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The resurgence of invasive disease caused by Streptococcus pyogenes (group A Streptococcus [GAS]) in the past 30 years has par-
alleled the emergence and global dissemination of the highly virulent M1T1 clone. The GAS M1T1 clone has diverged from the
ancestral M1 serotype by horizontal acquisition of two unique bacteriophages, encoding the potent DNase Sda1/SdaD2 and the
superantigen SpeA, respectively. The phage-encoded DNase promotes escape from neutrophil extracellular traps and is linked to
enhanced virulence of the M1T1 clone. In this study, we successfully used in vitro lysogenic conversion to transfer the Sda1-en-
coding phage from the M1T1 clonal strain 5448 to the nonclonal M1 isolate SF370 and determined the impact of this horizontal
gene transfer event on virulence. Although Sda1 was expressed in SF370 lysogens, no capacity of the phage-converted strain to
survive human neutrophil killing, switch to a hyperinvasive covRS mutant form, or cause invasive lethal infection in a human-
ized plasminogen mouse model was observed. This work suggests that the hypervirulence of the M1T1 clone is due to the unique
synergic effect of the M1T1 clone bacteriophage-specific virulence factor Sda1 acting in concert with the M1T1 clone-specific
genetic scaffold.

Streptococcus pyogenes (group A Streptococcus [GAS]) is a strictly
human pathogen, able to colonize the skin and throat asymp-

tomatically or to trigger mild, localized superficial infections, such
as impetigo and pharyngitis. Less frequently, GAS invades nor-
mally sterile body sites to cause systemic, severe, and often life-
threatening pathologies, including necrotizing fasciitis and toxic
shock syndrome. The virulence mechanisms that confer this inva-
sive capacity on GAS, allowing evasion of the host immune system
and penetration of deeper tissues, are complex and only partially
elucidated (1, 2, 3). Although disease incidence decreased mark-
edly in the first part of the 20th century, the past 3 decades have
witnessed a resurgence in invasive GAS pathologies (4–7). A non-
random association between invasive disease and a number of
GAS serotypes (M1, M3, M18, M28) has been reported, linked
particularly to the emergence of highly virulent subtypes, such as
the globally disseminated M1T1 clone (3, 7, 8), defined here as
GAS M1T1 strains containing the bacteriophage-encoded viru-
lence factors Sda1 and SpeA (5, 9, 10).

The diversification of GAS serotypes has been attributed to
molecular and genetic variations often related to the acquisition of
phage-associated virulence factors (7, 9, 11–13). Comparative
genomic analysis of the M1T1 clonal isolate MGAS5005 (14) and
the nonclonal M1 isolate SF370 (15) identified the main differ-
ences between these two GAS types as the carriage of different
prophages containing specific toxins (SpeC, MF2, and SpeI/SpeH
within SF370; SpeA and Sda1 within MGAS5005) and the pres-
ence in MGAS5005 of an M12-derived 36-kb genomic recom-
bination region that is absent in SF370 (6, 14, 16). The evolu-
tionary steps that have led to the emergence of the
hypervirulent M1T1 clone have been elucidated recently and
confirm the major role played by horizontal gene transfer mech-
anisms, which include unique prophage acquisition events, in the
epidemiology of GAS (17).

Much research has focused on determining the impact of indi-
vidual virulence determinants on the M1T1 clone virulence phe-

notype through “loss-of-function” gene knockout studies. Sda1,
encoded on an M1T1 prophage, is a potent streptococcal DNase
(18). Targeted mutagenesis of the sda1 gene sensitizes GAS to
killing within DNA-based neutrophil extracellular traps (NETs)
(19). For GAS M1T1, the onset of invasive disease is associated
with an in vivo switch to a SpeB-negative phenotype, where the
expression of the broad-spectrum cysteine protease SpeB is abol-
ished as a consequence of point mutations in the two-gene regu-
latory sensor kinase operon covRS (2, 20). The transcriptional shift
that results in the loss of SpeB and increased expression of Sda1
and other streptococcal virulence factors triggers systemic infec-
tion (1). In turn, it has been shown by gene knockout studies that
Sda1 expression provides selective pressure for the switch to the
hypervirulent covRS mutant M1T1 genotype (1). Other gene
products that also contribute to this selective pressure include the
virulence determinants M1 protein and the hyaluronic acid cap-
sule (21).

In this study, we investigated the impact of Sda1-encoding
phage carriage on virulence and invasive disease propensity by a
“gain-of-function” approach, via lysogenic conversion of the
M1 GAS strain SF370 with the M1T1 Sda1-encoding phage. We
demonstrate that the enhanced virulence of the M1T1 clone
results from the unique combination of the bacteriophage-spe-
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cific virulence factor Sda1 with the M1T1 clone-specific genetic
backbone.

MATERIALS AND METHODS
Comparative bioinformatic analysis of M1 SF370 and M1T1 5448 GAS
sequences. Whole-genome sequencing of the M1T1 strain 5448, a strain
representative of the globally disseminated M1T1 clone encoding the
DNase Sda1 (16), was carried out using the Illumina (San Diego, CA)
HiSeq 2000 system as described previously (17) and yielded a total of
8,879,651 paired-end 100-bp reads, corresponding to an estimated cover-
age of 987�. De novo assembly was performed using Velvet, version 1.1.05
(22), to produce a draft genome sequence composed of 36 scaffolds for a
total of 1,800,853 assembled bases. To optimize the assembly process
(which tends to counterperform with very high read coverage) and
achieve optimal performance, the data set was sampled down to 1 million
read pairs for an estimated 100� coverage assembly. The genome of the
M1T1 strain MGAS5005 (RefSeq accession no. NC_007297) (14) was
then used as a reference for reordering the 36 scaffolds of strain 5448,
using ABACAS (23), and for transferring annotation, using RATT (24).
To investigate variations in its genetic structure, the draft genome se-
quence of the M1T1 strain 5448 was compared with the completed ge-
nome sequences of MGAS5005 and the GAS M1 strain SF370 (RefSeq
accession no. NC_002737) (15) by using Easyfig (25). Reads were depos-
ited in the Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov
/sra). The SRA sample accession number is ERS123209.

GAS strains and culture. The GAS isolates used in this study are
SF370-Smr, a spontaneous streptomycin-resistant (Smr) mutant of the
sequenced M1 isolate SF370 (15), obtained by subculturing on selective
Todd-Hewitt (Difco Laboratories) agar supplemented with 1% (wt/vol)
yeast extract (THY agar) and 150 �g/ml streptomycin; GAS strain 5448
(see above); and 5448�sda-Cmr, an isogenic mutant of 5448 in which the
sda1 gene has been replaced with a chloramphenicol resistance (Cmr)
marker (19). Bacterial strains were routinely cultured on solid commer-
cial horse blood agar (bioMérieux, Australia) or in Todd-Hewitt broth
(Difco Laboratories) supplemented with 1% (wt/vol) yeast extract (THY
broth) at 37°C without shaking.

In vitro lysogenic conversion of GAS SF370-Smr. GAS 5448�sda-
Cmr was used as the phage donor strain, and SF370-Smr was used as the
phage recipient strain. Briefly, overnight bacterial cultures were diluted
1:20 in prewarmed THY broth and were grown statically to an A600 of
0.25. The 5448�sda-Cmr culture was treated with mitomycin C (0.2 mg/
ml) and was grown statically for 3 h at 37°C. In order to determine suc-
cessful phage induction, a 5-ml aliquot of this induced culture was re-
tained for the detection of phage DNA in the culture supernatant. Phage
DNA was purified as described previously (26). Briefly, a filter-sterilized

supernatant was used for phage DNA isolation via Benzonase treatment
(Novagen, USA) to eliminate genomic DNA contamination, followed by
phage extraction using phenol-chloroform-isoamyl alcohol (25:24:1)
(Sigma-Aldrich) and ethanol precipitation of DNA. Phage induction was
verified by PCR amplification of specific M1T1 phage-encoded toxins (see
Table S1 in the supplemental material). Lysogeny was performed by the
addition of 100 �l of induced 5448�sda-Cmr culture to 900 �l of unin-
duced SF370-Smr recipient culture, followed by static incubation at 37°C
for a further 3 h. This mixed culture was used to inoculate selective THY
broth (Cm, 2 �g/ml; Sm, 150 �g/ml) at a 1:10 dilution, and the mixture
was then incubated statically at 37°C for 48 h for the selection and ampli-
fication of lysogenized bacteria. Culture aliquots were plated onto selec-
tive THY agar (Cm, 2 �g/ml; Sm, 150 �g/ml) and were incubated over-
night at 37°C. Single colonies grown with double selection were tested by
PCR for the presence of M1T1-specific and M1-specific gene sequences. A
single Smr Cmr colony was selected and was designated SF370-
Smr(�5448.3 Cmr).

Allelic replacement to reconstruct the Sda1-encoding phage in the
SF370 background. Allelic exchange was used to replace the chloram-
phenicol resistance gene in SF370-Smr(�5448.3 Cmr) with the wild-type
sda1 gene from 5448. The methodology followed was that described pre-
viously (1). Briefly, the temperature-sensitive pHY304-sda vector (pSda)
carrying the 5448 sda1 gene and an erythromycin resistance marker was
employed. For selection of the plasmid, erythromycin was used at a con-
centration of 2 �g/ml in GAS and 500 �g/ml in Escherichia coli, and
bacteria were cultured at 30°C. Plasmid pSda was introduced into SF370-
Smr(�5448.3 Cmr) by electroporation (27), and chromosomal integra-
tion was achieved by double crossover after the removal of selective
antibiotics as described previously (28), resulting in GAS strain SF370-
Smr(�5448.3 Sda�).

Lysogen characterization. PCR amplification and Sanger DNA se-
quencing were used to confirm the identities of the SF370-Smr lysogens
and to determine phage and sda1 gene insertion sites in order to exclude
the occurrence of deletion events or other gene alterations during lysog-
eny. Genomic DNA was isolated from overnight liquid cultures by using
the DNeasy blood and tissue kit (Qiagen, CA, USA) according to the
manufacturer’s instructions. The primers and cycling conditions used for
PCR screening are listed in Table S1 in the supplemental material. The
hyaluronic acid capsule content in GAS cultures at an A600 of 0.4 was
determined by the Stains-All method as described previously (29). Both
SpeB in stationary-phase (overnight) supernatants and SpeC and Sda1 in
mid-logarithmic-phase (A600, 0.4) supernatants were detected by Western
blotting using standard protocols (30).

DNase activity and neutrophil resistance. DNase activity was assayed
essentially as described previously (18). Briefly, calf thymus DNA (Sigma)

FIG 1 Comparison of the GAS SF370 and M1T1 genomes. The linear diagrams show pairwise comparisons between the draft genome sequence of GAS
M1T1 strain 5448 (top) and the complete genome sequences of the GAS M1T1 reference strain MGAS5005 (RefSeq accession no. NC_007297) and GAS
M1 strain SF370 (RefSeq accession no. NC_002737). In each genome, prophages are shown as red (M1T1) or green (M1) boxes. Insertion sequences and
ribosomal operons in MGAS5005 are shown as orange triangles and black boxes, respectively. The M12-derived 36-kb recombination region is indicated
by gray boxes labeled M12. The colored blocks between each genome represent regions of conserved syntenic gene content, ranging in pairwise nucleotide
identity (according to BLASTn) from 100% (dark blue) to 99% (yellow). The diagrams were prepared using the Easyfig genome comparison visualization
tool (25).
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was incubated at 37°C with 2.5 �l of GAS supernatant (A600, 0.4) in acti-
vation buffer (1 mM CaCl2, 1 mM MgCl2, and 100 mM Tris buffer [pH
7.6]). A sample consisting of THY broth only was included in the exper-
iment as a negative control. After 5 min, EDTA was added to a final

concentration of 66 mM to stop the reaction. The reaction products were
then loaded onto a 1.0% (wt/vol) agarose gel and were stained with
ethidium bromide for DNA visualization. GAS survival following incuba-
tion with human neutrophils in vitro was assayed as described previously

FIG 2 Genetic characterization of SF370-Smr lysogens. (a) PCR amplification of GAS virulence genes speB, speC, speA, and sda1. Lanes 1, 5448; lanes 2, 5448�sda;
lanes 3, SF370-Smr; lanes 4, SF370-Smr(�5448.3 Cmr); lanes 5, SF370-Smr(�5448.3 Sda�). (b) Schematic illustrating the M1T1 �5448.3 phage insertion site
within the M1 SF370 genome backbone. In SF370-Smr(�5448.3 Cmr), the chloramphenicol resistance gene replaces the sda1 open reading frame of phage
�5448.3. The red line indicates the phage insertion point immediately adjacent to a tRNA-Ser sequence. (c) Alignment of the Sda1-encoding bacteriophage
attachment sites in wild-type M1T1 strains (MGAS5005 and 5448) and M1 lysogens SF370-Smr(�5448.3 Cmr) and SF370-Smr(�5448.3 Sda�). The sequences
of the wild-type strains and the lysogens are identical. Phage insertion causes duplication of the sequence at the insertion point, resulting in a set of direct repeats
(boldface). Brackets indicate the boundaries of open reading frames. The highlighted sequences represent the first (blue) and last (green) open reading frames of
phages �5005.3 and 5448.3. (d) Alignment of the insertion site of the sda1 gene within the Sda1-encoding bacteriophage in wild-type M1T1 strains (MGAS5005
and 5448) and the M1 lysogen SF370-Smr(�5448.3 Sda�). The sequences are identical. sda1 insertion by double crossover has occurred without disruption of the
sda1 open reading frame or of the 5= sequence containing the promoter region (the �35 box is framed in red and the �10 box in blue). The starting codon for
the sda1 gene is shown in boldface, and the sda1 open reading frame is underlined.
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(1, 31). Experiments were performed in biological triplicate using mid-
logarithmic-phase (A600, 0.4) GAS at a multiplicity of infection (MOI) of
10:1 (GAS to neutrophils).

Visualization and quantification of NETs. NETs were visualized and
quantified as described previously (21).

In vivo SpeB-switching assays and virulence. To determine the rate
of switching to a SpeB-negative phenotype in vivo, C57BL/J6 mice were
challenged subcutaneously with Gas at 1 � 107 CFU/dose, and SpeB-
switching assays were undertaken as described previously (1, 31). A mod-
ified azocaseinolytic assay (32) and culturing on Columbia skim milk agar
(33) were used to assess the expression of SpeB cysteine protease. To
determine the virulence potential of SF370-Smr lysogens, the humanized
plasminogen transgenic AlbPLG1 mouse model (34) was used for subcu-
taneous GAS infection as described previously (1, 17, 28, 30, 31).

RESULTS
Comparative genomic analysis of GAS strains 5448, MGAS5005,
and SF370. A de novo-assembled draft genome of M1T1 strain
5448 (17) was used here for comparative analysis with the com-
pleted genome sequences of the M1T1 strain MGAS5005 (14) and
the M1 strain SF370 (15) to confirm and visualize the nature and
position of genetic differences (Fig. 1). M1T1 strains MGAS5005
and 5488 are virtually identical across their entire lengths, with no
detectable sequence variation in the DNase Sda1 prophages that
promote GAS virulence and invasive disease capacity (�5005.3
and �5448.3, respectively) (1). Most of the observed disruptions
of synteny between MGAS5005 and strain 5488 were caused by
gaps in the draft assembly due to repeat regions, such as insertion
sequences and ribosomal operons (Fig. 1). Alignment of the three
genomes confirms that the main differences between SF370
and M1T1 GAS are attributable to the presence of distinct ex-
ogenous genetic elements. These comparative analyses high-
light the role of bacteriophages in GAS genetic diversity as
reported previously (9, 14).

Characterization of SF370-Smr lysogens. In vitro lysogenic
conversion of SF370-Smr to SF370-Smr(�5448.3 Cmr) was fol-
lowed by allelic replacement of the chloramphenicol resistance
marker with the 5448 sda1 gene to produce SF370-Smr(�5448.3
Sda�). To characterize the lysogens produced by these experimen-
tal procedures, the virulence genes speC (�370.1; strain SF370),
speA (�5448.1; strain 5448), and sda1 (�5448.3; strain 5448), and
the ubiquitous chromosomally located gene speB, were amplified
by PCR (Fig. 2a). As expected, all GAS strains were speB positive;
5448 was positive for speA; and SF370 isogenic isolates were pos-
itive for speC. Lysogens SF370-Smr(�5448.3 Sda�) and 5448 were
positive for sda1 (Fig. 2a). The �5448.3 phage attachment sites
and the sda1 reinsertion boundaries were also PCR amplified and
sequenced to confirm that phage and sda1 insertion had occurred
in SF370-Smr(�5448.3 Sda�) in the same genetic location as in
GAS M1T1 strains (MGAS5005 and 5448) (Fig. 2b). Comparative
sequence analysis showed that insertion of �5448.3 and of the
sda1 gene had not caused any deletions or duplications in the
SF370-Smr nucleotide sequence (Fig. 2c and d). Superantigen and
Sda1 DNase expression was examined in culture supernatants.
The Western blot data correlated with the PCR screening results,
with all isolates expressing SpeB in stationary-phase culture super-
natants (Fig. 3a) and only SF370 isogenic isolates expressing SpeC
(Fig. 3b). SF370-Smr(�5448.3 Sda�) also expressed Sda1 in mid-
log-phase culture supernatants, albeit at levels lower than those in
the M1T1 isolate 5448 (Fig. 3c). Confirming previous studies (35,
36), SpeA expression was undetectable in supernatants of in vitro-

grown GAS (data not shown). Hyaluronic acid capsule assays were
performed on SF370-Smr, SF370-Smr(�5448.3 Cmr), and SF370-
Smr(�5448.3 Sda�), and no significant difference in capsule produc-
tion between the wild type and the lysogens was detected (Fig. 3d). All
SF370 derivatives expressed higher capsule levels than the M1T1
strain 5448, in agreement with previous studies (17).

Resistance of GAS lysogens to killing by human neutrophils.
DNase activity was determined by coincubation of GAS culture
supernatants with calf thymus DNA. The levels of DNA degrada-
tion by SF370-Smr(�5448.3 Sda�) were greater than those for
SF370-Smr and SF370-Smr(�5448.3 Cmr) and were comparable
to that for the M1T1 strain 5448 (Fig. 4a). Since neutrophil killing
via DNA NETs plays a central role in bacterial clearance during
GAS infection, and since Sda1 has been directly linked to NET
degradation (19), we compared both the capacity to clear NETs
and the degree of survival of SF370-Smr lysogens with that of
wild-type SF370-Smr and the M1T1 strain 5448 when these strains
were coincubated with human neutrophils. Even though a signif-
icant increase in the ability to degrade DNA NETs, comparable to
that of M1T1 strain 5448, was observed for SF370-Smr(�5448.3
Sda�) (Fig. 4b and c), this lysogenized strain did not show in-
creased resistance to killing by neutrophils (Fig. 4d).

Invasive capacity and virulence of GAS lysogens. Carriage of
the sda1 gene has been characterized as a necessary selection trig-
ger for the in vivo phase switch of GAS M1T1 to a hypervirulent

FIG 3 Expression of virulence proteins and the hyaluronic acid capsule. (a)
SpeB production was detected in stationary-phase culture supernatants.
Lanes: 1, 5448; 2, SF370-Smr; 3, SF370-Smr(�5448.3 Cmr); 4, SF370-
Smr(�5448.3 Sda�). (b) SpeC expression in mid-log-phase (A600, 0.4) culture
supernatants. All lysogens expressed both SpeB and SpeC, as expected. (c) Sda1
expression in mid-log-phase (A600, 0.4) culture supernatants. (d) Hyaluronic
acid capsule production was examined using the Stains-All method (29). The
three M1 strains SF370-Smr, SF370-Smr(�5448.3 Cmr), and SF370-
Smr(�5448.3 Sda�) produced comparable amounts of hyaluronic acid cap-
sule, greater than the amount produced by the M1T1 strain 5448. Bars indicate
means; error bars, standard deviations (n � 3).
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phenotype (1, 17). We therefore tested the SF370-Smr lysogenized
strains for a propensity to switch to the hypervirulent covRS mu-
tant form. There was no evidence of an increased capacity to
switch to the SpeB-negative hypervirulent form for any of the
three SF370 derivatives characterized in this study (Fig. 5a). In
order to examine virulence potential, AlbPLG1 mice were infected
subcutaneously with GAS strains 5448, SF370-Smr, SF370-
Smr(�5448.3 Cmr), and SF370-Smr(�5448.3 Sda�). SF370 is known
to be avirulent in this mouse model (17), while the M1T1 isolate 5448
was hypervirulent (1, 17), with only 20% of the infected mice (at a
dose of 1.3 � 107 CFU) surviving by day 7 (Fig. 5b). At comparable
infection doses, SF370-Smr, SF370-Smr(�5448.3 Cmr), and SF370-
Smr(�5448.3 Sda�) were avirulent (Fig. 5b).

DISCUSSION

The resurgence of GAS invasive disease in the past 30 years has
coincided with the emergence and global dissemination of the

hypervirulent M1T1 clone. The M1T1 serotype evolved from the
ancestral M1 lineage via sequential horizontal gene transfer events,
involving homologous recombination and prophage transduction,
that led to the stable acquisition of two unique virulence determi-
nants, the superantigen SpeA and the streptodornase Sda1, and in-
creased expression of the extracellular toxins NAD�-glycohydrolase
(Nga) and streptolysin O (SLO) (2, 14, 17). Our sequencing efforts
confirmed the accumulation of the majority of the M1T1 serotype-
specific single nucleotide polymorphisms (SNPs), in comparison to
SF370, within these acquired regions (14). In the GAS M1T1 genome,
the prophage encoding sda1 contains all the modules necessary for
transfer and lysogeny, promotes invasive disease (1, 17), and there-
fore is potentially readily mobilizable to other GAS strains under ap-
propriate conditions. In this study, we set out to determine whether
the acquisition of this sda1-encoding phage was sufficient to confer
enhanced virulence in a non-M1T1 GAS background.

The induced sda1-encoding phage was transferred by a combi-

FIG 4 Sda1 activities and resistance to neutrophil killing of lysogenized SF370 isolates. (a) DNase activities of stationary-phase GAS culture supernatants were
determined by coincubation with calf thymus DNA. Lane 1, calf thymus DNA only (negative control); lane 2, 5448; lane 3, 5448�sda; lane 4, SF370-Smr; lane 5,
SF370-Smr(�5448.3 Cmr); lane 6, SF370-Smr(�5448.3 Sda�). Only 5448 and SF370-Smr(�5448.3 Sda�) supernatants, containing Sda1, degraded DNA. (b) The bar
graph shows the quantification of DNA NET induction per field of view after exposure to Sytox orange in wild-type GAS M1T1 (5448) and GAS M1 (SF370-Smr) and
in the lysogens SF370-Smr(�5448.3 Cmr) and SF370-Smr(�5448.3 Sda�). In SF370-Smr(�5448.3 Sda�), NET clearance was significantly greater than that for M1 GAS
strains SF370-Smr and SF370-Smr(�5448.3 Cmr) (P, �0.0007 for both comparisons) and comparable to that for the wild-type strain 5448. Values are arithmetic means
plus standard errors (error bars) and are representative of three independent experiments performed in triplicate. Statistical 1-way analysis of variance with Dunnett’s
multiple-comparison posttest (P, �0.05) was performed using GraphPad Prism software. (c) Visualization of Sytox orange-stained DNA NETs (red) induced by
coincubation of GAS serotype M1T1 strain 5448, M1 strain SF370-Smr, SF370-Smr(�5448.3 Cmr), and SF370-Smr(�5448.3 Sda�) with human neutrophils (MOI, 0.1).
Fewer NETs can be observed for the SF370-Smr(�5448.3 Sda�) lysogen, expressing Sda1, than for strains SF370-Smr and SF370-Smr(�5448.3 Cmr). (d) Percentage of
survival following coculture with human neutrophils in vitro. No significant difference was observed between the SF370-Smr parent strain and the lysogens, all of which
were less neutrophil resistant than the M1T1 strain 5448 (P, �0.0008). Bars indicate means; error bars, standard deviations (n � 3). Statistical 1-way analysis of variance
with Bonferroni’s multiple-comparison posttest (P, �0.05) was performed using GraphPad Prism software.
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nation of lysogeny and allelic replacement into the M1 strain
SF370 background. Previous studies using the knockout strain
5448�sda showed that in M1T1 strains, the Sda1 DNase plays an
essential role in the clearance of NETs and is necessary for the
switch to the hyperinvasive SpeB-negative covRS mutant form (1,
19). In our study, the SF370-Smr(�5448.3 Sda�) lysogen, which
expresses functional DNase Sda1, failed to display either enhanced
resistance to neutrophil killing, a capacity to switch to a hyperin-
vasive phenotype, or increased virulence. The moderate difference
in levels of Sda1 expression between the M1 and M1T1 strains
observed in this study may be due to differing regulation of sda1
gene expression. The M1 and M1T1 genomes differ by a num-
ber of SNPs that affect regulators and modify the expression of
a selected number of genes, including the has operon, slo, and
nga (17, 21).

The killing of microbes by neutrophils is a multifaceted process
involving DNA NETs as well as phagocytosis and the release of
proteolytic enzymes, cationic antimicrobial peptides, and reactive
oxygen and nitrogen species (37, 38). The evasive response of GAS
is in turn complex and requires the combined action of several
virulence factors (2). Protection against killing by human neutro-
phils is achieved not only via the production of DNases, such as
Sda1 (19), but also via the inhibitory activity of the M1 protein
(39) and the hyaluronic acid capsule (21) against the antimi-
crobial peptides embedded in NETs, as well as the activities of
the streptococcal complement inhibitor protein (40) and
streptolysin S (41).

Through the use of knockout strains, it was demonstrated pre-
viously that the presence of Sda1, M1, and the hyaluronic acid
capsule is essential for induction of the switch to a SpeB-negative
phenotype (1, 21). The proposed model for invasive disease devel-
opment sees the degradation of NETs by the Sda1 DNase as the
trigger for this phenotype switch in a subpopulation of M1T1 cells
due to spontaneous mutations in the covRS regulatory operon,
causing the upregulation of several virulence factors (the Sda1
DNase, the immunogenic M1 protein, the HasA hyaluronic acid
capsule, the endopeptidase IdeS, the cytolysin SLO, and the pro-
tease SPyCEP) and the downregulation of the cysteine protease
SpeB (2). This transcriptional shift promotes subversion of the

human plasminogen activation system and systemic dissemina-
tion to sterile sites of the body (1, 30).

In invasive M1T1 isolates, SLO and Nga expression is higher
than that in the ancestral strain SF370. Increased SLO and Nga
expression is due to the presence of the M12-derived 36-kb re-
combination fragment found in the M1T1 clone (14, 17). Utiliz-
ing M1T1 slo and nga deletion mutants, Cole et al. showed that
these factors do not contribute directly to SpeB switching and
selection pressure for increased virulence in a mouse model (21).
SLO nonetheless remains an important virulence factor impli-
cated in GAS virulence and the clearance of immune system com-
ponents at the site of infection (2, 42). In ancestral GAS M1
strains, such as SF370, hyaluronic acid capsule expression is higher
than that of M1T1 strains (17). Capsule expression also contrib-
utes to SpeB switching and virulence (21), and thus, differing lev-
els of capsule expression in SF370 may also potentially reduce
selection for covRS mutants in vivo. The SpeA superantigen is
absent in the ancestral GAS M1 strain SF370 (14). SpeA was first
associated with severe cases of streptococcal shock syndrome in
the late 1980s (4, 5). Recent gene knockout studies indicate that
SpeA is not directly involved in the mechanism of invasive disease
initiation, but its acquisition may aid in defense against the host
immune system and the subsequent dissemination of the hyper-
virulent M1T1 clone (17).

Given that a combination of GAS virulence factors promotes
neutrophil resistance, it is perhaps not surprising that the intro-
duction of the single gene sda1 into the SF370 background did not
enhance neutrophil resistance and virulence, despite improved
clearance of DNA NETs. Our experimental observations may be
explained by a requirement for a cohort of virulence determinants
expressed at a specific level to promote virulence, including Sda1,
the M1 protein, the hyaluronic acid capsule, and SLO (21, 42). In
this context, it is pertinent to this hypothesis that SF370 expresses
much higher levels of the hyaluronic acid capsule than GAS M1T1
strains (17), which may tip the balance away from the selection of
covRS mutants in the presence of neutrophils, resulting in failure
to promote selection for the hyperinvasive phenotype.

We conclude that the hypervirulence of the M1T1 clone is due
to the synergic effect of the M1T1 clone bacteriophage-specific

FIG 5 Characterization of SF370-Smr lysogen virulence. (a) Percentage of SpeB-positive isolates that switch to a SpeB-negative phenotype following a 3-day
subcutaneous passage in C57BL/J6 mice. Each data point represents a single infected mouse (n, 10 mice per strain). (b) Percentage of survival of humanized
plasminogen transgenic mice after subcutaneous infection with SF370-Smr (1.6 � 107 CFU/dose), SF370-Smr(�5448.3 Cmr) (1.2 � 107 CFU/dose), SF370-
Smr(�5448.3 Sda�) (1.1 � 107 CFU/dose), and 5448 (1.3 � 107 CFU/dose). While 5448 infection caused the death of 80% of the mice, all SF370 strains were
avirulent when an equivalent infection dose was used. Comparative analysis of survival curves (Mantel-Cox test) was performed using GraphPad Prism software.
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virulence factor Sda1 acting in concert with the M1T1 clone-spe-
cific genetic scaffold. This work suggests that the emergence of
hypervirulent GAS clones is dependent on a fine balance of viru-
lence determinants acting in unison.

ACKNOWLEDGMENTS

This work was funded by the National Health and Medical Research
Council of Australia, the Australian Research Council, and the U.S. Na-
tional Institutes of Health. S.A.B. is the recipient of an Australian Research
Council Australian Research Fellowship (DP0881347), and M.J.W. is the
recipient of a National Health and Medical Research Council of Australia
fellowship (631386).

All animal experiments conducted for this study conform to National
Health and Medical Research Council of Australia guidelines for the use of
animals in research and were approved by The University of Queensland
Animal Ethics Committee.

All authors report no conflicts of interest.

REFERENCES
1. Walker MJ, Hollands A, Sanderson-Smith M, Cole JN, Kirk JK, Hen-

ningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ,
Buchanan JT, Chhatwal GS, Kotb M, Nizet V. 2007. DNase Sda1 pro-
vides selection pressure for a genetic and phenotypic switch promoting
invasive group A streptococcal infection. Nat. Med. 13:981–985.

2. Cole JN, Barnett TC, Nizet V, Walker MJ. 2011. Molecular insight into
invasive group A streptococcal disease. Nat. Rev. Microbiol. 9:724 –736.

3. Olsen RJ, Musser JM. 2010. Molecular pathogenesis of necrotizing fas-
ciitis. Annu. Rev. Pathol. 5:1–31.

4. Cone LA, Woodard DR, Schlievert PM, Tomory GS. 1987. Clinical and
bacteriologic observations of a toxic shock-like syndrome due to Strepto-
coccus pyogenes. N. Engl. J. Med. 317:146 –149.

5. Cleary PP, Schlievert PM, Handley JP, Kim MH, Hauser AR, Kaplan
EL, Wlazlo A. 1992. Clonal basis for resurgence of serious Streptococcus
pyogenes disease in the 1980s. Lancet 339:518 –521.

6. Musser JM, Kapur V, Szeto J, Pan X, Swanson DS, Martin DR. 1995.
Genetic diversity and relationships among Streptococcus pyogenes strains
expressing serotype M1 protein: recent intercontinental spread of a sub-
clone causing episodes of invasive disease. Infect. Immun. 63:994 –1003.

7. Aziz RK, Kotb M. 2008. Rise and persistence of global M1T1 clone of
Streptococcus pyogenes. Emerg. Infect. Dis. 14:1511–1517.

8. Cunningham MW. 2000. Pathogenesis of group A streptococcal infec-
tions. Clin. Microbiol. Rev. 13:470 –511.

9. Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A, Kotb M. 2005.
Mosaic prophages with horizontally acquired genes account for the emer-
gence and diversification of the globally disseminated M1T1 clone of
Streptococcus pyogenes. J. Bacteriol. 187:3311–3318.

10. Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD,
Bailey JR, Parnell MJ, Hoe NP, Adams GG, DeLeo FR, Musser JM.
2005. Extracellular deoxyribonuclease made by group A Streptococcus as-
sists pathogenesis by enhancing evasion of the innate immune response.
Proc. Natl. Acad. Sci. U. S. A. 102:1679 –1684.

11. Banks DJ, Beres SB, Musser JM. 2002. The fundamental contribution of
phages to GAS evolution, genome diversification and strain emergence.
Trends Microbiol. 10:515–521.

12. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüs-
sow H. 2003. Phage as agents of lateral gene transfer. Curr. Opin. Micro-
biol. 6:417– 424.

13. Beres SB, Richter EW, Nagiec MJ, Sumby P, Porcella SF, DeLeo FR,
Musser JM. 2006. Molecular genetic anatomy of inter- and intraserotype
variation in the human bacterial pathogen group A Streptococcus. Proc.
Natl. Acad. Sci. U. S. A. 103:7059 –7064.

14. Sumby P, Porcella SF, Madrigalm AG, Barbian KD, Virtaneva K,
Ricklefs SM, Sturdevant DE, Graham MR, Vuopio-Varkila J, Hoe NP,
Musser JM. 2005. Evolutionary origin and emergence of a highly success-
ful clone of serotype M1 group A Streptococcus involved multiple horizon-
tal gene transfer events. J. Infect. Dis. 192:771–782.

15. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux
C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG,
Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA,

McLaughlin R. 2001. Complete genome sequence of an M1 strain of
Streptococcus pyogenes. Proc. Natl. Acad. Sci. U. S. A. 98:4658 – 4663.

16. Chatellier S, Ihendyane N, Kansal RG, Khambaty F, Basma H, Norrby-
Teglund A, Low DE, McGeer A, Kotb M. 2000. Genetic relatedness and
superantigen expression in group A Streptococcus serotype M1 isolates
from patients with severe and nonsevere invasive diseases. Infect. Immun.
68:3523–3534.

17. Maamary PG, Ben Zakour NL, Cole JN, Hollands A, Aziz RK, Barnett
TC, Cork AJ, Henningham A, Sanderson-Smith M, McArthur JD,
Venturini C, Gillen CM, Kirk JK, Johnson DR, Taylor WM, Kaplan EL,
Kotb M, Nizet V, Beatson SA, Walker MJ. 9 August 2012, posting date.
Tracing the evolutionary history of the pandemic group A streptococcal
M1T1 clone. FASEB J. doi:10.1096/fj.12-212142.

18. Aziz RK, Ismail SA, Park WH, Kotb M. 2004. Post-proteomic identifi-
cation of a novel phage-encoded streptodornase, Sda1, in invasive M1T1
Streptococcus pyogenes. Mol. Microbiol. 54:184 –197.

19. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M,
Feramisco J, Nizet V. 2006. DNase expression allows the pathogen group
A Streptococcus to escape killing in neutrophil extracellular traps. Curr.
Biol. 16:396 – 400.

20. Sumby P, Whitney AR, Graviss EA, DeLeo FR, Musser JM. 2006.
Genome-wide analysis of group A streptococci reveals a mutation that
modulates global phenotype and disease specificity. PLoS Pathog. 2:e5.
doi:10.1371/journal.ppat.0020005.

21. Cole JN, Pence MA, von Köckritz-Blickwede M, Hollands A, Gallo RL,
Walker MJ, Nizet V. 2010. M protein and hyaluronic acid capsule are
essential for in vivo selection of covRS mutations characteristic of invasive
serotype M1T1 group A streptococcus. mBio 1:e00191–10. doi:10.1128
/mBio.00191-10.

22. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18:821– 829.

23. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. 2009. ABACAS:
algorithm-based automatic contiguation of assembled sequences. Bioin-
formatics 25:1968 –1969.

24. Otto TD, Dillon GP, Degrave WS, Berriman M. 2011. RATT: Rapid
Annotation Transfer Tool. Nucleic Acids Res. 39(9):e57. doi:10.1093/nar
/gkq1268.

25. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison
visualizer. Bioinformatics 27:1009 –1010.

26. Banks DJ, Lei B, Musser JM. 2003. Prophage induction and expression of
prophage-encoded virulence factors in group A Streptococcus serotype M3
strain MGAS315. Infect. Immun. 71:7079 –7086.

27. Simon D, Ferretti JJ. 1991. Electrotransformation of Streptococcus
pyogenes with plasmid and linear DNA. FEMS Microbiol. Lett. 66:219 –
224.

28. Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG,
McArthur JD, Chhatwal GS, Walker MJ. 2008. M protein-mediated
plasminogen binding is essential for the virulence of an invasive Strepto-
coccus pyogenes isolate. FASEB J. 22:2715–2722.

29. Ashbaugh CD, Wessels MR. 2001. Absence of a cysteine protease effect
on bacterial virulence in two murine models of human invasive group A
streptococcal infection. Infect. Immun. 69:6683– 6688.

30. Cole JN, McArthur JD, McKay FC, Sanderson-Smith ML, Cork AJ,
Ranson M, Rohde M, Itzek A, Sun H, Ginsburg D, Kotb M, Nizet V,
Chhatwal GS, Walker MJ. 2006. Trigger for group A streptococcal M1T1
invasive disease. FASEB J. 20:1745–1747.

31. Maamary PG, Sanderson-Smith ML, Aziz RK, Hollands A, Cole JN,
McKay FC, McArthur JD, Kirk JK, Cork AJ, Keefe RJ, Kansal RG, Sun
H, Taylor WL, Chhatwal GS, Ginsburg D, Nizet V, Kotb M, Walker MJ.
2010. Parameters governing invasive disease propensity of non-M1 sero-
type group A streptococci. J. Innate Immun. 2:596 – 606.

32. Collin M, Olsen A. 2000. Generation of a mature streptococcal cysteine
proteinase is dependent on cell wall anchored M1 protein. Mol. Microbiol.
36:1306 –1318.

33. Ashbaugh CD, Warren HB, Carey VJ, Wessels MR. 1998. Molecular
analysis of the role of the group A streptococcal cysteine protease, hyal-
uronic acid capsule, and M protein in a murine model of human invasive
soft-tissue infection. J. Clin. Invest. 102:550 –560.

34. Sun H, Ringdahl U, Homeister JW, Fay WP, Engleberg NC, Yang AY,
Rozek LS, Wang X, Sjöbring U, Ginsburg D. 2004. Plasminogen is a
critical host pathogenicity factor for group A streptococcal infection. Sci-
ence 305:1283–1286.

35. Kazmi SU, Kansal R, Aziz RK, Hooshdaran M, Norrby-Teglund A, Low

Venturini et al.

2068 iai.asm.org Infection and Immunity

 on O
ctober 20, 2015 by U

niversity of Q
ueensland Library

http://iai.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1096/fj.12-212142
http://dx.doi.org/10.1371/journal.ppat.0020005
http://dx.doi.org/10.1128/mBio.00191-10
http://dx.doi.org/10.1128/mBio.00191-10
http://dx.doi.org/10.1093/nar/gkq1268
http://dx.doi.org/10.1093/nar/gkq1268
http://iai.asm.org
http://iai.asm.org/


DE, Halim AB, Kotb M. 2001. Reciprocal, temporal expression of SpeA
and SpeB by invasive M1T1 group A streptococcal isolates in vivo. Infect.
Immun. 69:4988 – 4995.

36. Kansal RG, Nizet V, Jeng A, Chuang WJ, Kotb M. 2003. Selective
modulation of superantigen-induced responses by streptococcal cysteine
protease. J. Infect. Dis. 187:398 – 407.

37. Nauseef WM. 2007. How human neutrophils kill and degrade microbes:
an integrated view. Immunol. Rev. 219:88 –102.

38. Nizet V. 2010. Bacteria and phagocytes: mortal enemies. J. Innate Immun.
2:505–507.

39. Lauth X, von Kockritz-Blickwede M, McNamara CW, Myskowski S,
Zinkernagel AS, Beall B, Ghosh P, Gallo RL, Nizet V. 2009. M1 protein
allows group A streptococcal survival in phagocyte extracellular traps
through cathelicidin inhibition. J. Innate Immun. 1:202–214.

40. Pence MA, Rooijakkers SHM, Cogen AL, Cole JN, Hollands A, Gallo
RL, Nizet V. 2010. Streptococcal inhibitor of complement promotes in-
nate immune resistance phenotypes of invasive M1T1 group A Streptococ-
cus. J. Innate Immun. 2:587–595.

41. Miyoshi-Akiyama T, Takamatsu D, Koyanagi M, Zhao J, Imanishi K,
Uchiyama T. 2005. Cytocidal effect of Streptococcus pyogenes on mouse
neutrophils in vivo and the critical role of streptolysin S. J. Infect. Dis.
192:107–116.

42. Chiarot E, Faralla C, Chiappini N, Tuscano G, Falugi F, Gambellini G,
Taddei A, Capo S, Cartocci E, Veggi D, Corrado C, Mangiavacchi S,
Tavarini S, Scarselli M, Janulczyk R, Grandi G, Margarit I, Bensi G.
2013. Targeted amino acid substitutions impair streptolysin O toxicity
and group A Streptococcus virulence. mBio 4(1):e00387–12. doi:10.1128
/mBio.00387-12.

Genetic Requirements for GAS M1T1 Clone Virulence

June 2013 Volume 81 Number 6 iai.asm.org 2069

 on O
ctober 20, 2015 by U

niversity of Q
ueensland Library

http://iai.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1128/mBio.00387-12
http://dx.doi.org/10.1128/mBio.00387-12
http://iai.asm.org
http://iai.asm.org/

	Acquisition of the Sda1-Encoding Bacteriophage Does Not Enhance Virulence of the Serotype M1 Streptococcus pyogenes Strain SF370
	MATERIALS AND METHODS
	Comparative bioinformatic analysis of M1 SF370 and M1T1 5448 GAS sequences.
	GAS strains and culture.
	In vitro lysogenic conversion of GAS SF370-Smr.
	Allelic replacement to reconstruct the Sda1-encoding phage in the SF370 background.
	Lysogen characterization.
	DNase activity and neutrophil resistance.
	Visualization and quantification of NETs.
	In vivo SpeB-switching assays and virulence.

	RESULTS
	Comparative genomic analysis of GAS strains 5448, MGAS5005, and SF370.
	Characterization of SF370-Smr lysogens.
	Resistance of GAS lysogens to killing by human neutrophils.
	Invasive capacity and virulence of GAS lysogens.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


