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Abstract 

 

Maillard reaction products (MRPs) are generated when protein-rich foods are subjected 

to intensive heat during cooking.  Overconsumption of a Western diet, high in MRP has 

been identified as a major risk factor for diabetes; yet precisely how MRPs contribute to 

defects in glucose homeostasis independent of consumption of other macronutrients 

remains unclear. Eight-week old male Sprague Dawley rats were randomized to feeding 

with one of six semi-pure diets: control, heat processed (high MRPs), high protein, high 

dextrose, high in saturated fat (of plant origin), or high in saturated fat (of animal origin). 

After feeding for 24 weeks body composition was determined by bioelectrical impedance 

spectroscopy and glucose homeostasis was assessed. When compared to the high 

MRP diet, excess consumption of the diet high in saturated fat (from an animal source) 

increased body weight and fat mass, and impaired insulin sensitivity, as defined by 

impaired skeletal muscle insulin signaling and insulin hypersecretion in the context of 

increased circulating glucagon-like peptide (GLP-1). Compared to the control diet, 

chronic consumption of the high MRP diet increased fasting glucose, decreased fasting 

insulin and insulin secretory capacity. It also resulted in lower GLP-1 and an increase in 

urinary 15-isoprostane F2t, a sensitive marker of oxidative stress status. These data 

suggest that excessive consumption of heat-treated foodstuffs can impair glucose 

homeostasis and pancreatic function in rodents independent of excesses in other 

macronutrients. These data provide a link between over-consumption of processed 

foods and the development of diabetes.   
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Introduction 

 

 Diabetes prevalence, now estimated as 171 million people worldwide, is expected 

to double within the next 20 years (1). Diabetes is characterized by both hyperglycemia 

and a relative deficiency in insulin secretion, required before development of overt 

disease. In type 2 diabetes this is seen in the context of reduced insulin sensitivity, 

whereas in type 1 diabetes, autoimmune destruction of the pancreatic beta cells leads to 

absolute insulin deficiency. Reducing the global burden of diabetes is a high priority for 

the WHO (1).  

The global increase in diabetes has arisen in parallel with the increasing 

popularity of Western-style diets, so that it has been argued that dietary factors and 

diabetes are closely associated (2-5). The adverse effects of the Western diet are most 

often attributed to its high energy density and poor nutrient profile with large amounts of 

saturated and trans fatty acids and poor quality carbohydrate. Yet other adverse 

features that derive from modern methods of food processing need also to be 

considered, one of which is the high generation of Maillard reaction products (MRPs) 

(6). MRPs, also known as advanced glycation end products (AGEs), are formed through 

the non-enzymatic irreversible modification of free amino groups within proteins and 

amino acids by reducing sugars and reactive aldehydes and can increase the shelf-life 

and taste of manufactured foods (7). Once ingested, 10 to 30% of dietary MRPs are 

thought to become absorbed into the circulation (8, 9) where they can form deleterious 

cross-linkages with many body tissues before excretion into the urine via the kidneys 
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(9). Some MRPs can also arise endogenously under physiologic conditions within 

tissues particularly in people with diabetes (7).  

 Recent studies in rodent models indicate that the restriction of dietary MRP intake 

not only improves insulin sensitivity, but can also extend the lifespan (10, 11). Moreover, 

other rodent studies suggest an association between AGEs and type 1 diabetes (12-14). 

There remains a need however, to distinguish the effects pertaining to MRPs from 

effects arising from other adverse dietary factors, particularly in relation to glucose 

homeostasis, insulin sensitivity and pancreatic function. In this study, undertaken in 

healthy rats, comparisons have therefore been made between the effect of a highly 

processed, heat-treated rodent diet (high in MRPs) with unheated rodent diets that are 

high in either saturated fatty acids, dietary protein or refined carbohydrates.   
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Methods and Materials  

 

Rodents 

All animal experiments were performed in accordance with the Alfred Medical 

Research and Education Precinct Animal Ethics Committee. Rats were housed in 

groups of three per cage with a 12 h light/dark cycle and ad libitum access to food and 

water. Healthy male 8-week-old Sprague Dawley rats, weighing 250 to 300g, were 

randomized into groups (n=10/group) and given one of the following diets: a control (C) 

diet (unbaked AIN93G (15));  a baked diet high in MRP (MRP diet) (AIN93G baked at 

160C for 1 h); a high protein (Pr) diet with 48% of total energy (%E) as protein; a high 

glucose (Glu)  diet (with 636 g dextrose/kg); a high saturated fat diet of plant origin (Pla 

Fat) (40%E from  hydrogenated coconut oil) or a high saturated fat diet of animal origin 

(Ani Fat) (40%E from clarified butter, ghee) and followed for a period of 24 weeks.  

 All diets were semi-pure formulations manufactured by Specialty Feeds (Western 

Australia, Australia). Unlike the high MRP diet, the control, protein, dextrose, and high 

fat diets were not heat treated (i.e., were kept raw) and were not dehydrated and formed 

into pellets. The MRP diet thus had a five times higher MRP content than the control 

diet, as determined by an ELISA specific to the AGE carboxymethyllysine (CML) (16). 

CML was chosen as a surrogate marker of all MRPs because it is present in tissues and 

serum from humans and rodents and correlates with other MRPs and oxidants (17).  

 At 23 weeks after feeding, rats were placed individually in metabolic cages 

(Tecniplast, VA, Italy) to collect a single 24-hour urine sample and to measure water and 

food intake. After 24 weeks, rats were anaesthetized with pentobarbitone sodium (50 
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mg/kg body weight) and perfused via the abdominal aorta with 0.1 mol/L PBS for 1-2 

min to remove circulating blood. The liver, gastrocnemius skeletal muscle, fat pads and 

pancreas were removed, frozen in liquid nitrogen and stored at -80C. Glycated 

hemoglobin was determined by HPLC as previously described (18).  

 

Bioelectrical impedance spectroscopy (BIS) 

At 23 weeks and after feeding, bioelectrical impedance spectroscopy was 

performed in rats anaesthetized with 2.5% isofluorane in 1.75 L/min of oxygen delivered 

via nose cone using a bioelectrical impedance analyzer (ImpSFB7, Impedimed, 

Brisbane, Australia) as previously described (19, 20).  

 

Intravenous glucose tolerance testing (IVGTT) 

After 24 weeks of feeding, intravenous glucose tolerance testing was performed 

(21). In brief, rats (n=6/group) were anaesthetized and the left carotid artery cannulated. 

After equilibration and a bolus glucose injection of 1 g/kg, 0.5 ml blood samples were 

taken at 2, 5, 10, 15, 30 and 45 min for the measurement of plasma glucose (glucose 

oxidase method using an autoanalyser, Beckman Coulter LX20PRO) and plasma insulin 

by radioimmunoassay (Rat Sensitive RIA, Linco Research, MO, USA). Whole blood was 

reconstituted in saline and returned to the rats after plasma was extracted. Area under 

the curve (AUC) was calculated by the trapezoidal rule (GraphPad Prism, GraphPad 

Software, San Diego, CA, USA). 
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Intra-peritoneal insulin tolerance testing (ipITT) 

ipITT was performed after 23 weeks of feeding. After a fasting blood sample was 

collected, a 0.5 U/kg insulin bolus (Humalog, Insulin Lispro, Eli Lilly, USA) was injected 

intra-peritoneally into rats and blood samples were taken at 15, 30, 60 and 120 min 

post-bolus. Plasma glucose was measured as described above. 

 

Homeostatic model assessment of insulin resistance (HOMA-IR) 

HOMA-IR was used calculated to determine the relative insulin sensitivity (22) 

using the formula (insulin (U/ml) x glucose (mmol/L)) divided by 22.5.  

 

pAKT/AKT immunoblotting 

Western immuno-blotting was used to determine the ratio of phosphorylated Akt 

(phosphoAkt) to total Akt as a marker of insulin signaling in both liver and skeletal 

muscle. Thirty g of protein (liver or gastrocnemius skeletal muscle) was reduced with 

2% -mercaptoethanol and proteins were separated using polyacrylamide gel 

electrophoresis (Bio-Rad Laboratories, Gladesville, Australia). Separated protein bands 

were transferred onto a Hybond-P PVDF membrane (Millipore, Maryland, USA) using a 

semi-dry blotting apparatus (Bio-Rad Laboratories, Gladesville, Australia).  After 

transfer, membranes were blocked with 5% skim milk powder diluted in a 1M Tris 

buffered saline solution with 0.05% Tween-20 (TBS-T) for 1 h. After blocking, 

membranes were washed in 1M TBS-T solution for 10 min before incubating overnight 

with either Akt or phospho-Akt primary antibodies (rabbit anti-rat S473, Cell Signaling 
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Technologies, Massachusetts, USA, Akt antibody at a dilution of 1/10,000 and pAkt 

antibody 1/5000). Akt and phosphoAkt membranes were washed six times in 1M TBS-T 

solution before incubating for 1 h at room temperature with an anti rabbit, HRP-labeled 

polymer secondary antibody (Dako, California, USA). Membranes were probed with 

Chemiluminescent Peroxidase Substrate-3 (Sigma-Aldrich, St.Louis, USA) for 3 min. 

Light emission was captured on CL-XPosure film (Thermo Scientific, Rockford, IL, USA). 

The density of each band was quantitated using Adobe Photoshop. Results were 

expressed as a ratio of phosphoAkt to Akt.   

 

GLP-1, glucagon and Urinary 15-isoprostane F2t 

Plasma GLP-1 and glucagon were determined using ELISA kits from Wako 

(Osaka, Japan). Urinary 15-isoprostane F2t was measured using an EIA kit specifically 

designed to assay urine samples (Oxford Biomedical Research, Rochester Hills, MI, 

USA). 

 

Statistical analysis 

All statistical computations were performed using GraphPad Prism version 4.0a 

for Mac OS X (GraphPad Software, San Diego, California, USA). Values for 

experimental groups are given as mean, with bars showing the SEM, unless otherwise 

stated. One-way ANOVA with Tukey’s post-test analysis, or two-way ANOVA with 

Bonferroni post-test analysis was used to determine statistical significance. Where 

appropriate, two-tailed t tests were performed. A probability of P < 0.05 was considered 

to be statistically significant. 
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Results 

 

To determine the effects of excess consumption of macronutrients and heat 

treated foodstuffs (MRPs) on glucose homeostasis and pancreatic function, healthy 

Sprague Dawley rats were fed one of the following diets for 24 weeks: a MRP (baked; 

MRP) or control (unbaked; C) diet, a high protein (Pr) diet, a high dextrose (Glu) diet, or 

a high fat diet in saturated fat from either a plant (hydrogenated coconut oil; Pla Fat) or 

animal fat (clarified butter; Ani Fat) source. The nutrient and energy content of each diet 

are presented in Table 1. All diets were isoenergetic but differed in specific 

macronutrients. The MRP content, specifically carboxymethyllsine (CML), was 5-fold 

higher in the MRP diet than in the unbaked control diet (101.9 versus 20.9 nmol/mol 

lysine/100 mg, respectively).  

 

Body composition 

After 24 weeks of chronic feeding, mean body weight was lower in rats that 

consumed high protein (Pr) diet (Figure 1A) than in controls. Conversely, body weight 

was significantly increased in rats fed the high saturated fat diet of animal origin (Ani 

Fat) (15% increase, P < 0.05). Total visceral adipose tissue was also increased in these 

rats (Figure 1B). In contrast, both the high protein (Pr) and high glucose (Glu) diets 

resulted in a smaller accumulation of total visceral adipose tissue. Consumption of the 

high saturated fat diet of animal origin (Ani fat) led to significant increases in both 

absolute and relative (% of body weight) fat mass as determined by BIS, (28%, P < 0.05 

and 10%, P < 0.05, Figures 1C and 1D respectively). Whereas both absolute and 
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relative fat mass was lower in rats consuming the high glucose diet (22%, P < 0.05 and 

21%, P < 0.05, Figure 1C and 1D respectively) compared to those fed the control diet. 

Relative fat mass was also lower in the MRP and high protein diet groups (Figure 1D). 

Although absolute fat free mass was greater in rats fed high glucose diets and both high 

fat diets (Figure 1E), when expressed as a % of body weight, fat free mass was 

increased in MRP, protein and glucose-fed rats, and not significantly altered in the high 

fat-fed rats (Figure 1F). 

 

Assessment of glucose homeostasis and insulin sensitivity 

Fasting plasma glucose was increased in rats that consumed excess MRPs 

(10%, P < 0.05, Figure 2A) or saturated fat from plant (18%, P < 0.05, Figure 2A) or 

animal sources (19%, P < 0.05, Figure 2A). Fasting plasma insulin was lower in rats fed 

the high MRP diet or the high glucose diet and also showed a tendency to increase in 

rats fed a diet high in animal fat (not of statistical significance) (Figure 2B). The diet high 

in animal fat, however, increased HOMA-IR, a surrogate measure of insulin resistance, 

(Figure 2C) and compromised long-term glucose control as reflected by the increase in 

glycated hemoglobin (Figure 2D). Compared with the control group, rats consuming the 

diet high in animal fat had lower insulin sensitivity, as plasma glucose did not normalize 

to control levels over 120 minutes post-insulin injection (Figure 2E), confirmed by the 

increased AUC calculated in this group (Figure 2F). Rats consuming all other diets had 

normal insulin sensitivity.   

 Circulating GLP-1, a gut hormone responsive to macronutrient intake, which 

stimulates pancreatic insulin secretion, was decreased in rats that consumed diets high 
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in excess MRP and glucose, whilst GLP-1 increased in rats consuming the high 

saturated fat animal diet (Figure 3A). Consumption of both high fat diets led to a 

decrease in circulating glucagon levels compared to the control diet (Figure 3B), an 

effect not observed in other groups.  

The ratio of phospho-AKT to total AKT protein in the insulin target tissues, liver 

and skeletal muscle was also determined. AKT is a key protein of the insulin signaling 

pathway and a decrease in the ratio of phospho-AKT to total AKT indicates impaired 

insulin signaling. While there was no change in the ratio of phospho-AKT to total AKT in 

liver (Figure 3C), in gastrocnemius skeletal muscle (Figure 3D), chronic consumption of 

the high fat diet of animal origin led to a decrease in this ratio. Interestingly, urinary 15-

isoprostane F2t, a sensitive marker of oxidative stress status, was increased in rats that 

consumed the high MRP, high protein or high glucose diets, but not the high fat diets 

(Figure 3E). 

 

Determination of pancreatic function 

To test the insulin secretory capacity of the pancreas, IVGTTs were performed 

after 24 weeks of feeding. After glucose challenge, there were no differences in plasma 

glucose concentrations over time between diet groups (Figure 4A). Plasma insulin, 

however, during IVGTT, was reduced in rats that consumed the high MRP, high protein 

or high glucose diets and this was confirmed by a decrease in total AUC for insulin in 

these three groups (Figure 4C). In contrast, consumption of the high fat diet of animal 

origin led to an increase in plasma insulin at 2, 5 and 10 min post-glucose injection 

(Figure 4B), reflected by the elevated first phase AUC insulin (Figure 4D). 
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Discussion 

 

While many studies now support the concept that dietary factors are involved in 

the development of diabetes, controversy exists as to the relative contribution of single 

dietary elements to disease pathogenesis. Before the development of agriculture, 

dietary choices were limited to minimally processed plant and animal foods. With 

advancing technology, and particularly since industrialization, original nutrient 

characteristics have changed (23), so that highly processed foods now dominate the 

typical western diet. In the current study, we examined the effects of raw unbaked diets 

predominating in different macronutrients as compared with a processed diet subjected 

to high heat to determine effects on pancreatic function, glucose homeostasis and 

insulin sensitivity in healthy rodents.  

Data obtained in this study indicate that in rodents, heat-treated food high in 

MRPs can impair glucose homeostasis and pancreatic function independent of other 

macronutrient excesses. These findings provide a clear association between 

overconsumption of highly processed food and the development of diabetes. Indeed, 

overt diabetes does not develop without pancreatic islet dysfunction (24). We found that 

excess consumption of a heat treated diet (AIN93G baked at 160C for 1 h), baked to 

increase the content of MRPs, led to a decrease in relative fat mass and an increase in 

fasting glucose in parallel with a decrease in fasting insulin concentrations when 

compared to consumption of an unbaked diet (AIN93G, control). Further investigation 

using an IVGTT revealed a defect in glucose-induced insulin secretion with chronic 

consumption of a diet high in MRPs. The defects elicited by the high MRP diet appear 



 14 

similar to those occurring in patients prior to the onset of type 1 diabetes. This is in line 

with previous studies that have suggested that dietary MRPs may have direct effects on 

beta cell function. Indeed, AGEs, formed by heat treatment, have been implicated to 

mediate defects in insulin secretion in pancreatic beta cell lines (25, 26) and in rodent 

models (10, 12-14, 28).  

The delivery of nutrients from the stomach into the duodenum and the 

subsequent interaction of these nutrients with the small intestine to stimulate incretin 

hormone release are considered key determinants of acute insulin secretion in response 

to food (29). The incretin effect has been attributed to the secretion of glucagon-like 

peptide-1 (GLP-1) from cells in the intestinal epithelium with GLP-1 enhancing insulin 

secretion (30). In the current study, it was interesting to note that plasma GLP-1 levels 

were suppressed in rats that consumed diets high in either MRPs or glucose, both diets 

that also elicited defective insulin secretion. Conversely, consumption of the high fat diet 

of animal origin, which caused insulin hypersecretion, also resulted in an increase in 

GLP-1 in the circulation. Other studies in rodents have demonstrated an increase in 

GLP-1 secretion in response to high fat feeding (31). These data are consistent with the 

view that GLP-1 plays a key role as a modulator of insulin secretion in response to 

dietary intake. GLP-1 also strongly inhibits glucagon secretion (30) and it was 

noteworthy that a decrease in plasma glucagon was observed in rats that consumed the 

high fat plant or animal diets. These data suggest that further examination of the direct 

effects of MRPs and saturated fats on gut incretins should be a focus of future studies.  

Consumption of high protein or high glucose diets led to variable metabolic 

responses, including lower accumulation of fat mass. Even though ad libitum feeding 
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was used, the effect of the high protein diet on smaller body weight and fat mass could 

not be attributed to a decreased energy intake. Similarly, the increase in body fat mass 

in the rats fed a high fat diet of animal origin was not accompanied by higher energy 

intake. Differences in fat accumulation seem rather to relate to differences in 

macronutrient metabolism and energy expenditure. Fasting plasma insulin was 

decreased after 24 weeks of high glucose feeding in parallel with reduced plasma GLP-

1 concentrations. Impaired insulin secretion was also seen in rodents that consumed 

high glucose or high protein diets. Interestingly, the diets that suppressed insulin 

secretion, namely those high in MRP, protein or glucose, also increased urinary 

excretion of 15-isoprostane F2t, a biomarker of oxidative stress, suggesting that 

oxidative stress may be a key mediator of diet-induced pancreatic dysfunction. Indeed, 

there is a large body of evidence to implicate reactive oxygen species in beta cell 

dysfunction, albeit in other contexts (32-34). 

In the current study, we found that excess consumption for 24 weeks, of an 

unbaked and unprocessed high saturated fat diet derived from clarified butter led to 

increased body weight and fat mass, insulin resistance and an elevation in plasma 

glucose and glycated haemoglobin.  Although the high saturated fat diet derived from 

hydrogenated coconut oil also increased fasting plasma glucose, it did not impair 

glucose and insulin sensitivity, consistent with previous studies (35). It is also clear that 

animal and coconut-sourced saturated fats exert differential effects on insulin sensitivity 

and type 2 diabetes risk in humans. Polynesian islanders following a traditional diet with 

a high proportion of total energy intake from coconut-sourced saturated fat 

(approximately 40% of total energy) have very low prevalence rates of type 2 diabetes. 
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In contrast, Polynesians who migrate to countries which consume western style diets, 

consume less saturated fat in total (<30% of total energy), but a larger quantity of that 

saturated fat is derived from animal sources. In turn, their prevalence rate of type 2 

diabetes is much higher (4, 36-38). It is possible that the differences in fatty acid 

composition observed between plant and animal-sourced saturated fats, in addition to 

the different metabolic fates of these fatty acids, may be responsible. For example, it is 

known that long and medium chain saturated fatty acids undergo different pathways of 

hydrolysis, absorption, storage, and oxidation (39, 40). However, although both high fat 

diets were not heat processed, the clarified butter diet contained cholesterol. Our study 

is unique, in assessing these effects in an unbaked diet where they are not confounded 

by the introduction of MRPs, as would be the case in other studies where conventional 

heat-treated rodent diets have been used.  

 In conclusion, data obtained from this study indicate that consumption of heat-

treated food can in itself impair glucose homeostasis and pancreatic function in 

susceptible rodents. Further studies are now warranted to explore potential synergistic 

effects between high dietary MRPs and other macronutrients, particularly simple sugars 

and saturated fat, in the promotion of risk factors for diabetes.   
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Figure Legends 
 
 
Figure 1 

Body weights (A), absolute total visceral depot fat pad weights (B), absolute fat mass 

(C), relative fat mass (D), absolute fat free mass (E) relative fat-free mass (F) were 

measured in rats after 24 weeks feeding of control (C), MRP, protein (Pr), glucose (Glu), 

saturated plant fat (Pla Fat) or saturated animal fat (Ani Fat) diets. Data are meanSEM. 

*p<0.05 compared to control, n=10 rats/group. 

 

Figure 2  

Fasting glucose (A), fasting insulin (B), HOMA-IR (C), glycated Hb (GHb) (D), plasma 

glucose during ipITT (E), and corresponding AUC glucose (mmol/l) (F) were measured 

in rats after 24 weeks feeding of control, MRP, protein (Pr), glucose (Glu), saturated 

plant fat (Pla Fat) or saturated animal fat (Ani Fat) diets. Data are meanSEM. *p<0.05 

compared to control, n=6-10 rats/group. 

 

Figure 3 

Plasma GLP-1 (A), plasma glucagon (B), liver phospho-AKT to AKT ratio (C), 

gastrocnemius phospho-AKT to AKT ratio (GHb) (D), urinary excretion of 15-isoprostane 

F2t (E) were measured in rats after 24 weeks feeding of control, MRP, protein (Pr), 

glucose (Glu), saturated plant fat (Pla Fat) or saturated animal fat (Ani Fat) diets. Data 

are meanSEM. *p<0.05 compared to control, n=10 rats/group. 

 

Figure 4 
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Plasma glucose during IVGTT (A), plasma insulin during IVGTT (B), total AUC insulin 

(ng/ml) (C), first phase AUC insulin (ng/ml) (D), were measured in rats after 24 weeks 

feeding of control, MRP, protein (Pr), glucose (Glu), saturated plant fat (Pla Fat) or 

saturated animal fat (Ani Fat) diets. Data are meanSEM. *p<0.05 compared to control, 

n=6 rats/group. 
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Table 1. Nutrient content of rodent diets, macronutrient and energy intake 

 
 

 Control MRP Protein Dextrose 

Fat 

Hydrogenated 

Coconut Oil 

Clarified 

 Butter 

Protein, % of total energy 19.3 19.3 48.0 19.3 19.3 19.3 

Fat, % of total energy 16.4 16.4 16.4 16.4 40 40 

Carbohydrate, g/kg 100 100 100 636 340 340 

Digestible Energy, MJ/kg 16.1 16.1 18.2 16.7 19.5 19.4 

Energy intake, KJ/24h 350±68 357±63 440±26 385±97 368±67 397±50 

Protein, g/24h 4.3±0.8 4.3±0.8 12.8±0.82 4.5±1.1 3.7±0.7 4.0±0.5 

Fat, g/24h 1.5±0.3 1.5±0.3 1.7±0.1 1.6±0.4 4.0±0.72 4.3±0.52 

Carbohydrate, g/24h 2.2±0.4 2.2±0.4 2.4±0.2 14.7±3.72 6.4±1.2 6.9±0.9 

 
 
124 h intake data are mean±SD, n=10 rats per group.  
2P<0.05 compared to control diet 
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