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ABSTRACT

The results of flight path reconstruction using UD factorisation-basedKalman filteringalgorithm
are presented. The algerithm wes implemented using PC-MATLAB functions and validated for
simulatedas well as real flight data. It is of considerable relevance to analysisof aircraft accident data

and general flight datafor zerospace vehicles.

1 INTRODUCTION

Flight path reconstruction is the process of
determining the time histories of an aircraft's position
and velocity from measurements made in flight. The
results of flight path reconstruction can be used to
identify the aerodynamic model of the aircraft through
regression analysis and hence to obtain aircraft
performance data.

The dynamic flight data recorded from sensors are
prone to bias and scale factor errors. Flight path
reconstruction utilizes the redundancy present in the
recorded inertial and air data variables to obtain the
best estimate ofstatestogether with scale factor and bias
errors.

Flight path reconstruction involvesestimation of the
state of the aircraft, and errors of inertial, air data and
Euler angle measurements. State estimation is done
using the aircraft kinematic equations relating
acceleration, velocity and displacement and including
biases and scale factors as unknown parameters. Thus,
flight path reconstruction becomes a joint state and
parameter estimation problem. UD factorisation-based
Kalman filtering algorithm is used for state and
parameter estimation. UD factorisation has certain
advantages: triangular structure of matrices, which

avoids time-consuming square rooting operations,
numerical reliability, stability and accuracy® ".

The UD filtering algorithm was initially
implemented on NAL's UNIVAC computer for linear
state estimation problem®. It has been used for analytic
sensor failure detection and for correction studies fora
fighter aircraft’. The application of the algorithm was
then extended to handling nonlinear kinematic
consistency checking for aircraft data".

In this paper, the results offlightpath reconstruction
implemented using PC-MATLAB functions are
presented. It is programmed in interactive manner for
PC AT 3861387 microcomputer. For linearisation of
nonlinear functions, a finite difference method is used.
The aircraft data is simulated using a nonlinear model,
including bias, scale factors and random noise. The
filtering algorithm is validated for linear/nonlingar
models using simulated data and some real flightdata.

2. FLIGHT PATH RECONSTRUCTION PROBLEM

Using the accelerometer and rate gyro
measurements and the kinematic equations of motion of
the vehicle, its states are reconstructed and the scale
factor and bias errors are estimated. The reconstructed
states are used to compute the flow angles and velocity
and compared with the measured angles and velocity.
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The mathematical model used for flight path
reconstruction, in general, is described by kinematic
equations with state variables consisting of three linear
velocities, «, v and w, and three Euler angles4, 8 and ¢.
The input variables are the linear accelerations, a, a,
and a,, and the angular rates, p, g and r. The
observations are the flight path velocity, V, angle of
attack, a, and sideslip angle, . The following are the
state and observation equations used:

Stare equations:

u=-qwtrvta —gsinsg

v=-rutpwta tgcosesiné
W=-pv+quta tgcosbcos¢

b= ptqsinttans Treosptane

6= gcosd —rsind

¥ = qgsindsecstrcosdsechd (1)

Measurement equations:

VVEL 7
g =tan” [V u}
a =tan-' [w/ 4] 2)

The input and output measurements could be
erroneous due to the random rnoise present, unknown
measurement biases and scale factor errors in
instrumentation. For our problem, control variablesp,
q, r, a, a and a are assumed to be biased.
Measurements ofobservables V, p and aare assumedto
be biased and improperly scaled. The process and
measurement roises are assumed to be Gaussian with
zero mean. The above kinematic equations can be
written in state space form as:

M =f(x,u0)t Gw () ;x{0) =x,

W) =hix, u, ) (3)
Ym (k) = y(k) + v (k) k=1,2,....,N
where

' =]u, v, w, d,0,y] is the state vector
W =[p, q,r, a, a,, a, | is the input vector
y" =[V, B, a] is the output vector

¥m =1 Vi, B, & ] isthe output measurement vector
T _ . .
w' = [ Wy, w,, w,, Wy, Wy, w, | is the process noise
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vector
vl = [Ay, ng, n, | is the measurement noise vector

The vector & containsthe unknown parameter :scale
factors and bias errors in the measurements. Given the
above nonlinear model and a set of noisy input and
output measurements, the flight path reconstruction
problem involves estimation of the system state x and
the unknown parameters €. This is done by UD
factorisation-based  extended Kalman filtering
algorithm for the present case.

3 EXTENDED KALMAN FILTERING AND UD
FACTORISATION

Extended Kalman filter is a sub-optimal solution to
a nonlinear filtering problem. The nonlinear functions
are linearised about each new estimated/filtered state
trajectory as socn as it becomes available.
Simultaneous estimation of states and parameters is
achieved by augmenting the state vector with the
unknown parameters and applying the filtering
algorithm to the augmented nonlinear model®: !°

The new augmented state vector is

xi = [xT67
Axgu,0) G
d=[ ==+ Two @
= fa (e u, 1,) + G4 w(r)
¥ (0= by (xar u,0) ©)

Y () = y(k) + (k) , k=1,....,n
where
@O=[F10"];GI=[G"10"]

The estimation algorithm is obtained by linearising
Eqns (4) and (5) around the priorfcutrent best estimate
of the state at each time and then applying filtering
algorithm to the linearised model. The linearised
system matrices are defined as:

8fa

b, | x, =2, (0), u=u(k)
and the state transition matrix

© K =exp[- A (A (k) .AT),

where
AT = tk+! — i

A (K=
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For the sake of clarity and completeness, the
filtering algorithm is given in two parts; (i) time
propagation, and (ii) measurement update.

3.1 Time Propagation

The current estimate is used to predict the next
state, so that the states are propagated from the present
state to the next time instant.

The predicted state is given by
tkﬂ

£, (k+1k) = %, (k) +th Falka (0, u(k)) de (6)

In the absence of knowledge of process noise, Eqn

(8) gives the predicted estimate of the state based on the
initial/current  estimate. The covariance matix
propagates from instant k to k+1 as

P (k+1/k} = & (k) P(k) 7 (k) G, (k)Q4 GT (k)
(7)

where P (k+1/k) is the predicted covariance matrix for

instant value of k+1, ¢, is the process noise related

coefficient matrix, and Q is the process noise covariance
matrix.

3.2 Measurement update

The Kalman filter updates the predicted estimates
by incorporating the measurements as and when they
become available as follows:

f(k+1) =5, (k+ k) T K (k+1) |y, (k+1) -
ha (%, (k+17k), u(k+1), 6} ] (8)

where X is the Kalman gain matrix.

The covariance matrix is updated using the Kalman
gain and the linearized measurement matrix from the
predicted covariance matrix P(k+1/k) as

P(k+1)= [{=K(k+ 1)) H (k+1) P(k+1/k)

[I-K(k+1) g k+D)] + g (k+1) Rk} K (k+1) (9)
The Kalman gain is given by

K(k+1) = P(k+1/k) HT (k+1) { H(k+1) P (k+1/k)

H (k+1) + Fe]'1 (10)

Substitution of Kalman gain matrix X (k+1) into the
process covariance matrix gives

Alk+1) =[I1-K (k+1) H (k+1) ] P [k+1/k) (11)

Since Egn (11) is numerically ill-conditioned, UD
factorisation-based implementation of Eqns (8)-(10) is
used for flight path reconstruction.

4. UD FACTORISATION FILTERING

The UD factorisationfilter has the following merits®.

(a) Itisnumerically reliable, accurate and stable,

(b) It is a square root type algorithm, but does not
involve square rooting operations,

(c) The algorithm is most efficiently and simply
mechanised by processing vector measurements
{observables), one componentat a time, and

(d} For linear systems, UD filter is algebraically
equivalent to the Kalman filter.

In the UD filter, the covariance update formulae
and the estimation recursion are reformulated, so that
the Covariance matrix does not appear explicitly.
Specifically, we use recursions for {# and » factors of
covariance matrix £ = UDU”, where U/ is a unit upper
triangular matrix and > isa diagonal matrix. Computing

and updating with triangular matrices involve fewer
arithmetic operations and thus greatly reduce the

problem of round off errors which might cause'™
ill-conditioning and subsequent divergence of the
algorithm. The filter algorithmis given in two parts:

4.1 Time Update

We have for the covariance update,

P(k+lk)=¢ P (K)®" + G, QGL (12)

Given £ = OUBU0" and Q as the process noise
covariance matrix, the time update factors UJ and D
are obtained through modified Gram-Schmidt
orthogonalisation process.

We may defineW =[® 01G, ] D =diag[D, Q]
with WH ={w;, wy ,...w, ]
P is reformulated as P = WDW’. The U, D factors of
WDW™ may be computed as described below.

Forj = n,..., 1the following equations are recursively
evaluated.

D :<W, ,Wf>D
U=(I/D,)<W,,»v,->D r=1,2.....j—-1 (13)
W, = W; — L},-fwr

where <w, ,w,> . = w’ D w,is the weighted inner
product between w; and w;.
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4.2 Measurement Update

The measurement update in Kalman filtering
combines aprion estimate £ and error covariance P with
ascalar observation z =a” x v to construct an updated
estimate and covariance given as:

K=Pala,

F=ftKz-a'f),

a=a Pa*tr

P=P—KaP (14)

where P = U D U", a = measurement matrix, r is the
measurement noise covariance, and :z = noisy
measurements.

Kalman gain X and updated covariance factors &
and D can be obtained from tre following equations:

f=0a; f=(, . f)

v=Df ;vid,di=1,2,.....n
dl:dlr/a|,01:r+Vlﬁ; (15)
Forj =2,...,n recursively the following equations are
evaluated :

;= a1 + v f

&j= 3’0'.’_1/0.]

Kie1 = K; + v; 4

where U = [B,...., 8]

and Kalman gain is given by K = K+ /a,

where d = is the predicted diagonal element, and d; is
the updated diagonal element of the O matrix.

As already mentioned, calculation of the matrices
A(k) and H(k) for nonlinear systemsis accomplished by
finite difference method. In the present mechanisation,
A and Hare computed by finite difference method as
againstthe analytical method, so that there is no need to
make any programming changes when alternative
nonlinear models are to be used.

o,  fly+Ax)—fi(x)
Bx; B ’ ij

]

A= an

fori=1,2,....m;andj=1,2,....n ;

Ax; = perturbations step sue =ex;

e 115

For a small perturbation Ax in each of the upkaown
variables, the perturbed values f (x; T Ax;) of each ofthe
unperturbed values f = «x; are computed. The
corresponding elements of A;; are given by the finite
difference in functions to changes in that parameter. A
stepsize of e =107 is considered to be adequate.

This factorisation algorithm has been implemented
in MATLAB (PC AT 386/387) using the existing
functions of MATLAB as well as newly developed
functions.

5. VALIDATIONWITH SIMULATEDDATA

To validate the code developed and to assess the
performance oi the filter, three cases are considered.

Case I: Shori period dynamics of an aircraft is simulated
using the following state and observation equations.

State equations:

. Zu

o= _U_g— +q+ by +w;
q=M,atMq+Mybe+b, w (18)

Observation equations:

a,=a+ vV
Gm=q +V2 (19)
~Z

n

RI:

a + bias +v,

The system equations are written in state spaceform
as:

x=Ax T Bu *+ noise
z = Hx + noise (20)
wherex = [ag] isthe state vector

z =[a,,,fm, 1] isthe measurement vector

Matrices A, B and Hare given in Appendix 1{Data
file lisimdat.m). A doublet is used as input to generate
the responses. Simulated data is generated by using
function DLSIM with a sampling time of 0.03125 s.
Ramdom noise with variances equal to 20 per cent of the
true signal variances is generated using RAND, and
added to the statesand measurements. The appropriate
noise statistics are fed into the filtering algorithm along
with the simulated data trajectories and the states are
estimated. Figures. 1 and 2 show simulated true and
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noisy states and measurements. The results of UD
filtering are presented in Figs. 3to 6. In Fig.'3, the
estimated measurements are plotted against the noisy
measurements. In Fig. 4, the estimatedstates areplotted
along with the standard deviations. Figure 5 shows
residuals with their bounds computed from the
estimator results. Only 2 per cent of the samples exceed
the hounds. In Fig. 6, the autocorrelations of the
residuals are plotted with the bounds. Less than 5 per
cent of the autocorrelation values are out 0fthe bounds,
confirming that the filter residuals are white.

For the estimated states, the bounds shown in Fig. 4
are the standard deviations computed from the
estimated covariance P.

— TRUE....NOISY
0.1
0.05
T 0
~0.05
~0.1 .
0] 5 10

q rad/y

-0.2 —

0 5 10
TIME (s)

Figure 1. Truoeand noisy states (Case I).

iation =V, p
Standard deviation = (UDUM), (21)

Covariance of the residuals is computed using
R, (k+1) = H(k+1) * P(k+1/k) * H (k+1)

+ R (k+1) (22)

— TRUE....NOISY

0.1; i
O-% a M
of”

ara W

~0.05 |

-0.1

0.2

q rad/s

0.2 ' :

nzg

TIME (s)
Figure 2. True and noisy measuremeats (Case I).

The Values = V'3« (R (k+1),, are plotted in Fig. 5
bounds for residuals. If the covariance estimates are
reasonable, 95 per cent of the samples should lie within
the interval™".

The bounds for the autocorrelation function, which
are used as a check for whiteness of residuals, are
computed using * 1.96/\'N, where N is the number of
samples.

Case II: The following fourth order non-linear model
was used to simulate the aircraftdata py giving a doublet
to the elevator. Fourth order RK integration method is
used for simulation and the sampling time is chosen
as0.03s.
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—ESTM .. ..JOISY

rad

q rad/s

nzg

-05 ' |

 TIME (s)
Figure 3. Estimated and nolsy measurements (Case I).

The values of the derivatives used in simulation are
giveninTable 1.

Table 1. Derivatives used in simulation of non-linear longitudinal

a/c data (Case I)

Derivative Value
Co 0.0413
Cru -0.0581
Cow 41570
Cio -0.1929
C, 0.2862
Cow —4.1040
Cor -0.0891
Co 0.1048
Cong -8.1959
Crnw —-0.4894
Crnte -1.4014

BOUNDS
0.15
01¢ .
£ 005 / .
0 T ]
-
-0.05 n
0 3 10
0.4
)
0.2} A
= 0 ——
|
-0.2 :
0 5 10
TIME (s)
Figure 4. Estimated states with bounds (Case I).
State equations:

i ] qgs u LW
= —agw— — + e+ C,.—) + Felm
U qw — gs5In 9+ m (Cx" C.m U[] "U(l )

gqs w
v o= — -— + Cow
w qu +geosBcos b + -~ —(C, v
u ,
+Cp— (23)
U,
qs u w
=——(C, + C,,—+C,o ) + felm
axm m ( i} Uﬂ U()) f
qs u w
=— + —+ — 24
aZm m (CZB CZH Uu CZW U() ) ( )
m =4

For longitudinal flight path reconstruction, the
following third order model was used.

bp=—-gw+a, —gsin
W= gquta, tgcose
0=gq

434 i#ﬂ-—
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....BOUNDS

q resi

¢ resi

Z Tesi

TIME (s)
Figure 5. Residuaks with bounds (Case I).

Measurement equations:

VeV
a-= Ta"_l [(w_qxu + pyu)lu] (25)
9,, =9

Biases were added to the accelerationsa,, a,, g and
V and scale factors applied to a measurement. Random
noise with 20 per cent of signal variance was added to
each of the states and measurements. Figures 7 and 8
show the true simulated states and measurements
plotted againstthe noisy states and measurements.

The following model was used for the filtering:

11&

... BOUNDS

WTO OR arei

WO COR gresi

AWO COQDnzre i

10

LAG TIME (s}

Figure 6. Autocorrelation of residuals with bounds (Case I).

State equations:

it=-(qm —AQ)w t (A, —AA,) -gsin®
W= (qu—AQ)u T (A —AA4,) tgcosd
b= (g — Aq)

Observation equations:

V= V2 T w?) T AV
a,,= K, tan-' (%) + AV
9, =9

(27)

(28)
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For the above model, the augmented state and input
vectors are given by:

xI=]u,w,0;AA4,, A4, Aq, V, Aa, K, ] 29
Up = {Aums Aum, 62}

— TRUE ... NOISY

0.4

f#rad

k

-0.4

w(m/s)

275

210

u{m/s)

205 f=

200l 2 .

TIME (s)

Figure 7. True and noisy states (Case II).

Figure 9 is a cross-plot of estimated and noisy
measurements. Figure 10 shows the three states and
augmented states plotted along with their standard
deviations. InFig. 11the residuals are plotted with their
bounds. About 15 points of the residuals are out of
bounds, giving a confidence of about 5 per Cent in the

436

— TRUE...NOISY

220
215 4
> 210F .
205 _ !
0 5 10
e
=
_0.40 - 5 10
TIME (s)
Figure 8. True and noisy measurements {(Case ).
estimates. From the autocorrelation function of

residuals plotted in Fig. 12,it isevidentthat the residuals
form a white process. The velocity rms error and error
in theta are plotted in Fig. 13.The velocity rms error is
computed using the relation

Veims =V —a) + (v - 92 T (w - w)? (30)

and error in theta is (0 — ).

14
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—ESTM ....NOISY

0.4

Orad
O

TIME (s}
Figure 9. Estimated and nolsy messurements (Case IIj.
The values of the scale factors and biases used in
simulation, the starting values for filtering and those

estimated through the algorithm along with their
standard deviations are listed in Table 2. The closeness

of the values and the low standard deviation bounds on
the estimated states validate the algorithm developed
forboth linear and nonlinear cases.

Case 111: Flight path reconstruction for real flight data
of atransport aircraft.

Flight path reconstruction of longitudinal dynamics
ofatransport aircraft isdone using the following seventh
order state equations and seven measurements.

State equations:

= —(qm —AQ)W+ v T (@ —ba) —gsin 8
v=—r utp,wta Tgcosbsind
W=—p,v+(gm—Ag)u +(a,, — Aa,) + gcosOcosd

¢ =py+(g. - Ag)sindbtan8 +rycosbtand  (31)
0=(gn— Ag)cosd — r, sin

Y =((go —Ag)sind +rcos ) secd

h=usind— vsindcosd — wcospcosh
Measurement equations:

Va= V2 + v+ W

Bm =K tan”" [vwiu] + AB

a, 5 K, tan-' {wiu] + Ax (32)
9, =9
bm =
Y =1
h,=~h

A typical time segment of 12.0swith a sampling time
oF 0.055 isused in the analysis. Figure 14 isaplot of the

Table 2. Simulated and estimated bisses and scale factors (Case II)

Paragieter Value usedin Initial value Estimated value
+(SD)

Az, 0.1128 0313 0.1877 (0.0250)
Aa, 0.5078 0.707 0.5463 (0.0878)
Aq 0.00039 0.0005 0.0006 (4.36e - 5)
Aa 0.002 0.0005 £.0008 (0.0006)
AV 5.0 7.0 5374 (3.64)
K, 1.2 10 1.2010 (4.86e—5)

150
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.. BOUNDS
1 T 15 ' !
NE 1 0 S Te gt T T i AL
e E W
: E
@ > 5 w\w_ |
[ ;e q.r""‘l' ..............
OO > lo
1.4
1.2 q
g T
< - |
!
08 ‘
° > - 10
:
’ ° 10
- 0.6
ot q E
E <
-02} q 2
-0.4 )
° > 10
o bounds TIME (5)
Figure 10. Estimated siates and (Case TH).
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BOUNDS .... BOUNDS

10
1 |
= .
[+ 4
(0]
&)
o
- [—. i
]
<
-0.5 .
10 0 5 10
0.2 1
05} -
0.2 |
0 5 10 10
TIME{s) LAG TIME({s)
Figare 11. Residuals with bounds (Case IT). Figure 12. Autocorrelation of residuals with bounds (Case II).
4 0.02 :
3 O%’”\‘,"w B
5
2 -0.02}F .
w
1 T -0.04} .
0 - -0.06 :
o] 5 10 0 5 10
TIME (s) TIME {s)

Figure 13, RMS ervor in estimation of velocity and error in estimation of theta {Case IT).
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—ESTM NOISY -—ESTM NOISY

= 100} 1
| £ .
> 9P _ 0.15
951 - i
0 5 10 15 = 15
5355
R & 5300 .
k x
= 1 T s2s0 :
-0.01 ' N 5200 5 20 15
0 5 10 15
| 0.25
0.2
) 1 =
—0.005 A - E
-0.01! Re 215
-001 0.1
10 15
0.11
521
5.205 -
?E 5_2 p
3
5.195 .
5.19 ‘ .
0 5 10 15
TIME {s)

Figure 14. FEstimated and real data measurements (Case 1),
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5200
0
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=-BASED FLIGHT PATH RECONSTRUCTION

BOUNDS

-

2 —

15
01} -
[
202 : :
0 5 10 15
53 -
8525k =
5 2 w -
E 515} -
58 50 o 10 5
5_1 I |
5 10 15
5)(10'3
|
2 0 .
a '—'\
-5 . '
0 5 10 15

TIME (s)

Figure 15. Estimated states and parameters with bounds (Case III).
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-3 BOUNDS
4 410 . :
% 2} '-'--'"‘, .""‘\ .
N ERR/A NP
-2t o T
_4 A L
0] 5 10 15
005 -
O —"\J/_‘—-——-——- —~
=
S 005} 4
-0t " .
6] 5 10 15
1.0t
1 4
" oe9} ]
098 s s
0 5 10 15
TIME (5)
Figure 15.
curve fit between the measured and estimated

measurements. Figure 15showsthe estimated statesand
parameters with their standard deviations. From Fig. 14
it is seen that the match between the estimated and
measured trajectory is not good. The measured
responses reveal that there is time error in considering
the a measurement. A closer look at the measurement
model showed that the corrections in position errors of
sensors to measure V, e and B with respect to the centre
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4'“\_' Bt

bqg (m/s)

(=]
vk
S
7

f rad

o
0-|L
S}

15

1.004

1.002

T
A

0.998

T
A

0.996 I
o

TIME(s)

{continued)

of gravity were not made. These corrections were
incorporated in the measurement model and Fig. 16
shows the improved response matches. Figure 17 is a
plot of the convergence of states and parameters. The
convergence of some of the parameters is poor; the
response match of some of the lateral measurements is
also poor. This is mainly because the maneuvre being
analysed is a longitudinal one and hence the lateral
mode is not excited and as such these can be removed
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] ....NOIS —FESTM ....NOISY
105 ESTM .. OISY 0.15 - :
100 .
= 3
E = ]
- O5} -
4. L J 5
%0, 5 10 15
5350
0.005 5300 -
o £
= 5250 + §
= 0.005 i . 5 5250
|
—0.014 5 10 15 52006 5 10 15
0.01 0.25 ,
0.005 } ~ |
-] : 'g
5 0 1 2
~0.005 i
-001 -
0 5 10 15 15

521

5.205
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52

5.195
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Figure 16. Estimated and real data measurements (Case IT).
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Estimated states und parameters with bounds (Case III).
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x10-3 ... BOUNDS I x10~3 ... BOUNDS
4 . —t 4 ]
' 2 .,"' .'-‘ _-"‘- * B —_ .
: 0 r-_‘-h-._-‘—;-—_\//l'i'\\\//\\ 7] ; h
E .. . . .. - .. =3
-2t ) . J
—_ 4 i i
0] 5 10 15 15
01 0.01
0.05+ .
T - 0 1
oo § &
0.01¢ :
-0.05 )
-0. A 4 ~-0.02 4 4
]O 5 10 15 0 5 10 15
1.01 - - 1.004 —
1.002} .
1 ;
% 1 1
099} g
0.998+ 1
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Figore 17. {(continued)
Table 3. Estimated scale factors and biases with their standard deviations (Case 1I1)
Parameter Initial value Estimated value Standard deviation
Aa, 0.000 -.0034 9.527e—04
Aa, ow 4.592e—04 0.002
Aq 0.000 2.553e—05 5.229¢~06
Ao 0.000 0.013 2.415¢—04
Ap ow —0.0186 6.25¢—05
K. 1.000 0.995 6.06e—07
Ky I.wW 1.0087 3.12¢—08

6. FURTHER SCOPEOF APPLICATION OF FPR

from the observations. The parameters estimated for ALGORITHM
the transport aircraft with their standard deviations are The UD filter-based algorithm can be modified to
listed in Table 3. include the measurements from differentsets of sensors,
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¢.g., radar measurements, telemetered signals from the
vehicle, etc. This requires formulation of measurement
models appropriate to the type of measurements being
used.

Suppose there are several different types of sensors
which provide measurements on m physical responses.
Some of the sensors may measure the same quantity
providing redundant measurements. There may be
situations where the different measurements required
are obtained from different sets of measurement
sources. The Kalman filter algorithm can be used to
handle all these various situation so as to get the best
estimates of the states of the vehicle.

The output measurement equations can be written
as:

n=H;(x,u,90)
¥m (K)=y (k) tv, (k) (sayfor onboard measurements)
Y2 :HZ (x’ u, 0) (33)

¥mz2 (k) = y2 (k) +v; (k) (say for measurements from
radar)

v; and vz are the measurement errors for the two sets of
sensor measurements. Optimal use of this combined
information model would generally give more accurate
FPR results. Appropriate changes in the covariance
matrices for the measurement of noise processes could
be incorporated to handle measurements from various
sensors. This aspect has applications in FPR of missiles
and other aerospace vehicles and accident data analysis
requiring accurate estimation of position of the vehicle.
Since the algorithm is validated for linear/nonlinear
systems with simulated and real data, presently efforts
are on toexpandthescopeofthealgorithmonthe above
lines. It is also being updated to perform aerodynamic
parameter estimation, thereby providing a unified
methodology for flight data analysis using PC-based
MATLAB. This alternative methodology handles
process noise as well as measurement noise, unlike the
output error and equation error methods which handle
respectively only measurement noise and process noise.

7. CONCLUSION

In this paper, the implementation and evaluation of
UD filtering algorithm for FPR are described. The
algorithm is mechanised using existing as well as newly
developed MATLAB functions implementable on PC
AT 386/387 microcomputer. The results show that the

446 m

code is validated for both simulated and real data. It can
be extended to handle FPR for missiles and other
aerospace vehicles. The algorithm developed can be
used for aerodynamic parameter estimation as well. In
this context. it is contemplated to obtain information on
the covariances of noise processes (control input and
measurement noise) by using time series modelling
approach.
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Appendix 1

% function fa. b. h, d. x0, ue] = lisimdat ()
% data file for simulation of linear data-carel
% a. b. c. d are system matrices
%x0 — initial condition an states. uc - doublet input used for %
simulation
functionfa. b. e, d. «l, ue] = lisimdat (N)
a=[-0.753088 1.0 ;
- 1.37662 — 1.11833] ;
b=[0.0;:
- 2.4903) ;
c={10;
01,
6.0440] ;
d=[0;0;0]; ku = .1;
0 =[0.00.0};
uz =zeros (1:5) ;
up = ku *ones (1:30) ;
un = — ku *ones (1:30) ;
NN =N-65;
uzi = zeros (1:NN) ;
uc = [uz un up uzl};

% END of file

% datafile for U D filtering of linear data-casel

% function {u, nx, ns, nw, ny, xte] = lifildat

% wu is the upper triangular matrix for filtering

% nx = total NO. of augmented states

% ns = NO. of states. nw = order of the measurement noise matrix
% ny = NO. of observables, xte = initial values for filtering
function [u, nx, ns, nw, ny, xee] = fildatal

u = [.0001 01 0;0.000401} ;

nx=12;

ny =3;ms=2;nw =2,

ate = [0.040.1} ;

% END offile

% function [ud, q, ¢r, ax, ay, nw, np, xte] = gkfildat

% data file for simulation of non linear data-casell

% u isthe upper triangular matrix for filtering

% nx = total NO. of augmented states

% nw = order of the measurement noise matrix

% ny = No. of observables, xte = initial values forfiltering
% np = No. of parameters

% g = process NOiSe covariance matrix ;

% Cr =measurement noise covariance matrix ;
function fud, ¢, cr, nx, ny, nw, np, xte] = gkfildat
nx=9.np=6:ny =3;
xte =[208.0 £8.00.15 .313.707 .0005 7.0 .004 1.0] ;
ud = eye (nx) ;
L =[9.01.0.0025 .04 .044.0e—7 4.04.0e—5 .04]

fori=1:nx

ud (i, 1) = wu (i) ;

end
gmat = eye (nw) ;
zs =zeros {np, nw) ;
gmat =[gmar ; 25} ;

ud ={ud gmat] ;
qdiag = [0.4392 5.5078 .0008]; q = eye (ns) ;
fori= lins

qli,§) = gdiag (i),
end
er =10.5870 00;0 0.0002 0;0 0 .0008]
%, END of FILE

% Initial data for filteringrealdata
% u is the upper triangular matrix for filtering
% nx = total NO . of augmented states
% nw order of the measurement noise matrix
% ny NO. of observables, xre = initial values for filtering
% np No. of parameten
%  =process NOISe covariance matrix;
% Cr =measurement noise. covariance matrix;
% fuction [ud, g, r, nx, ny, xte] = realdat
function fud, g, cr, nx, ny, nw, np, xte] = realdat
nx=;nw=4;ns=4,np=11,
ny=6;
xte =[9.15 — 0017 103.6 .1782 — .66 .42 — 5.50 .041 0712 — 1.02
-21.78 - 1.23.204 — .21 .86] ;
ud =eye (nx) ;
reer = §0.010.0001 1.0 0.01 .0001 .0001 (.0841 .0061 .0001 .0064 5.85
0.0196 .0001 .0001 .0001] ;
fori=1:nx
ud (i, 1) = uu ();
end
gmat = eye (nw) ;
zs = zeros (np, nw) ;
gmat = [gmat ; z5]
ud={ud gmat|:
gdiag=[4.0 - 4 1.6d— 69.04—2 1.6d 4] ;

fori=1:ns
q(. i) = qdiag (i)
end
rdiag = [4.0d—6 1.64-99.0d-2 1.6d—4 1.0d-9 1.0d—9] ;
cr =eye(ny) ;
fori= t:ny
er (i, 1)=rdiag (J);
end

% END OF FILE
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