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Abstract 29 

Active and dynamic management of biodiversity is of utmost importance in the face of climate 30 

change and increasing human pressures on nature. Current approaches for site selection of 31 

protected areas often assume that both conservation features and management actions are fixed 32 

in space and time. However, this approach should be revised to allow for spatiotemporal shifts of 33 

biodiversity features, threats and management options. Our aim here was to demonstrate a novel 34 

approach for systematic conservation planning at a fine scale that incorporates dynamic 35 

ecological processes (e.g., succession), biodiversity targets and management costs. We used the 36 

new 'Marxan with Zones' decision support tool to spatially redistribute the major vegetation 37 

types within a privately-owned nature park in Israel and facilitate the achievement of multiple 38 

conservation targets for minimum cost. The park is located in the Mediterranean climate region 39 

of the eastern Mediterranean Basin, one of Earth's richest biodiversity hotspots. This small park 40 

alone (450 ha) holds 660 species of native plants and six vegetation types. The region has been 41 

subject to manifold human pressures such as grazing, clearing and fire for millennia and is 42 

currently threatened by a range of modern human-related activities (e.g., invasive alien species 43 

and fire). By spatially redistributing the six vegetation types under three scenarios, representing 44 

different conservation objectives (No change; Evenness of structural formations; Early 45 

succession stages) within three budget frameworks, we identified a set of near-optimal 46 

conservation strategies that can be enacted over time. The current spatial distribution of 47 

vegetation types and the cost of changing one vegetation type into another via management 48 

actions had a major impact on the spatial prioritization outcomes and management 49 

recommendations. Notably, an advanced successional stage (dense Mediterranean garrigue) 50 

tended to dominate a large portion of the landscape when the available budgets were low because 51 
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it is a cheap vegetation type to maintain. The approach presented here can be further applied to 52 

spatially prioritize conservation goals in a phase of shifting environments and climates, allowing 53 

conservation planning at multiple spatial scales. 54 

 55 

Keywords 56 

Conservation planning; decision support tools; Local scale management; Marxan; Mediterranean 57 

ecosystems; succession. 58 

59 
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Introduction 60 

The growth in the number of systematic conservation planning tools and approaches and their 61 

use by both government and nongovernment organisations (NGOs) is changing the way 62 

conservation is currently being conducted around the world (Groves et al. 2002; Pressey et al. 63 

2007; Moilanen et al. 2009). However, there is still an important gap between conservation 64 

science and conservation practice (e.g., Arlettaz et al., 2010; Gibbons et al. 2011). By guiding 65 

practitioners and policy makers to identify management objectives that incorporate biological, 66 

social and economic factors within one decision making framework, systematic conservation 67 

planning can help to both clarify goals and plan strategically (Joseph et al. 2009; Watson et al. 68 

2011a). Spatial decision support tools (e.g., Marxan; Ball and Possingham, 2000; Possingham et 69 

al. 2000; Zonation; Moilanen, 2007) are now frequently used to guide management actions and 70 

locations that simultaneously meet conservation targets while minimizing social and economic 71 

costs (Wilson et al. 2006; Carwardine et al. 2008; Kark et al., 2009). Their use is increasing 72 

accountability and transparency in the planning process and leading to more economically 73 

efficient conservation outcomes on the ground (Knight et al. 2006; Pressey and Bottrill, 2009; 74 

Joseph et al. 2011). 75 

One major limitation to systematic conservation planning is the assumption that biotic 76 

and abiotic conditions are static in space and in time. Increasing attention is now being given to 77 

include dynamic changes and shifts of species and ecosystems into conservation planning in the 78 

face of ongoing (and often increasing) land use and rapid, human-forced climate change (Meir et 79 

al., 2004; Pressey et al. 2007; Drechsler et al., 2009; Heller and Zavaleta 2009; Possingham et 80 

al., 2009; Watson et al. 2009). While in forest management planning dynamic optimization 81 

models with habitat conservation objectives have been in use since the 1990s (e.g., Bevers et al. 82 
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1997; Hof et al. 2002; Öhman et al. 2011), these models were mostly solved with linear integer 83 

programming methods, which are not used in reserve site selection models (such as Marxan). 84 

A range of conservation actions have been proposed as outcomes of the planning process, 85 

including the relocation of species (McDonald-Madden et al., 2010), protecting altitudinal 86 

gradients (Watson et al. 2011b), adding protected areas, and creating large scale corridors that 87 

allow shifts in species ranges due to environmental changes (Hannah et al. 2007). However, 88 

these actions are planned at regional and global scales (e.g., Ricketts et al., 2005; Drechsler et al., 89 

2009; Hoffmann et al., 2010; Lourival et al., 2011), and there is less work demonstrating the use 90 

of a dynamic approach in systematic conservation planning and prioritization of actions at the 91 

local scale (but see Toth et al., 2011). At regional scales various types of spatial components are 92 

identified as surrogates for key processes (e.g., riverine corridors, upland-lowland gradients, 93 

macroclimatic gradients; Rouget et al., 2003). At more local scales participatory or incentive-94 

based instruments are often applied and optimization approaches are rarely used. In addition, 95 

processes such as changing human land uses and natural successional change dynamics in space 96 

or in time should be taken into account in dynamic conservation planning (Pressey et al., 2007). 97 

The bias towards conservation planning at regional and global scale is unfortunate as many 98 

conservation decisions occur at the local level (a reserve or park) and local conservation efforts 99 

will benefit from effective strategic planning processes (Hockings et al. 2000; Possingham et al. 100 

2006; Boyd et al. 2008). 101 

The Mediterranean Basin, one of Earth's richest biodiversity hotspots (Myers et al., 102 

2000), has been subject to multiple human pressures such as grazing, clearing and fire for 103 

millennia (Naveh and Dan, 1973) and is currently threatened by a range of human activities 104 

(Kark et al., 2009). Very few systematic conservation plans have been developed for the 105 
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Mediterranean Basin, which is partly due to its complexity and diversity, ranging over many 106 

different countries, cultures and conservation agendas (Kark et al., 2009), and partly due to the 107 

huge population and economic pressures in this region. Most of the region is human dominated 108 

with multiple land uses and relatively little room for allocation of new single-use reserves and 109 

land purchase for conservation. Thus, the traditional conservation planning approach has not 110 

been widely applied in this region. Furthermore, the long history of human disturbances in the 111 

area has led to diverse landscape mosaics and high biodiversity (Naveh and Whittaker, 1980; 112 

Perevolotsky and Seligman, 1998; Bar Massada et al., 2009). The traditional agro- pastoral 113 

disturbance regime based on clearing and grazing has been abandoned in many places during the 114 

last few decades due to socio-economic changes (Perevolotsky and Seligman, 1998). Nowadays, 115 

conservation management in these regions is complicated mainly because the end target or the 116 

reference state for conservation is subjective and hard to define (Perevolotsky 2005). The 117 

concept of pristine ecosystem or undisturbed climax as the desired state of the ecosystem to set 118 

as the conservation goal has little meaning in this region, and the role of professional planning 119 

defining active management schemes becomes very important.  120 

The aim of our study was to develop and apply a new approach of conservation planning 121 

for successional landscapes at the local scale. We used a novel spatially-explicit decision support 122 

tool, Marxan with Zones (Watts et al., 2009), to spatially relocate and redistribute the major 123 

vegetation features within a privately-owned nature park in Israel to allow for maximum 124 

achievement of multiple targets with minimum cost. In many Mediterranean ecosystems, 125 

including the Eastern Mediterranean, it has been shown that the succession process is one of the 126 

most important dynamic ecological processes shaping the ecosystem structure (Drechsler et al., 127 

2009). One of the final stages of the succession process in Mediterranean landscapes leads to an 128 
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increase in the cover of the woody vegetation (Bar Massada et al., 2009; Koniak and Noy-Meir, 129 

2009). This in return leads to decline in overall plant richness, and potentially increases fire risk 130 

to human infrastructures (Naveh and Whittaker, 1980; Perevolotsky and Seligman, 1998). 131 

Reducing threats to biodiversity is costly and needs to be done continuously. Therefore, a 132 

challenge for Mediterranean conservation managers is to decide whether, where and how to 133 

effectively intervene in the natural succession process and its dynamics. We illustrate an 134 

approach to solving the management challenge of meeting conservation targets within 30 years 135 

while minimising costs. We believe this represents one of the first attempts to utilize a spatially 136 

explicit systematic conservation planning approach to identify management priorities at the local 137 

scale while at the same time considering the underlying dynamics of the system (McBride et al., 138 

2010; Wilson et al., 2011). 139 

 140 

Methods 141 

Study area 142 

The study was conducted in Ramat Hanadiv, a privately owned Nature Park established by the 143 

descendants of the Baron Edmond Benjamin de Rothschild, operated for the benefit of the 144 

general public by the Rothschild Foundation (Yad Hanadiv). The site covers approximately 450 145 

hectares (1,125 acres) on a plateau at the southern tip of the Carmel mountain range in NW Israel 146 

(Fig. 1; the average area of nature reserves is about 6.7 km2, and the median area of nature 147 

reserves in Israel is less than 1 km2). The most common shrubs in the park are Phillyrea latifolia, 148 

Pistacia lentiscus, Calycotome villosa and the dwarf shrub Sarcopoterium spinosum (Koniak and 149 

Noy-Meir, 2009). There are also conifer groves in the park planted in the 1970’s, mostly the 150 

species Pinus Brutia, Pinus Pinea and Cupressus sempervirens (Osem et al., 2011). The park is 151 
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perhaps the most researched and managed open space in Israel (e.g., Hadar et al., 1999; Koniak 152 

and Noy-Meir, 2009; Osem et al., 2011), with over 25 years of intensive research and dozens of 153 

fine spatial resolution data layers that were specifically surveyed and mapped within this park. 154 

The Nature Park management seeks to conserve and nurture diverse habitats to support 155 

rich and attractive biodiversity (660 plant species; Liat Hadar, personal communication). In order 156 

to achieve these goals, various management operations have been carried out in the Park since its 157 

early years (late 1980s), including the introduction of cattle and goat grazing, manual shrub 158 

clearing, fencing to protect rare plant species and reintroduction and re-stocking of endangered 159 

animals. 160 

Our goal was to provide a scientific basis for effective management activities applied in 161 

the park. Following a large fire in 1980, many studies have been carried out in the Park, 162 

enriching existing knowledge in diverse fields (including soils, avifauna, botany, zoology, 163 

grazing, etc., e.g., Ben David & Farkash,1983; Cohen, 1987). As the foundation of scientific 164 

knowledge expanded, an approach based on adaptive management supported by monitoring and 165 

research was developed (Holling 1978; Walters 1986; Perevolotsky, 2001). Research and 166 

evaluation of the ecological effects of the management activities was undertaken on several 167 

taxonomic groups (e.g., Hadar et al. 1999). In the eastern Mediterranean context, Ramat Hanadiv 168 

is a unique case of a natural area that is actively managed, intensively studied and detailed on all 169 

levels. As such, it can serve as an example of nature conservation and management of 170 

Mediterranean ecosystems in Israel and the region. We demonstrate a stakeholder engagement 171 

process for identifying conservation objectives (sensu Nicholson & Possingham 2006) and 172 

targets (sensu Sanderson 2006), using realistic working definitions of benefits and costs.  173 
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Spatial analysis 174 

Our conservation planning process used eight steps (Table 1), allowing dynamic ecological and 175 

management processes to be included, as explained below. 176 

Step 1: Define objectives 177 

To optimally allocate resources among management projects, it is essential to clearly state the 178 

highest priority objectives (Possingham et al. 2001; Sanderson 2006). In February 2010, we 179 

conducted a survey of the Ramat Hanadiv Park professional staff (10 people), in order to 180 

prioritize the main conservation objectives in the park. All park staff members were asked to fill 181 

a questionnaire and rank management objectives according to their relative importance. Overall, 182 

plant structural diversity was ranked as the most important objective, being a basic component of 183 

the ecosystem, both ecologically as vegetation serves as a habitat for other taxa, environmentally 184 

as it modifies the climate and the soil, aesthetically as it is the major factor defining how a 185 

landscape is perceived, and functionally as it enables several land uses and inhibits others. This 186 

objective, which received the highest ranking (with a large majority over all other objectives), 187 

maximization of overall plant structural diversity, was therefore chosen as the focal objective in 188 

our paper.  189 

Step 2: List biodiversity assets 190 

The biodiversity assets are defined as the components of biodiversity that we wish to manage. In 191 

this case, the biodiversity assets are structural vegetation formations that occur in the Nature 192 

Park that need to be created, maintained or improved through management. The six major 193 

structural plant forms identified within the park: Low Open (sparse shrub cover), Medium Sparse 194 

garrigue (medium-sized shrubs, partial cover), Medium Dense garrigue (medium-sized shrubs, 195 

complete cover), Tall Dense maquis (stands of oak trees on favourite habitat), Trees Sparse 196 
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(thinned planted groves) and Trees Dense (planted grove). A more comprehensive definition for 197 

each of these vegetation types is provided in Table 2. 198 

Step 3: Spatially map assets 199 

The next step was to spatially map the present distribution of assets in the park and where they 200 

could potentially exist under optimum management actions. In the context of Marxan, planning 201 

units are the parcels of land or water that are compared to one another in site selection analyses. 202 

Here the planning units were defined as100 m2 grid cells resulting in 43,998 units. We selected 203 

100 m2 because of the spatial heterogeneity within the park and the availability of high spatial 204 

resolution data. The present distribution of the vegetation forms was derived from GIS layers 205 

created through automated segmentation of remotely sensed height and cover maps derived from 206 

LiDAR imagery (Bar Massada et al., 2012; Fig. 1). The potential distribution of the vegetation 207 

formations was defined by experts (Ramat Hanadiv research team, based on former knowledge 208 

using soil, lithology, topography and micro-climate considerations, as well as modelling of 209 

vegetation succession; Konyak and Noy-Meir, 2009; Fig. 2). The archaeological sites, an 210 

agricultural field and the memorial gardens within the borders of Ramat Hanadiv Park were 211 

excluded from the scenarios run by Marxan with Zones. 212 

Step 4: Set targets 213 

For the fourth step of target setting, we asked experts to define targets to be met within the park 214 

for each of the assets. The assets (vegetation structural formations) are not constant in space or 215 

time. For example, an area of the park that is now “Low open” may change to “Medium sparse” 216 

due to successional processes within 20 years if the land is not managed with fire, clearing or 217 

grazing. Therefore, the managers were asked to define the target amount of area for each of the 218 
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vegetation structural formations based on their opinion about the optimal area not the current 219 

area.  220 

For the purpose of illustration of the method, we examined three scenarios. Each of the scenarios 221 

is described in detail, including the percentage of each asset (Table 2).  222 

Scenario 1: No change (i.e. preserving current amount of each asset). In this scenario each asset 223 

will maintain its current proportions within 30 years. 224 

Scenario 2: Evenness of structural formations - in this scenario, we set equal area targets for all 225 

assets, thus maximizing landscape diversity (as in Richards et al., 1999). 226 

Scenario 3: Early succession stages - in this scenario, high area targets are set for the assets that 227 

represent early succession stages such as “Low open” at the expense of ‘Medium Sparse’ and 228 

‘Medium Dense’ that represent the medium and late succession stages. This scenario leads to 229 

"opening" the landscape, favouring open patches, dominated by herbaceous vegetation that tend 230 

to disappear as the Mediterranean maquis becomes more dense (Hadar et al., 1999). Early 231 

succession stages of Mediterranean vegetation also favour higher species richness and high 232 

primary productivity areas, as more annual species are able to thrive there (Osem et al., 2002). 233 

Step 5: List management actions 234 

The next step was to identify the specific management actions needed to ensure that the assets 235 

will occur in the future or needed to transition from one vegetation community to the other. A 236 

matrix of all transitions between assets (e.g., from ‘Low Open’ to ‘Medium Sparse’, to maintain 237 

‘Trees Sparse’ as ‘Trees Sparse’, etc.) was created at the spatial scale of the planning unit size 238 

(i.e. 100 m2). For each transition, we identified the full sets of actions required over a period of 239 

30 years. The following actions were defined: ‘Do nothing’, ‘Controlled fire’, ‘Light grazing’, 240 
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‘Moderate grazing’, ‘Intensive grazing’, ‘Tree clearing’, ‘Tree planting’, ‘Tree clearing and 241 

grazing’, ‘Thinning’, ‘Goat exclusion’, ‘Shrub removal’, ‘Tilling’ etc. Experts were required to 242 

clearly describe a precise intensity and duration of management for each action. 243 

Step 6: Estimate costs 244 

The cost of each set of management actions for every transition between the vegetation types 245 

was estimated for the entire 30 year period. The total cost of the sequence of treatments is 246 

calculated for each transition (shown in Table 3). Costs included all future outlays; whereas, past 247 

outlays were not considered. 248 

Step 7: Choose set of actions 249 

We employed a new multiple land use zoning tool that is based on a version of the popular 250 

decision-support tool Marxan (Possingham et al. 2000). Marxan is an area selection algorithm 251 

that aims to identify planning units that are important for protection given their cost-effective 252 

contribution to achieving biodiversity targets (Ball and Possingham, 2000). To achieve this, 253 

Marxan aims to minimize the following objective formula: 254 

 255 

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐵𝐵𝐵𝐵𝐵𝐵∑ 𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +  ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐶𝐶𝑃𝑃𝐵𝐵𝐵𝐵𝑃𝑃𝐶𝐶𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  (1) 256 

 257 

where the Cost is some measure of the cost of the sites within the reserve system, Boundary is 258 

the length of the boundary surrounding the reserve system, the constant BLM is the boundary 259 

length multiplier which determines the importance given to the boundary length relative to the 260 
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cost of the reserve system, and the last term is a penalty given for not adequately representing a 261 

conservation feature in the reserve system (for the formal formulation see Watts et al., 2009). 262 

However, the original version of Marxan is limited to certain conservation applications as it was 263 

unable to consider more than one type of management intervention at a time (i.e. it has one static 264 

cost, usually the cost of making any planning unit a protected area). One of the common outputs 265 

of a Marxan exercise is a binary map, presenting the set of planning units that were selected to be 266 

include within a protected areas network. Commonly in practice, managers need to choose 267 

among more than one management intervention (e.g., which activities to allow within a protected 268 

area – fishing, diving, and boating), and, thus, often use zoning (i.e. designating permitted uses 269 

of land) to spatially and temporally designates areas for specific purposes (McCook et al. 2010). 270 

Marxan has recently been revised and can now optimize among an increased number of land-use 271 

zones (e.g., ranging from full protection to forest production and forest clearing), this new tool is 272 

called Marxan with Zones (Watts et al. 2009). We overcome the problems associated with 273 

planning schemes that assume the distribution of vegetation types as being static in space and in 274 

time by acknowledging the dynamic nature of the ecosystem (e.g., vegetation succession) in this 275 

study and incorporate it in the zoning costs. In our application of Marxan with Zones, a specific 276 

zone was equivalent to a specific vegetation type to be created or maintained using a defined set 277 

of management actions. 278 

Each Marxan with Zones run had 1,000,000 iterations, and we repeated the runs for each 279 

scenario 100 time to find the selection frequency. While integer programming can guarantee an 280 

optimal solution to a problem, it has two major drawbacks: it may fail to solve extremely large 281 

problems, and, for practical reasons (such as data uncertainty) as well as political reasons finding 282 

a single best solution is not that useful (Ball et al., 2009). As Marxan does not find a single 283 
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optimal solution, each Marxan run provides a slightly different near-optimal solution (this range 284 

of solutions enables decision makers to negotiate and make choices). We used the metric 285 

‘‘selection frequency’’ to analyse the results of the runs within each scenario. Selection 286 

frequency is the number of times each planning unit is selected for a particular zone (action) in 287 

good solutions to the overall problem (McDonnell et al., 2002; Leslie et al., 2003). Planning 288 

units that are selected above a certain threshold-percentage of runs for a specific zone are 289 

considered to be important for achieving targets for that zone. We used a threshold of 90% to 290 

indicate a very high probability for a specific planning unit to be managed as that zone (i.e., set 291 

of management actions; Kark et al., 2009). The solution that best achieves the objective function 292 

(e.g., zones targets and cost) is termed as the "best solution". It should be used as an example for 293 

the possible distribution of zones, and not as the prescriptive guide for management, due to 294 

uncertainty in data, the existence of additional important factors not considered, and the 295 

existence of numerous appropriate solutions. In addition we used the best solution to evaluate 296 

whether the targets were achieved and what was their overall cost. We chose not to consider 297 

spatial diversity and fragmentation of the vegetation in our zoning targets as this would further 298 

complicate the Marxan runs. To present the degree of uncertainty involved in the selection of 299 

planning units to different zones in each of the runs, we calculated the classification uncertainty 300 

as common in remote sensing studies (Eastman, 2009): 301 

 302 

Classification uncertainty = �1 −
𝑚𝑚𝐶𝐶𝑚𝑚 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛

1− 1𝑛𝑛
 � ∗  100  (2) 303 

 304 
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Where: 305 

max = the maximum set membership for a planning unit (the highest frequency it was selected 306 

for a specific zone) 307 

sum = the sum of the membership values for a planning unit (100 as there were 100 runs) 308 

n = the number of zones considered (6) 309 

Planning units that were always assigned to the same zone will have low uncertainty (i.e. 310 

high confidence) score (0), where as planning units that were equally assigned to each of the six 311 

zones, will have a high uncertainty (i.e. low confidence) score (100). The frequency (summed 312 

solutions) in which a certain planning unit was selected for a specific zone (i.e. future vegetation 313 

type) and not to alternative zones can also be interpreted as certainty for assigning that planning 314 

unit for that zoning. 315 

Step 8: Explore the effects of budget limitation: 316 

The park managers had set an annual budget of 2.1 million Israeli New Shekels (NIS) 317 

(approximately $630,000). Nonetheless, they haven't decided how to allocate it among different 318 

conservation goals of the park. Therefore, in order to explore the effects of different budget 319 

limitation on managing the vegetation structure, three options were explored, by setting an upper 320 

cost limit within Marxan with Zones: 321 

A) No budget limitations - assuming the budget would increase if it would be found necessary to 322 

achieve the park managers' goals; 323 

B) Full budget – assuming that the entire annual budget of the nature park (2.1 million NIS) 324 

would be dedicated only to the management of the vegetation structures; 325 
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C) Partial budget – assuming that only a third of the annual budget (700,000 NIS) would be 326 

dedicated to the goals regarding the vegetation structure, and that the rest would be used for 327 

other important goals.  328 

These budget options were applied for the three different scenario suggested in step 4. It was 329 

assumed that the overall budget is adjusted to potential changes in management costs, such that 330 

management costs can effectively assumed to be constant. Within our Marxan runs, park 331 

managers were limited to spending only the amount of the annual budget each year. 332 

 333 

Results 334 

The conservation objective that received the highest rank based on the responses of the park 335 

member’s questionnaire was ‘maximising overall plant structural diversity’. It was ranked as the 336 

most important objective by seven of the ten park members. 337 

Based on the management actions listed by the park managers as needed to transform 338 

from any one vegetation type to any other, we calculated the cost matrix (Table 3). 339 

Supplementary Tables 1-6 detail how Table 3 was calculated, listing the management actions and 340 

their relative costs and annual frequencies. Different actions are needed for the different 341 

transitions; e.g., for maintaining a present plantation as a plantation, removal of dead trees and 342 

fire prevention actions are needed, as well as new plantings if the aim is to achieve a high density 343 

plantation. For the ‘Low Open’ and ‘Medium’ vegetation types, the cheapest vegetation 344 

formation to transition into was ‘Medium Dense’. For the ‘Tall Dense’ and for the two Trees 345 

formations, the cheapest transition was to remain the same formation as present. Out of all 346 

possible combinations, the cheapest vegetation formation to transform into was ‘Medium Dense’ 347 
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(average value of 2,920 NIS/0.1 ha over 30 years), and the most expensive was ‘Low Open’ 348 

(average value of 22,080 NIS/0.1 ha over 30 years). The most expensive vegetation formations 349 

to transform from (i.e. to change to another type) were 'Medium Sparse' and ‘Medium Dense’ 350 

(average values of 15,660 and 14,830 NIS/0.1 ha over 30 years, respectively). 351 

We present the best solution next to the present current distribution of the structural 352 

vegetation formations (Fig. 3). The summed solutions map for each of the zones shows how 353 

often a specific planning unit was selected for each of the six zones. The summed solutions maps 354 

are summarized in the uncertainty map, where the zoning uncertainty was calculated for each of 355 

the planning units (Fig. 3). 356 

With no budget limitations, most of the zoning targets were achieved within each of the 357 

three scenarios (± 3%, except for three of the six vegetation types in scenario two; Table 4). Out 358 

of the three scenarios, the most expensive one was scenario three, in which the objective to 359 

prefer early succession stages (Table 4). Within the first scenario (No change), all zoning targets 360 

were achieved (± 3%), however certainty in the zoning of planning units was high just for two 361 

classes: that of ‘Medium Dense’ and ‘Tall Dense’. The zoning of ‘Tall Dense’ patches in the best 362 

solution offered to keep them in their present location, as this is the cheapest option for this zone 363 

(Table 3). High certainty areas for the ‘Medium Dense’ zone were located in areas where the 364 

present vegetation is either ‘Medium Sparse’ or ‘Medium Dense’; the transformation cost from 365 

both these vegetation types into ‘Medium Dense’, is the cheapest option (Table 3). The highest 366 

uncertainty was found for the ‘Low Open’ vegetation class (Fig. 3), probably due to high cost of 367 

the management actions required to achieve this zone (Table 3) as well as its small target area in 368 

this scenario. The areas with the greatest zoning uncertainty and patchiness were those that are at 369 

present with planted trees. The costs of transforming between these two zones (‘Trees Dense’ 370 
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and ‘Trees Sparse’) are quite similar, and therefore a planning unit could be zoned for either of 371 

these at a similar probability. The spatial pattern of the zoning of the two tree classes was similar 372 

in all scenarios. 373 

In the second scenario (Evenness of structural formations), the target for ‘Medium Dense’ 374 

was not achieved. The reason for not meeting the targets may be due to limitations in current 375 

proportions of vegetation types and their ability to transition to the desired vegetation types 376 

within 30 years, given the penalty factors that were used. Generally, the vegetation type of 377 

‘Medium Dense’ remained with the same percent cover as in the present distribution (~31%), 378 

whereas the two tree classes increased in their area from 7% to 10% but did not reach the 379 

intended 16% cover (Table 4). Certainty in the zoning of classes was high (> 90%) for the 380 

classes of ‘Low Open’ and ‘Tall Dense’, and relatively high (> 50%) for ‘Medium Dense’ (Fig. 381 

4). Within the third scenario (Early successional stages), all targets were achieved (± 3%; Table 382 

4). Certainty in the zoning of classes was high (> 90%) for the classes of ‘Low Open’, ‘Medium 383 

Dense’ and ‘Tall Dense’ (Fig. 5). 384 

Overall, the uncertainty was lowest in the first scenario (No change), and highest in the 385 

third scenario (Early succession). In the best solutions of all three scenarios, many areas of the 386 

park appear to be very patchy having high fragmentation of the six zones, with less patchiness in 387 

the western area of the park, where the zoning uncertainty was lower (Fig. 3, 4 and 5). Patchiness 388 

can be reduced by changing the values of the zone boundary cost matrix (a zone boundary cost 389 

matrix represents the relationship between zones to calculate boundary length costs for our 390 

network of planning units; Watts et al., 2008; results not shown). As the planning units in this 391 

study are quite small in size, management in the field would be facilitated by having larger 392 

compact zones.  393 
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When the full budget of the park (2.1 million NIS per year) was available for managing 394 

the structural formation of vegetation, the targets of the first and second scenarios (No change 395 

and Evenness) were mostly achieved (± 3%, except for the 'Medium Dense' zone in the Scenario 396 

2), however the third scenario (Early succession) was affected as it was the most expensive 397 

scenario (2.6 Million NIS/year) and three of its six targets were not achieved (Table 4). When 398 

only a partial budget was available (700 thousands NIS per year) the targets were not achieved in 399 

any of the scenarios (as this budget was below the yearly average obtained when no budget 400 

limitations were imposed; Table 4). The main trend under increased budget limitation was as an 401 

increase in the spatial representation of the ‘Medium Dense’ zone in the three scenarios (Table 402 

4), being the cheapest zone to transform into (Table 3). The two ‘Trees’ classes were the least 403 

affected by changes in the available budgets, as for them the cheapest option was to remain the 404 

same (Table 3).  405 

 406 

Discussion 407 

Systematic conservation planning has been widely used in the past two decades to prioritize 408 

conservation areas, but is almost always based on the past or current distribution of biodiversity 409 

features. With ongoing natural and human-caused environmental changes, it is clear that 410 

conservation planning must include ecosystem dynamics and changes in future distributions of 411 

species and other biodiversity features (Smith et al. 2001a; Rouget et al. 2003; Meir et al., 2004; 412 

Pressey et al., 2007). Here, we have demonstrated that ecosystem dynamics can be incorporated 413 

into systematic conservation planning using site selection models (see also Drechsler et al., 414 

2009). In our case, we modelled vegetation succession dynamics from open grasslands to dense 415 
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garrigue and maquis at the local scale. A similar approach may be applied to ecosystem changes 416 

resulting from climate change, land use change and other factors. 417 

While climate change is generally expected to alter environmental conditions, and modify 418 

the habitat ranges of species (e.g., Fitzpatrick and Hargrove, 2009), we do not expect major 419 

changes in vegetation types within the study area due to climate change, for several reasons: (1) 420 

while summer temperatures in Israel were found to be increasing, no significant trend was found 421 

in the annual average temperature in Israel (Saaroni et al., 2003); (2) due to the naturally high 422 

inter-annual variability of rainfall in semi-arid areas and mediterranean areas, no significant 423 

trends in rainfall were observed in most of Israel (Morin, 2011) and vegetation may be adjusted 424 

to this natural climatic variability; (3) it is estimated that annual rainfall will decrease over Israel 425 

between 4-27% by 2100 (Golan-Angelko and Bar-Or, 2008), however as the study site is not 426 

near the transition zone to the desert, its climate will remain mediterranean. 427 

 In order to include management options in the conservation planning, we used a modified 428 

approach to the basic systematic conservation planning steps originally proposed by Margules 429 

and Pressey (2000), altering them to incorporate successional processes (Possingham et al., 430 

2009). A first important step in this approach was to identify the key dynamic processes in the 431 

system that can be managed given a realistic spatial scale, time scale and budget framework in 432 

the focal system. This can be done with the use of expert opinion. The second step is to identify 433 

and spatially map both the present and future (projected) states of the dynamic study system with 434 

and without management intervention. In our case this included mapping of the present and 435 

potential areas of coverage of each of the structural vegetation formations, which represented 436 

different states. The following stage includes defining the management actions required in order 437 

to shift among states of the system and their costs. Pre-determined areas with desired uses (for 438 
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which a single state is required) can be locked in (Watts et al. 2008). Different states can be 439 

spatially redistributed to allow for more effective solutions. This can be done, for example, by 440 

determining the degree of patchiness or buffer zones desired (Watts et al., 2008; Klein et al., 441 

2010; Wilson et al., 2010). Next, multiple scenarios can be compared given different goals for 442 

each of the states (for example in our case we changed the proportion of the total area required 443 

for each structural vegetation formation state and rerun the scenarios). Finally, results are 444 

evaluated against the available budget, time frame and original targets. 445 

The approach we have outlined has important outcomes beyond the incorporation of 446 

dynamic threats and responses within a planning framework. While protected areas are 447 

traditionally perceived as the major biodiversity conservation strategy, recent studies attempt a 448 

more realistic approach to conservation planning, and incorporate multiple land uses and 449 

unprotected areas (e.g., agricultural production and urban landscapes) to achieve conservation 450 

goals (e.g., Klein et al., 2010; Wilson et al., 2010; Douglass et al. 2011). We have shown that 451 

this type of spatial management plan can be applied at the local scale, using detailed biodiversity, 452 

management and cost data within a long-term ecological research station in Israel. A similar 453 

zoning approach can be easily adapted in other Mediterranean ecosystems, using the knowledge 454 

and transition matrices developed in this case study, and adjusting the costs to those of other 455 

countries. While we used expert knowledge to estimate the future distribution of vegetation 456 

formations, this can also be achieved using modelling approaches (e.g., Smith et al., 2001b) 457 

where no expert opinion is available, or when analysing over large areas in space and at various 458 

time steps. 459 

Mediterranean ecosystems are characterized by their heterogeneity and as being a 460 

dynamic mosaic of vegetation formations (Perevolotsky, 2005). Shaped over millennia by human 461 
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disturbances such as cutting, grazing and burning, the Mediterranean landscape is a composed of 462 

a mosaic of patches at varying regeneration stages of woody vegetation. Model simulations and 463 

field data demonstrate that highly disturbed vegetation is dominated by herbaceous plants 464 

whereas under no disturbance tall woody plants dominate (Koniak and Noy-Meir, 2009). While 465 

base ecological data exists, the zoning (spatial allocation of desired land use/management option) 466 

of the key structural vegetation formations allowed us to propose alternate management options 467 

for park managers that address dynamic succession processes in this system. 468 

In this study we focused on three scenarios representing different proportions of six 469 

structural vegetation types, using the revised formulation of Marxan, termed ‘‘Marxan with 470 

Zones’’ (Watts et al. 2009). Most previous applications of Marxan assume that biodiversity 471 

features are fixed in space and apply have been applied to spatially allocate the conservation 472 

status or management of a planning unit. A novelty of this study is that biodiversity features 473 

were treated as the zones, i.e. in our scenarios the zoning (i.e. management) is the type of 474 

vegetation, whose spatial location and distribution is subject to natural processes (succession) as 475 

well as human manipulation through actions such as planting, clearing, grazing, burning, 476 

weeding etc. Because the entire study area is managed as a nature park and because the park is 477 

rather small (~ 450 ha) manipulation of the landscape is feasible and some (cattle and goat 478 

grazing) has already been applied.  479 

The results of the Marxan runs were highly dependent on the costs and on the present 480 

distribution of the structural vegetation types. We used a classification uncertainty metric, which 481 

measures to what degree was a planning unit assigned to a specific zone from all the possible 482 

zones. Mapping this metric enables the park managers to visually grasp in which areas the results 483 

of the algorithm are quite robust, and in which areas other considerations (e.g., landscaping) can 484 
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or should be used, as based on the costs various management options are relevant there. While 485 

linear integer programming may enable to find a single best solution, the approach applied in 486 

Marxan acknowledges uncertainties resulting from the input data layers as well as from the 487 

model assumptions, and instead of offering a single solution, provides the decision makers with a 488 

range of possible solutions from which they can choose (Ball et al., 2009; Linke et al., 2011). 489 

New systematic planning tools available allow us today, better than before, to plan 490 

systematically at small scales in changing systems and provide management advice considering 491 

both ecological processes and economic factors. We believe that this approach may contribute to 492 

the efficiency of conservation planning in other systems, areas and spatial scales.  493 
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Tables 701 

Table 1: The steps used in the dynamic conservation planning process 702 

 703 

Step Action Description 

1 Define objectives  Define overall goals for the park management. 

2 List biodiversity assets 

 

Identify the assets of interest; in this case the 

vegetation formations. 

3 Spatially map assets  Map the current and potential distribution of assets. 

4 Set targets  Identify the conservation targets for each of the 

biodiversity assets. 

5 List management actions Identify the set of feasible management actions that 

can achieve the desired objectives. 

6 Estimate cost  Calculate the costs for each management action. 

7 Choose set of management 

actions  

Combine information on costs to rank projects 

according to benefits per unit dollar, using Marxan 

with Zones. 

8 Explore the effects of 

budget limitation  

Compare the effects of different budget limitations 

on the conservation targets.  
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Table 2: The present distribution and targets set for each of the six vegetation structural formations for each scenario: (1) no change – maintaining the 

present proportions of vegetation formations; (2) evenness of structural formations – each formation will have the same proportion in the park (or will cover 

the same area size); (3) early succession stages – favouring low vegetation cover and herbaceous vegetation: 

Assets Description Current 

area (ha) 

Scenario 1:  

No change (%) 

Scenario 2: 

Evenness (%) 

Scenario 3: 

Early succession (%) 

Low open 
Open habitats that are mostly covered with herbaceous vegetation 

(<0.5m) with sparse scrub (<33% cover) within them 
11.0 2.6 16.7 32.6 

Medium 

sparse 

Mediterranean garrigue comprised of woody vegetation which is of 

medium height (<2.5m) with low vegetation cover (<33%) 
162.4 38.0 16.7 22.3 

Medium 

dense 

Mediterranean garrigue comprised of woody vegetation which is of 

medium height (<2.5m) with vegetation cover greater than 33% 
136.1 31.8 16.7 17.4 

Tall dense 
Mediterranean maquis comprised of woody vegetation whose height 

is between 2.5-5m and the vegetation cover is greater than 33% 
55.6 13.0 16.7 13.0 

Trees sparse 
A planted forest where the trees' height is above 5m and the 

vegetation cover is low (<33%) 
31.5 7.4 16.7 7.4 

Trees dense 
A planted forest where the trees' height is above 5m and the cover of 

the species is greater than 33% 
31.3 7.3 16.7 7.3 

 

Total 
 

427.9 100.0 100.0 100.0 
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Table 3: The cost in New Israel Shekel (NIS; US $1 =~ 3.5 NIS) for maintaining or changing each structural vegetation formation (see Figure 1) to any of 

the other vegetation formation, over a period of 30 years, within an area of 0.1 ha 

 

  From (present condition) 

  Low Open 

Medium 

Sparse 

Medium 

Dense 

Tall 

Dense 

Trees 

Sparse 

Trees 

Dense 

To (future 

condition) 

Low Open 9,500 49,000 41,500 25,000 3,500 4,000 

Medium Sparse 2,750 12,000 14,000 4,500 5,000 5,500 

Medium Dense 2,000 1,000 1,500 4,500 4,000 4,500 

Tall Dense 4,750 4,750 4,750 250 4,000 4,750 

Trees Sparse 11,500 11,750 11,750 9,750 250 2,250 

Trees Dense 11,500 15,500 15,500 11,750 2,250 2,250 
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Table 4: The achieved distribution of the six zones in the best solution of each scenario under three budget limitations: no budget limitations, full 

budget (2.1 million NIS per year) and partial budget (700 thousand NIS per year). The three scenarios are: (1) no change – maintaining the present 

proportions of vegetation formations; (2) evenness of structural formations – each formation will have the same proportion; (3) early succession stages 

– favoring low vegetation cover and herbaceous vegetation. Detailed scenario definitions in Table 1. All columns sum up to 100%. The budget spent 

is the bottom row is in Millions of New Israeli Shekel per year. 

Structural 

vegetation 

formation 

Scenario 1: 

No change (%) 

Scenario 2: 

Evenness of structural formations (%) 

Scenario 3: 

Early succession stages (%) 

Target Best Solution Target Best Solution Target Best Solution 

No budget 

limitations 

Full 

budget 

Partial 

budget 

No budget 

limitations 

Full 

budget 

Partial 

budget 

No budget 

limitations 

Full 

budget 

Partial 

budget 

Low open 2.6 2.6 2.6 2.5 16.7 16.6 16.6 3.4 32.6 32.3 26.5 4.1 

Medium sparse 38.0 37.6 37.6 25.9 16.7 16.5 16.5 16.5 22.3 22.1 22.0 22.0 

Medium dense 31.8 34.3 34.8 48.1 16.7 31.5 31.7 46.0 17.4 20.6 27.6 52.0 

Tall dense 13.0 11.1 10.5 8.9 16.7 15.0 14.6 13.6 13.0 10.4 9.4 7.4 

Trees sparse 7.4 7.2 7.2 7.3 16.7 10.3 10.2 10.2 7.4 7.3 7.2 7.2 

Trees dense 7.3 7.3 7.3 7.3 16.7 10.1 10.4 10.4 7.3 7.3 7.3 7.3 

Budget spent  1.0 1.0 0.7  1.6 1.6 0.7  2.6 2.1 0.7 
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Figure legend 4 

Figure 1: Location of Ramat Hanadiv Park within Israel (A); the present distribution of 5 

vegetation types (B) and a 2009 orthophoto of the study area (C). Representative photos of the 6 

six vegetation types: Low Open (D), Medium Sparse (E), Medium Dense (F), Tall Dense (G), 7 

Trees Sparse (H), Trees Dense (I). 8 

Figure 2: The potential distribution of the six vegetation types as identified in this study (the 9 

current distribution area is also a potential distribution area). 10 

Figure 3: Results for scenario 1 (as present). The current distribution can be compared with the 11 

best solution within the Marxan runs. The uncertainty map expresses whether in different runs a 12 

planning unit was assigned to different zones or to the same zone (i.e. high certainty). The six 13 

grey scale maps present how often was a planning unit chosen for a specific zone. 14 

Figure 4: Results for scenario 2 (evenness). The current distribution can be compared with the 15 

best solution within the Marxan runs. The uncertainty map expresses whether in different runs a 16 

planning unit was assigned to different zones or to the same zone (i.e., high certainty). The six 17 

grey scale maps present how often was a planning unit chosen for a specific zone. 18 

Figure 5: Results for scenario 3 (opening up). The current distribution can be compared with the 19 

best solution within the Marxan runs. The uncertainty map expresses whether in different runs a 20 

planning unit was assigned to different zones or to the same zone (i.e., high certainty). The six 21 

grey scale maps present how often was a planning unit chosen for a specific zone. 22 

23 
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