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We experimentally and numerically investigate the expansion of initially localized ultracold bosons in

homogeneous one- and two-dimensional optical lattices. We find that both dimensionality and interaction

strength crucially influence these nonequilibrium dynamics. While the atoms expand ballistically in all

integrable limits, deviations from these limits dramatically suppress the expansion and lead to the

appearance of almost bimodal cloud shapes, indicating diffusive dynamics in the center surrounded by

ballistic wings. For strongly interacting bosons, we observe a dimensional crossover of the dynamics from

ballistic in the one-dimensional hard-core case to diffusive in two dimensions, as well as a similar

crossover when higher occupancies are introduced into the system.
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Nonequilibrium dynamics of strongly correlated many-
body systems pose one of the most challenging problems
for theoretical physics [1]. Especially in one dimension,
many fundamental questions concerning transport proper-
ties and relaxation dynamics in isolated systems remain
under active debate. These problems have attracted a
renewed interest in recent years due to the advent of ultra-
cold atomic gases. The ability to control various system
parameters in real time has not only allowed quantum
simulations of equilibrium properties of interacting
many-body systems [2], but has also enabled experimental
studies of quantum quenches [3–7] and particle transport
[8–12] in clean, well-controlled, and isolated systems.
Here, we study the combined effects of interactions and
dimensionality on the expansion dynamics of bosonic
atoms in optical lattices.

While interactions generally lead to diffusive transport
in higher dimensions, the situation is more involved in one
dimension, where the phase space available for scattering
can be severely limited. This was demonstrated, for
example, by the experimental realization of a quantum
Newton’s cradle [5], showing that not all 1D Bose gases
thermalize (see also Ref. [13]). An intriguing phenomenon
in one dimension is the existence of an exact mapping [14]
from hard-core bosons on a lattice or a Tonks-Girardeau
gas [15,16] to noninteracting spinless fermions, demon-
strating the integrability of these systems. Furthermore,
this mapping establishes that the time evolution of the
density distribution is identical for hard-core bosons and
noninteracting fermions. As a consequence, hard-core

bosons in one dimension expand ballistically and, asymp-
totically, undergo a dynamical fermionization during the
expansion [17,18]. In a transient regime, even initial 1D
Mott insulators with unity filling are predicted to become
coherent during the expansion and to dynamically form
long-lived quasicondensates at finite momenta [19–21]. In
the presence of doubly occupied lattice sites (doublons) or
even higher occupancies, the above mapping is not appli-
cable. The dynamics then become more involved and can
include intriguing quantum distillation effects, namely a
demixing of doublons and single atoms [22,23].
Several powerful theoretical methods have been used to

study the expansion dynamics in one dimension, including
the time-dependent density matrix renormalization group
method (t-DMRG) (see, e.g., Refs. [20,22,24]) and appro-
aches based on the existence of exact solutions (see, e.g.,
Refs. [25–29]). For interacting 2D systems, in contrast, one
needs to resort to approximate methods such as the time-
dependent Gutzwiller ansatz, which predicts dynamical
condensation even in two dimensions [30,31].
In this work, we experimentally study the expansion of

initially localized bosonic atoms in the lowest band of an
optical lattice. We investigate how the expansion speed
changes as a function of interaction strength and how it is
affected by the dimensionality of the system. Furthermore,
we identify the role of multiply occupied lattice sites in
the system and compare our results to t-DMRG [32–34]
calculations in the 1D case.
Experimental sequence.—The experiment starts with

a Bose-Einstein condensate of approximately 105 bosonic
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39K atoms in a three-beam optical dipole trap. The con-
densate is loaded into a blue-detuned, three-dimensional
optical lattice (lattice constant d ¼ �=2, wavelength
� ¼ 736:7 nm) with a lattice depth of V0 ¼ 33:0ð5ÞEr.
Here, Er ¼ h2=ð2m�2Þ denotes the recoil energy, m the
atomic mass, and h is Planck’s constant. For suitable
harmonic confinements, sufficiently strong repulsive inter-
actions, and adiabatic loading, a large Mott insulating core
with unity filling and a radius of (40–50) d is created in the
center [see Fig. 1(a)]. By employing a Feshbach resonance
at a magnetic field of 402.50(3) G we can tune the inter-
action strength during loading and thereby control the
amount of multiply occupied lattice sites. In the deep
lattice, where tunneling is suppressed [tunneling time
�d ¼ @=Jd � 58 ms, with the tunneling amplitude Jd and
@ ¼ h=ð2�Þ], the atoms are held for a 20 ms dephasing
period, during which any residual coherences between
lattice sites are lost [35] and all atoms become localized
to individual lattice sites. The resulting state after this
loading procedure is a product of local Fock states,

j�initiali ¼
Q

i
1ffiffiffiffiffi
�i!

p ðb̂yi Þ�i j0i, �i 2 f0; 1; 2; . . .g, where b̂yi
is the creation operator for a boson on site i. This state is
characterized by a flat quasimomentum distribution nk ¼
const, where k 2 ½��=d;�=d� denotes the quasimomen-
tum. During the dephasing period, we change the magnetic
field to set the desired interaction strength U=J for the
expansion. Because of the suppressed hopping during
this part of the sequence, this field ramp does not alter
the density distribution; i.e., the initial state prior to the
expansion is identical for all interactions. The expansion is
initiated by lowering the lattice depth along one or both
horizontal directions (x, y) in 150 �s to a depth of 8.0(1)
Er to induce tunneling with amplitudes Jx (� ¼ @=Jx ¼
0:55 ms) and Jy between neighboring lattice sites along

these directions. This is equivalent to a quantum quench
from U=J � 1 to a finite U=J. Simultaneously, the
strength of the dipole trap is reduced to a small but finite
value that compensates the anti-confinement along the
expansion direction created by the lattice beams (see
Ref. [36] for Supplemental Material).
The dynamics in the resulting lattice can be described

within the homogeneous Bose-Hubbard model:

H ¼ �Jx
X
hi;jix

b̂yi b̂j � Jy
X
hi;jiy

b̂yi b̂j þ
U

2

X
i

n̂iðn̂i � 1Þ:

Here, U denotes the on-site interaction strength, n̂i¼ b̂yi b̂i,
and hi; jixðyÞ indicates a summation over nearest neighbors

along the x (y) direction.
We monitor the in situ density distribution of the

expanding cloud using standard absorption imaging along
the vertical axis. The recorded column densities are inte-
grated over one direction and the resulting line densities
are presented in Figs. 1(b)–1(d) as a function of the expan-
sion time for the 1D case. In both the noninteracting and
the hard-core limits we expect a ballistic expansion which
splits the cloud into a left- and right-moving portion
[20,37,38], as can be seen in our numerical results shown
in Figs. 1(e) and 1(g). While the splitting can be clearly
observed in the experimental data for the noninteracting
case [Fig. 1(b)], the presence of a few multiply occupied
lattice sites decreases its visibility in the strongly interact-
ing case [Fig. 1(d)].
Expansion velocities.—To quantify the expansion dy-

namics we extract the half-width-at-half-maximum
(HWHM) from the line density profiles [39] and determine
the core expansion velocities vc [Fig. 2(a)] via linear fits to
the evolution of the HWHM at intermediate times [36]. In
both one and two dimensions, themaximum core expansion
velocity occurs in the noninteracting limit, where the sys-
tem expands ballistically. Because of an exact dynamical
symmetry of Hubbard models on bipartite lattices, the
expansion dynamics are independent of the sign of the
interaction [40] and we therefore focus the discussion on
the U > 0 case. In two dimensions, increasing the interac-
tion strength monotonically reduces the core expansion
velocity until it essentially drops to zero. In one dimension,
in contrast, a similar but much weaker suppression of the
expansion velocity extends only up to interaction strengths
on the order of the bandwidth U� 4Jx, while vc increases
again for stronger interactions and eventually reaches
values comparable to the noninteracting case.
The same qualitative behavior is evident in the t-DMRG

simulations for ten particles, shown as red triangles in
Fig. 2(a). Since the numerically calculated HWHM
suffers from rather large finite-size effects, we also present
t-DMRG results for an alternativemeasure of the expansion

velocity, namely vr ¼ ðd=dtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðtÞ � R2ð0Þp

, extracted
from the radius R2ðtÞ ¼ ð1=NÞPihn̂iðtÞiði� i0Þ2d2 (inset),
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FIG. 1 (color). Experimental sequence and time evolution
during the expansion. (a) Sketch of the experimental sequence.
(b)–(d) Experimental time evolution of line density profiles
during a 1D expansion for various interaction strengths (each
line is individually normalized). (e)–(g) Corresponding t-DMRG
calculations for eight atoms, plotted using cubic interpolation.
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where N is the particle number and i0 denotes the central
lattice site. It is more robust against finite-size effects
and allows an extrapolation to infinite particle number
[36], and, in our setup, exhibits the same qualitative
dependence on U. Moreover, at U ¼ 0, vr has an intui-
tive physical interpretation, as it is in this case equal to
the average expansion velocity vav. The latter is given

by the initial quasimomentum distribution through vav¼
1=ðN@Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kð@�k=@kÞ2nk

q
, where �k¼�2JcosðkdÞ denotes

the tight-binding dispersion relation. For the given initial

state, where nk is flat, this results in vav ¼
ffiffiffi
2

p ðd=�Þ, illus-
trated by the dashed line in the inset of Fig. 2(a). Usually,
one would associate a constant velocity with a ballistic

expansion and would expect
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðtÞ � R2ð0Þp / ffiffi

t
p

for dif-
fusive dynamics. In the case of the sudden expansion,
however, the interpretation is more complicated, because

the diffusion constant is density dependent and the density
distribution is inhomogeneous and time-dependent (see
Refs. [11,37] for details).
The fast expansion for strong interactions in 1D is a

consequence of the system entering into the hard-core
boson regime, where, at U ¼ 1, it can be exactly mapped
to noninteracting fermions, which expand ballistically

with vr ¼
ffiffiffi
2

p ðd=�Þ [36]. Even though hard-core bosons
undergo collisions and their quasimomentum distribution
changes over time [19,20], the above mapping guarantees
that the evolution of their density distribution is ballistic
and identical to the noninteracting case. In other words, the
conservation of the quasimomentum distribution of the
underlying noninteracting fermions severely constrains
the scattering processes, thereby preventing the dynamics
from becoming diffusive.
Starting from the hard-core boson limit, the decrease of

the expansion velocity towards smaller interactions can be
qualitatively understood by considering the dynamical for-
mation of doublons and higher occupancies. For U=J * 4,
isolated doublons in one dimension can be thought of as
heavy compound objects, propagating with typical effec-
tive hopping matrix elements on the order of J2=U [41].
While their formation is energetically suppressed at
U=J � 4, for smaller U the system can maximize its local
entropy through the formation of doublons (and higher
occupancies) during the early phase of the expansion
[see Figs. 2(b) and 2(c)]. Therefore, as U decreases, higher
occupancies begin to form and the expansion velocity
decreases. In addition, the possibility of creating higher
occupancies increases the phase space available for scat-
tering and therefore favors diffusive dynamics. For vanish-
ing interactions, the scattering cross section approaches
zero and the expansion becomes ballistic again with a

large velocity of vr ¼
ffiffiffi
2

p ðd=�Þ. Therefore, there has to
be a minimum of vc at some intermediate U, which turns
out to be close to the critical U=J � 3:4 for the 1D Mott
insulator to superfluid transition [42]. This is consistent
with other studies of quantum quenches, which observe the
fastest relaxation times close to the critical point [7,43].
The buildup of higher occupancies during the initial

expansion dynamics shown in Fig. 2(b) is monitored by
comparing the number of atoms left after a parity projec-
tion Npar with the total atom number Ntotal, yielding

fh¼ðNtotal�NparÞ=Ntotal. In the absence of triply or higher

occupied sites, fh measures the fraction of atoms on dou-
bly occupied sites [36]. While the expansion starts from an
initial state with essentially no higher occupancy, fh rises
significantly over roughly the first half tunneling time.
After this initial buildup, fh remains almost constant and
changes only on the much slower time scale of the expan-
sion [compare Fig. 2(c)]. This initial fast relaxation is
purely local, as can be seen in t-DMRG calculations com-
paring the relaxation timescale to the evolution of the
system without opening the trap [36]. The formation of
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FIG. 2 (color). Core expansion velocity and dynamical gen-
eration of higher occupancies. (a) Core expansion velocity vc for
experimental data in one dimension (black circles, lattice depth
(8, 33, 33) Er along (x, y, z), Jy � 0) and two dimensions (blue

circles, (8, 8, 33) Er, Jx ¼ Jy) and t-DMRG calculations for

N ¼ 10 particles in one dimension (red triangles). Experimental
error bars denote the standard deviation of the linear fits. Inset:
vr calculated by t-DMRG and extrapolated to infinite particle
number. Error bars are given by the uncertainty of the extra-
polation [36]. (b) Higher occupancy, as measured by fh, versus
expansion time in the experiment. For the points labeled ‘‘initial
state’’, the measurement was performed directly after the
dephasing period in the deep lattice [36]. (c) fh after an expan-
sion time of t ¼ 18�. Error bars in (b) and (c) show standard
deviations of averaging four data points. All lines are guides to
the eye.
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higher occupancies is accompanied by changes in nk and
results in an increase of interaction energy and therefore
a decrease in kinetic energy. The effect of the reduced
kinetic energy (as measured by vav) is, however, much
smaller than the observed reduction of the expansion
velocity [36]. We thus conclude that scattering processes
during the expansion are mainly responsible for the slower
expansion.

1D-2D crossover.—In Fig. 3 we analyze how the expan-
sion dynamics change when we gradually tune the dimen-
sionality from a purely 1D system towards a 2D geometry.
This is implemented by varying the depth of the lattice
along the y direction and thereby the tunneling ratio
� ¼ Jy=Jx for the expansion [44]. Upon increasing �,

the expansion dynamics at strong interactions change fun-
damentally. Instead of the fast expansion observed in the
1D case [Fig. 3(a)], the major fraction of the cloud simply
remains in the center [Fig. 3(c)]. Moreover, the column
density profiles shown in the insets of Fig. 3(d) exhibit a
characteristic bimodal structure. In the 2D case, this struc-
ture consists of a slowly expanding, round, diffusive core
on top of a square-shaped ballistic background and can be
seen for all moderate to strong interactions. In one dimen-
sion, on the other hand, a similar behavior is only visible
for intermediate interaction strengths.

In Fig. 3(d), we illustrate how the interaction depen-
dence of vc changes as we go from a 1D system with two
integrable limits to a 2D system, where only the noninter-
acting case is integrable. The expansion speed in the

noninteracting case is independent of �, since in this
case the dynamics along the two lattice axes are separable.
For all values of �, the expansion speed initially decreases
with increasing interactions. For small �, the core expan-
sion velocity increases again for strong interactions,
whereas, for �> 0:5, it remains minimal. The behavior
at large �, as well as the bimodal cloud shape, is analogous
to the dynamics of strongly interacting lattice fermions in
two dimensions, which were shown to be diffusive [11].
The square-shaped background consists of ballistically
expanding atoms originating from the edge of the high
density core, while collisions render the expansion diffu-
sive for atoms inside the core. Such diffusive dynamics are
consistent with the numerical observation that hard-core
bosons in two dimensions thermalize [45]. Our experi-
mental results show a qualitative difference between the
dynamics in one and two dimensions in the strongly inter-
acting regime, whereas theoretical studies using the time-
dependent Gutzwiller ansatz predict a qualitatively similar
behavior, independent of dimension [30,31,46]. Overall,
we observe that, for interacting systems, the expansion
along one direction is suppressed by an increased tunneling
along a transverse direction. This promotes the notion that
increasing transverse tunneling enlarges the accessible
phase space for scattering processes and therefore favors
diffusive dynamics.
Higher occupancies in the initial state.—Figure 4 illus-

trates the effect of a random admixture of higher occupan-
cies in the initial state on the expansion dynamics. This
admixture is created by loading the lattice at smaller
interaction strength and higher densities, such that no clear
Mott insulator will form. Nonetheless, the dephasing in
the deep lattice remains effective, such that the initial state
of the expansion can still be described as a product of
local Fock states, but with higher occupancies on some
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randomly chosen sites. While there is, as expected, no
significant effect of multiply occupied sites in the non-
interacting case, where each atom expands individually,
already at U=Jx ¼ 1 higher occupancies in the initial state
reduce the core expansion velocity. This reduction becomes
most dramatic close to the hard-core limit (U=Jx ¼ 10),
where the originally high expansion velocity quickly
approaches zero. In this limit, any higher occupancies
are long-lived [47] and their small effective higher-
order tunneling rate slows down the expansion [22,24].
Furthermore, the presence of multiply occupied lattice sites
in the strongly interacting limit can give rise to quantum
distillation processes [22] and, thereby, the formation of a
stable core of doubly occupied lattice sites [48].

Conclusion.—Experimentally, we find the fastest expan-
sions near the exactly solvable limits of the Bose-Hubbard
model, where additional conservation laws restrict scatter-
ing such that diffusion is not possible. These are (i) the
noninteracting limit, irrespective of dimension, and (ii) the
case of infinitely strong interactions in one dimension,
provided there are no higher occupancies in the initial
state. Deviations from these cases, either by finite inter-
actions, the crossover towards two dimensions, or an
admixture of higher occupancies in the initial state, lead
to a substantial suppression of the expansion. In the case of
the crossover to two dimensions at large U=J, the emer-
gence of diffusive dynamics in the core is additionally
signaled by the characteristic bimodal cloud shape previ-
ously observed in the fermionic case [11]. In one dimen-
sion at intermediate interactions or with initially multiply
occupied lattice sites, both experimental and t-DMRG
profiles suggest an almost bimodal structure here as well.
Therefore, we conjecture that the common reason for the
slow expansions seen in the experiments is the emergence
of diffusive dynamics in the core region of the cloud.
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