University of Colorado Law School

Colorado Law Scholarly Commons

Coping with Water Scarcity in River Basins Worldwide: Lessons Learned from Shared Experiences (Martz Summer Conference, June 9-10)

2016

6-9-2016

SLIDES: The Construction of Water Scarcity and Its Management: Some Insights from South Africa's Vaal System 'Problemshed'

Mike Muller

Follow this and additional works at: https://scholar.law.colorado.edu/coping-with-water-scarcity-in-riverbasins-worldwide

Part of the African Studies Commons, Climate Commons, Comparative and Foreign Law Commons, Environmental Health and Protection Commons, Environmental Policy Commons, Hydrology Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Social Policy Commons, Sustainability Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information

Muller, Mike, "SLIDES: The Construction of Water Scarcity and Its Management: Some Insights from South Africa's Vaal System 'Problemshed'" (2016). *Coping with Water Scarcity in River Basins Worldwide: Lessons Learned from Shared Experiences (Martz Summer Conference, June 9-10).* https://scholar.law.colorado.edu/coping-with-water-scarcity-in-river-basins-worldwide/10

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

THE CONSTRUCTION OF WATER SCARCITY AND ITS MANAGEMENT SOME INSIGHTS FROM SOUTH AFRICA'S VAAL SYSTEM 'PROBLEMSHED'

Mike Muller School of Governance University of Witwatersrand Johannesburg, South Africa

- Physical scarcity
- Variability induced economic scarcity
- Pollution, quality and scarcity
- Socially determined scarcity
- Operational determinants of scarcity
- Production, trade and the creation of scarcity

SCARCITY – DETERMINANTS AND RESPONSES

Vaal river system supports 60% SA's economy, 40% population, well beyond sub-basin boundary

MANAGING VARIABILITY

Reliable supplies =

More investment, greater productivity

Storage & links mitigate variability related scarcity (investment constraint = economic scarcity)

EVOLUTION OF VAAL SYSTEM'S "FOOTPRINT"

Sterkfontein dam – 1st major inter-basin transfer into Vaal system

EVOLUTION OF VAAL SYSTEM'S "FOOTPRINT"

Integrated Vaal River System

POLLUTION ALSO CONTRIBUTES TO SCARCITY

ACID MINE DRAINAGE - GOLD'S HERITAGE

OVERVIEW OF WATER QUALITY: SALINITY STATUS

SALINITY MANAGEMENT STRATEGY

Short term actions:-

- Implement source controls
- Upgrade monitoring programme
- Feasibility of saline effluent (AMD) treatment
- Pilot waste discharge charges
- Dilution to keep TDS to 600 mg/L

Medium/Long term Actions:-

- Implement saline effluent (AMD) treatment
- Implement waste discharge charges

UPSIDE OF ACID MINE DRAINAGE

AMD only 15% of 'salt' pollution in Vaal

- But concentrated, point sources
- Cheaper to clean up than treating the river
- > Or using scarce & expensive water for dilution

Will also provide small additional supply stream

POLLUTION ALSO REFLECTS CHANGING SOCIAL PRIORITIES

SA'S ENVIRONMENTAL KUZNETS CURVE

Empirically, environmental priorities change with the income of the politically dominant group

Climate change: A future 'source' of scarcity?

Poor municipal management contributes to scarcity

POOR MUNICIPAL MANAGEMENT CONTRIBUTES TO SCARCITY

- South African cities 'lose' 36.7% of its water?
- 'non-revenue' water
 - Physical losses?
 - Financial losses?
- Remedies:-
 - Know your system
 - Find and fix leaks
 - > Maintain infrastructure
 - Identify and chase debtors
 - > (aka establish effective operating systems)

Non revenue water programmes address scarcity

SYSTEMIC IMPACT OF MUNICIPAL (AND OTHER) LOSSES IN VAAL

PRODUCTION, TRADE, SCARCITY & 'VIRTUAL WATER'

Southern Africa's global agricultural trade

Water rich to water poor

Figure 3.2 The imports and exports of agricultural products (in total) in 2012 amongst the continental SADC countries, and between these and the rest of the world. Tonnages and values are shown in text boxes; the accompanying blue, green and grey virtual water transfers are shown by 'colour' in cubic kilometres

SADC'S GLOBAL TRADE

CURRENTLY, SADC IMPORTS RICE, EXPORTS FRUIT AND TOBACCO

MAKES SENSE?

		IMPORTS	EXPORTS	BALANCE	
		r			
Product / Input	Year				
Cassava	2009	0	0	0	
	2010	0	0	0	
Maize	2009	210	410	200	
	2010	130	278	148	
Rice	2009	800	34	-766	
	2010	737	36	-701	
Soya Bean	2009	6	76	70	
	2010	14	60	46	
Sugar Beans	2009	62	76	15	
	2010	67	91	24	
Fruit	2009	152	1822	1671	
	2010	182	2367	2185	
Cotton	2009	10	30	20	
	2010	1	37	36	
Tobacco	2009	299	1422	1123	
	2010	343	771	427	
Fertilizers, m	2009	1006	270	-735	
	2010	1013	345	-668	
Pesticides	2009	188	67	-121	
	2010	206	47	-159	
		Million \$US			

SADC Trade in Selected Agricultural Products, Inputs

SOUTHERN AFRICA - WHO HAS THE WATER?

Least water

Most water

Country	Metres ³ /person
South Africa	1110
Malawi	1400
Zimbabwe	1550
Lesotho	1680
Swaziland	4160
Botswana	6820
Namibia	8810
Zambia	9630
Angola	10510
Mozambique	11320

INTRA-SADC AGRICULTURAL TRADE

water rich

South Africa's net exports: 3.50km3 green water 0.43km3 blue water US\$843 million

Regional agricultural cooperation is a no-brainer (in water terms!)

- Irrigation in SA uses 60% of water
- Much for internationally "rain-fed" crops
- "High-potential, rain-fed cropping land":-

Zambia Malawi

Total

- 11,1 million ha Mozambique - 8,8 million ha Zimbabwe - 6,3 million ha
 - 0,4 million ha

MAY 2010

REPORT NO: P RSA 000/00/12510

An Assessment of Rain-Fed **Crop Production Potential** in South Africa's Neighboring Countries

W34 2010/J001

ADDRESS SOCIAL IMPACT OF PRODUCTION SHIFT BY 'SUSTAINABLE INTENSIFICATION' OF LOCAL FARMING?

CHALLENGE:- THE LONG WATER RESOURCE MANAGEMENT CYCLE

- Policy cycle multi decades
- > Technical planning & strategy cycle (20 years?)
- Investment implementation (10 years)
- > Drought cycle (10 20 years) key planning focus
- Major drought event (5 10 years) action trigger
- > Operational response (multi-seasonal)
- > Operations (ongoing)

Primary challenge – sustaining coherence through the cycle!

