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Abstract: We present some details of the steady laminar flow fields that are generated
in a fluid filled cavity by the motion of one of the faces. The flow fields have been
obtained by the numerical solution of the Navier-Stokes equations in the Reynolds
number range 0 < Re < 1000. The streamline patterns clearly indicate the very
complicated nature of the eddy structures and their dependence on Reynolds number.
Further work is currently in progress to extend the computations to higher Reynolds
numbers in order that transition and turbulence in the cavity may be studied.

1. Introduction

The geometry we consider is shown in Fig. 1. The motion in a fluid filled rectangular
parallelepiped is driven by the motion of the wall x = 0 in the ^-direction. We normalize
all lengths by lyi the y-width of the parallelepiped, velocities by UQ, the speed of the moving
wall, time by I^/VQ and pressure by /WQ. The Reynolds number is then volyjv. Our aim
here is then to determine the flow structure in the cavity for all Reynolds numbers for
which the flow is steady and laminar in the cavity.

Whereas the 2-D problem has been studied in great detail the 3-D problem does not
seem to have gained as much attention. This is quite understandable since the computa-
tional requirements increase dramatically with increased dimension. The most important
3-D studies so far are due to the Stanford group (Koseff and Street 1984, Prasad and Kos-
eff 1989) and the Tokyo group (see Iwatsu et ol. 1989 for example). These studies have
clearly established the complex 3-D nature of the flow field with, in general, upstream and
downstream vortices and corner vortices in addition to the main eddy in the cavity (see
Fig. 1).

This paper presents some of the results of our own computations on such flows in
the steady laminar range. For the details of the method used see Shankar (1993) and
Deshpande (1993).

2. The laminar flow fields

When Re is very small the flow is determined by Stokes' equation, i.e., where the inertia!
terms are absent. In this range the 2-D problem can be easily solved semi-analytically (see
bhankar 1993). Figure 2 shows the streamline patterns for a square cavity and a cavity of
depth 5, It can be shown in general that an infinite sequence of corner eddies of decreasing
strength occupy the lower corners of the cavity. Our studies have shown that as the depth
increases the corner eddies merge to form the secondary and later primary eddies (Fig. 3).

For 3-D flows the flow fields have to be determined by directly solving the Navier-
otokes equations. For all the computations reported here, a grid of size 24 x 24 x 24
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was used. Figure 4(a) shows the streamline pattern in the symmetry plane (z = 0.5)
for Re = 0.1; this is similar to the result of the 2-D Stokes calculation. At Re = 1QQ
the situation has changed in that the main eddy centre is no longer on the mid-t/ plane
(Fig. 4b).

With increasing Reynolds number the flow field becomes highly 3-dimensional with
large asymmetries with respect to the mid-y plane (Fig. 5); the lower corner eddy increases
in size while an upper corner eddy is formed. Some particle paths at a Reynolds number
of 800 are shown in Fig. 6. Note especially that in 3-D flow fields closed streamlines are
likely to be rare.

3. Conclusions

The steady laminar flow field in a driven rectangular parallelepiped has been computed for
a range of Reynolds numbers. The results clearly show the complex nature of the 3-D flow
field. It is planned to extend the computations to the transitional and turbulent regimes.
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Figure 1. A schematic diagram of the flow in a rectangular parallelepiped.
The iKMulsmemional jtize of the box is Lx x 1 x Lz. The upper side moves
at unit speed in the Y-direction.
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Figure 2. Streamline patterns in a square cavity and a cavity of depth 5.
The numbers indicate stream function values.
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Figure 3. The evolution of the secondary main eddy from the primary comer eddy.
EC are the eddy centres. Note the eddies at the lower left comer of each figure.
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