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Introduction to Groundwater Modeling

Calibration

Introduction

The second stage of model application, calibration, starts with the design
or improvement of the model grid and the preparation of an input file by
assigning nodal or elemental values and other data pertinent to the
execution of the selected computer code.

The actual computer simulation then takes place, followed by the
interpretation of the computed results and comparison with observed
data. The results of this first series of simulations are used to further
improve the concepts of the system and the values of the parameters.

Sensitivity runs are performed to assist in the calibration procedure.

More data may be needed during the calibration process. In some cases
the code is used initially to design a data collection program. The newly
collected data are then used both to improve the conceptualization of the
system and to prepare for the predictive simulations.

Calibration is the process of adjusting model inputs until the resulting
predictions give a reasonable good fit to observed data (NRC 1990).
Model inputs include:

• constitutive coefficients and parameters (e.g. hydraulic conductivity,
dispersion coefficients and partition coefficients);

• forcing terms (e.g. sources and sinks for water or contaminants);

• boundary conditions (specified heads, concentrations, and fluxes).



Introduction to Groundwater Modeling

Calibration (continued)

Commonly, calibration is started with the best estimates of values for
model input based on measurements.

The degree of allowable adjustment of any parameter is generally directly
proportional to the uncertainty of its value or specification and limited to
its expected range of values or confidence interval (Konikow and Patten, 1985).

Usually, the model is considered calibrated when it reproduces historical
data within some acceptable level of accuracy, determined prior to the
calibration exercise.

Background

Most groundwater models are based on a detailed description in space
and time of the physical and chemical processes involved in the
movement,of water and the transport of contaminants. Simplifications
made are in either the physical structure of the system under study or the
physical or chemical processes involved. In surface water modeling these
simplifications often take the form of parameter lumping or spatial
averaging. In such a system no account is taken of variations within the
modeled area of inputs such as recharge, pumping, or hydraulic
parameters.

The relationship in a physically based lumped parameter model between
input and output is based on field observations, which are used to fit the
model. Relative few parameters are involved.

In groundwater modeling an almost infinite number of parameters have to
be determined, due to the discretization in the spatial domain. Many
different input combinations may result in the same system response (or
fit to the historical observations).

The primary practical solution to this "ill-posed" problem is the use of
"prior information" to guide or constrain calibration.
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Introduction to Groundwater Modeling

Calibration (continued)

Notes:

• A good fit to historical data does not guarantee good predictions,
particularly if the historical fit is based on a small amount of data, or
if it does not test the model capabilities that are required for making
predictions (NRC 1990).

• Calibration of a deterministic model is often accomplished through a
trial-and-error adjustment of the model input data. Because a large
number of interrelated factors influence model output, this may
become a highly subjective procedure (Konikow and Patten, 1985).

• Automatic parameter identification procedures may help to eliminate
some of the subjectivity inherent in model calibration (Konikow and Patten,

1985).

• The success of model calibration is dependent on the validity of the
underlying model formulation; if the model's structure ignores
important sources, geological heterogeneities, physical processes,
or chemical reactions, parameter estimation and model calibration
will be reduced to a fitting exercise that forces available inputs to
compensate (usually inadequately) for an proper formulation (NRC
1990).

• The hydrological experience and judgement of the modeler
continues to be a major factor in calibrating a model both accurately
and efficiently (Konikow and Patten, 1985).



Introduction to Groundwater Modelino

History matching/calibration using trial

and error and automatic procedures
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Introduction to Groundwater Modelino

History Matching Calibration
Example of transmissivity adjustment

h	 - h	 = Ahi,j -+ AT1,1 = f( Ahl,j )j	 01,1

T,	 =T 	 + aT ( or j * Corri, j )
'new	 "old	 1,1	 old

Or

Ti, 'new 
= TI, j	 g	 AT1,1° ATI+1,1 , AT1.1,I, ATI,+ 1, ,-11

old

tic = calculated head

h0 = observed head

T = transmissivity

AT = calculated or given change in T



Examples of such a correction

- Corr
I
 = ( 1 + AT ) as in previous example

- Corr =
Tar

J

where TGC is calculated hydraulic gradient and TGO is observed
hydraulic gradient or in F.D. approximation:

TGCI,

	

TGC	 ( al )

	

1,	 -11 24

11(h
1+1, j	

)2 4. (h
i, 1+1 

_ h
i, 1-1 

)2 ),

and same for 
TGO', 

assuming these values can be derived from water- 1
level map.

CM

van der Heijde TNO-0$ 80-10



Introduction to Groundwater Modena

Calibration
Least Squares

	Minimize F = E	 (h0 (x 1 y1 z1 t) - hc (x1 y1 z1 012
I = 1

Using sensitivity coefficients or sensitivities:

s F (h) o
 
tic

= E [-2 ( h - h )	 11=0ci	 T1s TI	 =1

sensitivity
coefficient

1. initial guess for parameters

2. iterate with improved estimate



Introduction to groundwater Modelino

Calibration
Trial and Error Methods

Disadvantages

• No methodology exists to guarantee that simulations will proceed in
direction leading to best set of parameters

• It is difficult to determine when best set has been reached, expecially
in case of large number of calibration parameters (type and number
of zones)

• No practical way of determining how many other sets of parameter
values could yield similar correspondence between hobserved and
h

calculated

• Difficult to decide whether or not additional parameters or a more
refined model would improve model fit

• No way of quantitavely assessing the predictive reliability of the
model

Cooley/Naff USGS 85-180



Introduction to Groundwater Modelina

History Matching/Calibration
Trial and error approach

• Completion depends on:

- objectives for analysis

- complexity of flow system

- length of observed history

- budget

- expertise of modeler

- patience of modeler (or manager)

• Automatic

- completion achieved when preset matching criteria are met



Introduction  t

Advantages and Disadvantages of Trial
and Error and Automatic History Matching
Procedures

Automatic History Matching

Advantages	 Disadvantages

• less subjective 	 • programs less well
documented

• fewer computer runs
•statistical training necessary

• statistical estimates of
confidence	 • still a research tool

Trial and Error

Advantages	 Disadvantages

• well documented programs	 • time consuming

•conceptually straightforward 	 • subjective



Introduction to roundwater Modena

Calibration

Example:	 simple indirect solution of inverse problem involving
repetitive solution of forward problem while adjusting T
in a trial and error fashion

Step 1:	 Use prior information to formulate hypotheses for spatial
distribution of constant zones of T

Step 2:	 Perform sensitivity analysis for zones of T

Step 3:	 Adjust T to improve agreement of computed values of
h with measured values of h

Step 4:	 Check reasonability of final parameter distribution

Step 5:	 Perform sensitivity analysis for other variables and
parameters. Often, all parameters and variables have
a level of uncertainty. This means that the level of
uniqueness of the solution diminishes even further.



Introduction to Groundwater Modeling

Calibration (continued)

Model calibration can be performed to steady-state or transient data
sets.

Most calibrations are performed under steady-state conditions but may
also involve a second calibration to a transient data set I‘Anderson and Woessner
1992).

Steady-state:

• to determine time-independent parameters, e.g. transmissivity,
hydraulic conductivity, leakance

• to determine long-term (average) values for parameters which'
might change over time, e.g. recharge rates, leakage rates

Transient

• to determine time-dependent parameters, e.g. storativity

• to determine time-dependent values for parameters which
change over time, e.g. recharge rates

• to check initial calibration of time-independent parameters

fTh



Introduction to Groundwater Modeling

Calibration continued)

Calibration Targets for Flow

Field-measured values of heads and fluxes form the sample information or
calibration values (Anderson and Woessner 1992).

The calibration value with its associated error forms the calibration target,
which should be determined before calibrating the model.

The associated error might consist of:

• measurement error

• scaling error (representativeness of measurement for model
variable)

• interpolation error (from transferring measured information to
nodal values)

Field-measured fluxes might include:

• base flow
• spring flow
• infiltration from a losing stream
• evapotranspiration from the water table

Additional calibration information for a flow model can be obtained from
velocities and solute distributions.

Such additional calibration information might increase the likelihood to
obtain a "unique" solution.
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Introduction to Groundwater Modeling

Calibration (continued)

-

Measures of Calibration

1. Qualitative

• comparison between contour maps of measured and
simulated heads, providing information on the spatial
distribution of the error.

• contouring the calibration error (residuals)

• representation of calibration error per cell or element

• scatterplot of measured versus simulated heads; deviation of
points from the straight line should be randomly distributed
(might include confidence intervals for the linear regression):

10 NOVO 10 20 30 40 50 60 70 NO 90
COMPUTED KAM IN FEET Algot OR 111.014

NATIONAL GEODETIC VERTICAL DATUM OF 1929

• tabulation of measured and simulated heads for each node.
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Calibration (continued)

Measures of Calibration (continued)

2. Quantitative (calibration criterion or performance criterion)

• mean error (ME) is the mean difference between measured
heads and simulated heads:

ME= jE	 hs),

with n the number of calibration values.

The ME can be represented in a graph against various values
of the calibrated parameter (Anderson and Woessner 1992):

Both negative and positive differences are incorporated in the
ME and may cancel out each other.
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Introduction to Groundwater Modeling

Calibration (continued)

Measures of Calibration (quantitative - continued)

• The mean absolute error (MAE) is the mean absolute value of
the differences in measured and simulated heads:

MAE =	 — hs),I

• The root mean squared (RMS) error or the standard deviation
is the average of the squared differences in measured and
simulated heads:

RMS = [37 E (hm - hs)1(15

The systematic reduction of the standard error of estimate (SE)
and RMS error may be shown graphically:

I. OOOOOOOOOOOI 11 II 13 14 II 14

111AWAT1014 TUT NY4111101



Introduction to Groundwater Modeling

Calibration (continued)

Levels of Calibration (Anderson and Woessner 1992)

• level 1	 simulated value falls with target (highest degree of
calibration)

• level 2	 simulated value falls within two times the
associated error of the calibration target

• level 3	 simulated value falls within three times the
associated error of the calibration target

• level n	 simulated value falls within n times the associated
error of the calibration target (lowest degree of
calibration)

Problems in Calibration:

• inverse problem is mathematically ill-posed

• measurements are not available for all locations

• where measurements exist they are not accurate

• most important parameters might not have been measured
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Introduction to Groundwater Modeling

Calibration (continued)

Representation of the spatial distribution of error of residual
calculated as the difference between measured (or interpolated) heads
and simulated heads for an unconfined aquifer in Woburn,
Massachusetts (de Urna and Olimpio, USGS-WRI 89-4059, 1989)
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Introduction to Groundwater Modelina

Measured and comuputed hydraulic
heads of the Parilla Sand aquifer for
January 1980
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Introduction to Groundwater Modeling

Comparison of measured and calculated
1960-70 head decline in unit 3

EXPLANATION

- 30 - - - Line of measured equal head
decline, queried where ap-
proximately located

— 40 — Line of calulated equal head

decline. Interval variable.
in feet

SkrIvan USGS WRI 1987 82-4010



R, Reported measurtment

P, Measurement affected
by pumping

See figure 11 for location of specified node.

4ntroduction to Groundwater Mode4lna

Comparison of measured and computed
drawdown at node (10,9,2)
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Comparison of measured and computed
drawdown at nodes (8,4,2) and (5,8,3)



Introduction to Groundwater Modelina

Sources and discharges simulated in the
calibrated model
Data in cubic feet per second

Sources of water

Areal recharge 118.1
Flow across boundaries 204.7
Recharge ponds at
major industry 2.5

Recharge ponds at
North Main Street
well field 12.4

Total sources 337.7

Discharges of water

Flow across boundaries 43.4
Pumping (layers 1

and 2) 17.6
River leakage:
Christiana Creek 17.3
Baugo Creek 5.7
Elkhart River 37.6
Pine Creek 4.6
St. Joseph River 209.0
Little Elkhart
River 2.8

Total river leakage 277.0

Total discharges 338.0

Percent difference
between sources
and discharges •09

Imbrigiotta and Martin USGS WRI 81-53
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Comparison of measured and computed
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Model-simulated
seepages Measured seepages

Positive value,
river reach
gaining; nega-
tive value, river
reach losing

(fts/s)

Range based on measure-
ment error. Positive
value, river reach
gaining; negative value,
river reach losing

(fts/s)
Streams and

reaches

Introduction to Groundwater ModelIna

Model-simulated and measured seepage

Christiana Creek
Reach 1 12.3 4.4 ------- 18.3
Reach 2 2.6 -3.7 	 11.7
Reach 3 -12.4 -18.5 	 -3.7

Baugo Creek
Reach 4 4.5 4.4 	 6.8

Elkhart River
Reach 5 13.4 3.6 	 50.5
Reach 6 8.9 -34.9 	 9.9
Reach 7 11.5 2.5 	 45.5

Pine Creekl
Reach 8 2.8 1.8 	 3.3
Reach 9 1.5 1.4 	 2.3

ISeepages for Pine Creek were measured in September 1979.
Seepages for all other streams were measured in May-June
1979.

Imbrigiotta and Martin USGS WRI 81-53
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Components and rates of flow in water-
budget area
46 ft3/s = determined from water-budget analysis
(46 ft3/s) = determined by calibrated model

Wexler and Maus USGS WRI 864106



Introduction to Groundwater Modena

Changes in water levels due to a 50
percent decrease in the calibrated
streambed leakance (top aquifer)
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Introduction to Groundwater Modelino 

Changes in water level in top aquifer due
to a 50 percent decrease in calibrated
transmissivity

Imbrigiotta and Martin USGS WRI 81-53



Introduction to Groundwater Modelina

River leakage and boundary flows for the
calibrated model and the sensitivity
analyses

Flow leaving Flow entering
ground-water system ground-water system

Across model Across model
boundaries Into rivers boundaries

Layer 1 Layer 2 Layer 1 Layer 2•

(fts/s) (rt3/3) (ft3/s) (fts/s) (f0/s)

Calibrated model 28.5 15.0 266.1 140.1 64.6

Transmissivity l 15.7 9.8 169.2 64.4 28.7

Streambed leakance l 31.1 17.0 249.5 133.5 61.9

Vertical hydraulic
conductivity of
confining bed' 32.1 14.4 254.3 133.8 63.8

Areal recharge' 24.9 12.5 234.0 154.2 71.7

'Parameters decreased by 50 percent from calibrated values.

Imbrigiotta and Martin USGS WRI 81-53



Introduction to Groundwater Modeling

Calibration (continued)

Sensitivity Analysis

Sensitivity analysis provides a useful way to identify the model inputs that
have the most influence on model predictions, at least over a specified
range. Although a detailed sensitivity analysis can be laborious and time-
consuming, it is usually feasible to carry out a small scale exploratory
analysis that focuses on a few critical inputs identified, most likely by
intuition.

Sensitivity analysis should be performed initially at the beginning of
calibration to design a calibration strategy. After the calibration is
completed a more elaborate sensitivity analysis is performed to quantify
the uncertainty in the calibrated model caused by uncertainty in the
estimates of aquifer parameters, stresses, and boundary conditions.

During the final sensitivity analysis, calibrated values for hydraulic
conductivity, storage parameters, recharge and boundary conditions are
systematically changed within the previously established plausible range.

Sensitivity analysis is typically performed by changing one parameter at a
time and evaluating the effects on the distribution of heads and other
computed variables.

Results of a sensitivity analysis should be qualitatively discussed (Anderson
and Woessner 1992):

Casabas varied
	

FaIP naltrid

Kytolk coadoctivily 101111-2/00 Wd	 Maim Asa. wan isonnisil lor
con•. Width al lissition inns SAS
si maks Si i.e mop S.

Anisotropy	 10:1-110):1	 Slightly moo intnalod kic illib-sn
-tronon own Tilt sal ammo al

inial Malan	 bildhsrsaisatrepy.
Roche,. 6-111 Yam Oat moo imbued Cr Ia..

mimes ea Width a/ itresitiaa
man *aka it eartriat S. ova
isnip sad

Laurel Wan	 a-1S WWII	 Minot abaci in swam art shops
hani kw saps isaisd.

hats, troll	 0-3 te Mt	 SSiks nopsaina to istml Kam

Oispnaniy	 101-1C0 A lad	 insonskin to damn col Si agai-
n-50 il WI Ws al ot. Iress/a. Siam ol at

aka Sal man anal. Si in-
undid ai wake hos

Lowly IA.: Li	 1:1-1 :0.01	 inanotracsó blabs* ammo
solholur bent InalliMil OnaliON.
!SIMS Is sopscisily tialiod in
npia ipsnossbisi PIO SIAS.

Sans toondtry	 Alla& Ocson-inionci softwalsr Wise breaks nes MSS hisisily
depend* on canamtedion d abide
bp.

n011t Memo at el.. Ma



Introduction to Groundwater Modeling

Model Verification

As the set of parameters used in the calibrated model may not accurately
represent field values, the calibrated parameters may not represent the
system under a different set of boundary conditions or hydrologic
stresses.

Model verification will help establish greater confidence in the calibration
and the predictive capabilities of the calibrated model.

A model is "verified" if its accuracy and predictive capability have
been proven to lie within acceptable limits of error by tests
independent of the calibration data.

In general, verification is performed using a transient data set, e.g. the
response of heads to drought or long-term pumping.

If only a single time-series is available, the series may be split in two sub-
series, one for calibration (e.g. representing the response of the system to
natural cyclic variations in stress), and another for verification
(e.g.representing the response of the system to a significant changed
stress condition such as caused by irrigation development).

If such data are not available, verification may be performed using an
second "independent" steady-state data set (i.e. not used previously for
calibration).

Note:	 If the parameters are changed during the verification, this
exercise becomes a second calibration and the first calibration
needs to be repeated to account for the changes. The second
exercise cannot be considered "verification" anymore.
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Post-Audits

Whenever an opportunity exists to obtain further field information
regarding the system being modeled, refinements and improvements in
the model should be made and previous analysis modified. Sometimes,
such an opportunity is offered in the form of post-audits. Post-audits are
reviews performed some time after the model-based predictions were
made and often provide an opportunity for in-depth analysis regarding the
inaccuracies in those predictions. However, not many of such post-audits
actually take place, depriving modelers and managers from important
feedback and educational experience.

Conclusion

Often, a major impediment to the efficient use of models in groundwater
management is the lack of data. Data insufficiencies might result from
inadequate resolution in spatial data collection (e.g., spatial
heterogeneities relevant on smaller scale than sampled), or in temporal
sampling of time-dependent variables (e.g., measured too infrequently),
and from measurement errors.

Many types of problems can occur in the application of models. Some of
these are technical, method-dependent problems such as numerical
dispersion and oscillations in transport models.

Conceptual problems, often significant, can be related to the mechanisms
(e.g., dispersion, adsorption, multiphase or multifluid flow), the
heterogeneity of the medium, or the simplifying assumptions adopted
(e.g., vertical averaging).

Finally, problems external to the model execution can occur, such as
those caused by the absence of good data, model availability, available
computer facilities, skilled professionals, and competent technicians.
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