
Dcfena sdence 3 oumal. Vol43, No 4. October 1993, w 429-447 
@ 1993. DESIDOC 

PC-Based Flight Patb Reconstruction Using 
UD Factorisation Fdtering Algorithm 

Girija Gopalaratnam and J.R. Raol 
fight Mechanics and Control Division 

National Aerospace Laboratories, Bangalore - 560 01 7 

ABSTRACT 

The results of flight path recomtruction using UD factorisation-based W a n  filtering algorithm 
are presented. The algorithm was implemented using PC-MATLAB functions and validated for 
simulated as well as real flight data. It is of considerable relevance to analysis of aircraft accident data 
and general tlight data for aerospace vehicles. 

1. INTRODUCTION 

Flight path reconstruction is the process of 
determining the time histories of an aircraft's position 
and velocity from measurements made in flight. The 
results of flight path reconstruction can be used to 
identify the aerodynamic model of the aircraft through 
regression analysis and hence to obtain aircraft 
performance data. 

The dynamic flight data recorded from sensors are 
prone to bias and scale factor errors. Flight path 
reconstruction utilizes the redundancy present in the 
recorded inertial and air data variables to obtain the 
best estimate of states together with scale factor and bias 
errors. 

Flight path reconstruction involves estimation of the 
state of the aircraft, and errors of inertial, air data and 
Euler angle measurements. State estimation is done 
using the aircraft kinematic equations relating 
acceleration, velocity and displacement and including 
biases and scale factors as unknown parameters. Thus, 
flight path reconstruction becomes a joint state and 
parameter estimation problem. UD factorisation-based 
Kalman filtering algorithm is used for state and 
parameter estimation. UD factorisation has certain 
advantages: triangular structure of matrices, which 

avoids time-consuming square rooting operations, 
numerical reliability, stability and accuracy". 

The UD filtering algorithm was initially 
implemented on NAL's UNIVAC computer for linear 
state estimation problem6. I t  has been used for analytic 
sepor failure detection and for correction studies for a 
fighter aircraft'. The application of the algorithm was 
then extended to handling nonlinear kinematic 
consistency checking for aircraft data". 

In this paper, the results of flight path reconstruction 
implemented using PC-MATLAB functions are 
presented. It is programmed in interactive manner for 
PC AT 3861387 microcomputer. For linearisation of 
nonlinear functions, a finite difference method is used. 
The aircraft data is simulated using a nonlinear model, 
including bias, scale factors and random noise. The 
filtering algorithm is validated for linearhonlinea; 
models using simulated data and some real flight data. 

2. FLIGHT PATH RECONSTRUCTION PROBLEM 

Using the accelerometer and rate gyro 
measurements and the kinematic equations of motion of 
the vehicle, its states are reconstructed and the scale 
factor and bias errors are estimated. The reconstructed 
states are used to compute the flow angles and velocity 
and compared with the measured angles and velocity. 
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The mathematical model used for flight path 
reconstruction, in general, is described by kinematic 
equations with state variables consisting of three Linear 
velocities, u, v and w,  and three Euler angles 4,B and cp. 
The input variables are the linear accelerations, a,, a, 
and a,, and the angular rates, p, q and r .  The 
observations are the flight path velocity, V ,  angle of 
attack, a, and sideslip angle, p. The following are the 
state and observation equations used: 

Stare equations: 

u = -  q w + r v  + a, - g sin o 
C = - r u  + p w + av + gcos 8 sin+ 

w = - p  v + q u  + a, + gcosBm+ 

4 = p + q sin+ tan o + rcos+ tan o 

vector 

U' = [ nv, nB. n. I is the measurement noise vector 

The vector 8 contains the unknown parameterxale 
factors and bias errors in the measurements. Given the 
above nonlinear model and a set of noisy input and 
output measurements, the flight path reconstruction 
problem involves estimation of the system state x and 
the unknown parameters 8. This is done by UD 
factorisation-based extended Kalman filtering 
algorithm for the present case. 

3. EXTENDED KALMAN FILTERING AND UD 
FACTORISATION 

Extended Kalman filter is a sub-optimal solution to 
a nonlinear filtering problem. The nonlinear functions 

6 =  qcos+- r s in+  are linearised about each new estimated/filtered state 

Jr = 

Meavurement equations: 

q sin + =ce + rcos + sece 

v = vl4= + 3 + d 
f3 = tad [v I u] 

trajectory as soon as it becomes available. 
Simultaneous estimation of states and parameters is 
achieved by augmenting the state vector with the 
unknown parameters and applying the filtering 
algorithm to the augmented nonlinear modelg.'' 

The. new augmented state vector is 

(2) a = tan-' [w / u] 

The input and output measurements could be 
erroneous due to the random noise present, unknown 
measurement biases and scale factor errors in 
instrumentation. For our problem, control variables p .  
q, r, a,, a, and a, are assumed to be biased. 
Measurements of observables V, p and a are assumed to 
be biased and improperly scaled. The process and 
measurement noises are assumed to be Gaussian with 
zero mean. The above kinematic equations can be 
written in state space form as: 

i (o = f(x, u,  e) + G w ( t )  ; x(a) = xo 

v(0 = h(x, 4 8) 
y m ( k ) = y ( k ) +  "(k) k = l , 2  ,...., N 
where 

The estimation algorithm is obtained by linearising 
Fips (4) and (5) around the priorlcurrent best estimate 
of the state at each time and then applying filtering 
algorithm to the linearised model. The linearised 
system matrices are defined as: 

(3) 

X' = [ u, v, w, +, O , $  ] is the state vector 

U' = [ p .  q. r ,  ax, uy, a, ] is the input vector 

&fA A (k) = -1 
6r. x . = k * ( k ) , u = u ( k )  

and the state transition matrix 

where 

y' = [ V ,  p, a ] is the output vector 

y: = [ V,, p,, a, ] is the output measurement vector 
(k) = exp [- A ( A  (k) . A g ,  
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For the sake of clarity and completeness, the 
filtering algorithm is given in two parts; (i) time 
propagation, and (ii) measurement update. 

3.1 Time Propagation 

The current estimate is used to predict the next 
state, so that the states are propagated from the present 
state to the next time instant. 

The predicted state is given by 
t k + l  

i. ( k + l l k )  = in ( k )  + I fA [i. ( f ) ,  u(k)] dt (6)  
tk 

In the absence of knowledge of process noise, Eqn 
(8) gives the predicted estimate of the state based on the 
initiallcurrent estimate. The covariance matix 
propagates from instant k to k + l  as 

P ( k + l / k )  = Q, (k) P(k) ar (k) + GA (k)  QA Gr ( k )  
(7) 

where P ( k + l l k )  is the predicted covariance matrix for 
instant value of k + l ,  GA is the process noise related 
coefficient matrix, and Q is the process noise covariance 
matrix. 

3.2 Measurement update 

The Kalman filter updates the predicted estimates 
by incorporating the measurements as and when they 
become available as follows: 

& ( k + l )  =-fa ( k + l / k )  + K ( k + l )  [ y m  (k+l) - 
h. 1% ( k + l / k ) ,  U(k+l) ,  t] 1 (8)  

where Kis  the Kalman gain matrix. 
The covariance matrix is updated using the Kalman 

gain and the linearized measurement matrix from the 
predicted covariance matrix P(k+ Ilk) as 

Since Eqn (11) is numerically ill-conditioned, UD 
factorisation-based implementation of Eqns @)-( lo)  is 
used for flight path reconstruction. 

4. UD FACTORISATION FILTERING 

The UD factorisation filter has the following merits2. 
(a) It is numerically reliable, accurate and stable, 
(b) It is a square root type algorithm, but does not 

involve square rooting operations, 
(c) The algorithm is most efficiently and simply 

mechanised by processing vector measurements 
(observables), one component at a time, and 

(d) For linear systems, UD filter is algebraically 
equivalent to the Kalman filter. 

In the UD filter, the covariance update formulae 
and the estimation recursion are reformulated, so that 
the Covariance matrix does not appear explicitly. 
Specifically, we use recursions for U and D factors of 
covariance matrix P = UDUr, where U is a unit upper 
triangular matrix and D is a diagonal matrix. Computing 
and updating with triangular matrices involve fewer 
arithmetic operations and thus greatly reduce the 
problem of round off errors which might cause" 
ill-conditioning and subsequent divergence of the 
algorithm. The filter algorithm is given in two parts: 

4.1 Time Update 

We have for the covariance update, 

P (k+ I lk) = @ ( k )  ar + GA Q G I  (12) 
Given P = C?OC?' and Q as the process noise 

covariance matrix, the time update factors U and b 
are obtained through modified Gram-Schmidt 
orthogonalisation process. 

We may define W = [ @ 01 GA ] 5 = diag[B, Q ]  
with WT = [ w,, w2 , . . . w, J 

P ( k + l )  = [ I - K ( k + l ) ]  H ( k + l ) P ( k + l / k )  

[ l - K ( k + l )  ( k + l ) f  + ( k + l ) R  (k)  KT(k+l) (') 

P is reformulated as P = WDW. The U ,  D factors of 
WOWr may be computed as described below. 
For j = n,. . _, 1 the following equations are recursively 
evaluated. The Kalman gain is given by 

D K ( k + l )  = P ( k + l / k )  HT (k+1) [ H ( k + l )  P ( k + l / k )  D = < w, , w,> 

HT(k+l) + R j' (10) U =  ( l / D , )  < w,, w, > I = 1 , 2  _..., j- 1 (13) 

process covariance matrix gives 

hp(k+l) = [ I - K ( k + l )  H ( k + l ) ] P [ k + l / k )  (11)  productbehveen~~andw,. 

- 
Substitution of Kalman gain matrix K ( k + l )  into the w, = w, - U,, wj 

where < w, , w, > = w: D w, is the weighted inner 
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4.2 Mepsurrwnt Update 

The measurement update in Kalman filtering 
combines aprion estimate f and error covariance Pwith 
a scalar observation z = a'x + u tocomtmct an updated 
estimate and covariance given as: 

K = @ a l a ,  
f = f + K ( z- a ' f ) ,  
a = a' P a  + r 
P = P - K a P  

where P = U D u', a = measurement matrix, r is the 
measurement noise covariance, and z = noisy 
measurements. 

Kalman gain K and updated covariance factors 0 
and b can be obtained from the following equations: 

f = U ' a  ; Ye= ( f i r . . . .  . fa)  
v =  of ; v,d, ;d i =  1,2, ...., n 

dl = dl rial, aI = r + V I  fi ; (15) 

For j = 2,. . . , n recursively the following equations are 
evaluated : 

and Kalman gain is given by K = K., J a n  

where d = is the predicted diagonal element, and dl is 
the updated diagonal element of the D matrix. 

As already mentioned, calculation of the matrices 
A(k) and H ( k )  for nonlinear systems is accomplished by 
finite difference method. In the present mechanisation, 
A and Hare compilted by finite difference method as 
against the analytical method, so that there is no need to 
make any programming changes when alternative 
nonlinear models are to be used. 

fori = 1.2 ,..., r n ;  and j = 1.2 ,.... n ; 

Axi = perturbations step sue = EX, 
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For a small perturbation Ax in each of the +known 
variables, the perturbed valuesf(x, + Ax;) of each of the 
unperturbed values f = x; are computed. The 
corresponding elements of A;, are given by the finite 
difference in functions to changes in that parameter. A 
step size of E = lO-'is considered to be adequate. 

This factorisation algorithm has been implemented 
in MATLAB (PC AT 3861387) using the existing 
functions of MATLAB as well as newly developed 
functions. 

5. VALIDATION WITH SIMULATED DATA 

To validate the code developed and to assess the 
performance oi the filter, three cases are considered. 
Case I: Short period dynamics of an aircraft is simulated 
using the following state and observation equations. 

State equations: 

q = M , a  + Mp q + Ms. Se + b2 + w, (18) 

Observation equations: 

a , = a + v l  
4, = q + v.? 

-?. 
(19) 

n,= ~ (1 i hkdS + v 3  
g 

The system equations are written in state spaceform 
as: 

.i = Ax + Bu + noise 

z = H x  + noise 

wherex = [a q] is the state vector 

z = [a,,,, qn,  n.] is the measurement vector 

Matrices A, B and H a r e  given in Appendix 1 (Data 
file 1isimdat.m). A doublet is used as input to generate 
the responses. Simulated data is generated by using 
function DLSIM with a sampling time of 0.03125 s. 
Ramdom noise with variances equal to 20 per cent of the 
true signal variances is generated using RAND, and 
added to the states and measurements. The appropriate 
noise statistics are fed into the filtering algorithm along 
with the simulated data trajectories and the states are 
estimated. Figures. 1 and 2 show simulated true and 

135 



, 

GlRlJA GOPALARATNAM & RAOL : PC-BASE0 FLIGHT PATH RECONSTRUCTION 

0.05 - 
3 

0 
2 0 - 

-0.05 - 

noisy states and measurements. The results of UD 
filtering are presented in Figs. 3 to 6 .  In Fig:3, the 
estimated measurements are plotted against the noisy 
measurements. In Fig. 4, the estimatedstates are plotted 
along with the standard deviations. Figure 5 shows 
residuals with their bounds computed from the 
estimator results. Only 2 per cent of the samples exceed 
the hounds. In Fig. 6, the autocorrelations of the 
residuals are plotted with the bounds. Less than 5 per 
cent of the autocorrelation values are out of the bounds, 
confirming that the filter residuals are white. 

For the estimated states, the bounds shown in Fig. 4 
are the standard deviations computed from the 
estimated covariance P. 

- TRUE .... NOISY 

0.1 , 

-0.1 \ 
0 5 10 

-0.2 - 
0 5 10 

(LID ur),, (21) 
Standard deviation = V' 

Covariance of the residuals is computed using 

R , ( k + l ) = H ( k + l ) * P ( k + I l k )  * H ' ( k + l )  

+ R ( k + l )  (22) 

- TRUE .... NOISY 

0.1, I I 

-0.1 ' I 
0 5 10 

0.2 

0.1 

s o  m 
rn 

-0.1 

-0.2 - 
0 5 10 

0.5 

M 0 
2 

-0.5 - 
0 5 10 

The Values * +2 * (Re(k+l)i i  are plotted in Fig. 5 as 
bounds for residuals. If the covariance estimates are 
reasonable, 95 per cent of the samples should lie within 
the interval". 

The bounds for the autocorrelation function, which 
are used as a check for whiteness of residuals, are 
computed using * 1.96/~%, where Nis the numhcr of 
samples. 

Case It:  The following fourth order non-linear model 
was used to simulate the aircraft data by giving a doublet 
to the elevator. Fourth order RK integration method is 
used for simulation and the sampling time is chosen 
as 0.03 s. 
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-0.05 

-0.1 
0 5 10 
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-0.2 I 
0 5 10 

0.5 8 1 

-0.5 I 
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I3OLlNIX 

-0.2 
0 5 10 

State equations: 

The values of the derivatives used in simulation are 
given in Table 1. + CZ" 3) 

4 m  = 4 0.1570 
-0.1929 

0.2862 For longitudinal flight path reconstruction, the 
-4.lMo following third order model was used. 
-0.0891 

0.1048 u =  - q w + a , - g s i n O  

w = qu + az + g cos 6 -8.1959 
-0.4894 

-1.4014 b = q  
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Meusurement equations: 

V = V d + ? + d  
a = ~ u n - '  [(w-qx,, +py.)/u] 

em =e 
Biases were added to the accelerations a,, uz, q and 

V and scale factors applied to a measurement. Random 
noise with 20 per cent of signal variance was added to 
each of the states and measurements. Figures 7 and 8 
show the true simulated states and measurements 
plotted against the noisy states and measurements. 

The following model was used for the filtering: 

.... BOUNDS 

I ! 

-0.5 I I 
0 5 10 

I 

5 10 
-0.5 ' 

0 
1 I 

- 
5 10 

-0.5 
0 

LAG TIME ( 5 )  

pkue 6. A o t o c o ~  d ~ U I  booods (Cw I). 

Stute equurions: 

U = - (qm - Aq)  w + (A,  - AA,) - gsin 0 

w = (qm - Aq) u + (Am - AAJ + gcos 0 (27) 

6 = (qm - Aq) 

Observntion equations: 

V m  = V(u2 + w2) + AV 

em = e 

W 

U 
a,,, = K ,  tan-' (-) + AV (28) 
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-TRUE .... NOISY For the above model, the augmented state and input 
vectors are given by: 220 , I  

-TRUE .... NOISY 

0.4 1-1 

10 
-0.4 

0 5 

I 
5 10 

205 ' 
0 

0.2 r I 

5 10 -0.4 
0 

Figure 9 is a cross-plot of estimated and noisy 
measurements. Figure 10 shows the three states and 
augmented states plotted along with their standard 
deviations. In Fig. 11 the residuals are plotted with their 
bounds. About 15 points of the residuals are out of 
bounds, giving a confidence of about 5 per Cent in the 

estimates. From the autocorrelation function of 
residuals plotted in Fig. 12, it is evident that the residuals 
form a white process. The velocity rms error and error 
in theta are plotted in Fig. 13. The velocity rms error is 
computed using the relation 

v- = V(U - r i ) 2  + ( v  - P)2 + ( w  - i q 2  (30) 

and error in theta is (0 - 6). 
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-ESTM .... NOISY 
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0 

-0.2 L- 
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0.2 

2 0 

-0.2 
5 

-0.4 1 I 
0 5 10 

TIME($ 

mtm=9. -ua*.(-m. 

The values of the scale factors and biases used in 
simulation, the starting values for filtering and those 
estimated through the algorithm along with their 
standard deviations are listed in Table 2. The closeness 

of the values and the low standard deviation bounds on 
the estimated states validate the algorithm developed 
for both linear and nonlinear cases. 

Case 111: Flight path reconstruction for real flight data 
of a transport aircraft. 

Flight path reconstruction of longitudinal dynamics 
of a transport aircraft is done using the following seventh 
order state equations and seven measurements. 

State equations: 

h 5 - (4, - Aq)  W +  r,,,v + (axm - hx) - g s i n 9  

i. = - r,u + pm w +a ,  + gcosOsin+ 

k =  -P,Y + (qm -Aq)u + (az,,, -Pa , )  +gcos8cos+ 

= p m  + (qm - hq)sin+ t a n 8  + r,,,cos+ tan 8 (31) 

$ = ((q,,, - Aq)  sin+ + rcos+) sec9 

h = u s i n 8 - v s i n + c o s e - w c o s + c o s e  

Measurernenl equations: 

p,,, = KB tan-' [ v h ]  + Ap 

a,,, = K ,  tan-' [ w h ]  + ha 

em = e 
+m = + 
9,=+ 
h,=h 

A typical time segment of 12.0 s with a sampling time 
of 0.05 s is used in the analysis. Figure 14 is a plot of the 

ae, 0.1128 0.313 O.lm(0.moj 
hr, 0.5078 0.707 0.5463(0.rn) 
4 d.aa39 O.ooo5 o.ooo6 (4.- - 5) 
Aa 0.W 0 . m  o.mOs(0.m) 
AV 5.0 7.0 5.374 (3.64) 
K. 1.2 1.0 1.2010(4.86-5) 
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Figure 15. (continuedl 

curve fit between the measured and estimated 
measurements. Figure 15 shows the estimated states and 
parameters with their standard deviations. From Fig. 14 
it is seen that the match between the estimated and 
measured trajectory is not good. The measured 
responses reveal that there is time error in considering 
the a measurement. A closer look at the measurement 
model showed that the corrections in position errors of 
sensors to measure V, a and p vith respect to the centre 

of gravity were not made. These corrections were 
incorporated in the measurement model and Fig. 16 
shows the improved response matches. Figure 17 is a 
plot of the convergence of states and parameters. The  
convergence of some of the parameters is poor; t h e  
response match of some of the lateral measurements is 
also poor. This is mainly because the maneuvre being 
analysed is a longitudinal one and hence the lateral 
mode is not excited and as such these can be removed 
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Figore 11. (continued) 

0.wO - ,0034 
O.W 4.552-04 
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A0 O.W -0.0186 
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9.5ne-04 
0.002 

5.2%-06 
1.41Se-04 
6.2%-05 
6 . e - 0 7  

KO l.W 1.0037 3.12e-08 

6. FURTHER SCOPE OF APPLICATION OF FPR 
ALGORITHM from the observations. The parameters estimated for 

the transport aircraft with their standard deviations are 
listed in Table 3. 

The UD filter-based algorithm can be modified to 
include the measurements from different sets of sensors, 
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e.g., radar measurements, telemetered signals from the I vehicle, etc. This requires formulation of measurement 
models appropriate to the type of measurements being 
used. 

Suppose there are several different types of sensors 
which provide measurements on  m physical responses. 
Some of the sensors may measure the same quantity 
providing redundant measurements. There may be 
situations where the different measurements required 
are obtained from different sets of measurement 
sources. The Kalman filter algorithm can be used to 
handle all these various situation so as to get the best 
estimates of the states of the vehicle. 

The output measurement equations can be written 
as : 

Y1 = HI ( x ,  u ,  6) 

Y2 = H2 (1. u,  0) 

yml (k )  = y ,  ( k )  + uI ( k )  (say for onboard measurements) 

(33) 

ym2 (k )  = y2 ( k )  + u2 (k) (say for measurements from 
radar) 
vI and v2 are the measurement errors for the two sets of 
sensor measurements. Optimal use of this combined 
information model would generally give more accurate 
FPR results. Appropriate changes in the covariance 
matrices for the measurement of noise processes could 
be incorporated to handle measurements from various 
sensors. This aspect has applications in FPR of missiles 
and other aerospace vehicles and accident data analysis 
requiring accurate estimation of position of the vehicle. 
Since the algorithm is validated for lineartnonlinear 
systems with simulated and real data, presently efforts 
areon toexpandthescopeofthealgorithmon theabove 
lines. It is also being updated to perform aerodynamic 
parameter estimation, thereby providing a unified 
methodology for flight data analysis using PC-based 
MATLAB. This alternative methodology handles 
process noise as well as measurement noise, unlike the 
output error and equation error methods which handle 
respectively only measurement noise and process noise. 

7. CONCLUSION 

In this paper, the implementation and evaluation of 
UD filtering algorithm for FPR are described. The 
algorithm is mechanised using existing as well as newly 
developed MATLAB functions implementable on PC 
A T  386/387 microcomputer. The results show that the 

. NO 1. OCTOBER tYY3 

code is validated for both simulated and real data. It can 
be extended to handle FPR for missiles and other 
aerospace vehicles. The algorithm developed can be 
used for aerodynamic parameter estimation as well. In 
this context. it is contemplated to obtain information on 
the covariances of noise processes (control input and 
measurement noise) by using time series modelling 
approach. 

REFERENCES 

1. Gelb. A. (Ed.) Applied optimal estimation. MIT 
Press, Massachussetts, 1974. 

2. Bierman. G.J. Factorization methods for discrete 
Sequential Estimation. Academic Press. New York. 
1977. 

3. Raol J.R. & Sinha. N.K. Orhit determination via 
UD filters. In Proc. IEEE Conf. on Decision and 
Control, 12-14 December 1984. LasVegas. USA. 

4. Raol, J.R. & Sinha. N.K. Estimation of orbital 
states of a satellite. in Proc. IFAC Symposium on 
Identification and Slate Paramcter Estimation. 3-7 
July 1985, London, UK. 

5 .  Raol, J.R. & Sinha, N.K. On the orbit 
determination prohlem. IEEE Trun.y. Acrospuce 
and Electronics Systems, 1985. AES-21.274-91. 

6. Azra Jabeen, Prabhulatha & Rose Joseph. 
Implementation of UD factorisation algorithm. 
Dept. of Electronics Engg., MVJ College of Engg., 
Bangalore, 1988. BE Project Report. 

7. Raol, J.R. ; Girija. G. & Paramcswaran. V. A 
sensor failure detection scheme using analytical 
redundancy and U-D filtering algorithm for LCA. 
NAL, Bangalore, 1990. NAL PD FC Y ( M .  

8. Ravishanker, P. Kinematic consistency checking for 
aircraft data using factorisation based extended 
Kalman filtering techniques. Regional Engineering 
College, Kakatiya University, Warangal, 1989. 
MTech Thesis. 

9. Parameswaran, V. & Ermin, Plaetschke. Flight path 
reconstruction using extended Kalman filtering 
techniques. 1990. DLR- FB W)-41, also as NAL PD 
FC9103. 

10. Evans, R.J.; Goodwin, G.C.; Feik, U.A.; Martin, 
C. & Lozano-Leal, R. Aircraft flight data 
compatibility checking using maximum likelihood 

446 



GlRlJA GOPALARATNAM & RAOL : PC-BASED FLIGHT PATH RECONSTRUCTION 

and extended Kalman filter estimation. In  Proc. 7th 
IFAC Svmwsium. Identification and Svstem f u n a h  Id, Q. n ~ .  my. nw. w.  -4 = gkfildat 

96 cr = measurement noise covariance matrix ; 

~. 
Parameter Estimation, 1985, York, UK. pp. 47-92, nr=9 ;v = ; = ; 

~ 1 c  = izo8.o i a . 0 0 . 1 ~  .313.707.000s 7.0 .IYX 1.01 ; 

approach. McGraw-Hill Book CQ., New York, rru=[9.oi.0.0025 .o4.o44.oe-7~.o4.oe-s.o4]; 

11. Candy, J.V. Signal processing, model based ud=eye(N);  

1986. 

Appendix 1 

% function [a. b. h ,  d . d .  uc] = lisimdat (N) 
% data file for simulation of linear data-carel 
% (1. b. c. d are system matrices 
%XO - initial condition an states. uc - doublet input used for % 
simulation 
function [a. b. c. d .  XO. uc] = lisimdat (N) 
a=[-0.7530881.0; 
- 1.37662 - 1.11833] ; 
b = 10.0 ; 

- 2.4903) ; 
< = [ l o ;  

0 1 ;  
6.04401 ; 

d = [O; 0; 01 ; ku = . I ;  

uz = zeros(l5) ; 
up = ku 'ones (1:30) ; 
un = - ku 'oner(l:30); 
NN = N-65 ; 
url = zero5 (I:") ; 

% END of file 

% data file for UD filtering of linear data-case1 
% function [u. lu, m, nw, ny. xre] = lifildat 
% u is the upper triangular matrix for filtering 
% N = total No. of augmented states 

90 N = No. of states. nw = order of the measurement noise matrix 
Yo ny = No. of observables, XIC = initial values for filtering 
function [u. u. m, nw, ny,xre] = fildatal 
u=[.KQlOlO;O.wo4OlJ; 
n r = 2 ;  
"y = 3; N = 2 ; nw = 2 ;  
Ire= [O.o40.1]; 

m = [O.OO.Ol ; 

"C = ["I un up urg ; 

% END of file 

% function [ud, q. CI. m, ny, nw, np. XI.) = gkfildat 
% data file for simulation of non linear data-casell 
% u is the upper triangular matrix for filtering 
% N = total No. of augmented states 
% nw = order of the measurement noise matrix 
% ny = No. of observabler.xrc = initial values for filtering 
% np = No. of parameters 
"6 q = process noise covariance matrix ; 

f a r i = l : u  

end 
ud(i, i)  = u u ( i ) ;  

gmor = eye ("W) ; 
zs = z r m ( n p .  nw)  ; 
gmat = [gmr ; IS] ; 
ud = [udgmar] ; 
qdiag = 10.4392 5.5078 .aaOS]; q = eye (nr) ; 

q(i , i)  = qdiag (i) ; 
f m i =  I:N 

end 
cr = (0.5870 0 0;O O . o o o 2  0;O 0 .oooS] 
% ENDofFlLE 

% Initial data for filtering realdata 
% u is the upper triangular matrix for filtering 
% ILI = total No. of augmented states 
% nworderof the measurement noise matrix 
% ny No. of abservables, xte = initial values for filtering 
% np No. of parameten 
% q = proeess noise covariance matrix; 
% cr = measurement noise. covariance matrix; 
% funion [ud. q .  r ,  nx ,  ny,  ne] = realdat 
functian(ud,q, cr. m, ny.nw, np. XI<]  = realdat 

n y = 6 ;  

- 21.78 - 1.23 ,204 ~ .2l .MI ; 
ud = eye (nr) ; 
uu = [ O . O l O . ~ l  1.00.01 .wOI .oOol 0.0841 .NO1 .oOoI .00615.85 

u = l S ; n w  = 4 ; nr = 4 ;  "p = I , ;  

xte = p.1~ ~ ,0017 103.6 . i n 2  - .M .42 - 5.50 ,041 ,0712 ~ 1.02 

0.01% .KQl .@XI1 .mI] ; 
fari = I : nx 

end 
ud (i, i) = uu (i) ; 

g m r  = cyz (nw)  ; 
LS = zcros (np, n w )  ; 

gmar = [gmor ; is] 
u d = ( u d p a t / :  

qdiag=[4.0-41.6&69.0d-21.6d-4]; 

q (i. i) = qdiag (i) ; 
fori= 1:"s 

end 
rdiog = [4.06-6 L6d-9 9.0d-2 l .6d-4 1.Od-9 1.0d-9 1 ; 
cr = eye (ny) ; 

fori= 1:ny 

end 
% END OF FILE 

CI (i. i) = rdiq (I) ; 
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