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Abstract 

We report simultaneous, underway eddy covariance measurements of the vertical flux of 

isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean 

during fall. Mean isoprene and monoterpene sea-to-air vertical fluxes were significantly 

lower than mean DMS fluxes. While rare, intense monoterpene sea-to-air fluxes were 

observed, coincident with elevated monoterpene mixing ratios. A statistically significant 

correlation between isoprene vertical flux and short wave radiation was not observed, 

suggesting that photochemical processes in the surface microlayer did not enhance isoprene 

emissions in this study region. Calculations of secondary organic aerosol production rates 

(PSOA) for mean isoprene and monoterpene emission rates sampled here indicate that PSOA is 

on average <0.1 g m
-3

d
-1

. Despite modest PSOA, low particle number concentrations permit a 

sizable role for condensational growth of monoterpene oxidation products in altering particle 

size distributions and the concentration of cloud condensation nuclei during episodic 

monoterpene emission events from the ocean.  

 

Key Points 

1. Sea-to-air fluxes of dimethyl sulfide were observed to be factor of 10 larger than 

either isoprene or monoterpenes over the North Atlantic Ocean during fall.  

2. The production rate of secondary organic aerosol, stemming from marine isoprene 

and monoterpene emission, is calculated to be small compared to primary emissions. 

3. Rare, intense ocean emission of monoterpenes can have a sizeable impact on particle 

size distributions and in turn the number concentration of cloud condensation nuclei.  
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1. Background 

Biogenic volatile organic compounds (BVOC), primarily emitted from photosynthetic 

organisms, play a controlling role in both regulating oxidant loadings [Houweling et al., 

1998; Taraborrelli et al., 2012] and setting the production rate of secondary organic aerosol 

(SOA) in remote environments [Griffin et al., 1999; Hoffmann et al., 1997]. To date, the vast 

majority of research has focused on terrestrial sources of BVOC, with specific attention to the 

factors that control emissions of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes 

(C15H24). Global terrestrial emissions of isoprene, the most abundant BVOC, have been 

estimated to be between 500 and 750 Tg C yr
-1

 [Guenther et al., 2006]. Emission rates of 

monoterpenes and sesquiterpenes are estimated to be considerably smaller, but can have a 

disproportionate impact on aerosol production rates due to their higher SOA yields [e.g., 

Griffin et al., 1999] and ability to produce extremely low volatility oxidation products [Ehn et 

al., 2014]. Global marine isoprene emissions are estimated to be between 0.1 and 12 Tg C yr
-

1
 [Arnold et al., 2009; Gantt et al., 2010; Luo and Yu, 2010; Meskhidze et al., 2009; Palmer 

and Shaw, 2005]. Even less is known about marine monoterpene emissions, with the sole 

estimate bracketing the global flux between 0.01 and 29.5 Tg C yr
-1

 [Luo and Yu, 2010]. For 

comparison, the global, annual sea-to-air flux of dimethyl sulfide (DMS) is estimated to be 

14.7 – 21.1 Tg C yr
-1 

[Kloster et al., 2006; Lana et al., 2011; Land et al., 2014]. Similar to 

terrestrial emissions, the spatio-temporal distribution of marine BVOC emissions is highly 

variable, depending strongly on the abundance and species of photosynthetic organism [Shaw 

et al., 2010] coupled to nutrient availability [Zindler et al., 2014].  

 

Despite comparatively lower average emission rates, it has been suggested that marine 

BVOC emissions in highly biologically active regions of the oceans can: 1) impact oxidant 

loadings in the marine boundary layer (MBL) [Donahue and Prinn, 1990; Mihalopoulos et 

al., 2007; Palmer and Shaw, 2005], 2) contribute to SOA production [Arnold et al., 2009; 

Gantt et al., 2010], and 3) alter particle size and microphysical properties, thus impacting 

cloud formation and persistence in the MBL [Kruger and Grassl, 2011; Meskhidze and 

Nenes, 2006]. To date, the majority of marine VOC research has focused on linkages between 

marine emissions of DMS and low-level clouds [Charlson et al., 1987; 1989; Quinn and 

Bates, 2011], with comparatively less work focused on isoprene and monoterpene emissions 

and their subsequent impact on oxidant levels, aerosol particle number and size distributions, 

and cloud formation mechanisms.  
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Laboratory monoculture studies have demonstrated that marine phytoplankton can efficiently 

produce both isoprene and select monoterpenes, with production rates dependent on 

phytoplankton speciation, ambient conditions, and nutrient loadings [Shaw et al., 2010]. 

Ciuraru et al. [2015] suggested that isoprene can also be produced photochemically in the sea 

surface microlayer (SSML) and emitted to the atmosphere following the excitation of 

dissolved organic matter found in the presence of surfactant films. Surface seawater isoprene 

concentrations have been reported in the range of 0.1-100 pmol L
-1

, with higher 

concentrations often, but not always, correlated with chlorophyll a [Shaw et al., 2010]. 

Zindler et al. [2014], report a mean isoprene surface seawater concentration of 25.7 ± 14.7 

pmol L
-1

 for an Atlantic Ocean transect between Germany and South Africa, with peak 

isoprene seawater concentrations (> 100 pmol L
-1

) associated with nutrient availability and no 

relationship to chlorophyll a. Gas-phase isoprene mixing ratios, sampled at the ocean surface 

from research vessels, have been observed as high as 375 ppt during bloom conditions 

(chlorophyll a = 1 mg m
-3

) [Yassaa et al., 2008]. Under non-bloom conditions, gas-phase 

isoprene mixing ratios are routinely less than 20 ppt [Shaw et al., 2010], a function of both 

spatially variable production rates and a short atmospheric lifetime. Meskhidze et al. [2015] 

reported that per-cell monoterpene production rates were an order of magnitude smaller than 

isoprene production, with monoterpenes often dominated by -pinene (>70%), suggesting 

that seawater and gas-phase monoterpene concentrations should be smaller than isoprene, 

although there are a paucity of monoterpene surface seawater and gas-phase measurements in 

the MBL. Yassa et al. [2008] presented the most complete underway monoterpene data set, 

reporting average MBL gas-phase monoterpene mixing ratios of 125 ppt (bloom) and 5 ppt 

(non-bloom) in the Southern Atlantic Ocean.  

 

To assess the impact of marine BVOC on atmospheric oxidation and aerosol particle size 

distributions in box, regional, or global chemistry models, estimates of BVOC vertical fluxes 

are required. To date, the flux (F) of BVOCs across the air-ocean interface has not been 

measured directly, only calculated from measurements of surface seawater (Cw) and gas-

phase (Ca) concentrations and estimates of the total transfer velocity (Kt), 

 

          
  

 
        [E1] 
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where  is the dimensionless liquid over gas solubility. Estimates of isoprene fluxes based 

on concentration differences range between 0.1 – 21 × 10
7
 molecules cm

-2
 s

-1
 [Broadgate et 

al., 1997; Matsunaga et al., 2002]. Ciuraru et al. [2015] suggested that photosensitized 

isoprene production could lead to fluxes as large as 0.8 – 1.7 × 10
9
 molecules cm

-2
 s

-1
, 

estimated for irradiated SML samples accounting for surface enrichment. Photochemical 

production of isoprene at the interface would lead to strong seawater concentration gradients 

that complicate the interpretation of E1 as measurements of Cw are often taken at depths of 5 

m. Unlike isoprene, the lack of existing surface seawater measurements of monoterpenes, 

prohibit calculation of monoterpene fluxes via E1 and global estimates of monoterpene 

emissions are scaled from laboratory monoculture experiments or inferred from select 

monoterpene gas-phase mixing ratios [Luo and Yu, 2010]. 

 

Indirect evidence for marine BVOC emissions and subsequent photochemical processing has 

been shown in aerosol composition measurements. Hu et al. [2013] analyzed SOA tracers, 

finding that isoprene and monoterpene derived SOA concentrations were as large as 95 and 

11 ng m
-3

 (respectively) in regions of phytoplankton blooms. In that study isoprene SOA 

tracers were on average 14 ± 11 ng m
-3

 in the Northern Hemisphere and less than 10 ng m
-3

 in 

the Southern Hemisphere, while monoterpene SOA tracers were on average less than 10 ng 

m
-3

 in both the Northern and Southern Hemisphere. Hu et al. [2013] also found that 

monoterpene SOA tracers exceeded isoprene SOA tracers in North Atlantic samples.  

 

Here, we present concurrent isoprene, total monoterpene, and DMS gas-phase mixing ratio 

and vertical flux measurements made aboard the R/V Knorr during the High Wind Gas 

Exchange Study (HiWinGS) in the North Atlantic Ocean during fall 2013 [Yang et al., 2014]. 

To our knowledge, this work represents the first direct measurements of marine isoprene and 

monoterpene sea-to-air fluxes. The observations are used to constrain the impact of BVOC 

emissions on particle size distributions and ultimately the concentration of cloud 

condensation nuclei (CCN). 
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2. Underway Measurements of Marine BVOC Mixing Ratios and Vertical Flux 

The HiWinGS cruise traversed from Nuuk, Greenland to Woods Hole, MA during October 

and November 2013 (Fig. 1). The primary objective of HiWinGS was investigation of the 

physical processes that control air-sea gas exchange during high wind conditions. High wind 

speeds were encountered during HiWinGS (up to 25 m s
-1

 hourly average at 10 meters), not 

atypical of the sampling domain. Underway measurements of surface chlorophyll a in the 

sampling region during October and November 2013 were on average 1.59 mg m
-3

 (Fig. 1A). 

DMS, isoprene, and sum monoterpenes mixing ratios (Ca) were measured using benzene 

cluster cation chemical ionization time-of-flight mass spectrometry (CI-ToFMS) [Bertram et 

al., 2011; Kim et al., 2016]. Air-sea vertical fluxes (F) were determined via the eddy 

covariance method, where 5-10 Hz measurements of mixing ratios were correlated with 

motion-corrected vertical wind velocity (w) to compute F as, 

       
               [E2] 

where Ca' and w' represent the deviation of Ca and w from the mean value, and the overbar 

denotes an average over an interval, here ca. 45-60 min. A more detailed discussion of the 

methodology can be found in the supporting information [Bariteau et al., 2010; Blomquist et 

al., 2006; McGillis et al., 2001; Spirig et al., 2005]. DMS vertical fluxes were made from two 

independent sampling systems. The first was the University of Hawaii’s atmospheric pressure 

ionization mass spectrometer with an isotopically labeled standard (APIMS-ILS) [Blomquist 

et al., 2010]. The second was the CI-ToFMS, which also measured isoprene and total 

monoterpene vertical fluxes [Kim et al., 2016]. We showed previously that DMS mixing ratio 

measurements from the two instruments were in strong agreement (R
2 

> 0.95) [Kim et al., 

2016]. Here (Fig. S3) we show that DMS vertical flux measurements from the two 

instruments are also in strong agreement (slope = 1.01, intercept = 8.9 × 10
7
 molecules cm

-2 
s

-

1
, R

2 
= 0.7). The time series of DMS, isoprene, and total monoterpene vertical flux 

measurements for HiWinGS are shown in Fig. 2A-C. 
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Gas-phase mixing ratios for DMS, isoprene and total monoterpenes are shown along the 

HiWinGS cruise track in Fig. 1B-D and campaign-wide statistics are listed in Table 1 of the 

Supplemental Information. For the boxed regions in Fig. 1, considered to be dominated by 

air-sea exchange, we observe a mean DMS mixing ratio of 35.3 ± 22.3 ppt, with a median of 

28.2 ppt. The mean isoprene mixing ratio in the same region was 10.3 ± 6.5 ppt, with a 

median of 9.98 ppt. The mean total monoterpene mixing ratio was 17.1 ± 34 ppt, with a 

median of 3.2 ppt. The strong divergence between the mean and median monoterpene mixing 

ratios highlights that the monoterpene distribution is not normally distributed and that 

episodic, high monoterpene emissions distort the mean. One such event is shown in the open 

ocean boxed region centered at 52°N, 50°W, where total monoterpene emissions peak near 

100 ppt. Periods of elevated monoterpene fluxes occurred following two marked changes in 

sea state: 1) a deepening of the mixed layer on 25 October after a storm (>25 m s
-1

 winds) as 

evidenced by temperature profiles from daily CTD casts and 2) a frontal passage into the 

Labrador Current marked by a large decrease in sea surface temperature (Figure 2). Both 

suggest recent vertical mixing, which can be driven by large wave breaking from very strong 

winds or processes such as coastal upwelling. This can lead to nutrient replenishment in the 

euphotic layer and spur microorganism growth. Monoterpene emissions from 1.2 x 10
8
 to 6.6 

x 10
8
 molecules cm

-2
 sec

-1
and peak emissions for the cruise were observed in coastal areas 

influenced by the Labrador Current. From the available measurements, we suggest a potential 

mechanism where nutrient-limited microorganisms in the sea surface drove monoterpene-

production, resulting in enhanced monoterpene seawater concentrations and sea-to-air 

emission after vertical mixing. Nutrient-limited microorganisms, such as diatoms, are 

commonly found in the region during other parts of the year [Fragoso et al., 2016]. However, 

nutrient-control of monoterpene-producing biology in this region cannot be confirmed 

without in-situ sampling of the water column. Alternative mechanisms including the direct 

transport of monoterpenes to the surface layer by vertical mixing or nutrient-enhanced 

production of monoterpenes by robust microorganisms (e.g. dinoflagellates) would also be 

consistent with these observations. 
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Backward trajectory analysis (Fig. S1) indicates that the air last passed over land 

(Newfoundland, CA) 9 hours prior to sampling [Stein et al., 2015], which is approximately 

one e-fold in -pinene at diel average O3 mixing ratios of 20 ppb and OH concentrations of 

2.5 × 10
5
 molecules cm

-3
. In comparison, the eddy covariance flux footprint was typically 

less than 2 km, suggesting that flux measurements made during HiWinGS were not 

influenced by terrestrial emissions. This highlights both the challenges of interpreting 

concentration data in the context of ocean emissions and the unique constraints that underway 

flux measurements can provide for source apportionment and establishing global emissions 

estimates.   

 

Isoprene and monoterpene sea-to-air vertical fluxes were small, with campaign averages of 

5.0 × 10
7
 and 2.63 × 10

7
 molecules cm

-2
 s

-1
 (or 71.8 and 37.7 nmol day

-1
 m

-2
) respectively, 

significantly lower than the mean DMS flux (1.04 × 10
9
 molecules cm

-2
 s

-1
 or 1.50 × 10

3
 

nmol day
-1

 m
-2

). Isoprene fluxes observed during HiWinGS are consistent with previous 

indirect measurements, which range between 0.1 – 21 × 10
7
 molecules cm

-2
 s

-1
 [Broadgate et 

al., 1997; Matsunaga et al., 2002] and global models [Booge et al., 2016]. Based on wind 

conditions of HiWinGS (mean speed 11 m s
-1

) and mean observed isoprene mixing ratios 

(10.3 ± 6.5 ppt), the mean isoprene flux translates to an effective waterside concentration of 

21 pmol L
-1

 using the gas-transfer parameterization of Johnson [2010] and the water-phase 

transfer velocity parameterization of Nightingale [2000]. To sustain the observed gas-phase 

mixing ratios, the calculated effective waterside concentration is within the range of previous 

field measurements (0.1-100 pmol L
-1

) [Shaw et al., 2010].  

 

Despite the late fall observation period for HiWinGS (October-November) there was 

sufficient variability in short wave radiation (SWR) to determine if the observed isoprene 

flux correlates with SWR flux, which would be expected if photochemical production were 

dominant. As shown in Fig. 3, isoprene vertical flux appears independent of SWR flux. 

Isoprene emission rates measured from irradiated sea-surface microlayer samples, in the 

laboratory [Ciuraru et al., 2015], having been doped with photosensitizers, corrected for 

surface enrichment (SE = 1) and linearly scaled to SWR, suggest much larger emission fluxes 

(8.0 × 10
8
 molecules cm

-2
 s

-1
 at SWR = 200 W m

-2
) than observed here (blue dashed line) 

[Ciuraru et al., 2015]. Also shown in Fig. 3 are the prior estimates of isoprene emission 

fluxes taken from the North Sea measurements of Broadgate et al. [1997] and studies of 
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Broadgate et al. [2004] at Mace Head. In our study, a dependence of vertical flux on SWR 

was not observed for either DMS or total monoterpenes. While the results of this study do not 

support photochemical isoprene production, future field and laboratory based studies are 

warranted, particularly in more biologically active waters. 

 

Due to the absence of seawater monoterpene concentration measurements in the literature and 

a paucity of gas-phase mixing ratio measurements, there is little framework for comparison of 

our monoterpene flux determinations. The mean monoterpene flux during the open ocean 

segments of HiWinGS (boxed region in Fig. 1) was 2.63 × 10
7
 molecules cm

-2
 s

-1
. This flux 

suggests an effective mean waterside concentration of monoterpenes of 13 pmol L
-1

 using the 

gas-transfer parameterization of Johnson [2010] and mean HiWinGS wind and median 

monoterpene gas-phase mixing ratios. Variability in sea-to-air fluxes should be coincident 

with monoterpene mixing ratios in time due to their short atmospheric lifetimes, ranging 

between 1-5 hours for different isomers. We calculate the steady-state monoterpene 

concentration associated with a prescribed sea-to-air flux using a time-dependent box model 

that couples ocean emission with photochemical oxidation (SI text). The relationship between 

monoterpene sea-to-air flux and MBL mixing ratios can be established for given O3 and OH 

concentrations and MBL height. This relationship is shown alongside the set of observations 

from HiWinGS in Fig. S4. The observations demonstrate a clear relationship between vertical 

flux and concentration as suggested by the model analyses (blue line, [O3] = 20 ppb, [OH]24hr 

= 2.5 × 10
5
 molecules cm

-3
, MBL = 600m). However, the bulk of the observations fall above 

the blue line suggesting: 1) that contributions from non-oceanic sources may be significant, 

2) a breakdown in the approximation that instantaneous concentration and flux measurements 

are constant for multiple monoterpene lifetimes, and/or 3) a higher contribution of lower 

reactivity monoterpenes (e.g., camphene compared to -pinene) to the total monoterpene 

signal. For comparison, the sustained monoterpene mixing ratios of 125 and 5 ppt, as 

observed by Yassaa et al. [2008] in the Southern Ocean during in and out of bloom 

conditions, would require fluxes greater than 1.0 × 10
10

 molecules cm
-2

 s
-1 

and 5 × 10
8
 

molecules cm
-2

 s
-1

, respectively, for [O3] = 20 ppb, [OH]24hr = 2.5 × 10
5
 molecules cm

-3
, MBL 

= 600m [Kawai et al., 2015], comparable to that required in this study.  
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To provide an approximate comparison of our observations with existing global 

measurements, we simply scale our mean fluxes to global ocean surface area. This yields 

global, annual mean sea-to-air fluxes of 4.71, 0.57, 0.60 Tg C yr
-1

 for DMS, isoprene, and 

monoterpenes, respectively.  Compared to global biogeochemical model outputs, our surface-

area scaled estimate of DMS sea-to-air fluxes is approximately 3-5 times smaller than 

literature estimates [Kloster et al., 2006; Lana et al., 2011; Land et al., 2014]. As expected, 

this highlights the fact that the conditions during the HiWinGS campaign (e.g. marine winds, 

biological activity and speciation) may not be fully representative of global average 

conditions. A comparable offset between HiWinGS measurements and global models for 

BVOC emissions may not apply, as BVOC production has been shown to be driven by 

different species and physical conditions in both laboratory tests and in in-situ measurements 

[Meskhidze et al., 2015; Zindler et al., 2014]. Nonetheless, the exercise provides a needed 

constraint on the magnitude of existing estimates of isoprene (0.1 - 12 Tg C yr
-1

) and 

monoterpene (0.01 - 29.5 Tg C yr
-1

) global, annual flux, suggesting that BVOC fluxes are on 

the lower end of the previous estimates. 

 

3. Impact of Marine Secondary Organic Aerosol Production on Cloud Condensation 

Nuclei  

Isoprene and monoterpene oxidation products have been observed previously in marine 

organic aerosol, contributing upwards of 100 ng m
-3

 in regions of intense phytoplankton 

blooms and averaging 17 ng m
-3

 in one study [Hu et al., 2013]. Here, we use average and 

episodic BVOC fluxes measured during HiWinGS to estimate a range in SOA production 

rates, based on prior determinations of SOA yields in low NOx and low organic aerosol mass 

regimes. Organic aerosol (OA) mass concentrations were not measured on HiWinGS; 

however, prior measurements of OA in remote marine environments suggest that OA mass 

concentrations are typically less than 0.5 g m
-3

 [Russell et al., 2010]. SOA yields from 

isoprene photoxidation under such OA concentrations are thought to be very low [Carlton et 

al., 2009], however new chamber measurements suggest that SOA mass yield could reach 

0.15 under select conditions [Liu et al., 2016]. SOA production from the ozonolysis of 

monoterpenes [Ehn et al., 2014; Jokinen et al., 2015], and most recently OH reactions with 

monoterpenes [Berndt et al., 2016], has been shown to generate prompt, extremely low 

volatility organic compounds (ELVOC) with relatively high yield for OA concentrations that 

might be more typical of the marine environment.  
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SOA production rates (PSOA) were calculated using a time-dependent photochemical box 

model, as a function of isoprene and monoterpene sea-to-air fluxes, isomer averaged 

monoterpene ELVOC yields, and isoprene SOA yields (SI text). In the model, monoterpenes 

are emitted from the surface ocean and oxidized by OH and O3, forming ELVOC at the 

prescribed yield. ELVOC are then permitted to irreversibly partition to the aerosol phase at 

the gas-aerosol collision limit, which is reasonable for such low-volatility compounds. PSOA is 

shown as a function of the assumed ELVOC yield and the monoterpene flux in Fig. 4A for 

the model case of O3 = 20 ppb, OH = 2.5 × 10
5
 molecules cm

-3
, Np = 100 cm

-3
, dp (dry, 

geometric mean) = 180 nm, and a marine boundary layer height of 600 m [Kawai et al., 

2015]. For example, using an ELVOC yield of 0.05, PSOA is calculated to be 0.2 ng m
-3

 d
-1

 

and 25 ng m
-3

 d
-1

 for mean and maximum monoterpene fluxes observed during HiWinGS. 

Isoprene SOA production was also assessed in the model under two yield approximations 

(0.025 and 0.15). For low isoprene yield conditions (Y = 0.025), PSOA derived from isoprene 

was calculated to be 0.1 ng m
-3

 d
-1

 and 2 ng m
-3

 d
-1

 for mean and maximum isoprene fluxes 

observed in this study. For high isoprene yield conditions (Y = 0.15), PSOA derived from 

isoprene was calculated to be 0.7 ng m
-3

 d
-1

 and 12.5 ng m
-3

 d
-1

 for mean and maximum 

isoprene fluxes observed during HiWinGS. Assuming an average particle lifetime of 10 days 

with respect to dry deposition [Slinn and Slinn, 1980], low-volatility isoprene and 

monoterpene oxidation products are likely not to exceed 10 ng m
-3

 outside of bloom 

conditions, consistent with the observations of Hu et al. [2013]. 

Despite small PSOA relative to terrestrial environments, low particle number concentrations 

characteristic of marine environments (Np ~ 100 cm
-3

) may permit modest PSOA to have an 

outsized impact on the shape of the particle size distributions and, in turn, cloud condensation 

number concentrations (NCCN). To assess the extent to which marine SOA, derived from 

BVOC sea-to-air emissions and subsequent oxidation may impact particle size distributions, 

we imbedded a size-resolved particle growth model, into the gas-phase model to track the 

temporal evolution of the particle size distribution. The model is initialized with wind speed 

and size dependent particle emission and deposition rates, and run to a steady-state size 

distribution prior to initiating monoterpene sea-to-air flux (SI text). Wind speed dependent 

sea-spray aerosol particle emission rates are treated using the Clarke et al. [2006] 

parameterization adjusted to the shape of the nascent sea-spray aerosol size distribution 

measured by Prather et al. [2013]. Wind speed dependent particle deposition rates are treated 

using the parameterization of Slinn and Slinn [1980]. Brownian coagulation is included in the 
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model, but has a negligible effect on the shape of the particle size distribution over the model 

sampling period. Following model spin-up, we initiate monoterpene sea-to-air emission to 

probe the change in the particle size distribution resulting from condensation of ELVOC to 

the primary aerosol distribution. For maximum monoterpene emission rates (1.1 × 10
9
 

molecules cm
-2

 s
-1

) and YELVOC (0.05), and the oxidation and meteorological conditions 

described for Fig. 4, the geometric mean diameter shifted from 175 nm to 200 nm over 48 

hours. The activation diameter (dact) for sea-spray at 0.1% supersaturation is computed 

assuming a mean particle hygroscopicity parameter ( of 0.9, [Quinn et al., 2014; Schill et 

al., 2015]. If we assume that  does not change significantly upon vapor deposition of 

ELVOC, the total number of CCN active particles at 0.1% supersaturation (taken as the 

integral of the number distribution greater than dact) increases substantially. The percent 

change in NCCN as a function of Np and the sea-to-air flux of monoterpenes is shown in Fig. 

4B. As expected, the percent change in NCCN is most substantial at low Np and high 

monoterpene flux, where PSOA is greatest and the SOA produced is distributed onto a smaller 

number of particles, resulting in a larger shift in the size distribution. For the mean 

monoterpene emission rate observed here and very low particle number concentrations (Np = 

50 cm
-3

), it is expected that NCCN will change by less than 5% over 48 hours. For the 

maximum monoterpene emission rates observed during HiWinGS, NCCN may increase by as 

much as 20% over 48 hours. In contrast, if we assume that ELVOC has a low  value (<< 

0.1) there is an insignificant impact of monoterpene oxidation on NCCN as the increase in 

particle diameter does not accompany a substantial increase in moles of solute and the 

increase in dry diameter does not significantly impact the Kelvin term of the Köhler equation 

[Farmer et al., 2015].   

Recent studies have focused on the role that ELVOC (or highly oxidized organic material, 

HOM) may play in particle nucleation events in pristine locations. While particle nucleation 

is not explicitly considered here, our model provides context for expected ELVOC 

concentrations in the North Atlantic. Mean monoterpene sea-to-air emission fluxes (2.63 × 

10
7
 molecules cm

-2
 s

-1
) found in this study translate to a steady-state monoterpene mixing 

ratio of less than 5 ppt and ELVOC concentrations less than 5 × 10
5
 molecules cm

-3
. 

Following Kirkby et al. [2016], these concentrations correspond to organic-driven nucleation 

rates of particles 1.7 nm in diameter (J1.7) of less than 10
-3

 cm
-3

s
-1

. The peak monoterpene 

emission rates (1.1 × 10
9
 molecules cm

-2
 s

-1
) observed in this study corresponds to steady-

state monoterpene mixing ratio of approximately 15 ppt and ELVOC concentrations of nearly 
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3.0 × 10
6
 molecules cm

-3
, for the oxidant and boundary layer conditions described here. 

Under these rare events, J1.7 values could reach 0.002 – 0.1 cm
-3

s
-1

 (with the range reflecting 

differences in neutral versus ion-induced nucleation rates). If these nuclei survive coagulation 

[Riipinen et al., 2012], there is potential for monoterpene ocean emissions to induce new 

particle formation events. 
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Fig. 1: Satellite measurement of chlorophyll a averaged over the 2013 High Wind Gas 

Exchange Study (HiWinGS) sampling period (A), courtesy of NEODAAS. Underway 

measurements of chlorophyll a are shown along the cruise track using the same colorscale. 

Underway measurements of gas-phase mixing ratios (colorscale, ppt) of (B) monoterpenes, 

(C) isoprene, and (D) dimethyl sulphide (DMS). Trace gas mixing ratios in the boxed region 

are considered to be dominated by air-sea exchange. 
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Fig. 2: Time series of sea-to-air vertical flux of (A) monoterpenes, (B) isoprene, and (C) 

dimethyl sulphide (DMS) in units of molecules cm
-2

 s
-1

. The black dashed line in each figure 

represents the campaign average, molecule specific, flux detection limit and the solid colored 

line represents a 6 hour running mean of the measurements. Wind speed (U10, m s
-1

) and sea 

surface temperature (SST, °C) are shown in panel D. 
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Fig. 3: Underway eddy covariance flux measurements of isoprene sea-to-air exchange as a 

function of short wave radiation flux (black squares, binned means with standard deviation). 

Individual measurements are shown colored by wind speed (U10, m s
-1

). Prior field based 

determinations of isoprene sea-to-air fluxes in the North Sea and Northeast Pacific 

[Broadgate et al., 1997] and at Mace Head [Broadgate et al., 2004] are shown with green and 

pink lines, respectively. Laboratory determination of photochemical isoprene production 

from sea surface microlayer samples, as determined by Ciuraru et al. [2015] is also shown 

with the black dashed line (for ER=1) linearly scaled to short wave radiation fluxes (e.g., 

Fisoprene = 8.0 × 10
8
 molecules cm

-2
 s

-1
 at SWR = 200 W m

-2
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Fig. 4: (A) Modelled secondary organic aerosol (SOA) production rate as a function of 

monoterpene air-sea exchange and condensable product yield. (B) Modelled change in cloud 

condensation number due to condensational growth after 48hrs as a function of monoterpene 

flux and total particle number concentrations (SS = 0.1%, YSOA = 0.05). The bottom panel 

shows the mean (black line), standard deviation (gray shaded region) and maximum (red) 

monoterpene flux during HiWinGS. SOA production rates were computed using [OH]24hr = 

2.5 × 10
5
 molecules cm

-3
, [O3] = 20 ppb, and boundary layer height of 600 m. 

 


