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Abstract 
One of the most pervasive forms of uncertainty in data used to make conservation decisions is error 
associated with mapping of conservation features. Whilst conservation planners should consider 
uncertainty associated with ecological data to make informed decisions, mapping error is rarely, if ever, 
accommodated in the planning process. Here, we develop a spatial conservation prioritization approach 
that accounts for the uncertainty inherent in coral reef habitat maps and apply it in the Kubulau District 
fisheries management area, Fiji. We use accuracy information describing the probability of occurrence 
of each habitat type, derived from remote sensing data validated by field surveys, to design a marine 
reserve network that has a high probability of protecting a fixed percentage (10-90%) of every habitat 
type. We compare the outcomes of our approach to those of standard reserve design approaches, where 
habitat-mapping errors are not known or ignored. We show that the locations of priority areas change 
between the standard and probabilistic approaches, with errors of omission and commission likely to 
occur if reserve design does not accommodate mapping accuracy. Although consideration of habitat 
mapping accuracy leads to bigger reserve networks, they are unlikely to miss habitat conservation 
targets. We explore the trade-off between conservation feature representation and reserve network area, 
with smaller reserve networks possible if we give up on trying to meet targets for habitats mapped with 
a low accuracy. The approach can be used with any habitat type at any scale to inform more robust and 
defensible conservation decisions in marine or terrestrial environments.
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1. Introduction 
In the face of current global failure to stem the rate of biodiversity loss (Butchart et al. 2010), there is 
an imperative to enhance protection of the world’s terrestrial and marine biodiversity. However, 
numerous uncertainties make conservation decisions difficult. For example, less than half of the 
world’s species have been described (Barnes 1989; May 1992) and the distribution of most described 
species is poorly known (Bini et al. 2006). Limitations also exist in our knowledge of ecological 
processes because they are dynamic and complex (Davis et al. 1998; Pearson et al. 2006). Despite these 
knowledge gaps and uncertainties, planners are required to make decisions about what, where, and 
when to invest in biodiversity conservation, due to limited conservation funds and competing needs for 
resources. 

Protected areas (or reserves) can be one of the most successful management tools for protecting 
biodiversity (Margules and Pressey 2000). However uninformed decisions on the location and design 
of reserves could have serious repercussions for the effectiveness and efficiency of conservation 
strategies (Possingham et al. 2006). There is a need, therefore, to improve upon current conservation 
planning practices, such as reserve design, and increase the reliability of conservation decisions. This 
can be achieved by including measures of uncertainty in the planning process. 

A tacit assumption of most conservation planning is that ecological data are certain 
(Possingham et al. 2009; Wilson et al. 2005). In reality, there is uncertainty inherent in all ecological 
data. In addition to gaps in our knowledge of biotic systems and processes, we know that there are 
many facets of risk, error and/or uncertainty in any prediction of species distribution (Regan et al. 
2005; Rondinini et al. 2006). These include presence-absence data errors, incomplete species 
distribution data, measurement or processing errors, erroneous taxonomic attribution, partial system 
observability, scarce or outdated observational data, and population model uncertainties (Drechsler 
2004; McCarthy et al. 2003; Moilanen et al. 2006; Soberon and Peterson 2004; Wilson et al. 2011). 
With doubt surrounding our understanding of ecological systems, species distributions, and data 
integrity, methods used to study them cannot be considered robust unless they account for uncertainty. 
Despite this, significant gaps still remain in the conservation planning literature, with many aspects of 
uncertainty not yet accounted for (Halpern et al. 2006; Langford et al. 2009; Stine and Hunsaker 2001).  

When planning for reserves, conservation planners would ideally have access to distribution 
information for all aspects of biodiversity. However, such information does not exist for even the most 
data rich areas in the world as it is difficult and costly to collect (Pressey et al. 1993). To compensate 
for this lack of data, planners often use habitat maps as surrogates for biodiversity (Cowling and 
Heijnis 2001; Margules and Pressey 2000). While many studies have found that habitat surrogates are 
far from perfect (Beger et al. 2007; Lindsay et al. 2008; Mumby et al. 2008; Sutcliffe et al. 2012), they 
are essential if we wish to conserve biodiversity now. 

The increasing availability of spatial data obtained through remote sensing has led to the growth 
of its use in applied marine research worldwide, with innovative new techniques producing habitat 
maps of high spatial resolution depicting geomorphic and biological structures that could be essential in 
reserve planning decisions (Andrefouet 2008; Mumby and Edwards 2002; Roelfsema and Phinn 2010). 
In coral reef environments, remotely sensed satellite imagery is particularly suitable for habitat 
mapping, however accurate representation of coral reef features are beset by numerous challenges, 
including: dynamic changes in benthic cover; spatial and temporal variation in water clarity; and 
interpretation errors often due to spectral similarity of important reef features (Mumby et al. 2004; 
Phinn et al. 2012). Errors in coral reef maps derived from remote sensing are common, leading to 
“acceptable” levels of overall map accuracy as low as 50 - 60% (Phinn et al. 2008). Yet during the 
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planning process there is generally little recognition of the underlying errors created when habitat maps 
are produced or how the choice of a particular processing technique affects the classification accuracy 
of each habitat. Furthermore, many of the habitat layers to be used in conservation planning do not 
contain accuracy assessments or error information. Failure to consider these mapping inaccuracies in 
conservation planning can lead to poorly informed management decisions as features that support 
critical species or processes of interest may not be adequately protected (Brooks et al. 2006; Pimm et 
al. 1995).  

To address these problems, Steele (2006) suggests setting high conservation targets – a risk-
averse precautionary approach. This is not dissimilar to the approach adopted by Allison et al. (2003), 
where an insurance factor was created to buffer against the possibility of not achieving conservation 
targets under a given catastrophe scenario. However, such an approach would lead to errors of 
commission (where extra habitat other than features of interest are included), wasting valuable 
conservation resources on large reserve networks that are in many places inefficient or infeasible, 
especially	
  in areas where fisheries management areas or tenure units are smaller and therefore larger 
reserves result in substantial opportunity costs (Grand et al. 2007).  Conversely, errors of omission 
(where a reserve does not actually contain the desired conservation features) can occur if one assumes 
that the maps are accurate, when in fact the mapping process has erroneously under-represented 
conservation features. Assuming a habitat is present when it is actually absent is the most dangerous 
error in conservation planning because it increases the risk of under-protecting features in the reserve 
design (Rondinini et al. 2006). Conservation planning methods that include uncertainty associated with 
habitat-mapping accuracy can therefore increase reliability and robustness of final conservation 
solutions by helping us achieve conservation goals efficiently (Moilanen et al. 2006). Despite this, a 
paucity of research exists that accounts for uncertainty in habitat distributions in reserve design (but see 
Beech et al. 2008). This may be because habitat mapping accuracy information is often not readily 
available or accessible to conservation planners. A key issue is not merely to assess whether 
uncertainty affects the results of a spatial prioritization, but to highlight the value of producing and 
providing accuracy assessments with any habitat map, so that uncertainty information can be explicitly 
included in these decision-making processes (Wintle et al. 2011).  

Here, we develop an approach to spatial conservation prioritization that can account for 
inaccuracies in coral reef maps derived from remote sensing image data, using a readily available 
systematic conservation decision-support tool, and apply it to the Kubulau District fisheries 
management area in Fiji. Our objective in this study is to demonstrate the value of knowing how 
accurate our habitat maps are, and show how to explicitly account for these inaccuracies in 
conservation planning. We design a network of marine reserves using mapped habitat distribution data 
that aims to maximize the probability of protecting every habitat type by accounting for habitat 
mapping inaccuracies. We compare the output (i.e. priority areas, costs) of our probabilistic method 
with that of a more standard approach to reserve design, where mapping accuracy is not considered. 
Finally we highlight the trade-offs between habitat representation and area of reserve network that 
occur when habitat mapping accuracy information is or is not available.
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2. Methods 
2.1 Study region  
The study area comprises the Kubulau traditional fishing grounds (qoliqoli), centered at 16°51′S and 
179°0′E, located in south-west Vanua Levu, Fiji (Fig. 1). The qoliqoli extends from the coastline of the 
district to the outer barrier reefs, including several small islands, covering a total area of 261.6 km2 
(WCS 2009). With assistance from non-government organizations, Kubulau communities have already 
initiated marine management projects (Jupiter and Egli 2011), for which habitat maps were developed 
(Knudby et al. 2011)  
 
2.2 Habitat data 
Coral reef habitat maps were derived for the Kubulau qoliqoli by Knudby et al. (2011) using high 
spatial resolution multi-spectral satellite imagery (QuickBird 2006 and Ikonos 2007). A fine-scale 
benthic community substrate map with thirty-three individual classes was derived for the entire study 
region using object-based image analysis (Roelfsema et al. 2010), which involved image segmentation 
and classification and integration with field data for training and accuracy assessment (Knudby et al. 
2011) (Fig. 1a). Each benthic community class (hereafter “habitat”) describes a combination of coral, 
algal, seagrass, sediment, rubble and reef matrix substrata at a scale between 1 and 10 m. Each benthic 
community class was described by the dominant habitat first, followed by sub-dominant, and so on. For 
example, “sediment rubble” means sediment-dominated substrate with some rubble.  

Individual mapped habitat accuracies were obtained from the error matrix produced during the 
object-based image classification. The error matrix compares reference samples (field data) with image 
classes to calculate classification accuracy statistics for overall accuracy and the individual map 
category user and producer accuracies (Congalton and Green 1999) (Appendix A). The user accuracy is 
the probability that the mapped habitat (e.g. coral) correctly represents its ground distribution and is 
calculated by dividing the number of correctly classified pixels in a habitat by the total number of 
pixels assigned to that habitat. This value is directly affected by commission errors and represents the 
conditional probability that a habitat is correctly classified. We used this value as individual habitat 
probability input data for this study. The accuracy values for the mapped benthic habitats varied from 
0.275 to 1.0, with a mean accuracy of 0.666 (Fig. 1b, Table 1). 

We divided the region into 22 815 hexagonal planning units (5000 m2), and calculated the 
amount of each benthic habitat in every planning unit. We only considered habitats with an accuracy of 
greater than 25%, as it is unlikely that planners would consider protecting habitats with such known 
inaccuracies, and assigned to each habitat the probability value derived from the user accuracy in the 
error matrix. 
 
2.3 Prioritization approach 

Two conservation planning approaches were used for this study. In the standard approach we 
assume habitat distribution is certain (no mapping accuracy information included), and in the 
probabilistic approach we include uncertainty in the form of habitat-mapping accuracies. 

For the standard approach we used the conservation planning software Marxan v.2.43 (Ball et 
al. 2009) to design a number of near-optimal reserve design solutions that conserved a set amount of 
every type of habitat in the Kubulau coral reef system. Marxan solves the minimum-set problem 
(Cocks and Baird 1989; Moilanen et al. 2009) using a heuristic approach called simulating annealing 
(Ball et al. 2009; Kirkpatrick 1983). Marxan aims to minimize the objective function which is a 
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combination of the cost of selected planning units and boundary length of the entire system, subject to 
the constraint that the conservation targets are achieved (as described in Watts et al. 2009). 

In the traditional version of Marxan, it is assumed that (1) there is no uncertainty, thus the amount 
of habitat in an area is known, and (2) conservation targets are met once the target amount of each 
habitat is represented in the reserve system. Once we include uncertainty in species or habitat 
distribution these assumptions are no longer valid. Our probabilistic approach deals with this 
uncertainty by using a modified version of Marxan called Marxan with Probability (hereafter 
“MarProb”) that has the ability to include probability matrices describing the uncertainty of whether a 
habitat (or species) exists in a planning unit. MarProb combines information about the probability of a 
feature h occurring in planning unit i (phi), which in this study is the mapping accuracy of each habitat, 
and a “certainty target” (Ch), which is how sure we want to be to meet a representation target for 
feature h. In order to minimize the objective function, MarProb calculates the probability of failing to 
meet a given target for every conservation feature, in this case habitats, at each iteration using an 
approximate probability density function of the amount of habitat conserved in any reserve system. An 
additional constraint is imposed such that the probability of meeting the target for each habitat feature 
in the reserve network (Ph) must be greater than feature dependent parameter Ch, our certainty target, 
for every habitat feature in the reserve network. For example, setting a 90% certainty target within 
MarProb gives you a 90% chance of meeting a 10% conservation target for a defined habitat in the 
reserve system. Reserve systems designed using traditional Marxan will only meet targets 50% of the 
time assuming errors in mapping are equally likely to over and underestimate the extent of features in a 
planning unit (Game et al. 2008) (Appendix B, Fig. B.1). 

The key difference in the MarProb algorithm is the addition of a new term in the objective 
function, 𝑤 𝐹!𝐻(𝑆!)(𝑆!/𝐶!)

!!
!!! , where a penalty, Fh, is applied to reserve solutions that do not meet 

the target amount of every feature with sufficient likelihood (h=1…. Nh). The shortfall, Sh, is the 
difference between the estimated probability of achieving habitat targets and the certainty target, given 
by Sh = Ch - Ph, where Ph is approximated by calculating a probability distribution for the amount of 
each habitat that is in the current reserve system. The Heaviside step function, H, is zero when 𝑆 ≥ 0 
and 1 otherwise. A probability weighting (w) can be applied to emphasize the importance of this term 
in the objective function relative to the other terms (e.g. minimizing cost or boundary) (see Appendix B 
for details on the modified version of Marxan). 
 
2.4 Scenarios and analysis 

We designed a series of planning scenarios comparing reserve outputs that both ignore and 
consider mapped habitat accuracy, ensuring representation targets were the same for each comparative 
scenario, with equal cost of reserving each planning unit across all scenarios (see Table 2). We first ran 
a standard scenario to identify reserve networks using Marxan, where no accuracy information was 
included, and set the conservation targets to th = 30% for all habitat classes based on the desire of the 
Fiji Government to protect 30% of inshore waters (hereafter “national target scenario”) (Jupiter et al. 
2011). A comparative probabilistic national target scenario was then run with mapped habitat accuracy, 
phi, as the probability term for each habitat feature in each planning unit. As our aim was to be 
reasonably sure that the selected reserve network contained each habitat feature, given mapping 
accuracy, we set a certainty target Ch = 90% for all habitat classes, which means that each solution has 
a 90% probability that the representation targets, th, are met, and ensures final reserve outcomes have 
high reliability. We then varied the habitat representation targets from 10 to 90% for both scenarios. 
We did not set a target of 100% as this is equivalent to protecting the entire study region. 
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We then varied the probability weighting (w) for the national target probabilistic scenario 
(where the representation target equals 30%) to compare trade-offs between reserve area and 
representation of habitats. We also varied the certainty target, Ch, from 50 to 99% for this probabilistic 
scenario to evaluate trade-offs between reserve network area and confidence (i.e. how confident we are 
that the reserve solution achieves representation targets). Our maximum certainty target was 99% as it 
is impossible to meet a target with 100% certainty when all the data for a habitat feature is uncertain. 
Certainty targets lower than 50% were not considered, because it is unlikely a policy-maker would 
accept less than a 50% chance of achieving a conservation outcome. 

For each scenario, we produced 100 solutions to the reserve design problem, each with a 
different spatial configuration. We compared how the best solution (i.e. the one with the minimum 
objective function score) and selection frequency (i.e. number of times a planning unit was selected 
across the 100 solutions) from each scenario differed between methods. Planning units selected 
frequently across solutions indicate those areas are a high priority for meeting representation targets. 
Difference maps were used to compare how the location of priority areas would change if we 
considered uncertainty, by subtracting the planning unit selection frequency of the standard scenarios 
from the probabilistic scenarios. We evaluated how well each habitat met the range of representation 
targets (10 - 90%) within the best solution for each scenario, as well as the overall performance of each 
solution in achieving all habitat targets. In order to quantify the probability of targets being missed 
when uncertainties are not considered, we took the 100 solutions from the standard scenario, ran 100 
scenarios in MarProb “locking-in” each selected planning unit solution, and assessed which habitats 
failed to achieve their targets. To test trade-offs between representation, certainty and area of reserve 
between scenarios, we evaluated how many planning units were required to meet all habitat targets in 
the probabilistic scenarios when the certainty target was increased from 50% to 99%.  

We then calculated the sensitivity of the spatial prioritization to differing habitat probability 
values using the planning unit selection frequencies for the national target scenario. We calculated the 
minimum and maximum probability within each planning unit based on the most inaccurate and 
accurate habitats that the planning unit contained. To account for the dataset having more than one 
habitat per planning unit, we calculated the sum of the accuracy of features within each unit (“summed 
probabilities”). We calculated the number of habitats, minimum, maximum and summed amount of 
habitat in each planning unit, and calculated a measure of the mapping uncertainty (or variance) for 
every planning unit (i), 𝛿! = 𝑎!!!

!!
!!! 𝑝!! 1− 𝑝!! . 

Preliminary analysis of a correlation matrix was conducted in order to establish potential 
variables that would be significantly correlated. The variables “summed amount of habitat” and 
“maximum amount of habitat” were excluded because they were highly correlated (r2 > 0.95) with 
“number of habitats” and “summed probabilities”, respectively. Stepwise multiple regression analyses 
were performed separately for the dependent variables a) selection frequency using the probabilistic 
approach, and b) difference between selection frequencies for probabilistic and standard approaches. 
We compared scatterplots with spatial selection frequency maps to highlight which areas were being 
selected as higher priority, and identify the drivers of these differences. 
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3. Results 
We found that spatial priorities changed when comparing scenarios that considered and ignored 

mapping accuracy (Fig. 2). The biggest differences between the two scenarios occurred when 
conservation targets were between 10 and 30%, with higher selection frequencies for the probabilistic 
scenarios that accounted for mapping errors (Fig. 3, Appendix C, Fig. C.1). For the national target 
scenarios (with a 30% conservation target), mean planning unit selection frequencies for standard 
solutions that ignored mapping accuracy (25.2) were below mean values for the probabilistic solutions 
that did account for mapping accuracy (mean of 38.4). Higher conservation targets (40% - 100% of 
total habitat) resulted in proportionally higher planning unit priorities for both methods, with solutions 
converging at high conservation targets (>70%) for both approaches (Appendix C, Fig. C.1). 

When comparing results of standard and probabilistic scenarios, we also found that many areas 
that were a high priority in one scenario could be a low priority in another scenario, and vice versa 
(Fig. 2c). For example, 1% (169) of the planning units in the probabilistic national target scenario were 
selected in all 100 solutions, indicating their high priority to meeting conservation targets. However, in 
the standard national target scenario that ignored mapping accuracy, all of these planning units had a 
selection frequency of less than 75, a third of which were had a selection frequency of 20, indicating 
their relatively low priority for meeting habitat representation targets.  

In the probabilistic national target scenario (i.e. ensure 90% chance of representing 30% of each 
habitat), we found that frequently selected planning units (>75) contained low accuracy habitats (e.g., 
coral/algae reef matrix: phi = 0.275; sediment rubble: phi = 0.375; reef matrix coral algae: phi = 0.465; 
algae coral reef matrix: phi = 0.467; and coral-dominant: phi = 0.515) (Fig. 3). These planning units 
were selected more frequently than those containing high accuracy habitats. Larger amounts of habitats 
with low mapping accuracy were represented in reserve networks created through the probabilistic 
approach compared with networks creating using the standard approach (Fig. 4). Multiple regression 
identified that all variables except for “minimum habitat amount” and “summed variance” were 
effective combined predictors of the change between selection frequencies from excluding to including 
mapping accuracy (r2= 0.590, P < 0.001) (Appendix C.1). The residuals were normally distributed, all 
fell within the 95% confidence interval, and showed no patterning against the predicted outcomes. 
Considered independently, the minimum probability (lowest accuracy habitat) in the planning unit 
explained 53% of the variation in selection frequency differences between methods, while maximum 
probability (highest accuracy habitat) explained 13% (Appendix C, Fig. C.2). 

When we locked-in the priority planning units from the standard approach into a probabilistic 
approach, we found most habitats failed to achieve their representation targets. Habitats with accuracy 
values less than 0.900 would never achieve their targets, whilst only 5 habitats (all with accuracy 
values greater than 0.900) had a chance of achieving conservation targets (>0.1 probability). Only 3 
habitats (rubble coral, seagrass sediment, and sediment seagrass/algae) would have more than a 50% 
probability of achieving conservation targets, and all of these habitats had an accuracy of 0.999. The 
exception to this was deep slope, which had a mapped accuracy of 0.999 but a 66% chance of missing 
its target.  

When representation targets were <40%, we found that the reserve networks from probabilistic 
scenarios that accounted for mapping accuracy were up to 50% larger than those designed using 
standard approaches (Fig. 5). As habitat representation targets increased greater than 50%, reserve 
networks that accounted for mapping accuracy became progressively smaller than those that did not 
include uncertainty. Furthermore, solutions using the probabilistic approach met fewer and fewer 
habitat targets as those targets increased beyond 20% (Fig. 5). Conservation targets became 
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progressively unachievable as they increased using the probabilistic approach because it was 
impossible to select enough planning units to meet the certainty target (90%) for low accuracy habitats, 
and the reserve design algorithm effectively gave up on trying to meet representation targets. This 
resulted in smaller reserve networks using the probabilistic approach compared to those created with 
the standard approach for targets greater than 50% (Fig. 5). 

When the certainty target was increased from 50 to 99% (and representation target equaled 
30%), 2.1% more area was required to ensure targets were achieved for a 99% certainty target than a 
50% target (Fig. 6a). Trade-offs in reserve network area and habitat representation were found when 
the probability weighting (w) was varied for the 30% representation target and 90% certainty target. By 
varying this probability weighting, we found we were able to reduce the total area of our reserve 
solutions by 7% if we were willing to give up on meeting representation targets for four low accuracy 
habitat categories (Fig. 6b).  
 
4. Discussion 

Limited conservation funds mean that planners and managers must make decisions without 
perfect information (Possingham et al. 2007). Such decisions, whilst necessary, can reduce our 
confidence in conservation actions and outcomes. In this study, we illustrate a method for increasing 
confidence in reserve network solutions, minimizing the probability of missing conservation targets by 
including certainty data of habitat features. Although it has been well-documented that habitat maps 
contain multiple sources of error (Mumby and Edwards 2002; Mumby et al. 1997), they are commonly 
used in reserve design without consideration of their accuracy as simple methods for incorporating 
mapping errors into reserve design have previously not existed, or accuracy information is not 
available. Recent advances in systematic conservation planning tools now allow for the inclusion of 
probabilities of species or habitat distributions (Carvalho et al. 2011; Game et al. 2008; Lourival et al. 
2011), with this study the first to use these new tools to investigate how uncertainties associated with 
habitat-mapping change spatial priorities for reservation. The results presented here show that spatial 
conservation decisions can be significantly affected when habitat-mapping inaccuracies are considered, 
with consequences for conservation investment efficiency and representation of target features.  

Conservation decision-makers often rely on planning unit priority values to identify priority 
areas for reservation (Carwardine et al. 2007). Our results show that the selection frequency of a 
planning unit once mapping accuracy is considered depends on the amount of the feature that it 
contains, and the certainty or confidence you have that it contains this feature. High planning unit 
selection frequencies using the probabilistic planning approach meant there was very little flexibility in 
the ability of individual reserve solutions to meet representation targets, as more areas became essential 
for meeting representation targets (Fig. 2), compared to high flexibility (and low selection frequencies) 
shown in solutions derived from standard approaches that ignored mapping accuracy. The addition of 
mapping accuracy into systematic planning methods makes it easier for planners to choose high priority 
sites that will protect habitats adequately and achieve efficient reserve networks, produces more 
decisive advice, and ensures conservation investments are more robust (Margules and Pressey 2000; 
Nicholson and Possingham 2007). 

Our results show that consequences can occur by not accounting for mapping error in terms of 
the benefits for conservation and cost of management, with areas important to achieving representation 
targets for habitats in probabilistic scenarios largely excluded or considered unimportant (low selection 
frequency) from the standard scenarios (Fig. 2). Furthermore if only priority areas selected using a 
standard approach were protected, it would not be possible to meet representation targets for most 
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habitats given uncertainty in the mapped features. These results indicate that conservation schemes 
based solely on the distribution of habitats that do not have information on mapping accuracy may fail 
to achieve adequate conservation outcomes, as they risk either (1) under-representing conservation 
features by missing out on protecting high priority areas, or (2) over-representing conservation features 
by including areas in the reserve network that are of low importance to meeting conservation goals, 
subsequently reducing efficiency of conservation investments.  

Previous research demonstrates that spatial conservation prioritization generally avoids 
planning units with high uncertainty (Carvalho et al. 2011; Game et al. 2008). High uncertainty both 
reduces what we expect to get from a planning unit and increases the variance in what we get, and both 
effects reduce the chance of meeting a target (Langford et al. 2009; Wilson et al. 2005). This is 
contrary to our finding that configurations of the reserve networks that account for mapping accuracy 
were driven by low accuracy habitats. We note, however, that one probability value for each feature 
was used in this study, rather than a variable probabilistic distribution as in previous studies (e.g. 
Carvalho et al. 2011; Game et al. 2008; Lourival et al. 2011). In order to be sure of achieving habitat 
targets where the features were mapped with low probability, more sites with low accuracy features 
were required proportional to features of high accuracy, resulting in larger reserve networks using the 
probabilistic approach for low representation targets. In the previous studies, data inaccuracy created 
solutions that avoided uncertainty sites because they could be replaced with sites that had higher 
chances of conserving those same features – which is impossible for our problem. 

The selection of high amounts of low accuracy habitats to meet conservation goals could be 
considered wasteful if the habitat itself is of low ecological value (Carwardine et al. 2009; Pressey et al. 
2007). On the other hand, giving up on meeting targets for low accuracy habitats, as occurred in this 
study at higher representation targets using the probabilistic approach, could be considered an ‘ethically 
pernicious’ approach to conservation (Bottrill et al. 2008; Noss 1996). Some disadvantages to using 
this probabilistic approach are thus highlighted, as in addition to giving up on some habitats, it resulted 
in less flexibility of reserve solutions (higher selection frequency values), perhaps making it harder to 
achieve targets if the location of reserves were being negotiated with stakeholders. Future research 
should consider including a range of probabilities for each feature, as planning units with a high 
probability of containing a feature would be more likely to be selected as high priority for meeting 
targets, and may increase flexibility of reserve solutions. 

Trade-offs are necessary in any conservation planning process due to limited funds and resources 
and limitations in knowledge (Stewart and Possingham 2005). In this study, adding consideration of 
mapping accuracy resulted in important trade-offs between area of reserve network, representation, and 
accuracy, with larger reserves required using the probabilistic approach to be more confident that 
habitats were adequately protected (Figs. 5, 6a & b). This study quantitatively shows that standard 
approaches do not offer this confidence, with no low accuracy habitats adequately protected and at 
most only an 82% chance that high accuracy habitats would be adequately protected when there is 
uncertainty in our data but we use methods that do not include probability parameters. Whilst larger 
reserve networks that account for mapping accuracy could be more costly to manage, they are more 
robust to uncertainty than those that do not consider mapping accuracy, which are likely to contain 
many errors of omission for planning units containing low accuracy habitats. Although larger, the key 
advantage of the probabilistic solutions with high certainty targets is that they increase confidence in 
achievement of conservation outcomes, making decisions more robust and less risky - a more 
precautionary approach to conservation (Regan et al. 2005). This new probabilistic approach allows us 
to quantify how often targets might be missed when uncertainties are not considered, enabling planners 



	
  

10	
  

to evaluate necessary trade-offs, and understand the implications of not including uncertainty 
information in the planning process.  

One reason for the lack of planning approaches that include certainty information may be that 
accuracy assessments are often not provided with data such as habitat maps. If uncertainty data are not 
readily available, planners have several options to ensure they are not ignoring the error inherent in 
their habitat maps. Firstly, planners could try to source more information about the habitat information 
that is often just assumed to be correct. For instance, how were the maps produced? Was there any 
validation? Which habitats may have been problematic and/or under-sampled? Secondly, planners 
could set different targets for each habitat, with higher targets set for habitats suspected to be uncertain. 
For example, some habitats are known to be commonly confused when mapped (e.g. because their 
spectral signatures or textural characteristics are very close or because they tend to occur in the same 
geomorphic zone in patchy habitats) (Mumby et al. 2004; Phinn et al. 2012), so planners could set 
higher representation targets and/or higher certainty targets for these habitats. 

Decision-support tools used for conservation planning should allow planners to explicitly 
incorporate uncertainty associated with the data (Halpern et al. 2006; Regan et al. 2002). Spatially 
explicit conservation applications that incorporate uncertainty have been explored previously using 
fuzzy set theory (Wood and Dragicevic 2007), info-gap analysis (Ben-Haim 2001; Nicholson and 
Possingham 2007; Regan et al. 2005), and bootstrapping methods (Beech et al. 2008). However, all of 
these approaches can be computationally challenging and difficult to interpret (Knight et al. 2006). 
Although others have used uncertainty measures in spatial planning (Carvalho et al. 2011; Game et al. 
2008), this study is the first to use a readily–available decision-support tool to account for mapping 
error in reserve design. For the purposes of demonstrating the new approach, we did not attempt to 
account for any other aspects of uncertainty, such as spatial heterogeneity in habitat quality and 
distribution (Murdoch and Aronson 1999). For example, the spatial distribution and associated 
mapping accuracy of each habitat was assumed to be homogenous, however in reality spatial 
heterogeneity exists within any mapped landscape. Furthermore, coral reefs are dynamic and constantly 
changing across temporal gradients (Connell et al. 1997; Done et al. 2010). One important form of 
uncertainty that was not considered concerns present and future habitat availability and species 
distributions, such as might occur with climate change (Araujo et al. 2005; Hodgson et al. 2009). Some 
recent studies have attempted address temporal uncertainty associated with loss and availability of 
habitat over time (Drechsler et al. 2009; Meir et al. 2004; Sarkar 2006), as well as variability in 
population locations due to climate change (Araújo et al. 2004; Rodrigues et al. 2000). A recent study 
by Carvalho et al. (2011) was the first to quantify the inclusion of uncertainty in predicted species 
distribution changes over time to increase confidence in conservation investments. Whilst new methods 
of incorporating dynamic temporal uncertainty in reserve network planning are emerging (Game et al. 
2008), this field is still in its infancy (Possingham et al. 2009). Given that there is so much uncertainty 
in all aspects of planning, decision-makers should attempt to include measures of uncertainty in 
planning approaches to ensure robust results. To do so, information on the errors in data, such as 
accuracy assessments, or confidence intervals surrounding biodiversity predictions, must become more 
readily available. 

One of the greatest challenges in conservation planning is the research-implementation gap, and 
the oftentimes inability to translate research into cost-effective action (Knight et al. 2008). We were 
unable to evaluate trade-offs between total investment or effort required for each reserve network in 
this study and accuracy, as we used equal costs to isolate the effects of accounting for mapping 
accuracy and thus did not account for the actual costs of conservation. This resulted in reserve costs 
that were not representative of true socio-economic value. We also ignored boundary weightings 



	
  

11	
  

resulting in highly fragmented reserve networks. Previous research has shown the need for appropriate 
and representative costs in conservation planning, as well as the efficiency benefits of compact reserves 
(Ban and Klein 2009; Bode 2008; Naidoo et al. 2006). This problem could be re-analysed using the 
existing data to ensure reserve networks are well-connected and economically cheap (e.g. Adams et al. 
2011). 
 
Conclusion 

Uncertainty is prevalent in ecological data and must be considered so that risks are managed or 
at the very least understood. Embracing uncertainty in conservation planning and reserve design is 
important in our search for more robust and defensible conservation decisions. Throughout this study 
we highlight the importance of accounting for mapping error, without which planners risk spending 
limited conservation budgets inefficiently by failing to adequately represent target features. As we try 
to balance the growing resource requirements of humans with the need to protect biodiversity, we need 
to reduce uncertainties stemming from trade-offs to ensure conservation investments are made wisely. 
Given the high uncertainty in both our understanding of current coral reef habitat distributions, as well 
as future spatial and temporal change, our challenge is to ensure data accuracy assessments or 
uncertainty information is more readily available, and find new methods of dealing with these 
uncertainties to allow the design of reserve networks that adequately and efficiently represent 
biodiversity. 
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Figures 

 

Figure 1. Maps of (a) benthic communities and habitat substrata derived from remote-sensing imagery 
and (b) associated accuracy values for the Kubulau Fiji fisheries management area (qoliqoli). Inset 
shows the location of Kubulau in Fiji. 

 
 

 

  



	
  

18	
  

Figure 2. Planning unit selection frequency from (a) standard scenarios that do not include habitat-
mapping accuracy, and (b) probabilistic scenarios that include mapped habitat accuracy with a goal of 
being 90% confident that habitats are represented. For both scenarios, we targeted 30% of each habitat 
for inclusion in the reserve network. Panel (c) shows the differences in planning unit selection 
frequency between the two scenarios. 
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Figure 3. Planning unit (a) selection frequencies, and (b) associated accuracy input values for the 
probabilistic scenario that aims to be 90% certain that 30% of each benthic habitat is represented in a 
reserve network. Linear regression of minimum probability in planning unit and selection frequency 
using the probabilistic approach (c) shows planning units of high selection frequency corresponded to 
planning units containing low accuracy habitats. 
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Figure 4. Area of total habitat represented in the best solution (i.e. that with the lowest objective 
function score) for reserve network design using the standard approach (dark grey) and the probabilistic 
approach (light grey), both run using the 30% national target. Asterisks above the probabilistic result 
identify those habitats that missed meeting the target with 90% certainty once mapping accuracy was 
accounted for. 

 
Figure 5. The effects of increasing conservation targets on the expected adequacy (percentage of 
habitats that met their target) and size of reserve network from the best probabilistic (dark grey) and 
standard (light grey) solutions. Solutions using the standard approach met all conservation targets, 
however a point was identified on the trade-off curve after 20% target where probabilistic solutions 
were unable to meet all targets. 
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Figure 6. Trade-offs between (a) total area conserved and certainty target, and (b) total area conserved 
and probability of habitats meeting representation targets (when probability weighting is varied to 
emphasize the importance of representing every habitat in each reserve network), in the best solution to 
reserve network design for the national target probabilistic scenario. 
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Table 1. Habitats, accuracies derived from the error matrix, and proportion of study area covered by 
each habitat.  

Habitat type Accuracy phi Amount of total study 
area (%) 

Algae Coral Reef Matrix 0.47 0.55 
Algae Reef Matrix 0.61 0.46 
Algae Rubble Sed 0.64 2.00 
Breaking Waves 0.63 0.54 
Coral 0.52 1.85 
Coral Reef Matrix 0.77 5.55 
Coral Rubble 0.70 6.04 
Coral Rubble Sed 0.68 5.81 
Coral/Algae Reef Matrix 0.28 0.43 
Deep Lagoon 0.79 11.54 
Deep Slope 1.00 4.63 
Reef Matrix Coral 0.74 2.35 
Reef Matrix Coral Algae 0.47 2.27 
Reef Matrix Top 0.96 0.38 
Rubble Coral 1.00 0.29 
Rubble Reef Matrix Coral 0.88 1.92 
Seagrass Sed 1.00 0.35 
Seagrass/Algae Rubble Sed 0.43 10.19 
Sed 0.64 28.67 
Sed  Seagrass/Algae 1.00 2.90 
Sed Rubble 0.38 1.20 
Sed Rubble Algae 0.90 0.66 
Sed Rubble Coral 0.69 7.89 
Sed Rubble patch features 0.60 0.37 

 
Table 2. List of scenarios identifying which methods and certainty targets were used, and any 
additional changes. 

Scenarios Benthic targets 
th  (% of habitat 
area for each 

habitat) 

Certainty target Ch Other parameters 

No accuracy (standard) 30 N/A N/A 

Accuracy (probabilistic) 30 90 Probability 
weighting sensitivity 

analysis 

Trade-offs (standard) 10, 20, 30, 40, 
50, 60, 70, 80, 

90, 99 

N/A N/A 

Trade-offs (probabilistic) -
representation and accuracy 

10, 20, 30, 40, 
50, 60, 70, 80, 

90, 99 

90 N/A 

Trade-offs (probabilistic) - 
certainty and area 

30 50, 60, 70, 80, 90, 
99 

N/A 

	
  

	
  


