University of Colorado Law School

Colorado Law Scholarly Commons

Coping with Water Scarcity in River Basins Worldwide: Lessons Learned from Shared Experiences (Martz Summer Conference, June 9-10)

2016

6-9-2016

SLIDES: Environmental Flow Case Studies: Southern and Eastern Africa

Rebecca Tharme

Kelly Fouchy

Susan Graas

John Conallin

Michael McClain

Sellow this and or difference of the second second

Part of the African Studies Commons, Aquaculture and Fisheries Commons, Climate Commons, Comparative and Foreign Law Commons, Environmental Health and Protection Commons, Environmental Policy Commons, Hydrology Commons, Law and Society Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Social Policy Commons, Sustainability Commons, Transnational Law Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information

Tharme, Rebecca; Fouchy, Kelly; Graas, Susan; Conallin, John; McClain, Michael; UNESCO-IHE; Mombo, Felister; and Sokoine University of Agriculture, "SLIDES: Environmental Flow Case Studies: Southern and Eastern Africa" (2016). *Coping with Water Scarcity in River Basins Worldwide: Lessons Learned from Shared Experiences (Martz Summer Conference, June 9-10).* https://scholar.law.colorado.edu/coping-with-water-scarcity-in-river-basins-worldwide/13

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

Authors

Rebecca Tharme, Kelly Fouchy, Susan Graas, John Conallin, Michael McClain, UNESCO-IHE, Felister Mombo, and Sokoine University of Agriculture

Environmental Flow Case Studies Southern and Eastern Africa

Rebecca Tharme, Riverfutures

and

Kelly Fouchy, Susan Graas, John Conallin, MichaelMcClain, UNESCO-IHE Felister Mombo, Sokoine University of Agriculture, Tanzania

Riverfutures

Martz Summer Conference, Boulder, CO, USA 9-10 June 2016

Water Management in Tanzania and Kenya

Tanzania

National Water Policy 2002

"water for basic human needs will receive highest priority, water for the environment to protect the ecosystems that underpin our water resources will attain second priority and will be reserved"

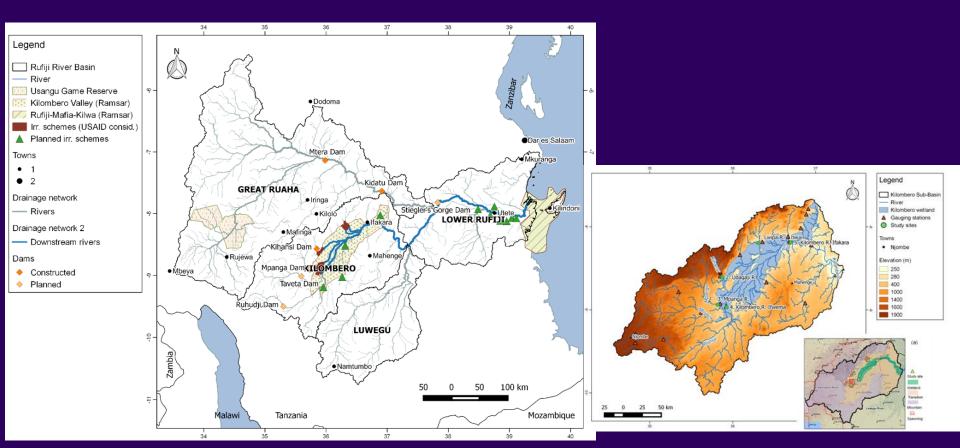
Water Resources Management Act (WRMA) No. 11 of 2009

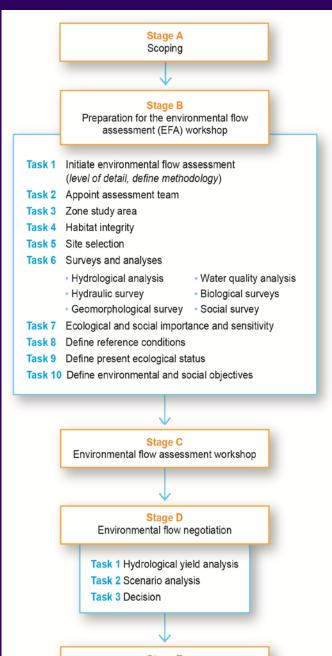
"take into account and give effect to the requirements of the reserve"

Kenya

Water Resources Management Rules 2007

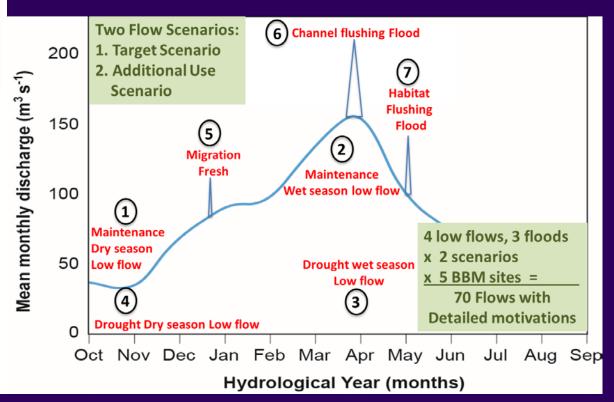
"establish the reserve based on water resource records and reserve water demand or ecological vulnerability, human vulnerability, local observations of historic drought flows, maintenance of perennial flows and consultations with WUAs"


The Water Bill 2014


"reserve, in relation to a water resource, means that quantity and quality of water required (a) to satisfy basic human needs for all people who are or may be supplied from the water resource; and (b) to protect aquatic ecosystems in order to secure ecologically sustainable development and use of the water resource "

Tanzania

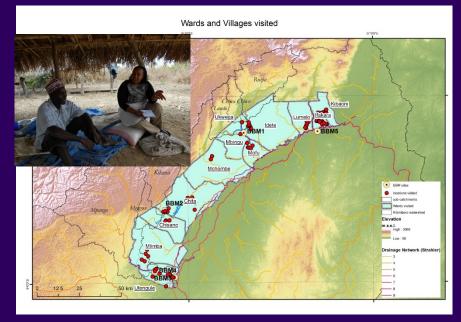
Rufiji Basin Environmental Flow Assessment


To provide support for balanced use and protection of water resources by determining recommendations for the Reserve, with special attention devoted to protecting ecological functions that also provide services to neighboring human communities

Stage E Implementation and compliance monitoring Main stages and tasks in holistic e-flows assessment for Kilombero to build flow regime for 5 sites and 2 flow scenarios

Stakeholders engaged at each stage of process

Kilombero Socioeconomic Surveys


To assess dependencies of communities on ecosystem services and the suitable flows to sustain them

Two-phase method to collect socio-economic information

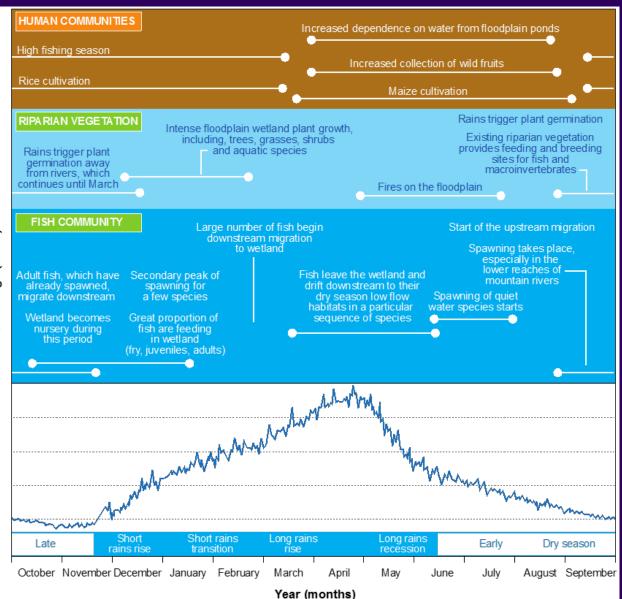
- 1. Participatory Rural Appraisal (PRA) supported with key informants interviews (village extension officers, traditional healers, school children, fishermen)
- 2. Questionnaire survey for quantification of Phase 1 results

16 villages 436 households 45% female - 55% male 59% young - 31% middle - 10% elderly 82% primary education

* Ecohydrological surveys also conducted

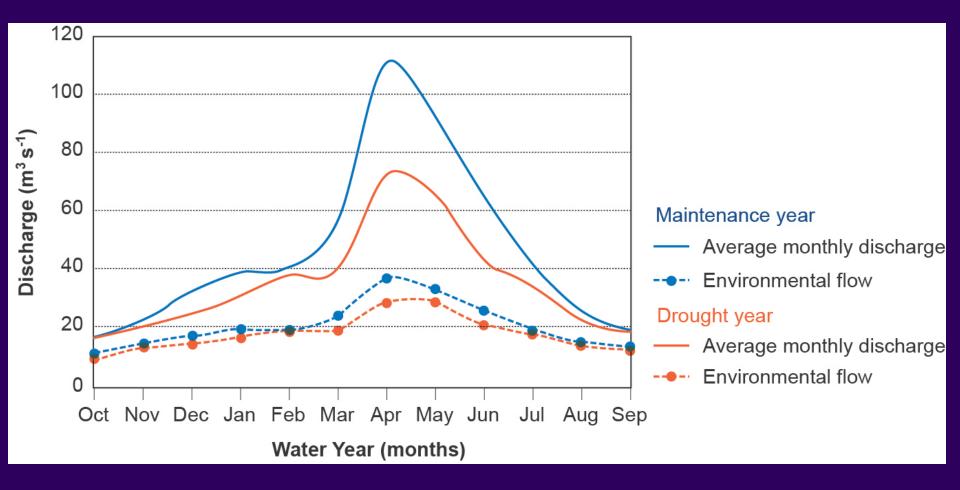
Kilombero Riverine Resource Services

Rivers	Supply of domestic water Fishing Recession agriculture Navigation Rituals (floodplains)
Oxbow lakes/ponds	 Fish spawning areas Fishing Cultivated and wild vegetables
Valleys	 Rice farming during rainy seasons Maize and cultivated vegetables during dry seasons Grazing livestock during dry seasons
Fish	 Important food source Cash generation for subsistence Culturally important for rituals

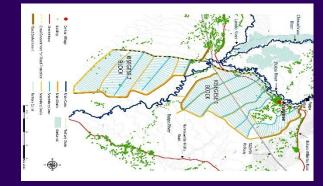

Ecological and Social Importance and Sensitivity Present Ecological State Environmental Management Class

Lwipa River (site 1)

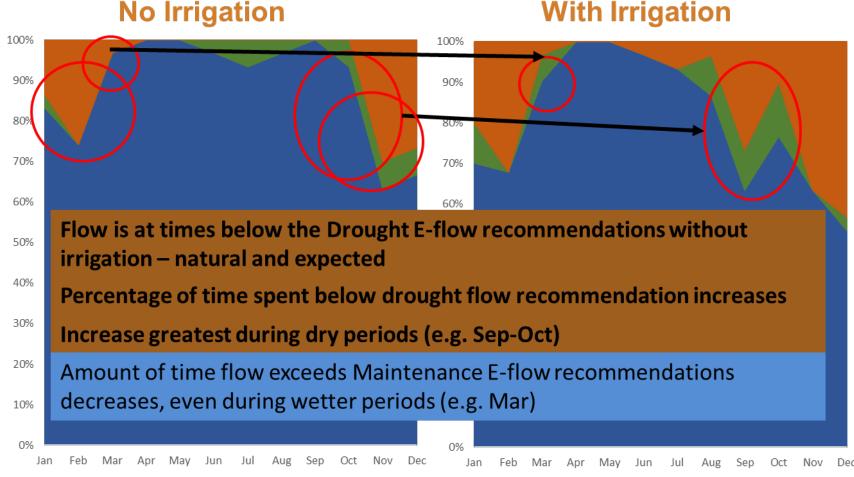
Component	EIS	SIS	PES	Trajectory	EMC
Hydrology	Medium	N/A	A/B	Negative	В
Geomorphology	N/A	N/A	B/C	Negative	В
Water Quality	High	High	A/B	Negative	A/B
Vegetation	Moderate	High	В	Negative	В
Fish	High	High	В	Negative	В
Macroinvertebrates	High	High	С	Negative	В
Social	N/A	Very High	С	Negative	В
Overall	Moderate	High	В	Negative	В

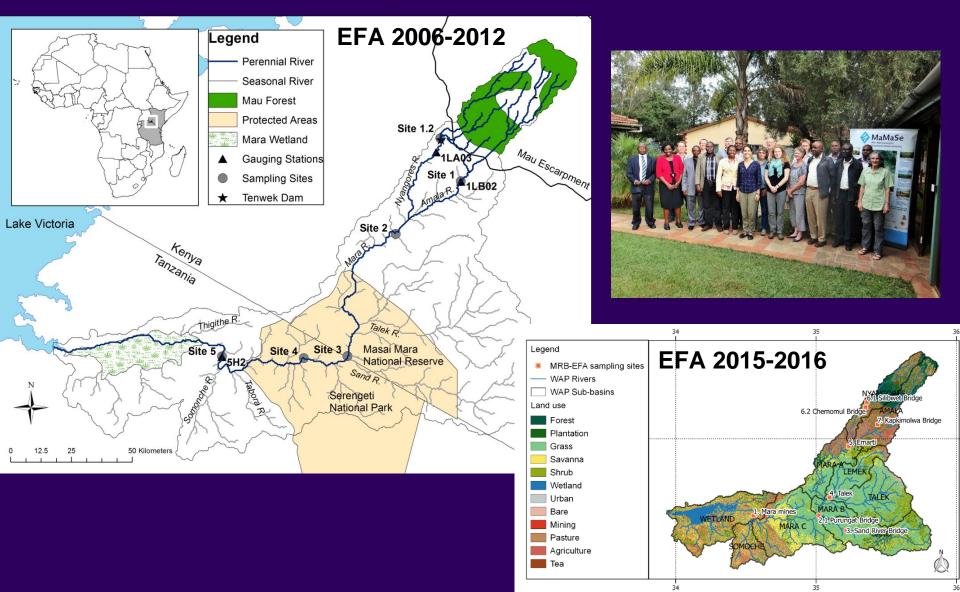

Kilombero River-floodplain System

Conceptual model of social and ecological relationships with flow regime



Recommended Environmental Flow Regime Lwipa River, Kilombero Sub-basin


Scenarios of E-flow results for Lwipa River with Irrigation Demand Kisegese Blocks 1 & 2


Above Maintenance Between Drought and Maintenance Below Drought

No Irrigation

Above Maintenance Between Drought and Maintenance Below Drought

Mara River Basin Environmental Flows Kenya and Tanzania

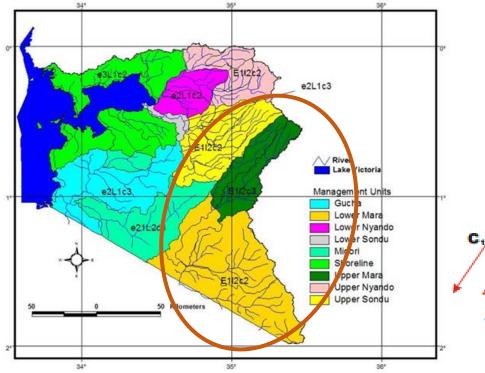
Mara River Basin Environmental Flow Timeline

2006 Project Transboundary Water for Biodiversity and Human Health in the Mara River Basin (TWB-MRB)

2008 NBI Legal and Institutional Cooperative Framework for water management in the MRB

2010 LVBC and WWF-ESARPO Biodiversity Strategy and Action Plan for Sustainable Management of the MRB

2010-2012 Mara River Basin Management Initiative (MRBMI) Environmental Flow


2007-2012 Assessment using Building Block Methodology (BBM)

2013 LVBC Initiation of Mara River basin-wide Water Allocation Plan

2015 Signature of MoU between Kenya and Tanzania as agreement for transboundary water management in MRB
2015-2016 E-flow Assessment using PROBFLO and BBM (ongoing)

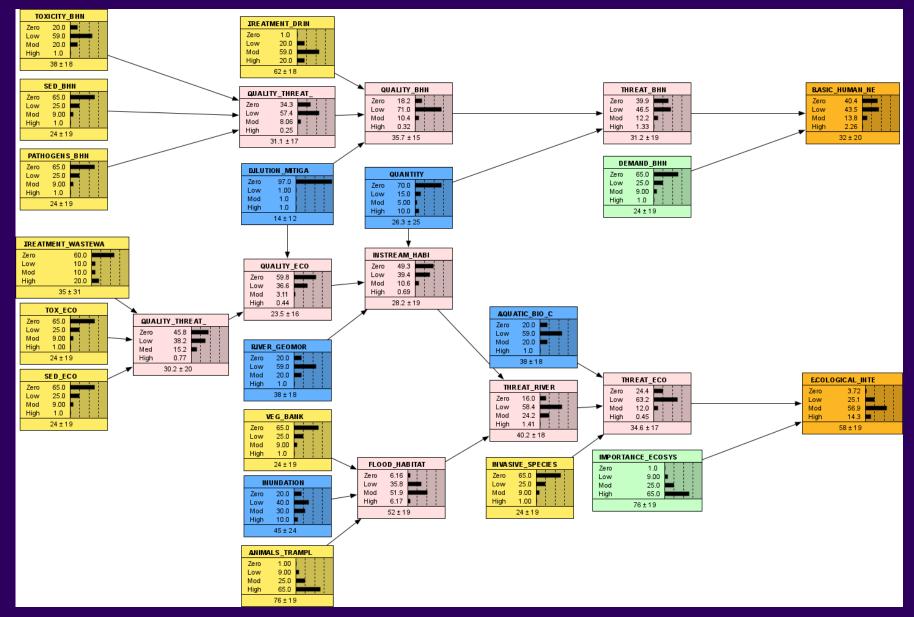
Water Resource Classification Mara Basin, Kenya

- noosing come como Increasing ecologicalimportance Ξ e e, IC increasing livelihood importance L, L. ١.,

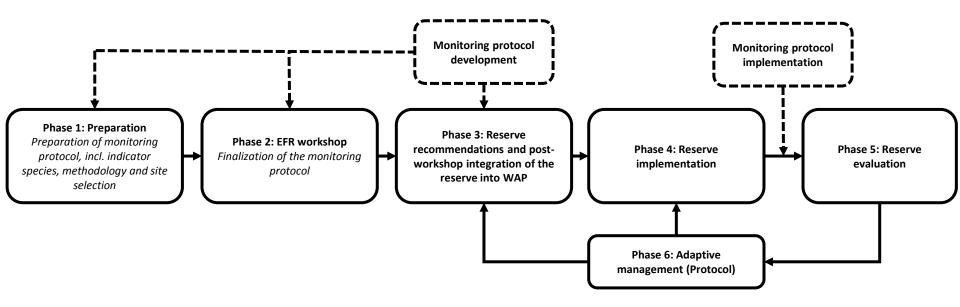
> Water Resource Classification (Source: Republic of Kenva, 2006b)

Upper Mara: high ecological importance (E1), high livelihoods value (L1) low commercial (C3) value **Lower Mara:** high ecological importance (E1), livelihoods value reduces to medium (L2) and commercial (C2) value increases from a low to medium importance

Water Resource Classification System Lake Victoria South Catchment Management Units, Kenya

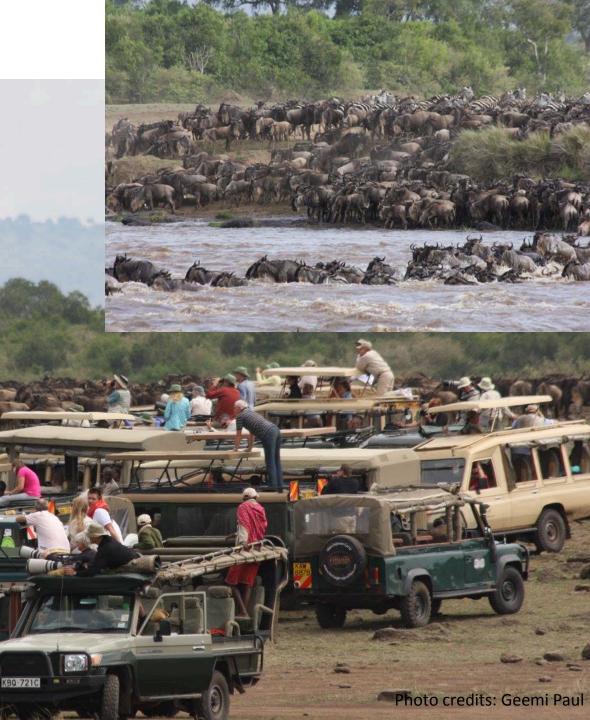

(WRMA 2014)

Resource Use and Flow-related Social Impacts at Low and High Flows


Based on separate studies for Mara River Basin Kenya and Tanzania

		Flow-related impact on livelihoods		
Resource	Use	Low flow (dry season)	High flow (wet season)	
Water	Domestic consumption	Increased proximity with wildlife	Water in the tributaries	
	Livestock consumption	Bank degradation	Risk of drowning	
	Irrigation	Risk of availability < demand	-	
	Recreation	-	Swimming (except if current is too strong)	
	Industrial use, e.g. water mills, mines	-	Maintain industry practices*	
	Generation of hydroelectric power	-	Sufficient water levels for hydroelectric power generation*	
	Cultural/religious practices, e.g.	-	Supports vegetation and deep pools of water to meet	
	baptism		cultural needs of the community	
	Transportation	River crossing, harvest of opposite banks	Transportation by boat	
Fish	Consumption and sale	Easier catch	Trigger for fish migration and spawning	
Reeds	Habitats for wildlife	-	Riparian zone provides habitat and camouflage for wildlife	
	Making mats and baskets	-	Blooming season, collection	
Trees	Construction material, furnitures and	Harvest and drying of the wood	Growth of shrubs and large trees	
nees	utensils, medicine, charcoal, fuel wood			
	Water retention	Less water infiltration	Groundwater recharge	
Herbs	Medicine	-	Flood regimes that foster growth of medicinal herbs that	
			are only found in the riparian zone	
	Cultural/traditional artifacts	Riparian zones under pressure if levels are too low	Submerged during high floods	
Soil sediments	Construction, sale and art work	Sediments more accessible	Allows flushing/mobilisation of sediments	
Land	Cultivation	More land to harvest	Natural watering of crops	
Wildlife	Tourist attraction	Wildlife watering points and habitat under pressure	Risk of drowning	

Probflo Bayesian Network for E-flows Recommendations for Mara River



Proposed Adaptive Management Process and Monitoring Protocol

Indicators \Groups	Trigger points (TPCs)	Frequency	# Sites
Fish species (Rheophilic)	Enough fish to eat or sell	seasonal	All 7 Sites
	Both adults and juveniles present	6 months	All 7 sites
	Each sample > 3 adults, > 5 juveniles	Yearly	Key sites; 3/7
Macroinvertebrates	High abundance	Yearly	All 7 sites
	Sensitive taxa present	3,5 years	All 7 sites
	Index Score < value X	3,5 years	All 7 sites

