains a few highly matched but 
many non-matched samples.

Code and data were implemented in the R package 
Pathprint. As few research groups are likely to have the 
necessary resources to implement this independently, the 
authors [3] helpfully provide pre-computed Pathprinting 
scores for these six species in a searchable database.

Applications and remaining challenges
The authors [3] briefly describe computational experi-
ments illustrating three applications of Pathprinting. 
Using 127 human and mouse expression datasets, the 
authors derived an embryonic stem cell fingerprint 
indicating pluripotency and matched it to GEO. Of the 

top 1,000 matches, 90% are induced pluripotent stem 
cells from 140 human and mouse studies over 13 plat-
forms; the others are cancer cell lines known to express 
embryonic stem cell functions. In another experi ment, 
they used Pathprinting to jointly analyze human and 
mouse hematopoietic lineages; parsimony analysis of the 
individual Pathprinting states resolved the major myeloid 
and lymphoid lineages, irrespective of species. They also 
used Pathprinting to recognize four stemness-associated 
self-renewal pathways shared between human and 
mouse. The authors demonstrated the clinical relevance 
of these four pathways by computing Pathprints for four 
independent clinical studies of gene expression in 
patients with acute myeloid leukemia; high scores for 
these pathways were significantly associated with poor 
patient outcomes, and together these pathways had 
greater prognostic value than did the human or mouse 
pathways on their own.

Scope remains for further development of the Path-
printing framework. Not unreasonably, the authors [3] 
did not re-normalize historical array data using modern 
approaches. They averaged probe expression at the gene 
level, although this flattens out the signal from alternative 
splicing. Alternative approaches are available for ortho-
logy assignment. Their phenotype-matching threshold 
ignores potential multimodal distributions in tissue 
datasets; for example, datasets annotated as ‘kidney’ 
include not only normal kidney but also disease states 
including cancer, which can have different gene copy 
num bers and transcriptional programs. One could imagine 
(as do the authors) a feature-selection approach to 
identify genes that contribute most toward performance. 

Figure 1. The core workflow for calculating Pathprints for a 
microarray expression dataset. The Pathprinting vector for an 
experiment summarizes the expression of genes across 633 pathways 
and functional modules. It can be combined or compared with 
other such fingerprints in various ways as described by Hide and 
colleagues [3]. En(P) indicates the pathway expression score; POE(P) 
indicates the probability of expression for a pathway; Fi indicates the 
pathway score (see text for further details).
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Finally, individual variation and environmental effects 
remain largely outside this paradigm.

Like other second-generation pathway analysis tech-
niques [4], this approach [3] ignores topology once the 
pathway- or module-specific gene sets have been defined. 
Unlike other pathway analysis tools, however, Pathprint-
ing is designed to enable integrated comparative pathway 
analysis. Although popular platforms, including GenMAPP 
[5] and DAVID [6], support pathway analyses for key 
model organisms, applying them cross-species requires 
the initial individual analyses to be followed by post hoc 
meta-analysis. OSCAR [7] enables integrated cross-
species co-expression analysis and clustering, but for 
only a few datasets and without built-in functional analy-
sis. PlaNet [8] performs co-expression and network 
analysis between Arabidopsis and six crop species, but 
only for Affymetrix GeneChip data. Pathprinting moves 
well beyond all these approaches by supporting the large-
scale comparative functional analysis of clinical expres-
sion data across experiments, species and platforms 
within a computational framework.

Pathways and modules as computational units of 
cellular function
Waddington [9] famously depicted cellular phenotype as 
a canalized landscape, the topography of which is actively 
shaped by underpinning cables tethered to genetic loci. 
Individual cables are connected not only to the landscape 
but often to each other as well, forming a web of epistatic 
interactions. From a twenty-first century ‘omic’ perspec-
tive, it is difficult not to reinterpret this substructure as 
genes linked to their expression products through a 
network of physical interactions, with cellular pheno-
types, both structural and functional, emerging from this 
network. In this way, functional phenotype in its diverse 
contexts arises from definable subsets of the cellular 
network, such as local protein interactions or signaling 
reactions. To a first approximation, then, modules of 
molecular interaction are computationally relevant units 
of functional phenotype.

Moving from the identification of characteristic gene 
expression profiles to delineating the pathways and 
networks that mechanistically underlie cellular function 
and disease has been, and remains, a major focus of 
molecular systems biology and systems medicine. Hide 
and colleagues [3] now provide the most comprehensive 
collection of modules so far, and a robust, principled 

approach to quantifying and comparing their effects 
along developmental trajectories, across species and in 
different patient groups. Rhodes and Chinnaiyan [10] 
envisaged an integrative analysis for molecular cancer 
research that allows experimental results to be analyzed 
in the context of existing data and compared on the basis 
of biological similarity. The achievement of Hide and 
colleagues brings this vision to reality.
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