University of Colorado Law School

Colorado Law Scholarly Commons

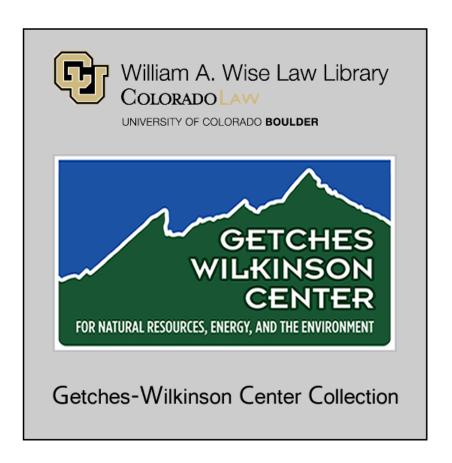
Hard Times on the Colorado River: Drought, Growth and the Future of the Compact (Summer Conference, June 8-10)

2005

6-10-2005

SLIDES: Interstate Marketing and Similar Economic Approaches

Jim Booker


Follow this and additional works at: https://scholar.law.colorado.edu/hard-times-on-colorado-river

Part of the Hydraulic Engineering Commons, Hydrology Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Water Resource Management Commons

Citation Information

Booker, Jim, "SLIDES: Interstate Marketing and Similar Economic Approaches" (2005). *Hard Times on the Colorado River: Drought, Growth and the Future of the Compact (Summer Conference, June 8-10).* https://scholar.law.colorado.edu/hard-times-on-colorado-river/21

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

Jim Booker, Interstate Marketing and Similar Approaches, in Hard Times on the Colorado River: Drought, Growth and the Future of the Compact (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law, 2005).

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

"Hard Times on the Colorado River: Drought, Growth, and the Future of the Compact," Natural Resources Law Center 26th Annual Conference, June 8-10, 2005

INTERSTATE MARKETING AND SIMILAR ECONOMIC APPROACHES

Jim Booker Siena College

or

WHAT IF MARKETS REALLY HAPPEN?

If markets happen:

Where does the water go?

 What are the net benefits to the buyers and sellers?

What are the impacts to third parties?

Market scope

• Intrastate

Interstate but intrabasin

Interstate and interbasin

The conventional wisdom -

Clear hierarchy of economic value:

- 1. urban use
- 2. lower basin agricultural use
- 3. upper basin agricultural use

Supporting the conventional wisdom:

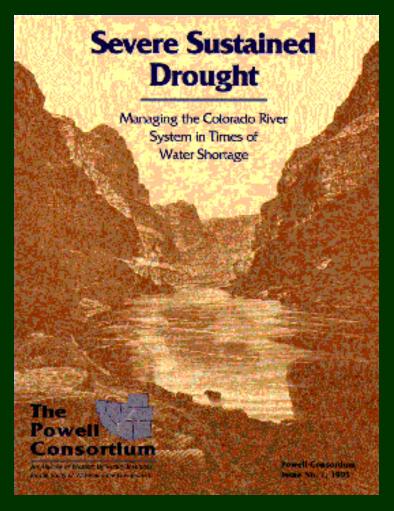
Pat Tyrrell

- June 8, 2005

"We can't argue dollars with Las Vegas." Las Vegas \$1/square foot turf removal is \$1/ft² * 43,560 ft²/acre =

\$43,560 per acre

Compare this to your favorite per acre irrigated land value


Market impacts in the Basin

based on

Journal of
 Environmental
 Economics and
 Management, 1994

and

<u>containing Booker, "Hydrologic and Economic Impacts..."</u>

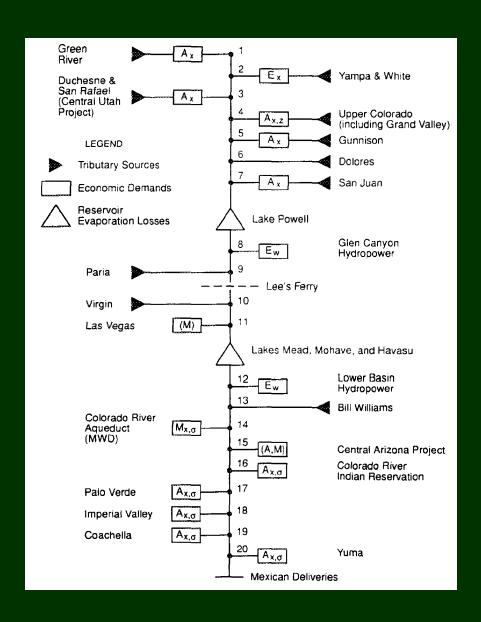
Contrasting markets in the Basin

Idea: with and without

- Water use: how does it change with vs. without the market?
- Economic impact: what are the net \$ impacts of market transfers (i.e. the difference between with and without ?)
- Contrast hydro and other values with and without a market.

Contrasting markets in the Basin

One scenario:


• 10% level of historic 10 year Lee Ferry mean (almost identical to Stockton and Jacoby median: 13 maf)

• Current (not future) depletion schedule

The Model

Contrasting markets in the Basin

<u>Intrastate</u>

Ag to urban transfer within states

• \$128 million

hydro benefits unchanged

Interstate

Ag to urban transfer within state

• \$130 million

hydro benefits unchanged

Preliminary conclusion

Intrastate markets do virtually as well as interstate markets in maximizing the beneficial use of basin water

An unconventional wisdom -

A simpler hierarchy of economic value in basin consumptive uses:

- 1. urban use
- 2. agricultural use

What did we leave out?

1. Las Vegas future demands

2. Hydropower, salinity, and other instream values.

Power producers enter market

<u>Intrastate</u>

Ag to urban transfer within states

• \$128 million

hydro benefits unchanged

Interstate

Ag transfer to lower basin

• \$190 million

hydro (and salinity)
 benefits increase

The bottom line - clear hierarchy of economic value:

- 1. urban use
- 2. instream use (hydro, water quality, ...)
- ==>
- 3. lower basin ag use economically favored over upper basin ag use

More results

Differences from "law of the river" are shown all data in 1989 million \$

Current historic	Institution	Use	All	"Old river"
(13.0 maf/yr)	Intra use	93	69	
	Inter use	94	88	
(JEEM 1994)	Inter all	72	138	
Current tree ring	Institution	Use	All	
(11.7 maf/yr)	Intra use	172	132	
	Inter use	178	93	
	Inter all	161	159	
2010 historic	Institution	Use	All	"New river"
(13.0 maf/yr)	Intra use	656	558	
	Inter use	657	560	
	Inter all	643	634	
2010 tree ring	Institution	Use	All	
(11.7 maf/yr)	Intra use	675	576	
	Inter use	693	515	
	Inter all	662	604	

Elephants in the room

High cost of new supplies

Beyond overappropriated: overused

How much can we use

High cost of new supplies

Neglecting market opportunities leads to:

1. Multibillion dollar schemes like Nevada's Virgin/Muddy River proposal.

2. Trying to use a desalting plant on agricultural return flows: Yuma.

Cost of new supplies vs. market options

Table B. Summary of annual costs of two alternatives for providing replacement water from a national accounting perspective. Assumes 78,000 acre-feet produced annually, the average of two potential Yuma Desalting Plant yields given in Department of the Interior (2003).

Alternative	National cost estimate (annual)	Risk of substantially greater costs	Implement- ation risk	Flexibility	Secondary economic impacts	Environ- mental impacts
Forbearance agreements	\$3 million	low – large existing acreage of lower valued crops	moderate – institutional procedures not yet in place	high – temporary agreements	moderate – local loss of related economic activity	low – small reduction in flows to Cienaga
Restarting Yuma Desalting Plant	\$25 million	high – track record of much higher costs; extensive pretreatment requirements; vulnerability to energy cost increases	high – updating of complex, older technology required	low – costs to maintain plant in ready reserve are greater than costs of forbearance agreements	moderate – temporary construction impacts; ecotourism impacts	high – loss of Cienaga wetlands

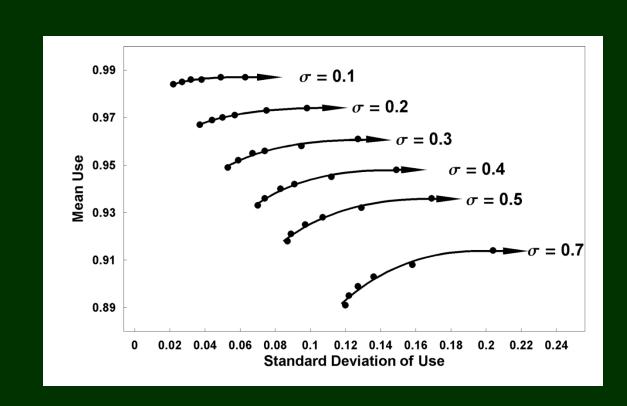
Elephant #2: Beyond overappropriation

"Estimated consumptive uses of the Basin's water between 1996 and 2000 averaged over 19 MAF per year."

Larry McDonnell, The Water Report, Issue #16, June 15,
 2005; see also Kenney, Conference Primer, p. 4.

Colorado River System Consumptive Uses and Losses Report 1996-2000

COLORADO RIVER SYSTEM						
Upper Basin	3,759	3,633	3,702	3,538	3,953	3,717
Lower Basin Mainstem	8,028	8,101	7,621	7,977	8,222	7,989
Lower Basin Tributaries	2,827	2,488	2,465	2,368	2,391	2,508
Other	2,024	1,974	1,759	2,154	2,102	2,003
TOTAL	16,638	16,196	15,547	16,037	16,668	16,217
WATER PASSING TO MEXICO						
Treaty	1,500	1,700	1,700	1,700	1,700	1,660
Minutes 218, 241, and 242	112	89	114	79	108	100
Regulatory Waste	5	1,173	3,018	1,194	337	1,146
TOTAL	1,617	2,962	4,832	2,973	2,145	2,906
COLORADO RIVER SYSTEM GRAND TOTAL	18,256	19,158	20,379	19,010	18,813	19,123



Elephant #3: How much use is possible?

It depends.

How much variability in use will we accept?

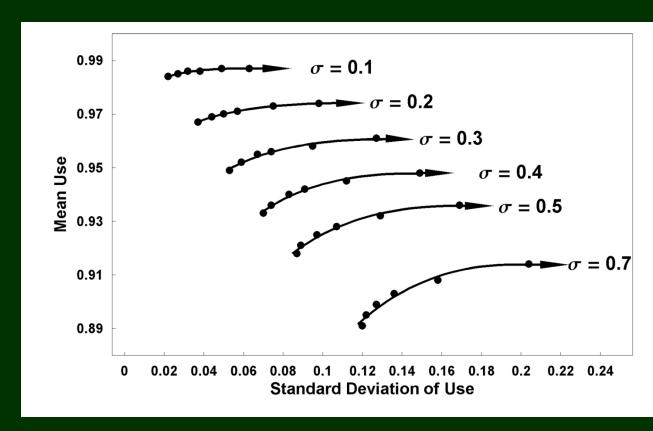
Maximizing use may require *reducing* reservoir evaporation

It depends on storage

System storage for "basinwide" use

(largely carryover)

Headwaters storage supporting local use

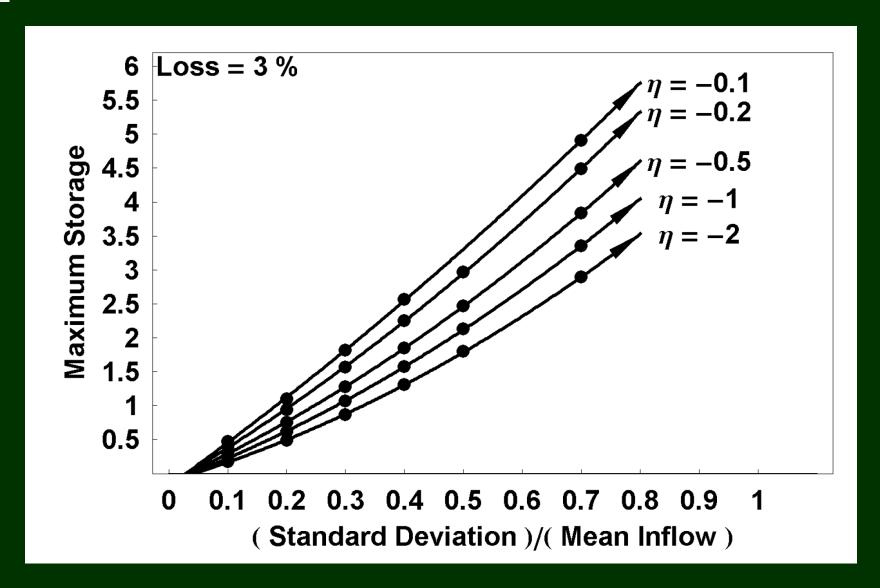

(largely to reshape seasonal flows)

It depends on the willingness to accept shortages

Maximizing use may require *reducing* reservoir evaporation -- by *storing less* (Booker, 2005)

Increasing risk of shortage ==>

What have we learned


 Many new water demands can be met by intrastate markets (but Nevada...)

 Instream uses (e.g. hydro) suggest benefits of an interstate perspective

New storage has a water cost

