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Abstract
Border surveillance is one of the high priority in the security of countries around the world. Typical and traditional bor-
der observations involve troops and checkpoints at borders, but these do not provide complete security. One effective
solution is the addition of smart fencing to enhance surveillance in a Border Patrol system. More specifically, effective
border security can be achieved through the introduction of autonomous surveillance and the utilization of wireless sen-
sor networks. Collectively, these wireless sensor networks will create a virtual fencing system comprising a large number
of heterogeneous sensor devices. These devices are embedded with cameras and other sensors that provide a continu-
ous monitor. However, to achieve an efficient wireless sensor network, its own security must be assured. This article
focuses on the detection of attacks by unknown trespassers (perpetrators) on border surveillance sensor networks. We
use both the Dempster–Shafer theory and the time difference of arrival method to identify and locate an attacked node.
Simulation results show that the proposed scheme is both plausible and effective.
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Introduction

Wireless Sensor Networks (WSNs) applications have
attracted researchers worldwide greatly because of their
application in numerous scenarios.1 Area monitoring is
regard as one of their new and interesting application
domains. WSNs have the capability to monitor and
send information autonomously, even in critical and
hostile environments. One such application of WSNs is
border surveillance. Here, the goal is to detect and sig-
nal the presence of trespassers (perpetrators) within a
specific area that has been predefined to the WSNs.
However, the open nature of WSNs allows the possibil-
ity of malicious interference or compromise. This
necessitates implementation of high-level security and
robustness, especially in malicious environments. That
is, for WSNs to function effectively in such malicious

environments, security mechanisms are essential.2

There are several characteristics of WSNs are required,
namely, low-cost, energy-efficient, computational
power efficiency, communication capabilities in short
range, security and privacy mechanism, distributed sen-
sing and processing capabilities, dynamic network
topology, self-organization, multi-hop communication,
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application oriented, robust operations, and small
physical size.

Typically, the sensor nodes communicate with each
other via multiple hops over an open wireless channel.
This presents a security challenge as, on borders, WSNs
are normally deployed in an unattended area that is
also hostile. Moreover, the sensor nodes do not usually
have any physical protection. Consequently therefore,
WSN nodes can be easily captured by trespassers,
thereby providing trespassers with full access to nodes
and the ability to cause a failure of the entire network.

Designing and testing a new WSN algorithm is
extremely challenging and maintenance of security
integrity ranks as a major concern. Common security
threats include selective forwarding, sinkhole attacks,
Sybil attacks, wormholes, and a HELLO flood attack.3

The time difference of arrival (TDoA) triangulation
through three beacon nodes location information, is
used to detect the attacker location. TDoA technology
has been widely used in positioning and navigation sys-
tem recently. The position estimation of a source
through determining TDoA of its signal among distrib-
uted sensors has many applications in civil as well as in
the military with the detection of the abnormal beha-
vior of the sensor (in-sider attack) and location infor-
mation. The system that uses TDoA to find a source
location it requires at least three sensors one of them is
a master (reference) and the other two are slave (auxili-
ary) sensors. When the location is detected, a further
approach is taken to make the network secure by
reprogramming the node or obsolete the node from the
network. In this article, we have focused on border pro-
tection using secure WSNs. To provide that protection,
we need the ability to continuously determine whether
any node has been attacked. To this end, we have
employed the Dempster–Shafer theory (DST) to com-
bine evidence from multiple neighbor nodes to deter-
mine whether a given node has been attacked. DST has
the capability of modeling the uncertainty in the situa-
tion where the independent evidences are limited.
WSNs are the most uncertain application scenario.
Subsequently, the TDoA method is utilized to find the
location of the given node as it has the simplicity.
Overall, the implemented method has low latency and
computation.

Related work

The researchers have recently investigated WSN-based
border protection. In 2004,4 researchers at Ohio State
University deployed sensors with the ability to detect
metallic objects, the major goal was to detect the tanks
and the vehicles. In 2011, researchers at the University
of Virginia, in collaboration with Carnegie-Mellon

University, utilized energy-efficient WSNs to detect
objects moving through a passage line.5 Their sensor
nodes had embedded sound, photographic, and mag-
netic sensors. In 2012, German researchers investigated
irregularly shaped areas and deployed WSNs6 to detect
trespassers. They utilized multiple sensors to work in a
distributed manner.

Unfortunately, there was not much attention has
been given in the literature for protecting a network
from enemy manipulation, technically termed an
attack. Although some work has been performed on
protecting WSNs from attacks, it has not specifically
focused on border surveillance scenarios.

Staddon et al.7 outlined a method to track unsuccess-
ful sensor nodes in a network at a sinkhole. Detection
of abnormal behavior relied on the assumption that all
sensor node data will be relayed toward the sinkhole
via a predefined routing tree. Moreover, the sinkhole
must have an overall view of the network topology.
With this overall knowledge, the method is capable of
identifying failed nodes using a routing update message.

Marti et al.8 presented a watchdog-like method. The
method has a node which listens to the next-hop
neighbor nodes’ broadcasting transmission behavior. It
is capable of identifying a packet-dropping attack.
Numerous watchdogs must work together with coop-
erative behavior in this method. Hence, a collaborative
and reputable system is necessary to determine an
attacker. Quality ratings of the collaborator nodes are
therefore requisite.

Zhang and Lee9 proposed a technique that is consid-
ered pioneer work on intrusion detection in the area of
wireless ad hoc networks. The author has investigated
a different architecture for cooperative discovery of sta-
tistical abnormalities, a defense against attacks on ad
hoc routing.

Znaidi et al.10 first introduced a hierarchical distrib-
uted algorithm for detecting node replication attacks
using a Bloom filter mechanism and a cluster head
selection. The proposed method needs to employ addi-
tional clustering algorithm and the authors presented
only a theoretical discussion on the boundaries.

Garofalo et al.11 proposed intrusion detection system
architecture designed to ensure a trade-off between dif-
ferent requirements. It is high detection rate obtained
through decision tree classification. Unfortunately, in
this method the power consumption by the sensor is
high, it is not resilient to node failures as it uses a tree
classification, with a long delay to send the data to the
base station, data overhead is high, and it is costly.

Ahmed and Mahmood12 has proposed a clustering-
based anomaly detection technique based on the pat-
tern data and attacks characteristics. Their method
works fine with the DoS attacks but it fails for the other
attacks.
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The most common contemporary techniques exploit
cryptographic primitives. Cryptographic methods use
additional information to provide security, such as
authentication information. A polluted packet can be
filtered out based on the validity of the code from the
intermediate node. Nevertheless, these schemes carry
substantial computational overhead. Furthermore, the
schemes need to send verification information such as
hashes and signatures separately, prior to the packet,
to maintain reliable communications. Thus, considering
the characteristics of WSNs, it is not possible to achieve
efficient functionality with these methods.

Coverage and deployment strategy of
WSN

Border surveillance requires monitoring every point on
the border, regardless of the environmental constraints
within a large geographical area. Effective border cov-
erage using WSNs depends on both the connectivity
and quality of service (QoS) provided by the networks.
A node must be able to connect to its one-hop neighbor
and, using multi-hop communication, it should be able
to transfer data without any alteration. To achieve
effective connectivity for data exchange and QoS, one
condition is the efficient deployment of the sensor
nodes. During border deployments of WSNs, a pri-
mary condition is to deploy the minimum number of
sensors that will guarantee optimal coverage of every
location on the border with efficiency. WSNs are nor-
mally deployed based on the application scenarios and
number of sensor nodes required to provide the specific
applications with effective connectivity. Deployment
techniques can be categorized as sparse or dense.
Sparse deployment uses fewer sensor nodes.

Conversely, dense deployment uses a relatively high
number of sensor nodes in the given field of interest.
Dense deployments are normally utilized where it is
mandatory for every event to be observed and detected
in a large area. Considering the importance and charac-
teristics of border surveillance, the dense deployment
strategy is used. Deployment of the sensors normally
decided based on the application scenario. Most cases
its done by scattering. Despite their quick deployments
and significant advantages, WSNs face various security
problems due to their nature and the possibility of the
presence of one or more faulty or malicious nodes in
the existing network.

Model of border attack

The information collected fromWSNs is crucial in mak-
ing border surveillance decisions; thus, the most critical
requirement for WSN design is to maintain a high level
of network security. The networks can be hacked by the

enemies to eavesdrop or to modify fetches data. They
may also choose to physically destroy sensor nodes. As
a result, protection should be applied both against phys-
ical attackers and malicious nodes. The major goal of
the network attacker is to discontinue the area monitor-
ing and stop event detection in the border region. To
these ends, attackers typically use the following meth-
ods. They discontinue or delay the data packet, the
attacker tries to modify the node to so as not to forward
detected events to the base station. In addition, attack-
ers may attempt to jam the channel to delay the packet,
thereby gaining sufficient time to cross the border.

In physical attacks, attackers can physically destroy
the sensor node and take it out of the network. With a
camera sensor, they can destroy the camera so that
analysis of the suspicious area cannot be performed at
the data center.

Case study and assumptions

In this research, we used the physical parameter tem-
perature for the purpose of simulation. Our WSN sys-
tem was built with one sink node and a random spatial
distribution of stationary sensor nodes. We assumed
that the one-hop neighbor distance was significant and
the neighbor acted as an observer and observed the
transmissions of the mistrusted node. The second sim-
plifying assumption is the observed physical parameters
at the nodes reasonably met the condition of indepen-
dent events. The independent events observed by neigh-
bor nodes became the individual pieces of evidence. The
decision-making process algorithm about an attacker
utilized the DST to combine the independent pieces of
evidence. This is exemplified by the simplified case as
shown in Figure 1. Here, the neighbors of node A are

Figure 1. Observation of the attacker with one hop by the
neighbor nodes.
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X, Y, and Z. They will observe suspected attacked node
A for the defined physical parameters of temperature
(T ) and packet drop rate (PDR).

Methods

The DST was used to detect the attacker. In this theory,
the uncertainty interval normally represents probabil-
ity; probability is replaced by the bounds of belief and
plausibility. The lower bound of the interval is known
as belief and is characterized by supporting evidence.
The interval upper bound is plausibility and is charac-
terized by the un-refuted evidence.13 The theory is a
system of reasoning: the total probabilities of mutually
exclusive hypotheses (for independent events) of similar
classes are tallied and collected in the frame of discern-
ment, also known as the universal discloser. The basic
belief assignment (BBA) or, in other words, function of
mass is a function m: 2u ! ½0, 1�, and it satisfies two fol-
lowing conditions

m fð Þ= 0 ð1ÞX
A�u

m Aj

� �
= 1 ð2Þ

where f is the null set, and a BBA fulfills the condition
m(f)= 0. The basic probability can be rewritten as
m(A). This is possible because the share of complete
belief allocated to hypothesis A replicates the support
as the strength of the evidence. The allocation of belief
function maps every hypothesis B to a significant value
bel(B) between 0 and 1, defined as

bel Bð Þ=
X

j:Aj�A

m Aj

� �
ð3Þ

A plausibility function is considered to be the upper
bound of the confidence interval. It accounts for all the
observations that do not rule out the given proposal.
The plausibility function maps every hypothesis, to a
significant value between 0 and 1, and formalized and
defined as follows14

pls Bð Þ=
X

j:Aj \B 6¼f

m Aj

� �
ð4Þ

The weight of evidence that is non-contradictory to
B is considered the plausibility function. The mathe-
matical relationship concerning the belief and plausibil-
ity is given in equation (5)

pls Bð Þ= 1� bel ;Bð Þ ð5Þ

Here, ;B represents ‘‘not B’’ and represents the
hypothesis. Normally, the functions of basic probabil-
ity number, belief, and plausibility are aligned in
element-by-element correspondence. With knowledge

of one element or function, the other two functions can
be derived.

We assume m1(A) and m2(A) are two basic probabil-
ity numbers, considered to be two independent elements
of evidence, meaning that two self-governing neighbor
sensor nodes act as observers of the same frame. The
conclusions from observations (the pieces of evidence)
can be combined in accordance with the evidence the-
ory of Dempster’s rule of combination (also known as
orthogonal sum), as given by equation (6)

(m1 � m2) Bð Þ=

P
i, j:Ai\Aj =B

m1 Aið Þm2 Aj

� �
1�

P
i, j:Ai\Aj =f

m1 Aið Þm2 Aj

� � ð6Þ

where � denotes Dempster’s combination operator
that combines two basic probability assignments or
BBA into a third.15 To normalize the equation, a nor-
malization constant L is introduced, as defined by
equation (7). More than two belief functions can be
combined pairwise

L=
1

K
ð7Þ

where

K = 1�
P

i, j:Ai\Aj =f

m1 Aið Þm2 Aj

� �

The rule of combination assigns belief based on the
degree of conflict between pieces of evidence. It also
assigns the remaining unused belief to the environment
and not to a common hypothesis. This enables the
combination with most belief allocated to the disjoint
hypothesis and with no reaction of an unreasonable
behavioral phenomenon. Belief is similar to confidence
levels or evidence.16 The disagreement between the two
belief functions bel1 and bel2 is represented by Con(bel1,
bel2) and is specified by the logarithm of normalization
constant,5 as given in equation (8)

Con bel1, bel2ð Þ= log Lð Þ ð8Þ

If there is no disagreement between bel1 and bel2,
then Con(bel1, bel2)= 0; if there is no commonality
between two pieces of evidence, Con(bel1, bel2) = N.17

Hence, DST integrates ambiguity from contradictory
evidence. Following the previous reference, a
Dempster–Shafer combination may be formulated as
equation (9)

m(B)= (m1 � m2)(B) =

L
P

i, j:Ai\Aj =B

m1(Ai)m2(Aj)

1 + log (L)

ð9Þ
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The DST was applied to the proposed system by
treating an independent event as temperature (T) and
packet drop rate (PDR). In our application scenario,
the set of local elements that are the frame of discern-
ment or the universal discloser can be observed by
neighbor nodes within one-hop distance. The neighbor
nodes observe u= T ,PDRf g. Therefore, the power set
can be represented as

2u = u, Tf g, PDRf g, unknownf gf g

where

unknownf g= Tf g [ PDRf g

Given T and PDR, the basic probability assignments
for nodes X , Y , and Z are as follows

mT (X )= 0:7; mT (Y )= 0:75; mT (Z)= 0:65; mT (U )= 0:1

mPDR(X )= 0:75; mPDR(Y )= 0:7; mPDR(Z)= 0:75

Using equation (9), the observation by X , Y , and Z

the combination becomes

mT ,PDR(X )=mT (X )� mPDR(X )= 0:61

mT ,PDR(Y )=mT (Y )� mPDR(Y )= 0:61

mT ,PDR(Z)=mT (Z)� mPDR(Z)= 0:58

After the decision about the attacker is finalized, a
method to find the location of the node is invoked.
Complex numerical calculations are involved in loca-
tion estimation in wireless networking. A complex cal-
culation yields higher accuracy, but it requires a more
powerful processor. Our goal is to reduce the complex-
ity to estimate the compromised node’s location with
limited processor capability.

We have utilized the TDoA method for simplicity.
In this method, normally at least three neighbor nodes
send signals to the target node at different times. This is
considered the most traditional methodology to find
the location of the node.18 To obtain TDoA measure-
ments, the signal sources must lie on a hyperboloid by
keeping a constant range difference with the measuring
nodes. Assuming the master beacon node is B1, then
the distance from the transmitter to the ith beacon node
is

Ri =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi � xð Þ2 � Yi � yð Þ2

q
ð10Þ

In a two-dimensional (2D) implementation, the tar-
get location can be estimated from two TDoA mea-
surements based on the intersections of signals with the
hyperbola created. Assuming that B1, B2, and B3 are
beacon nodes measuring the target, the intersection
point calculated as a result is target point A. The pro-
cess is shown in Figure 2.

In Figure 2, the three sensor nodes are Bi with the
locations (xi, yi), where i = 1, 2, or 3 and A = (x, y) is
a point in plane. The difference in the range with the
corresponding beacon nodes with respect to the beacon
B1, in which the transmitted signal arrives first, is

Ri, 1 = cdi, 1 =Ri � R1 ð11Þ

Here, c is the speed of signal propagation, Ri,1 is the
difference in the range between the first beacon B1 and
the ith beacon (B1(i . 1)), R1 is the distance between
the first beacon node and the transmitter, and di,1 is the
estimate of TDoA corresponding to the first beacon B1

and the beacon (B1(i . 1)). A set of nonlinear hyper-
bolic equations is defined by this relationship. The solu-
tion of the set yields the 2D coordinates of the source.

The difficult task is to solve the nonlinear equa-
tion (11). Linearization of the set of equations is the
common practice for these types of equations. One of
several linearization processes is the Taylor series.18,19 In
Friedlander20 and Schau and Robinson,21 the authors
present an alternative to the Taylor series expansion,
which is to first transform the set of nonlinear equations
into a different set. Rearranging the form of equation
(11) into

R2
i, 1 = Ri:1 +R1ð Þ2 ð12Þ

And subtracting equation (10) at i = 1 from equa-
tion (12) results in

R2
i, 1 + 2Ri, 1R1 =X 2

i + Y 2
i � 2Xi, 1x� 2Yi, 1y+ x2 + y2

ð13Þ

Here, Xi;1 and Yi;1 are equal to Xi–X1 and Yi–Y1,
respectively. The set of equations in equation (13) are
linear in the location of the source A(x; y) and in the
range of the first receiver of the source R1 as the
unknowns and are more easily handled.

Figure 2. The location of the attacker.
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To solve R1, we employ Chan’s method, a non-
iterative resolution of the hyperbolic intersection point
estimation problem. The method is capable of opti-
mized performance for arbitrarily placed sensors. This
solution is applicable in scenario of both distinct and
closed sources. The errors in TDoA estimates are con-
sidered to be small, and this method works as an
approximation to a maximum-likelihood estimator.

Following Chan and Ho’s method22 for the three
beacon node system (B = 3) and generating two
TDOAs, the solution of x and y can be found in terms
of R1 from equations (13). The solution is presented in
the following form

x

y

� �
=

X2, 1 Y2, 1

X3, 1 Y3, 1

� �2

3
R2, 1

R3, 1

� �
R1 +

1

2

R2
2, 1 � K2 +K1

R2
3, 1 � K3 +K1

" #( ) ð14Þ

where

K1 =X 2
1 + Y 2

1

K2 =X 2
2 + Y 2

2

K3 =X 2
3 + Y 2

3

Substituting equation (14) into equation (10) with
i = 1, a quadratic equation is formulated in terms of
R1. Substitution of the positive root back into equation
(8) yields the result. Hence, the system can detect the
location point of the attacked node that basically
A(x; y). The position error can be determined using
equation (15)

Dd =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 + y� y0ð Þ2

q
ð15Þ

Results

As a simulation experiment, we performed a case study
with sensors deployed randomly in a b 3 b square
field. We used temperature measurement data as a
physical parameter. We chose to use a Gaussian distri-
bution for the temperature range, with zero mean and
two sigma variations, analogous to the methodology
adopted by Sentz and Ferson.13 In the latter, they uti-
lized one sigma variation for a stricter information set.
We assumed adequate data sets to have stricter condi-
tions (with perhaps two sigma variations), which can
significantly increase the average accuracy. In our case,
we took the average of the results of 20 runs. Our aver-
age result is from 95% (with one sigma variation) to
99.99% (with two sigma variations). The temperature
varied from 8�C to 14�C in the information set we
adopted.

The simulation was designed and simulated in
MATLAB. MATLAB R2015a version has been used
to do the simulation. In order to set the simulation
environment, we have created an area of 500 m by
500 m and we have set 500 randomly distributed nodes
on that area. Additionally, we have created 25 nodes as
an attacked node out of the existing nodes. DST has
been implemented in order to find the attacker and
TDoA for the location detection. We employed the
DST of combination to do the simulation. We per-
formed the DST simulation with individual pieces of
evidence from the one-hop neighbor sensor nodes of
the network. We assume that the system will not sur-
vive if 50% or more sensors are attacked or malicious
node. In any active network, we can detect many
attacker nodes if it is attacked. The simulation para-
meters are shown in Table 1. The simulation results are
based on 200 different observations of the nodes.

In Figure 3, it is clearly seen that observation
with three sensor nodes of X, Y, and Z are shown in
blue, red, and green colors. The observation reaches
almost the same conclusion about the attacker, that is,
between 75% and 85% certainty that node A is an
attacker.

Figure 4 shows the simulation results, which por-
trays the neighbor sensor nodes observations of the

Table 1. The simulation parameters.

Parameters Values

Packet size 500 bytes
Initial energy 2 J
Transmission range 100 m
Routine protocol AODV
Simulation time 1 min
Number of nodes 500

AODV: ad hoc on-demand distance vector.

Figure 3. Observation of the nodes.

6 International Journal of Distributed Sensor Networks



suspected sensor node A. The observations by the one-
hop neighbor nodes X, Y, and Z are also shown.

After the identification of attacker utilizing DST, we
find the location of the node using TDoA method using
equation (14). Figure 4 shows the location of the
attacker node in red circle. The beacon nodes on blue
star.

From the above results, it is obvious that the system
was successfully working to conclude about the
attacked node and find its locations. From the simula-
tion result as shown in Figure 4, the exact location of
the node is in red circle but we can see that there is
slight position error of the exact location of the node.

Conclusion

Each country is trying to keep their border safe and
secure to control the unwanted entry from their neigh-
boring countries. Border monitoring systems are a dis-
tinctive domain of the smart technologies by the
utilization of WSNs. WSNs itself have some constrain
in terms of its security. Therefore, in order to imple-
ment WSN in the border, it is mandatory to have a
secure WSN. In this article, we have investigated poten-
tial attacks in WSN systems and presented a solution
for securing system against attack to be implemented in
the border. In particular, we have developed a metho-
dology to find location information of the attacker. To
do this, we exploit multiple pieces of independent evi-
dence and implemented DST to combine the multiple
pieces of evidences for the attacker decision and to find
the approximate location we have used TDoA methods.
DST has the capability of modeling the independent
uncertain event and TDoA has the simplicity which
lead out system to the low latency and less computa-
tion. The simulation result shows that the algorithm
works to find the attacked node and its approximate
location. In future work, another detection algorithm

will be incorporated to make the system more robust,
resilient and to get the higher accuracy. Moreover,
hardware of the complete system will be implemented
and tested.
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