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1 Introduction

Since the �rst imaging experiments using nuclear magnetic resonance [40], magnetic resonance

imaging (MRI) has developed into a technology which is widely used in the life sciences and

for medical diagnostic purposes. It allows for the noninvasive acquisition of images of arbitrary

anatomical locations in the human body and with better soft-tissue contrast than available by

X-ray modalities. Moreover, a large variety of acquisition and reconstruction techniques provide

many di�erent types of information on tissue structure and physiological functions.

As a clinically highly relevant technique di�usion-weighted (DW) MRI [41, 44] o�ers image

contrast which is determined by the degree to which water molecules can di�use freely in biologi-

cal tissue on a scale of micrometers. Such measurements o�er information about the microscopic

structure and dynamics of normal and pathologically altered tissues and therefore lead to a broad

range of clinical and scienti�c applications. In particular, DW MRI of the brain serves important

diagnostic problems dealing with ischemic (stroke) and structural lesions (tumors). Furthermore,

extended DW-MRI techniques may be used for virtual nerve �ber tractography, which exploits the

directional information of water di�usion to identify the main orientations of nerve �bers within

an image voxel. More recently, improvements of both MRI hardware and software have expanded

the application of DW MRI to locations outside the brain, although such studies remain challeng-

ing because of their high sensitivity to motion and an inherently low signal-to-noise ratio (SNR).

Respective clinical developments mainly target oncological applications, because the di�usion con-

trast re�ects tissue cellularity and therefore relates to more speci�c pathological changes of cellular

structures than conventional MRI contrasts based on proton density and tissue-dependent NMR

relaxation times.

So far, single-shot echo-planar imaging (EPI) [43] is the only technique which is used for routine

clinical DW MRI due to its fast acquisition mode and a relatively high SNR. On the other hand,

a major drawback of EPI is the inherent sensitivity to magnetic �eld inhomogeneities which in

occur due to local di�erences in tissue susceptibilities. These problems cause image artifacts such

as geometric distortions and altered image intensities which may lead to diagnostic uncertainties

or even errors in a�ected anatomical regions [36].

An alternative technique for DW MRI is the DW single-shot STEAM sequence [47], which

allows for image acquisitions without any susceptibility-related artifacts. A proof-of-principle study

showed that this approach may avoid diagnostic problems in DW MRI of stroke patients [36].

However, a routine clinical use is precluded because of its lower SNR in comparison to EPI-based

techniques.

A distinct property of single-shot STEAM MRI sequences is that reducing the number of

spatially encoded data lines allows for a higher (rather than lower) SNR. This special feature

strongly motivates the combination of single-shot STEAM sequences with recent developments in

undersampled image reconstruction. A particularly e�cient method for data undersampling is the
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use of radial sampling trajectories, i.e. the sampling of lines in Fourier space which cross the origin

at di�erent angles. This acquisition approach may be advantageously combined with nonlinear

inverse image reconstruction (NLINV) as developed in our group by Uecker et al. [62, 63] for

real-time MRI.

The central goal of this thesis is the development of a novel DW single-shot STEAM MRI

technique which overcomes previous de�ciencies. In particular, this should be achieved by exploit-

ing the concepts underlying undersampled radial MRI acquisitions and respective iterative image

reconstruction methods. A speci�c purpose is to increase the SNR and overall image quality of

DW single-shot STEAM MRI studies and thereby solve a serious clinical problem with DW-MRI

techniques based on EPI. The thesis covers the following topics:

A �rst step was devoted to the development of an optimized single-shot STEAM technique with

a modi�ed sequence design compared to a previous proposal [6] and to implement the method on a

human 3 Tesla MRI system. The combination of this non-DW single-shot STEAM sequence with

NLINV reconstruction was applied to cardiac black-blood imaging.

Secondly, the technical development was extended to a DW version of the single-shot STEAM

MRI sequence and optimized for applications to the human brain. This process involved a mod-

i�cation of the NLINV reconstruction algorithm [60, 62] and the exploration of a large set of

experimental parameters for the measurement of brain tissue. A study of healthy volunteers and

a small number of pilot patients demonstrated the robustness and excellent image quality of this

new DW-MRI modality and indicated signi�cant potential for a widespread clinical use without

susceptibility problems.

The third topic dealt with the development of a DW single-shot STEAM MRI technique for

studies of the human prostate which represents the most important clinical application of DW

MRI outside the brain. Due to major susceptibility-induced artifacts of respective single-shot

EPI measurements at the boundary of the prostate [42], the bene�t of the STEAM technique from

avoiding such artifacts is expected to be even greater than in the brain. To overcome the speci�cally

low SNR in prostate MRI which is partly caused by the desire to use remote radiofrequency coils,

the present development involved a novel multi-shot (rather than single-shot) acquisition scheme

and a joint nonlinear inverse reconstruction technique with a new regularization method.

A �nal project addressed the development of a special variant of the DW single-shot STEAM

MRI technique for prostate imaging which allows for studies of an inner volume without image

aliasing artifacts. This was achieved by the integration of spatially con�ned radiofrequency ex-

citation pulses into the STEAM sequence. The method is intended to ameliorate problems with

o�-resonance e�ects and tissue motion which are predominant in abdominal MRI.

The following section provides introductions into the basic concepts of MRI, into the special

features of DW MRI, and into iterative image reconstruction techniques.
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2 Basics

2.1 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) is a medical imaging modality which relies on the acquisition

the NMR signal of atoms in human tissue using sequences of electromagnetic pulses. This subsec-

tion describes the basic principles of MRI as far as they are relevant for this thesis. More detailed

descriptions of every topic in this subsection can be found in relevant textbooks [19, 50].

2.1.1 Nuclear magnetic resonance

A spin ensemble in a static magnetic �eld Atoms with an odd number of either protons

or neutrons have a nuclear spin ~I. For a proton, the spin quantum number is I = 1
2
. Thus, the

magnetic quantum number m which characterizes the projection of the spin vector on a quanti-

zation axis is either 1
2
or −1

2
. Due to its spin, a proton possesses a magnetic moment ~µ = γ~I

with the gyromagnetic ratio γ = 267, 5 MHz
T

. An external magnetic �eld ~B0 = B0 ~ez induces a

Zeeman splitting of energy levels for the magnetic quantum numbers, with an energy di�erence

of ∆E = ~ω0 with the Larmor frequency ω0 = γB0. In thermodynamic equilibrium, the ratio of

populations of the two energy levels is given by the Boltzmann distribution. For an ensemble of

spins, the linear approximation for ∆E � kBT yields the macroscopic magnetization

~M =
1

V

∑
i

~µi = ρ
γ2~2

4kBT
~B0

with the spin density ρ.

Excitation The dynamics of the macroscopic magnetization in the presence of an external

magnetic �eld are described by the Bloch equation [4]

d ~M

dt
= γ ~M × ~B +

 −Mx

T2

−My

T2
M0−MZ

T1

 . (1)

On time scales which are small against T1 and T2 and with ~B = ~B0, the Bloch equation

describes precession around the static magnetic �eld with the Larmor frequency. Hence, excitation

requires an oscillating magnetic �eld which is resonant with the Larmor frequency. The e�ect of a

radiofrequency pulse

~B1 =

 B1(t) cos(ωt)

B1(t) sin(ωt)

0


with the envelope B1(t) in combination with the ~B0 �eld can be understood a reference frame
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rotating around the z axis with the Larmor frequency. The corresponding transformation for the

magnetic �eld is

~Blab =

 B1(t) cos(ωt)

B1(t) sin(ωt)

B0

 −→ ~Beff =

 B1(t) cos((ω − ω0)t)

B1(t) sin((ω − ω0)t)

0


with the magnetic �eld represented as ~Blab in the laboratory frame and ~Beff in the rotating

frame. With ω = ω0 and the physically correct approximations 1
ω0
� T1 and 1

ω0
� T2 , equation 1

yields a rotation of the magnetization around the y-axis by the �ip angle α = γ
´
B1(t)dt. In MRI,

radiofrequency pulses are generally characterized by this �ip angle, e.g. a pulse with a α = 90° is

called a 90° pulse.

Relaxation The second term of the Bloch equation describes the relaxation of the magnetization,

i.e. its return to the ground state after excitation. Without any radiofrequency pulse, the relaxing

magnetization in the rotating frame can be described as

~M(t) =

 M⊥(t) cos(ϕ)

M⊥(t) sin(ϕ)

M‖(t)


with M⊥(t) = M⊥(t = 0) e−

t
T2 and M‖(t) = M0 +

(
M‖(t = 0)−M0

)
e−

t
T1 . Relaxation of the

longitudinal magnetization is caused by energy exchange with the local environment. Therefore,

the time constant T1 is called the spin-lattice relaxation time. In human tissue, it is in the order of

1 s. The irreversible relaxation of the transverse magnetization is caused primarily by �uctuations

of the Larmor frequency due to interactions between spins. This leads to �dephasing�, a broadening

of the distribution of the phase ϕ which converges to a uniform distribution where M⊥ = 0 on

a macroscopic scale. The time constant T2, which is typically in the order of 100 ms in human

tissue, is called spin-spin relaxation time.

The NMR signal is acquired using coil elements which are placed in the vicinity of the sample.

Electromagnetic induction leads to an alternating voltage in these coils, with a frequency distribu-

tion equal to the distribution of Larmor frequencies in the sample and an amplitude proportional

to the transverse magnetization.

2.1.2 Signal types

Free induction decay The simplest form of NMR signal acquisition is a 90° pulse directly

followed by a readout of the signal. The resulting signal is the free induction decay (FID), see

�gure 1. Its envelope describes the exponential decay of the signal due to dephasing (�gure 2) of

the transverse magnetization. Apart from the irreversible �uctuations of the Larmor frequency

10



which lead to spin-spin relaxation, this decay has a reversible component due to stationary, spatial

inhomogeneities of the Larmor frequency. These are caused by a spatially varying magnetic suscep-

tibility in the tissue as well as inhomogeneities of the B0 �eld due to imperfections of the hardware.

Therefore, the observed decay of the transverse magnetization decays is M⊥(t) = M⊥(t = 0) e−
t

T2∗

with the e�ective spin-spin relaxation time T2 ∗ < T2 .

Figure 1 � The free induction decay. After excitation, a damped oscillating signal is observed,
with a frequency distribution equal to the distribution of Larmor frequencies. The envelope
describes an exponential decay with the time constant T2*.

(a) Ground state (b) Excitation (c) Dephasing (d) Final state

Figure 2 � Dephasing of the FID signal. After the 90° pulse which �ips the magnetization into
the transverse plane, spatial inhomogeneities of the Larmor frequency cause a broadening of
the distribution of phases. Visualizations from ref. [46].

Gradient echo In MRI, magnetic �eld gradients are used to create a dependence of the longi-

tudinal magnetic �eld on the location. A gradient ~G results in a magnetic �eld ~B = ~B0 + ~G · ~x ~ez,
hence the altered Larmor frequency ωL = ω0 + γ ~G · ~x. A time-dependent magnetic �eld gradient

11



~G(t) therefore leads to a spatially and temporally dependent phase of the spins,

ϕ(~x, t) =

t̂

0

(ωL (~x, t′)− ω0) dt′ =

t̂

0

γ ~G(t) · ~xdt′. (2)

If a gradient is switched on after a 90° pulse as shown in �gure 3, the dephasing e�ect which

follows from equation 2 leads to a far more rapid signal decay than the T2* decay of the FID signal.

A subsequent gradient switched in the opposite direction reverts this dephasing e�ect, hence the

signal strength increases again. At the echo time TE after the excitation pulse, the total time

integral of the gradient is 0, hence the gradient-induced phase ϕ = 0 (equation 2). Therefore, the

signal strength at the echo time is only in�uenced by those dephasing e�ects which cause the decay

of the FID signal, S(t = TE ) ∼ e−
TE
T2∗ .

Figure 3 � The gradient echo. A magnetic �eld gradient leads to very fast and reversible
dephasing of the transverse magnetization. The opposite gradient reverts this dephasing e�ect
and creates an echo.

Spin echo A spin echo [22] is generated by a 90° pulse is followed by a 180° pulse (see �gure 4).

After the 90° pulse, the transverse magnetization decays with a time constant T2* as for the FID.

Those phase di�erences which are caused by stationary inhomogeneities of the Larmor frequency

are inverted with the 180° pulse after a time period of TE/2 and thus vanish after the echo time

TE . This e�ect is visualized in �gure 5. The amplitude of the signal at the echo time is only

a�ected by the irreversible dephasing, S(t = TE ) ∼ e−
TE
T2 .

12



Figure 4 � The spin echo. A 90° pulse is followed by a 180°. This leads to a partial rephasing
of spins, causing a subsequent increase in the MR signal amplitude, which has a peak at the
echo time TE.

(a) Excitation (b) Dephasing (c) Rephasing (d) Spin echo

Figure 5 � Formation of a spin echo. After the 90°, local inhomogeneities of the Larmor
frequency dephase the magnetization. The 180° pulse inverts the relative phases caused by the
di�erent Larmor frequencies. This leads to rephasing. Visualizations from [46].

Stimulated echo A stimulated echo [22], in its basic form, is created by three 90° pulses (see

�gure 6), although other choices of �ip angles will also produce stimulated echoes with reduced

amplitudes. Like the spin echo, it is an echo which is refocused by radiofrequency pulses and not

by gradient pulses. The reversible phase di�erences which arise after excitation with the �rst 90°

pulse are refocused by a combination of the second and third 90° pulse instead of one 180° pulse.

However, the distribution of isochromats, i.e. components of the magnetization with identical

Larmor frequencies, evolves in a more complex way, which is visualized in �gure 7. After the

excited magnetization from the �rst 90° pulse is fully dephased, and after a time TE/2, a second

90° pulse tilts the isochromats into a longitudinal plane. After transverse dephasing of this state,

the phases which the isochromats had acquired prior to the second 90° pulse remain stored in

13



the longitudinal direction (�gure 7f). This state has been called �prepared magnetization� [16].

The third pulse, applied after the �mixing time� TM following the second pulse, tilts the prepared

distribution of isochromats by 90°. Hence the stored phase distribution is released into a transverse

orientation again, and rephasing of the isochromats leads to an echo after TE/2. Unlike the spin

echo, the stimulated echo does not lead to a rephasing of all isochromats, because dephasing

between the second and third pulse leads to a distribution of isochromat orientations over the

entire unit sphere, which cannot be fully refocused after the third pulse. Without relaxation

e�ects, the amplitude of the stimulated echo is half of that of the spin echo [16]. The dependence

of the stimulated echo amplitude on the relaxation times is given by S(t = TE +TM ) ∼ e−
TE
T2
−TM

T1 .

A necessary condition for the formation of a stimulated echo is a complete dephasing of the

magnetization after each of the �rst two RF pulses and of the FID signal of the third pulse. This

is accomplished by gradients, whose time integrals must be equal in the two TE/2 intervals for

rephasing of the stimulated echo.

Figure 6 � The stimulated echo. The reversible dephasing which takes place between the �rst
two 90° pulses is reverted after the third 90° pulse. This leads to an echo.

2.1.3 Spatial encoding

Magnetic �eld gradients allow the spatially resolved measurement of the transverse magnetization

which is determined by the design of the pulse sequence. Spatial encoding is based on two mecha-

nisms: slice-selection and Fourier encoding. To describe these mechanisms, magnetic �elds of RF

pulses and magnetizations in the transverse plane are represented as complex-valued quantities,

with the real part representing the projection on the x-axis and the imaginary part representing

the projection on the y-axis, both perpendicular to the static magnetic �eld.

14



(a) Ground state (b) First 90° pulse (c) Dephasing

(d) Before second 90°
pulse

(e) Second 90° pulse (f) Dephasing (pre-
pared magnetization)

(g) Third 90° pulse (h) Rephasing (i) Stimulated echo

Figure 7 � Formation of a stimulated echo. The �rst 90° pulse �ips the magnetization into
the transverse plane. After complete dephasing, the second 90° pulse brings the isochromats
into a longitudinal plane. From there, the magnetization dephases into a pattern which can
be visualized by isochromatic cones (sub-�gure f). After a third 90° pulse, partial rephasing
takes place. Visualizations from [46].

Slice selection For the selective excitation of a slice of tissue, a radiofrequency pulse of the

form BRF (t) = B1(t) eiωex t is superimposed with a gradient ~G in the direction normal to the

slice (w.l.o.g. the z-direction). The Larmor frequency is given by ωL(z) = ω0 + γGz. Therefore,

frequency distribution of the RF pulse, F [BRF (t)] (ω) = F [B1(t)] (ω) ~ δ(ω − ωex ) determines

the slice pro�le, a relative measure of |M⊥(z)| after the RF pulse. The slice position is given

by z = ωex−ω0

γG
, and the slice thickness is given by ∆z = ∆ω

γG
, with ∆ω the frequency bandwidth

of the envelope B1(t) of the RF pulse. A practical trade-o� between an approximation of the

desired rectangular slice pro�le and reasonable pulse durations can be achieved by choosing a

Hamming-windowed sinc-function for the envelope of the RF pulse. For a �xed gradient strength,

this trade-o� can be modi�ed by changing bandwidth-time product (BWTP) of B1(t), which

determines the number of side lobes of the sinc-function to be included in the pulse.
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Fourier encoding After the selective excitation of the spins in one slice of tissue, 2-dimensional

spatial encoding is necessary to create an MR image of this slice. This is achieved with magnetic

�eld gradients in the in-plane directions. The signal amplitude measured in the receive coils after

excitation is proportional to:

S(t) =

ˆ
M⊥(~x, t) dV =

ˆ
|M⊥(~x, t)| eiϕ(~x,t) dV.

Equation 2 for the gradient-induced phase ϕ yields

S(t) =

ˆ
|M⊥(~x, t)| e

i

(
ϕ0(~x,t)+γ

t́

o

~G(t′)dt′·~x
)
dV.

This proves that signal acquisition samples the 2-dimensional Fourier transform of the distri-

bution |M⊥(~x, t)| eiϕ0(~x,t) ≡M1(~x, t) w.r.t. the spatial coordinates,

S(t) =

ˆ
M1(~x, t)ei

~k(t)·~x dV (3)

with the spatial frequency sampled by signal acquisition at time point t given by

~k(t) = γ

t̂

o

~G(t′)dt′.

Thus, the acquisition of the NMR signal in the presence of magnetic �eld gradients samples

the MR image in Fourier space, or �k-space�. For discrete sampling, it follows from the properties

of the Fourier transform that the �eld of view (FOV ), i.e. the width of the acquired image, is

determined by the distance ∆k between sampled k-space points, FOV = 1
∆k

, and the resolution

∆x is determined by the the maximal spatial frequency kmax which is sampled, ∆x = 1
2kmax

. An

additional important imaging parameter is the bandwidth per pixel (BW), i.e. the di�erence

between the temporal frequencies in the acquired signal which are mapped to adjacent pixels.

Low receiver bandwidths lead to a high signal-to-noise ratio. SNR ∼ 1√
BW

[19]. However, a

high bandwidth per pixel makes the image acquisition technique more robust to any unwanted

variations of the Larmor frequency, and also allows faster image acquisition, because the minimal

temporal frequency to be sampled determines the duration of the readout.

K-space can, in principle, be sampled with any trajectory. The most common sampling trajec-

tories are shown in �gure 8.
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(a) Cartesian (b) Radial

(c) Echo-planar (d) Spiral

Figure 8 � Commonly used k-space trajectories in MRI [59]

In radial or cartesian trajectories, lines in k-space are subsequently sampled, for this purpose,

a gradient scheme as shown in �gure 3 is typically used: �rst, a pre-phaser gradient is applied to

start the line at the edge of the sampled area in k-space, and sampling of a line is achieved by

switching on a gradient in the opposite direction during signal readout. For radial trajectories,

sampled lines are called spokes, and the spatial orientation of the pre-phaser and the gradient are

adapted to the spoke orientations. For cartesian trajectories, a phase-encoding gradient is applied

in addition to the pre-phaser prior to sampling of a line to obtain the correct position of the line.

In radial or cartesian trajectories, one echo of one of the types described in section 2.1.2 is usually

generated for the readout of each line or spoke.
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2.1.4 Echo-planar imaging

By contrast, the echo-planar trajectory [43] is designed for the rapid acquisition of an MR image

using only one RF-refocused echo, usually a spin echo. The entire two-dimensional k-space is

sampled in one long trajectory using an alternating gradient in the direction of the cartesian lines

for readout, as well as small gradient moments in the perpendicular (�phase-encoding�) direction

between the readout intervals to proceed from one line to the next. The major drawback of this tra-

jectory is that it produces image artifacts in the presence of inhomogeneities of the static magnetic

�eld, which can be caused by the imaging hardware or by an inhomogeneous magnetic susceptibil-

ity [32]. This can be understood as follows: if an image voxel contains two compartments where

the static magnetic �eld di�ers by ∆B0, the relative phase of the two isochromats representing

these compartments change by ∆ϕ = γ∆B0∆t over a time ∆t. The time di�erence between the

sampling times of two adjacent points in k-space is particularly large in the phase-encoding direc-

tion: ∆t includes the sampling time of an entire k-space line and the necessary times for gradient

switching. Hence, the signals originating from the two compartments will be represented in the

k-space image with strongly di�erent spatial frequencies in the phase-encoding direction, but only

slightly di�erent spatial frequencies in the readout direction. Spatial frequencies in the k-space

image correspond to locations in image space. Therefore, local magnetic �eld inhomogeneities

lead to a mislocalization of measured signal primarily in the phase-encoding direction. If these

mislocalizations exceed the size of a voxel, they can lead to image distortions or local alterations

of the image intensity in the vicinity of locations where the gradient of the static magnetic �eld is

large, e.g. air-tissue boundaries. Susceptibility-related distortions were also observed in di�usion-

weighted EPI experiments performed for this thesis (see section 5) and their avoidance is the main

motivation for the use of the single-shot STEAM sequence, where a stimulated echo is generated

for each radial spoke.

2.1.5 Chemical shift selective (CHESS) imaging

The Larmor frequency of a proton spin is dependent on the chemical environment of the proton,

i.e. the type of molecule and the position within the molecule which the hydrogen atom occupies.

This is due the shielding e�ect of the electron con�guration. This e�ect is quanti�ed by chemical

shift σ, and the local magnetic �eld which acts on a proton is Bloc = B0(1 − σ), where B0 is

the local magnetic �eld for a reference con�guration. In human tissue, there is generally a high

abundance of protons in water and fat. The chemical shift between fat and water is 3.35 ppm

[19], which leads to a Larmor frequency shift of ∆ν = 430 Hz at a static magnetic �eld of 3T.

This induces a systematic error in frequency encoding, and if the frequency shift is in the same

order of magnitude as the bandwidth per pixel, this leads to visible artifacts in the image. For

cartesian k-space trajectories, a mislocalization by N = ∆ν
BW

pixels in the readout direction leads

to a ghosting artifact, for radial encoding, the e�ect will be visible as streaking artifacts.
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An e�ective method to avoid such artifacts without sacri�cing SNR with an unnecessarily high

receiver bandwidth is the use of a CHESS pulse [20]. This is a 90° pulse with a frequency bandwidth

which selectively excites the spins in the fat tissue, followed by a gradient to dephase the transverse

magnetization. This depletes the longitudinal magnetization from the protons in fat, which only

relaxes slowly on a time scale of T1. Thus, after the CHESS pulse, an imaging sequence can be

run, and MR signal can be acquired with negligible contributions from fat tissue.

2.2 Di�usion-weighted MRI

Di�usion-weighted MRI is the acquisition of MR images with an image contrast in�uenced by

incoherent random motion of spins due to self di�usion of water molecules [41, 44, 56]. For

di�usion-weighted MRI, a multitude of di�erent image acquisition techniques have recently been

proposed, which di�er in the methods for creating an MRI signal which is sensitive to di�usion

and in the k-space trajectory for signal readout [70, 49]. In addition, advanced mathematical

modeling methods for di�usion processes in tissue are a vibrant and expanding �eld of research

which aims to further develop the examination of tissue microstructure by MRI [1, 31, 51]. This

section is limited to a description of the most basic model of directional di�usion in human tissue,

the di�usion tensor, and its spatially resolved measurement using di�usion-weighted spin echoes

as proposed by Stejskal and Tanner [52].

2.2.1 Di�usion in human tissue

Di�usion describes random motion of molecules. The degree of di�usion is generally quanti�ed

by the di�usion coe�cient D. This can be most clearly understood in terms of the Einstein-

Smoluchowski equation [11]: In 3 dimensions, the relation

〈
r2(t)

〉
= 6Dt (4)

holds, where r(t) is the distance of a particle to its original position after a di�usion time t. In

human tissue, the mean squared displacement of water molecules on time scales of tens of mil-

liseconds is primarily determined by the local cellular structure of the tissue. Hence, in a large

ventricle �lled mainly with water, the di�usion coe�cient is higher than in tissues with densely

packed cells, where water molecules are repelled multiple times, which reduces their total dis-

placement. Pathological changes in the cellular structure can alter the di�usion coe�cient, hence,

di�usion-weighted MRI has become an important tool for cancer diagnosis [58]. For anisotropic

structures, e.g. nerve �bers or muscle �bers, it is useful to describe di�usion of water molecules

with the di�usion tensor D, which can be represented as a positive de�nite symmetric 3x3 matrix.

In this model, the coe�cient of di�usion in any direction described by a unit vector ~n is ~nTD~n.

For a concentration c of di�using particles, conservation of mass yields the di�usion equation, also
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known as Fick's second equation:

∂c

∂t
= ∇ · (D∇c) . (5)

2.2.2 The di�usion-weighted spin echo

The extension of the Bloch equation (equation 1) to include the e�ect of di�usion on the dynamics

of the magnetization follows from equation 5 and the fact that the magnetization is proportional

to the concentration of protons. This leads to the Bloch-Torrey equation [57]:

d ~M

dt
= γ ~M × ~B +

 −Mx

T2

−My

T2
M0−MZ

T1

+∇ ·
(
D∇ ~M

)
where the gradient operator acts on the individual coordinates of the magnetization vector.

For the measurement of the di�usion coe�cient using nuclear magnetic resonance, Stejskal and

Tanner [52] proposed a spin-echo sequence as shown in �gure 9, with two identical gradient pulses,

one before and one after the refocusing 180° pulse.

Figure 9 � The di�usion-weighted spin echo. A strong gradient is switched on before and after
the 180° pulse. This leads to a dephasing e�ect in the presence of incoherent motion along the
direction of the gradient.

The solution of the Bloch-Torrey equation without the relaxation term for the trapezoidal

gradients as depicted in �gure 9 [3, 52] yields the signal strength:
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S = S0e
−b~gTD~g (6)

with S0 being the signal strength without the presence of di�usion gradients, the unit vector

in the direction of the di�usion gradient ~g and the b-value

b = (γG)2

[
δ2

(
∆− δ

3

)
+
ε3

30
+
δε2

6

]
.

G is the amplitude of the di�usion gradient. Intuitively, the dependence of the signal on the

di�usion coe�cient can be understood by �rst considering the case of stationary spins. The e�ect of

the �rst di�usion gradient on the phase of the spins is completely reverted by the second gradient,

and complete refocusing of the spin echo takes place. For the case of di�usion, i.e. incoherent

random motion of spins along the gradient direction, the resulting phase of the spins will depend

on their individual trajectories of motion while the gradients are switched on. Therefore, refocusing

is incomplete, and the larger the degree of random motion is, the more dephasing will be caused

by the di�usion gradients. On the other hand, coherent motion of tissue volumes larger than a

voxel does not lead to dephasing and signal loss, but to a constant phase in the magnetization

ϕ = γ

t2̂

t1

~G(t) · ~x(t) dt−
t4

γ

ˆ

t3

~G(t) · ~x(t) dt

with t1 and t2 being the start and end time of the �rst di�usion gradient, and t3 and t4 the start

and end time of the second di�usion gradient.

2.2.3 MRI measurements of the di�usion tensor

To measure the di�usion tensor

D =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


it is necessary to measure the di�usion-weighted signal for one b-value with at least 6 gradient

directions, as well as the non-di�usion-weighted signal. Setting up equation 6 for all gradient

directions and taking the logarithm of both sides of the equation yields a linear inverse problem

with the 6 parameters de�ning the di�usion tensor as unknowns. For measurements with a higher

number of gradient directions or multiple b-values, the di�usion tensor can be calculated using a

weighted linear least squares algorithm. These and more advanced methods for di�usion tensor

calculation have been summarized by Kingsley [37]. The two most important metrics for the

di�usion tensor are the apparent di�usion coe�cient (ADC) and the fractional anisotropy (FA).

The ADC is the mean eigenvalue of the di�usion tensor and can be used as a simple scalar measure
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to describe the degree to which di�usion in tissue is hindered, e.g. by cell membranes. The FA is

a measure to describe the degree of directionality of these barriers and is de�ned as

FA =

√√√√√√√3

2

3∑
i=1

(λi − ADC )2

3∑
i=1

λ2
i

with λi=1,2,3 the eigenvalues of the di�usion tensor. Besides maps of the ADC and the FA,

di�usion-weighted MR images can be directly used for clinical diagnosis (e.g. [36]). Diagnostic

images can be obtained either by averaging over the magnitudes of the image intensities acquired

with the di�erent gradient directions, or by computing the trace-weighted image I = S0e
− b

3
tr(D).

When directionality of di�usion is of no interest, di�usion-weighted imaging can also be limited to

three orthogonal gradient directions. The trace-weighted image Tra(b) is then calculated as the

geometric mean of the images with the respective b-value, and the ADC is calculated from the

model Tra(b) ∼ e−b·ADC

The di�usion-weighted imaging sequence which is routinely used in clinical practice reads out

a di�usion-weighted (DW) spin echo with an echo-planar k-space trajectory and is therefore called

di�usion-weighted echo-planar imaging (DW-EPI) [41]. This allows fast imaging with a high signal-

to-noise ratio due to the direct and rapid readout of the di�usion-weighted spin echo, but has the

disadvantage a high sensitivity to susceptibility-related artifacts as discussed in section 2.1.3.

2.3 Image reconstruction by nonlinear inversion

In parallel imaging, multiple receive coils are used for data acquisition. The signal measured in

each coil is in�uenced by its spatial sensitivity pro�le. These sensitivities depend on the geometry

and location of the coils, but also on the distribution of the magnetic susceptibility in the body in

the MRI device. Figure 10 shows an example of MR images reconstructed from signals acquired

with four coil elements placed around a phantom.

Figure 10 � Images reconstructed from the data acquired using four di�erent receive coils using
a direct Fourier transform [59].
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For a coil element denoted by the index j with the spatial sensitivity pro�le cj (~x), equation

3 which describes the relation between the measured signal and the transverse magnetization

becomes:

Sj(t) =

ˆ
cj (~x)M1(~x, t)ei

~k(t)·~x dV. (7)

Hence, the image reconstructed from the data acquired in a single coil element by a direct

Fourier transform is the product of the distribution of transverse magnetization and the sensitivity

pro�le. In 2008, Uecker et al. proposed the formulation of the image reconstruction problem

in parallel imaging as a nonlinear inverse problem and its solution by means of the iteratively

regularized Gauss-Newton method [60]. This algorithm of nonlinear inversion (NLINV), as well as

its extension to radial trajectories [62] are the basis of the image reconstruction methods described

in this thesis and shall be summarized in this section.

The unknown image content ρ and coil sensitivities c1,2,...,n for n coils are represented as

x =


ρ

c1

...

cn

 .

Parallel MRI is modeled according to equation 7: the measured data y = F (x) with

F : x 7→

 PkFPFOV c1ρ

...

PkFPFOV cnρ


with a point-wise multiplication between the image content and the respective coil sensitivi-

ties, PFOV denoting the projection onto a compact �eld of view, and Pk the projection onto the

sampled k-space trajectory. For the purpose of imposing a large degree of smoothness on the coil

sensitivities, a preconditioning operator W is included in the reconstruction algorithm: x = Wx̂

with ρ = ρ̂ and ĉj =

(
1 + s

∥∥∥~k∥∥∥2
)l/2
Fcj. The forward operator is transformed to express the

measured data in terms of x̂:

y = F (x) = F ◦W (x̂) = G (x̂)

This nonlinear inverse problem is solved in multiple Newton iterations. The m-th Newton

iteration (starting with 0) solves the problem after linearization around the current estimate x̂m:

x̂m+1 = x̂m + argmin
dx̂

[
‖DG (x̂m) dx̂− (y −G (x̂m))‖2 − αm ‖x̂m + dx̂− x̂0‖2] . (8)

DG denotes the Fréchet derivative of G. The regularization parameter αm is de�ned by a
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decreasing sequence of positive numbers, for the computations described in this thesis αm = 0.5m.

The regularization term in equation 8 describes a strong penalization of high spatial frequencies

in the coil sensitivities for the parameters s = 100 and l = 32, which are used for all NLINV

reconstructions described in this thesis. This shows that the preconditioning operator W enforces

the reconstruction of very smooth coil pro�les. From equation 8, the update rule follows:

x̂m+1 − x̂m =
(
DGH (x̂m)DG (x̂m) + αmI

)−1 (
DGH (x̂m) (y −G (x̂m))− αmx̂m

)
.

The inversion of the �rst factor on the right hand side is computed using conjugate gradients

[23].

For a cartesian sampling trajectory, the implementation of PkFPFOV is trivial, because the

data points are already on a cartesian grid, allowing direct computations of fast Fourier transforms

which automatically yields images on the compact domain of the �eld of view. The extension to

radial trajectories is detailed in ref. [62]. The projection onto the �eld of view is achieved by

interpolating the radially sampled data onto a 2-fold oversampled cartesian grid prior to image

reconstruction. Furthermore, the calculation of the updated estimate for each Newton iteration

involves convolutions with the point spread function which is de�ned by the sampling trajectory.

In practice, image reconstruction by nonlinear inversion from radially sampled data [62, 63]

includes the following computation steps: First, the amount of data to be processed is reduced to

a prede�ned number of virtual receive channels by principal-components-based data compression.

Then, the data are corrected for delays of the imaging gradients [48, 64], interpolated onto a

cartesian grid using Kaiser-Bessel functions, and the point-spread function is computed from the

known k-space trajectory. Iterative image reconstruction is performed on the resulting k-space

images.

2.4 Use of resources

For the development and application of the image acquisition and reconstruction techniques de-

veloped in this thesis, the following resources were used:

� All MR experiments were carried out on a 3T Prisma MRI device, Siemens, Erlangen

� For brain imaging, a 64-channel head coil was used

� For cardiac and prostate imaging, the combination of a body-array coil and a spine coil

were used

� The described imaging sequences were implemented in C++ using the Siemens IDEA VD13D

sequence development framework. These sequences use code from a radial fast low-angle shot

(FLASH) sequence [21] implemented by Dirk Voit in the Biomedizinische NMR Forschungs

GmbH, Göttingen.
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� Image reconstruction algorithms were implemented in Matlab (R2015b; The MathWorks,

Inc, Natick, MA). These algorithms partly use an interface with a graphics processing unit

(GeForce GTX TITAN; NVIDIA, Santa Clara, CA) provided by the MATLAB Parallel

Computing Toolbox. The software which was developed for image reconstruction includes

source code from previous developments for data preprocessing, NLINV, and image denoising

by the Biomedizinische NMR Forschungs GmbH which have been mainly used for real-time

MRI.
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3 The undersampled radial STEAM sequence

3.1 Sequence design

3.1.1 From STEAM to single-shot STEAM

The single-shot STEAM sequence was initially developed by Frahm et al. in 1985 [16]. It is

obtained by replacing the third 90° pulse of the basic STEAM sequence (�gure 11a) by a series of

pulses with smaller �ip angles (the �readout train�), as shown in �gure 11b.

(a) Basic STEAM sequence (b) Single-shot STEAM sequence

Figure 11 � The single-shot STEAM sequence: n stimulated echoes are generated with one
excitation using a train of small �ip angle pulses.

After the �rst two 90° pulses, the distribution of spins dephases into a state with the excited

magnetization coherently stored in the longitudinal direction (see section 2.1.2, �gure 7f). This

prepared magnetization decays on a time scale of T1, which is in the order of 1s in the human

body. Therefore, a third radiofrequency pulse will still induce a stimulated echo with signi�cant

signal strength even if it is applied after a waiting time in the order of 0.1-1 s after the second 90°

pulse.

The single-shot STEAM sequence takes advantage of this feature. Instead of fully depleting

the magnetization with one 90° pulse, the stored magnetization is depleted step-wise with low �ip

angle pulses (α pulses), and each of these pulses generates a stimulated echo. This can be seen as

a distribution of the stored magnetization among the stimulated echoes of the readout train, with

only moderate signal decay due to T1 relaxation. As for the basic STEAM sequence, the condition

for �clean� stimulated echoes without spurious signal is that the transverse magnetization is fully

dephased before the second 90° pulse, and before each α pulse. Moreover, the FID signal from

the α pulses must be dephased to avoid a superposition of the stimulated echo with a spurious

gradient echo.

Each of the stimulated echoes is spatially encoded as a cartesian line or a radial spoke. Unlike

gradient-echo sequences, particularly those using echo-planar signal readout, this sequence does not

lead to susceptibility-induced image artifacts, because at the time point of the stimulated echo,
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when signal readout takes place, spins with di�erent Larmor frequencies due to local magnetic

susceptibilities are rephased. A further di�erence in comparison to most other MRI sequences, e.g.

FLASH, is that undersampling does not lead to a lower, but to a higher signal-to-noise ratio. If

the number of stimulated echoes to be generated is reduced, higher �ip angles can be applied to

deplete larger fractions of the stored magnetization for each stimulated echo, so a higher SNR per

sampled line compensates the lower total number of lines. Additionally, the e�ect of T1 decay is

weaker for shorter readout trains.

The possibility of achieving high undersampling factors with radial k-space trajectories in

combination with iterative image reconstruction motivated the initial development of the radial

single-shot STEAM sequence [6]. The following subsections describe a new implementation of this

sequence for this work. First, an overview of the sequence is given, followed by a description of

two modi�cations which were introduced to remove image artifacts.

3.1.2 The radial single-shot STEAM sequence

Figure 12 � The radial single-shot STEAM sequence.

Figure 12 shows the complete single-shot STEAM sequence with radial encoding, with the

radiofrequency pulses as well as the gradients in the slice direction,Gs and in the two in-plane
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directions, Gx and Gy. The transverse magnetization is dephased, or �spoiled�, with the gradients

shown in green and gray before the second 90° pulse, before the start of the readout train, and

after each α pulse. The spoiler gradient before the second 90° pulse must have the same gradient

moment (time integral) as the FID spoiler, i.e. the gradient following the α pulses shown in gray,

to rephase the transverse magnetization for the stimulated echoes.

Excitation of the desired tissue slice is achieved with the gradients shown in blue. The gradient

directly following the slice-selection gradient for the �rst 90° pulse (blue outline) compensates the

dephasing e�ect of the slice-selection gradient. The readout gradient shown in orange encodes the

stimulated echoes as radial spokes in k-space. This gradient is preceded by a pre-phaser (orange

outline in �gure 12) which ensures that the peak of the stimulated echo is aligned with the k-space

center. The readout gradient is directly followed by a spoiler gradient (orange outline), which

dephases the remaining transverse magnetization to avoid any spurious signal from one stimulated

echo in the acquisition of the subsequent radial spokes. The orientation of the pre-phaser, the

readout gradient, and the spoiler following the readout gradient (all shown in orange) are adapted

to the spoke angle θ to the x axis, i.e., with Gx = G cos(θ) and Gy = G sin(θ), G denotes the

respective gradient amplitudes, which are positive for the readout gradient and the spoiler, and

negative for the pre-phaser. The timing of the sequence is set by the stimulated echo time TE and

the readout repetition time TRα. The time between the second 90° pulse and the �rst low-angle

pulse of the readout train is the mixing time TM.

This radial single-shot STEAM sequence contains two modi�cations compared to the initial

sequence by Block and Frahm [6]. Firstly, the calculation of variable �ip angles was modi�ed to

achieve a su�ciently homogeneous distribution of signal strength for the radial spokes to avoid

streaking artifacts. Secondly, the spoiling method for the readout train was modi�ed to more

e�ectively suppress signal contributions from gradient echoes.

3.1.3 Variable �ip angle scheme

Methods The signal strength for each stimulated echo, i.e. each radial spoke in the acquired

data, depends on the respective �ip angle as well as the remainder of the longitudinally stored

magnetization before the RF pulse. Hence, to compensate for the step-wise depletion of the stored

magnetization during readout, the �rst echoes must be generated with lower �ip angles than the

later echoes. The signal strength Si for the i-th echo is given by Si = Mi sin (αi), with αi the

�ip angle of the i-th pulse of the readout train and Mi the magnetization before that pulse. Each

readout pulse reduces the magnetization by a factor cos (αi), in addition, T1-relaxation must be

taken into account. Thus,

Mi+1 = Micos (αi) e
−TRα

T1 (9)

To achieve equal signal strength for all stimulated echoes, the condition Si = Si+1 is set for
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i = 1, ..., n− 1 with a total number n of stimulated echoes. This yields the recursive formula

αi = arctan
(
sin (αi+1) e−

TRα
T1

)
. (10)

This variable �ip angle model has been developed previously [14, 33], with αn = 90° to take

advantage of the remaining magnetization and an a priori estimate of T1, which is determined by

the anatomical location.

(a) Total signal strength (root-sum-squares over sampled data points and imaging channels) in the raw data
for 27 spokes ordered by the time of acquisition and four di�erent maximal �ip angles

(b) αmax = 90° (c) αmax = 70° (d) αmax = 40° (e) αmax = 10°

Figure 13 � E�ect of the maximum �ip angle on streaking artifacts (red arrow) and signal loss
in a single-shot STEAM imaging of the brain. The images in the lower row represent NLINV
reconstructions from the same datasets used for the calculation of signal strengths in the raw
data as shown in �gure 13a.

In practice, deviations of the actual �ip angle from the nominal �ip angle as de�ned by the

radiofrequency pulses alter the signal strengths. These deviations are caused by inhomogeneities

of the static magnetic �eld, o�-resonance excitation, and the inhomogeneous intensity of the RF
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amplitude across the width of the excited slice due to the shape of the RF pulse [65]. The actual

�ip angle is typically signi�cantly lower than the nominal �ip angle [2], with relative deviations

of more than 10%. Therefore, the �ip angle model systematically underestimates the remaining

magnetization before the pulses in the later part of the readout train and generates a higher signal

intensity in the last few spokes than in the other spokes.

This problem was solved heuristically, by introducing the variable parameter αmax = αn < 90°,

which dampens the hyperintensity in the last spokes.

Results Figure 13a shows the e�ect of the maximal �ip angle αmax on the signal strength in

the 27 spokes as well as the image quality for a brain scan performed with the radial single-

shot STEAM sequence. Reducing αmax from 90° to 40° strongly improves the signal homogeneity

between the 27 spokes with minimal signal loss, whereas αmax = 10° reduces the signal strength

in all spokes by approximately one third. NLINV reconstructions of the corresponding datasets

(�gure 13) show that the directional streakings at the edge of the brain, which are caused by the

hyperintense radial spokes for αmax = 90° are much weaker at αmax = 40° with no other change in

image quality, and a clearly lower SNR for αmax = 10°.

3.1.4 Spoiling in the readout train

Methods The method used for handling the transverse magnetization in the readout train di�ers

from the method previously proposed for radial single-shot STEAM MRI [6] as shown in �gure

14. Instead of applying a rewinder gradient anti-parallel to the readout gradient to rephase the

transverse magnetization, a spoiler gradient is applied in the same direction as the readout gradient

to dephase the remaining transverse magnetization.

The e�ect of the new spoiling method on in-vivo image quality was tested with two experiments

on the brain of a volunteer. First, the readout train of the single-shot STEAM sequence was run

without preparation of the magnetization to identify signal from spurious gradient echoes. This

experiment was executed with a rewinder and with a spoiler gradient, respectively. Second, the

entire sequence was run with both settings to investigate the e�ect of the spoiling method on the

image quality. Images were reconstructed using NLINV.

Results The results of these experiments are shown in �gure 15. The raw data acquired by

running only the readout train without excitation pulses show a signi�cant signal intensity which

strongly increases towards the end of the readout train if a rewinder gradient is used. By contrast,

the readout train run with spoiler gradient yields no signi�cant signal intensity. This shows that the

spoiler gradient e�ectively suppresses gradient echoes which may contaminate the acquired signal

if a rewinder gradient is used. The in-vivo images of the brain acquired with the two settings

show generally similar image quality, but a locally lower intensity for the image acquired with the

rewinder gradient in the upper-right region of the brain (red circles in �gure 15).
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(a) Rewinder (b) Spoiler

Figure 14 � The readout train of the single-shot STEAM sequence with a rewinder gradient
[6] and a spoiling gradient.
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(a) Rewinder (b) Spoiler

(c) Rewinder (d) Spoiler

Figure 15 � The e�ect of a rewinder gradient vs. a spoiler gradient after the readout pulse on
in-vivo brain images. Upper row: The raw data (root-sum-squares over all imaging channels)
acquired by running only the readout train of the STEAM sequence with (a) a rewinder gradient
and (b) a spoiler gradient after the readout pulse. The brightness represents the intensity in
the data points of the radial spokes ordered from left to right according to the time of signal
readout. (c) and (d): Brain images reconstructed after data acquisition with the single-shot
STEAM sequence with (c) a rewinder and (d) a spoiler gradient. In the region encircled in
red, lower intensities are observed when a rewinder gradient is switched.
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3.1.5 Discussion

The proposed modi�cations of the radial single-shot STEAM sequence substantially improve the

performance of the sequence with regard to the suppression of image artifacts. In particular,

the modi�ed variable �ip angle model visibly suppresses streaking artifacts at a minimal cost in

SNR. This is a viable, and probably favorable alternative to the approach presented in the initial

publication on radial single-shot STEAM MRI [6], which merely suggests temporal reorderings

of radial spoke angles to distribute the hyperintensities across a wider angular range, but does

nothing to reduce them.

The experiment on the modi�ed spoiling of the transverse magnetization in the readout train

shows that with the new spoiling method, the train of α pulses does not generate any spurious

MR signal which would be superimposed with the desired stimulated echoes. This indicates that

the spoiler e�ectively dephases the transverse magnetization. By contrast, the use of a rewinder

gradient leads to signi�cant signal strength which gradually emerges and becomes stronger towards

the end of the readout train. This suggests that the observed signal is produced by the interaction

of spins with multiple RF pulses of the gradient echo train, which leads to a refocusing e�ect.

Numerical simulations could provide a more detailed understanding of these e�ects, but would

only yield meaningful results if the uncertainty of the actual, physical �ip angles in the readout

train is addressed.

The e�ects of the di�erent spoiling methods on the in-vivo image quality are visible in a direct

comparison. An interpretation of the locally reduced intensity in the image acquired with rewinder

gradients as a susceptibility-related artifact from a gradient echo cannot be made with absolute

certainty. Nevertheless, it is a plausible explanation, because the artifact is located at a tissue

boundary with a sharp local change of the magnetic susceptibility.

The experiments on the e�ect of the two described modi�cations of the single-shot STEAM

sequence show that these modi�cations improve its performance. The modi�ed �ip angle model

and spoiling methods were therefore used in all MRI experiments with the single-shot STEAM

sequence.

3.2 Cardiac black-blood MRI using undersampled radial STEAM

3.2.1 Background

Black-blood MRI is a an imaging technique where the signal from blood is suppressed. This can be

bene�cial for the image contrast in cardiac MRI, especially examinations of the myocardium. One

pulse sequence for black-blood MRI is a double inversion recovery sequence [10]. This technique

exploits T1 relaxation to selectively suppress the MR signal from spins �owing perpendicular to

the imaging plane using two 180° pulses and a waiting time (�inversion time�) in the order of

T1 of blood before signal readout. The single-shot STEAM sequence has also been proposed for
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this black-blood MRI [15]. Besides avoiding susceptibility-induced artifacts, it does not require a

long waiting time, thereby allowing better control of the heart cycle phase in which the image is

acquired. The suppression of signal from moving spins is due to two physical e�ects. Firstly, a

stimulated echo is only generated from protons which interact with both 90° pulses as well as the

low angle readout pulses, which are all slice-selective. This suppresses signal from blood �owing

perpendicular to the imaging plane. Secondly, magnetic �eld gradients between the two initial 90°

pulses (time points t1 and t2), and between the low angle pulse (time point t3) and the stimulated

echo (time-point t4), leads to a selective dephasing of moving spins. The phase of the precessing

spins which move on a trajectory ~x(t) will be ϕ = γ
t2́

t1

~G(t) · ~x(t) dt−
t4

γ
´
t3

~G(t) · ~x(t) dt. Since the

condition
t2́

t1

~G(t) dt =
t4́

t3

~G(t) dt must be ful�lled so that the stimulated echo is not dephased, the

phase for a stationary spin would be 0, but a spin moving at velocity ~v would acquire the phase

ϕ = γ~v ·

(
t2́

t1

~G(t)t dt−
t4́

t3

~G(t)t dt

)
. This e�ect, primarily caused by the FID spoilers, dephases

the spins in �owing blood. However, to a lesser extent, this also dephases the spins in moving

parenchymal tissue, in particular a beating heart. Therefore, images cannot be acquired with good

quality during systole, i.e. the �pumping� phase of the heart cycle with fast contraction of the

myocardium, but only during diastole, i.e. the �resting phase� between the contractions, when

there is relatively little motion. This is achieved by electrocardiographic (ECG) triggering. The

ECG signal is measured in the patient using electrodes and transmitted to the control unit of the

MRI device. Image acquisition is triggered at a de�ned time point after the systolic peak, which

has to be experimentally adjusted to the heart cycle of each subject.

3.2.2 Methods

For this thesis, experiments on cardiac blood MRI using radial single-shot STEAM were limited to

a proof of principle because the main focus of this work is on di�usion-weighted STEAM MRI. The

single-shot STEAM sequence as described in section 3.1 was applied, preceded by a CHESS pulse

to suppress signal from fat in the abdominal tissue. The ECG trigger delay was experimentally

optimized for each volunteer, this was possible due to an available online implementation of the

NLINV reconstruction algorithm for radial trajectories on a graphical processing unit (GPU). The

orientation of the imaging plane is given by the short-axis view [17], which is an oblique image

orientation allowing a view of the myocardium, and the right and left heart chambers. Images

were acquired at an in-plane resolution of 2 mm, a slice thickness of 6 mm, a �eld of view of 256

mm, and a sampling trajectory of 43 spokes acquired in a sequential clockwise order. Two image

reconstruction methods were compared: NLINV and �gridding reconstruction�, i.e. gridding and

Fourier transform for the individual coil elements i, and calculation of the �nal imageD =
√∑

i

|di|2

with di=1,...,n being the images reconstructed using the individual coil elements.
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3.2.3 Results

(a) Volunteer 1, gridding reconstruction (b) Volunteer 1, NLINV reconstruction

(c) Volunteer 2, gridding reconstruction (d) Volunteer 2, NLINV reconstruction

Figure 16 � Cardiac black-blood images acquired with the single-shot STEAM sequence.

Figure 16 shows the resulting image quality for the two di�erent volunteers, and the two reconstruc-

tion methods. NLINV reconstruction yields an image quality which is clearly superior to gridding

reconstruction, with far less streaking artifacts caused by data undersampling. Moreover, a clear

improvement of the signal-to-noise ratio is observed, which can be attributed to the suppression

of noise due to the L2 regularization, as well as the more e�cient use of the sampled data from

parallel imaging due to an estimation of the coil sensitivities.

The achievable quality of the cardiac images di�ers strongly between the two volunteers. The

image acquired on volunteer 1 shows a good contrast between the the myocardial wall and the
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blood in the heart, due to a successful suppression of the MR signal from blood. The entire section

of the myocardium delineating the two heart chambers is well visible without major artifacts.

However, this image quality was not reproducible in most other volunteers. For volunteer 2, the

image intensity is very low in a segment of the myocardium. This signal blackout is accompanied

by streaking artifacts. The myocardial region which appears dark in the image is independent of

the reconstruction method.

3.2.4 Discussion

The general image quality which was achieved for volunteer 1 demonstrates the successful develop-

ment of the radial single-shot STEAM sequence and the potential of this sequence, in combination

with NLINV reconstruction, for cardiac black-blood MRI. This is a new result, since the only

previous attempt to apply the radial single-shot STEAM sequence to cardiac black-blood MRI

[35] resulted in images corrupted by hyperintense representation of the abdominal and streaking

artifacts for acquisition with 64 radial spokes.

Nevertheless, the results also show that good image quality and a complete representation of

the myocardial tissue in the image section are not reproducible. This indicates that the dephasing

e�ect due to the FID spoilers even compromises image acquisition during diastole. Dephasing of

spins in cardiac tissue may be reduced by altering the strength and spatial direction of the FID

spoiling gradients. In the case of weaker spoiling, this implies the risk of a corruption of the images

by spurious gradient echoes generated by the radiofrequency pulses of the readout train.

An important factor for the choice of the optimal sampling trajectory for black-blood cardiac

MRI is the dependence of the dephasing e�ect on the time point of signal readout. The phase of

spins moving at a constant velocity is proportional to the time di�erence between the initial FID

spoiler and the compensating gradient in the readout train. This means that the dephasing e�ect is

strongest for the last acquired cartesian lines or radial spokes. For a cartesian sampling trajectory

with a centric ordering of cartesian lines, where k-space is sampled from the center outwards, this

leads to a greater sensitivity for the outer k-space lines to dephasing e�ects and an ensuing risk of

local blurring for the myocardium in the phase encoding direction. For radial sampling trajectories,

on the other hand, the signal losses in the radial spokes acquired late in the readout train lead to

signal losses in the k-space center, as well as the observed streaking artifacts which can corrupt the

entire image. A golden-angle-based sampling trajectory [69] where the angle between subsequent

radial spokes is 137.5° would make the pattern of possible signal losses more symmetric around the

k-space center. Nevertheless, the risk of streaking artifacts would persist. These considerations

suggest that for cardiac black-blood STEAM MRI, a cartesian sampling trajectory, which has been

applied successfully [34] may be the better choice, and it has the additional advantage of enabling

image acquisition with a rectangular �eld of view.

The independence of the signal blackout observed in volunteer 2 from the reconstruction method

36



proves that this signal loss is an artifact of image acquisition and not of image reconstruction. This,

as well as the result from volunteer 1, shows that the nonlinear inversion algorithm is a suitable

reconstruction algorithm for cardiac black-blood STEAM MRI. This �nding contradicts the claim

made in ref. [35] that coil sensitivity estimation as proposed by Uecker et al. [60, 62] needs to

be further developed for the reconstruction of cardiac black-blood STEAM images from radially

sampled data.

The following sections describe the use of the radial single-shot STEAM sequence for di�usion-

weighted MRI.
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4 Di�usion-weighted STEAM MRI of the brain

4.1 Introduction

The �rst use of the single-shot STEAM sequence for di�usion-weighted MRI was reported in 2000

by Nolte et al. [47]. This was achieved by replacing the excitation pulse of a cartesian single-shot

STEAM sequence with a di�usion-weighted spin echo. This sequence allows di�usion-weighted

imaging without susceptibility artifacts, because all k-space lines are acquired with radiofrequency-

refocused echoes, hence all susceptibility-induced phase di�erences between spins are refocused.

This is the main advantage of this sequence over the EPI sequence described in section 2.1.3. At the

same time, the di�usion-weighted (DW) STEAM sequence avoids the high RF energy absorption

rates produced by spin echo sequences due to multiple refocusing RF pulses with high �ip angles.

One important application of the DW single-shot STEAM sequence has been di�usion tensor

imaging for nerve �ber tractography. The avoidance of susceptibility-induced image distortions

has enabled anatomically correct localization and mapping of major nerve �ber bundles in the

corpus callosum [26]. Moreover, speci�c �ber tractography applications which are very challenging

with EPI due to adjacent boundaries of regions with highly di�erent magnetic susceptibilities (air,

soft tissue, bone) have been enabled by the di�usion-weighted STEAM sequence. One important

example is tractography of the optic nerve [27].

The main factor which has limited widespread clinical applications of the DW single-shot

STEAM sequence is the generally low signal-to-noise ratio compared to other di�usion-weighted

imaging sequences, particularly EPI (e.g. [71]). This is �rstly due to the fact that the maximal

amplitude of a stimulated echo is half of the maximal amplitude of the spin echo. Secondly,

replacing the excitation pulse by a di�usion-weighted spin echo with the echo time TSE leads to an

additional T2-dependent signal loss, where the fraction of remaining signal is e−
TSE
T2 . Nevertheless,

a recent comparative clinical study on the performance of EPI vs. DW single-shot STEAM in

stroke diagnosis [36] showed that despite lower SNR, the STEAM sequence avoids diagnostic

errors caused by susceptibility-induced image artifacts in practice. This promising result motivates

a further development of di�usion-weighted STEAM imaging of the brain.

For this purpose of improving the signal-to-noise ratio and reducing the acquisition time, a novel

image acquisition and reconstruction technique for di�usion-weighted STEAM MRI was developed

based on undersampled radial k-space trajectories and nonlinear inverse image reconstruction. This

section describes the details of this technique, the optimization of imaging parameters, as well as

the results achieved in preliminary trials on image quality in healthy volunteers as well as patients.

A summary of the methods and results presented in this section has been published in a

scienti�c paper [45].
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4.2 The di�usion-weighted undersampled radial single-shot STEAM se-

quence

4.2.1 Sequence design

Figure 17 � The radial di�usion-weighted single-shot STEAM sequence

The extension of the radial single-shot STEAM sequence to a di�usion-weighted imaging se-

quence follows the same principle as for cartesian sampling [47]. In the STEAM sequence as

described in section 3, the initial 90° excitation pulse is replaced by a di�usion-weighted spin echo.

For the acquisition of the image with b = 0, the di�usion gradients (black in the sequence diagram

in �gure 17) are replaced by spoiler gradients directly preceding and following the 180° pulse with

a negligible b-value. This prevents the occurrence of spurious radiofrequency echoes by dephasing

unwanted transverse magnetization. This sequence is preceded by a CHESS pulse for the suppres-

sion of fat signal [20], see section 2.1, to suppress streaking artifacts from the fat tissue in the

scalp. The radial di�usion-weighted STEAM sequence is shown in �gure 17.

4.2.2 Multi-slice imaging

Di�usion-weighted multi-slice imaging of the entire brain requires the acquisition of multiple ad-

jacent slices of tissue. While the slice pro�le of the DW-STEAM sequence can be described as the

product of the slice pro�les of the spin-echo, the second 90° pulse, and the readout pulses, longi-

tudinal magnetization is depleted in the much broader section of tissue which interacts with any

of these components of the sequence. Hence, the subsequent acquisition of two adjacent slices will
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lead to considerable signal loss in the second slice. To avoid this e�ect, a time di�erence between

the acquisition of any two neighboring slices is introduced: The sequence is �rst run subsequently

on every second slice of the target volume, and then on the remaining slices. Pauses after each of

these two sequence blocks are introduced to allow imaging with a prede�ned volume repetition time

�TR�. Acquisition of the target volume is �rst performed with b = 0 (the �b0 image�), and repeated

for each desired b-value and di�usion gradient direction. The b-values are generally given in units

of s mm−2 , e.g. images acquired with b = 1000 s mm−2 are named �b1000�. The orientation of the

imaging slices is aligned with the anterior commissure (AC) and the posterior commissure (PC),

which is a very common choice in neuroimaging [53, 68]. Figure 18 shows the image orientation

and the multi-slice acquisition scheme. To optimally take advantage of k-space coverage with any

data regularization across multiple slices, the radial trajectory for each slice is rotated by an angle

of 2πz/(p ∗ 5), with p the number of radial spokes and z an index which denotes the anatomical

position of the slice. This rotation of the k-space trajectory has previously been used for the image

frames of a time series in real-time MRI [63].

A naive implementation of this MRI sequence and direct application of nonlinear inverse re-

construction as described in section 2.3 yields images with several di�erent types of artifacts. The

development of a robust and artifact-free imaging technique required the experimental optimiza-

tion of imaging parameters as well as further developments of the image reconstruction algorithm.

These experiments and developments are described in the following two subsections.

4.3 Optimization of image acquisition parameters

Generally, the suppression of undesired physical e�ects leading to image artifacts involves a cost

in imaging time and/or SNR. To achieve optimal image quality without unnecessarily high im-

age acquisition times, the radiofrequency pulses, gradient pulses, and timing parameters of the

di�usion-weighted STEAM sequence were tested in an extensive optimization process for brain

imaging on a large number of volunteers. In this section, only a small and instructive subset of

these experiments, as well as the e�ect of the respective imaging parameters on image artifacts is

described:

1. The streaking artifacts which arise from fat in the scalp and their removal by a CHESS pulse

are shown on a b0 image acquired with 300 Hz/Pixel.

2. The image artifacts which arise from spurious echoes in the acquisition of the b0 image

and their removal by spoiling gradients before and after the 180° pulse are demonstrated on

STEAM images with b=0 of a phantom.

3. The emergence of susceptibility-induced distortions and false image intensities due to an FID

spoiler of insu�cient strength is demonstrated in vitro and in vivo on non-di�usion-weighted

images.
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(a) Anterior commissure and
posterior commissure

(b) Every second slice ac-
quired in the �rst sequence
block

(c) Slices not acquired in the
�rst sequence block

(d) Acquisition of every second slice (red), followed by the remaining slices (green) in two imaging blocks is
repeated for all di�usion gradient directions, after acquisition of the b0 image.

Figure 18 � Di�usion-weighted imaging of the entire brain: Image orientation and multi-slice
acquisition

4. The e�ect of the repetition time TR on image contrast is evaluated.

5. The removal of streaking artifacts in the di�usion-weighted image due to the new modi�cation

of the variable �ip angle model is shown for the clinically relevant mean di�usion-weighted

image with b1000.

4.3.1 Fat suppression

To asses the e�ect of fat suppression on the image quality, b0 images of the brain were acquired

at 300 Hz/Pixel with and without a CHESS pulse for fat suppression. For brain imaging without

fat suppression, the fatty tissue in the scalp produces the expected streaking artifacts, which are

eliminated when the CHESS pulse is switched on (see �gure 19). Although the streaking artifacts

are less prominent for lower bandwidths, datasets acquired with 500 Hz/Pixel are also visibly

a�ected by the Larmor frequency shift of 420-440 Hz between water and fat.
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(a) Fat suppression o� (b) Fat suppression on

Figure 19 � b0-image of the brain with and without fat suppression using a CHESS pulse

4.3.2 Spoiling of the spin echo

For the acquisition of the b0 image, the e�ect of the spoiling gradients on either side of the

180° pulse of the spin echo can be seen from an imaging experiment on a phantom, with spoiler

gradient amplitudes of 0, 20, and 40 mT/m. As demonstrated in �gure 20, a gradient amplitude

of 40 mT/m su�ced to avoid visible artifacts from spurious RF echoes in the experiment shown

here. For maximal robustness, a value of 50 mT/m was chosen for further experiments.

(a) No spoiling (b) 20 mT/m (c) 40 mT/m

Figure 20 � E�ect of spurious echoes in the di�usion module. The duration of the spoiler on
either side of the spin echo was 3 ms.
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4.3.3 FID spoiling

To investigate the artifacts related to insu�cient FID spoiling, both a test tube and a slice of the

human brain were imaged with the di�usion-weighted STEAM sequence with a b-value of 0. The

results are shown in �gure 21. For image acquisition with a weak FID spoiler, both the image of

the test tube and that of the brain slice exhibit a striped, periodic artifact pattern which indicates

the superposition of two di�erent oscillating signals. Furthermore, the air-water boundary in the

test tube has a distorted shape as well as a hyperintensity in its vicinity. None of these artifacts

are observed after an increase of the duration and amplitude of the FID spoiler.

Both the distortion and the false image intensities are typical susceptibility-induced artifacts

caused by gradient echoes. This indicates that the stripe-like artifacts observed with a weak FID

spoiler are caused by gradient echoes from the low-angle pulses of the readout train. The absence

of all of these artifacts with a strong FID spoiler indicates e�ective dephasing of the FID signals

in the readout train which suppresses gradient echoes.

(a) Weak (b) Strong (c) Weak (d) Strong

Figure 21 � Suppression of gradient echo contributions by the FID spoiler. The two examined
settings of the FID spoiler were �weak� (20 mT/m amplitude and a duration of 0.3 ms) and
�strong� (30 mT/m amplitude and a duration of 0.6 ms)

4.3.4 Repetition time

Figure 22 shows the e�ect of a repetition time of 8 s compared to longer repetition times on

signal strength and contrast. Lowering the repetition time from 12 s to 8 s reduces the image

intensity gray matter (T1 = (1392±34) ms) more than in the white matter (T1 = (838±18) ms)

(relaxation times measured at 3T [67]). This can be seen in the reduced contrast between gray

and white matter in the images. No visible di�erences in image contrast between repetition times

of 12 s and 16 s were observed. This experiment shows that a repetition time of 12 s is optimal,

and no longer repetition times are needed.
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(a) TR = 8 s (b) TR = 12 s (c) TR = 16 s

Figure 22 � Dependence of image contrast on the repetition time. For a repetition time of 8 s,
a loss of image intensity in the gray matter (GM) is observed, which leads to a weaker contrast
to white matter (WM).

4.3.5 Maximal �ip angle

For di�usion-weighted brain imaging, the use of a maximal �ip angle of 40° avoids the local

streaking artifacts in the mean di�usion-weighted image which occur with a maximal �ip angle of

90° in the variable �ip angle scheme (see �gure 23). The hyperintense radial spoke can be identi�ed

in the Fourier transform of the image acquired using 90°. This corresponds to the last acquired

spoke. While a maximal �ip angle of 40° avoids the streaking artifacts observed at αmax = 90°,

no loss of image quality is seen and the signal strength as quanti�ed by the total L2 norm of the

image is reduced by less than 3%. This shows that the modi�ed �ip angle scheme as described in

section 3.1.3 suppresses artifacts with minimal signal loss in the di�usion-weighted images.
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(a) Signal loss in the di�usion-weighted images quanti�ed using the L2 norm, as a function of the maximal
�ip angle.

(b) 90° (c) 40° (d) 90° (e) 40°

Figure 23 � E�ect of the maximum �ip angle on image artifacts and signal loss. The images
in the lower row show the mean di�usion-weighted image and its Fourier transform after
image acquisition with αmax = 90° and αmax = 40°. In the k-space images, the brightness is
determined by the quantiles of the intensity distribution to visualize the radial spokes. The
artifacts observed for αmax = 90° are marked with red arrows.
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4.4 Image reconstruction

4.4.1 Methods

Overview For this work, the problem of reconstructing di�usion-weighted images from raw data

of multiple slices in the brain acquired in parallel imaging was solved using the mathematical

framework of nonlinear inversion described in section 2.3. To achieve robust image reconstruction,

several developments were necessary:

� To allow for an accurate calculation of the di�usion tensor, non-DW images and DW images

had to be reconstructed with a common set of coil sensitivities.

� This requires the same de�nition of virtual channels across multiple slices. Hence, the

principal-components-based data compression technique required adaptation to a variable

number of slices.

� An additional regularization term was included in the reconstruction algorithm to exploit the

similarity of the coil sensitivities of neighboring slices for more stable reconstruction results.

� To achieve a stable and well-de�ned degree of image regularization, a new method for data

scaling and initialization based on the properties of the acquired data was developed.

This section describes the entire data processing pipeline including these developments. The �nal

results are the b0 image, the mean di�usion-weighted image, and the ADC map. An overview of

this pipeline is given in �gure 24.

The developments for preprocessing, image reconstruction, and post-processing are described

in the following paragraphs.

Preprocessing In real-time MRI with nonlinear inverse reconstruction [62, 63], the amount of

data to be processed is reduced using a principal components analysis (PCA) of the raw data with

respect to the receive channels and the selection of a prede�ned number of principal components

for further processing. For DW STEAM imaging of the brain, the possibility of data regularization

across the slices requires simultaneous reconstruction of multi-slice data with a variable number

of slices. Since the number of principal components which is needed to adequately describe the

data without introducing qualitative changes in the image content depends on the number of slices

as well as the anatomical region, this number k of principal components must be calculated from

the properties of the raw data. Final image reconstruction requires a good image quality for each

slice, therefore, the reduced dataset must provide a suitable description of every single slice. The

criterion for the choice of k is that the retained fraction of data variance in each slice shall be

greater than or equal to a prede�ned value f . The calculation of k is derived as follows:

For a total number n of receive channels, the principal component transform of a multi-slice

set of raw data yields the normalized n-dimensional eigenvectors ~v1, ~v2, ..., ~vn and real and positive
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Figure 24 � The data processing pipeline for image reconstruction. The preprocessing steps,
PCA-based channel compression, gridding, and a gradient delay correction (GDC) result in
a cartesian representation of the acquired data in k-space with a reduced number of virtual
imaging channels. The b0 data are used to estimate the coil sensitivities (or coil pro�les) by
nonlinear reconstruction. These coil pro�les are used for linear reconstruction of the image
content of both the b0 image and the di�usion-weighted images. Post-processing involves
denoising with a non-local means �lter (NLM) and di�usion tensor calculation. The �nal
results are the denoised b0 image, the mean di�usion-weighted image, and the ADC map.

eigenvalues w1, w2, ..., wn of the n× n covariance matrix of a multi-slice dataset, with w1 > w2 >

... > wn. The fraction of variance in the entire dataset which is retained on selection of the �rst

k < n principal components is w1+w2+...+wk
w1+w2+...+wn

. For one slice, the raw data Ds of slice s can be

represented as a p× n matrix, with a number of p sampled data points. Data compression with k

principal components calculated on the multi-slice dataset can then be described as multiplication

with the compression matrix V = [~v1, ~v2, ..., ~vk], the compressed data Cs = DsV . The fraction of

retained variance then becomes gs(k) =

k∑
i=1

Var(cs,i)

n∑
j=1

Var(ds,i)
with cs,i and ds,i the i-th column vectors of Cs

and Ds. The selection rule for the number k of virtual channels in a dataset of S slices is therefore

k = min{m ∈ N|gs(m) ≥ f∀s ∈ N, s ≤ S}. The parameter f was set to 0.95.

Following PCA-based data compression, a gradient delay correction is applied to the raw data

to account for deviations from the desired k-space trajectory caused by hardware imperfections

[64, 48]. Then, the data are interpolated onto a cartesian grid using Kaiser-Bessel functions.
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Reconstruction

Coil sensitivity estimation with slice regularization The �rst step of the image re-

construction algorithm consists in an estimation of the coil sensitivities from the b0 data using

nonlinear inversion. In a generalized form, the cost function to minimize can be described as

K(x̂) = ‖G(x̂)− Y ‖2
2 +

β

2
R(x̂) (11)

with x̂ = (ρ, ĉ) = W−1(x), the raw data Y and the forward operator G as de�ned in section 2.3,

and a generic real-valued regularization function R. If R is quadratic in x̂, the problem can be

solved with the iteratively regularized Gauss-Newton method. In each Newton iteration m, the

linearized problem to solve is

(
DGHDG(x̂m) + βmD

2R(x̂m)
)
dx̂ = −βmDR(x̂m) +DGH(x̂m)(Y −G(x̂m)) (12)

with the Fréchet derivative D. The problem is solved in a number M of Newton iterations, with

βm = 0.5m−1. The �nal regularization parameter is thus determined by the number of Newton

iterations. With R(x̂) = ‖x̂‖2
2, this algorithm is equivalent to NLINV in its original form. To take

advantage of the similarity of the coil sensitivities of neighboring slices to achieve a more stable

estimation of the sensitivities, the regularization term is extended to

R(x̂) = ‖x̂‖2
2 + d

k∑
i=1

S−1∑
s=1

‖ĉi,s − ĉi,s+1‖2
2 (13)

where ĉi,s is the transformed coil sensitivity of the i-th virtual channel and the s-th slice, k the

number of virtual channels and S the number of slices. The slice regularization strength d deter-

mines the desired degree of similarity of the coil sensitivities of neighboring slices. Di�erentiation

of R w.r.t. x̂ yields DR = 2(ρ, Lĉ) and D2Rdx̂ = 2(dρ, Ldĉ), with

L = I + d


1 −1 0 0 ...

−1 2 −1 0 ...

... ... ... ... ...

... 0 −1 2 −1

... 0 0 −1 1

 , ĉ =


ĉs=1

...

...

...

ĉs=S

 (14)

and the identity matrix I, i.e., the matrix L acts on the coil sensitivities represented as a column

vector of slices. As in the original NLINV algorithm, the linearized problem for each iteration is

solved using the conjugate gradient algorithm.

Linear reconstruction With known coil sensitivities, image reconstruction becomes a linear

problem. Mathematically, this can be formulated as the NLINV reconstruction problem, with the
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coil sensitivities as constants. The forward operator reduces to:

F̃ (ρ) = PkFPFOVCρ (15)

where C denotes multiplication with the coil sensitivities,

C : ρ 7→

 c1ρ

...

ckρ


The derivative and its adjoint with respect to ρ are

DF̃ (ρ)dρ = F̃ (dρ), DF̃H(ρ)Y = F̃H(Y ) =
k∑
i=1

c∗iPFOVF−1PkY. (16)

The reconstruction problem with an L2 regularization on ρ can be represented as the minimization

of the cost functional:

K(ρ) =
∥∥∥F̃ (ρ)− Y

∥∥∥2

2
+
β

2
‖ρ‖2

2 (17)

with the same parameter β as in equation 11. The cost functionalK is minimized by computing

ρ =
(
F̃HF̃ − Iβ

)−1

F̃HY (18)

using the conjugate gradients method. In this reconstruction, the scaling of the input coil

sensitivities in�uences the degree of image regularization: multiplication of the sensitivities by

a factor a alters the balance between the terms F̃HF̃ and Iβ in equation 18 and has the same

e�ect on the �nal image as multiplying the regularization parameter β by a−2, i.e., strengthening or

weakening the in�uence of the regularization term of the cost function. Optimal regularization must

balance image blurring from high values of β against image noise resulting from low values of β.

Therefore, well-de�ned scaling properties are required for the output of the nonlinear reconstruction

which estimates the coil sensitivities.

Seeding For the nonlinear reconstruction, the data consistency term of the cost function K in

equation 11 is invariant to a rescaling of the form (ρ, ĉ) → (aρ, a−1ĉ) with a real positive number

a. Hence, the scaling of the estimated coil sensitivities is determined only by the regularization

term, which favors ‖ρ‖2 = ‖ĉ‖2. To guarantee predictable results of the linear reconstruction

algorithm, this scaling must converge in the nonlinear reconstruction. Fast convergence motivates

initialization (seeding) of the non-linear reconstruction algorithm with data arrays ρinit and ĉinit

with L2 norms which are similar to those predicted for the �nal result. Besides equal norms for

the image and the coil sensitivities, data consistency requires ‖G(x̂)‖2 = ‖Y ‖2, which can be
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approximated by the condition
∥∥Y ′i,s∥∥2

= ‖PsF(ρinit ,s ◦ cinit ,i,s)‖2, where �◦� denotes point-wise

multiplication, Y ′i,s represent the raw data of the i-th virtual channel and the s-th slice interpolated

on a cartesian grid and Ps is the Fourier transform of the point-spread function which is de�ned

by the k-space trajectory used for the slice s. Besides de�ning the initial scaling of coil sensitivities

and image content, seeding provides a �rst estimate of the intensity distribution in the image and

the phase maps of the coil sensitivities. The image content is initialized as a real-valued array

ρinit,s ∼
√

n∑
i=1

∣∣F (M ◦ Y ′i,s)∣∣2, where M is a Gaussian smoothing mask, and the coil sensitivities

are initialized as ĉinit ,i,s ∼
(

1 + r
∥∥∥−→k ∥∥∥2

)− l
2

Yi,s, with the parameters r and l equal to those which

de�ne in-plane coil sensitivity regularization in NLINV, and the arrays are normalized to �t the

conditions for the L2 norms described above.

Post-processing The reconstruction algorithm yields one b0 image and one di�usion-weighted

image for each gradient direction. Post-processing of these �raw images� involves the use of a

non-local means �lter (NLM) [38] for image noise removal, which retains high spatial frequencies

by averaging intensities of pixels with similar local environments. The following computation steps

are taken to compute the �nal results, i.e. the b0 image, the mean di�usion-weighted image, and

the ADC map

1. For protocols with multiple averages, the magnitudes of the reconstructed images are aver-

aged.

2. The b0 image is computed by denoising the raw b0 image with NLM.

3. The mean di�usion-weighted image is computed by �rst averaging over the magnitudes of

the raw DW images corresponding to the di�erent gradient directions, then denoising with

NLM.

4. For calculation of the ADC map, the following steps are performed

(a) Denoising of the raw images with NLM.

(b) Calculation of the di�usion tensor. For 6 gradient directions, an exact solution exists,

for more gradient directions, an optimal solution is computed with a weighted linear

least squares algorithm [37].

(c) The ADC is calculated as the mean eigenvalue of the di�usion tensor.

4.4.2 Numerical experiments

Channel compression In PCA-based channel compression, the number of image slices recon-

structed at once clearly a�ects the number of principal components needed to correctly reconstruct
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the image content. As shown in �gure 25, with the PCA calculated on one section, 5 principal

components are su�cient to correctly reconstruct the image content. The retained fraction of

variance, or energy, in the raw data was 93.3%. With a PCA computed on 25 slices, the use of 5

principal components yields reconstructed images with visible local intensity changes; the retained

fraction of energy was 76.6%. With a joint reconstruction on 25 slices, 20 principal components

(energy fraction of 97%) yield a reconstructed image with good qualitative agreement with the im-

age reconstructed without PCA. This shows that the retained energy fraction is a better predictor

for the e�ect of data compression on image quality than the number of principal components, and

that a minimal retained energy of 95% was a suitable choice.

(a) Signal loss in the di�usion-weighted images as quanti�ed by the fraction of retained energy in the raw
data of a single slice as a function of the number of principal components

(b) No PCA (c) 5 PC on 1 slice (d) 5 PC on 25 slices (e) 20 PC on 25
slices

Figure 25 � E�ect of number of principal components and the number of simultaneously re-
constructed slices on the retained fraction of energy in the raw data. For too few principal
components, alterations of image intensities are observed, e.g. in the region marked with a red
circle.
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Data scaling and seeding To test the data scaling of the reconstruction algorithm with and

without the proposed seeding method, a nonlinear inverse reconstruction with 8 Newton steps was

run on the b0-data of a di�usion-weighted dataset of the brain multiple times, with the result

(ρ, ĉ) from each run used as the initialization for the next run. As seen in �gure 26, after trivial

initialization of the estimates of image content (homogeneous value of 0) and coil sensitivities

(homogeneous value of 1), the total L2 norms of the image content and the coil sensitivities (‖ρ‖2

and ‖ĉ‖2 ) strongly vary for the �rst �ve runs, and remain nearly constant after the �fth run. The

scaling to which ‖ρ‖2 and ‖ĉ‖2 tend after multiple runs of the reconstruction algorithm is already

achieved after one reconstruction run when the proposed seeding method is used.

The e�ect of data scaling on the image quality can be seen in �gure 27. After coil sensitivity

estimation with one run of the reconstruction algorithm, subsequent linear image reconstruction

yields a strongly blurred image. This strongly di�ers from the result of the nonlinear reconstruction.

The blurring indicates excessively strong image regularization in the linear reconstruction step,

which is consistent with the low norm of the coil sensitivities resulting in a downscaling of the data

consistency term relative to the regularization term for the linear reconstruction.

The use of coil sensitivities estimated with ten runs of the nonlinear reconstruction or one

run with the proposed seeding method yields linearly reconstructed images which are consistent

with the nonlinear reconstruction result. In these cases, the scaling of the coil sensitivities had

converged in the nonlinear reconstruction.

Figure 26 � L2 norm of the image content ρ and the transformed coil sensitivities ĉ after
nonlinear reconstruction for repetitive runs of the reconstruction algorithm with 8 Newton
steps and after seeding.
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(a) Nonlinear reconstruc-
tion, no seeding, image after
1 run

(b) Nonlinear reconstruc-
tion, no seeding, image af-
ter 10 runs

(c) Nonlinear reconstruc-
tion, seeding, image after 1
run

(d) Linear reconstruction,
no seeding, image after 1
run

(e) Linear reconstruction,
no seeding, image after 10
runs

(f) Linear reconstruction,
seeding, image after 1 run

Figure 27 � Reconstruction results for nonlinear and subsequent linear reconstruction of b0
images, after repetitive runs of the nonlinear reconstruction step, with and without seeding.

Coil sensitivity regularization The images and coil sensitivities shown in �gure 28 show six

slices from a dataset of the brain acquired with an isotropic resolution of 1.8 mm. Without a

regularization of coil sensitivities over the slices, non-linear inverse reconstruction of this dataset

leads to a reconstruction artifact in one slice, with a locally negligible magnitude in the image as well

as the coil sensitivities. Moreover, the image as well as the coil sensitivities have a phase singularity

in that location. Regularization of the coil sensitivities with a slice regularization strength of d = 1

yields an image and coil sensitivities without this artifact. Nevertheless, this regularization retains

the di�erences in the coil sensitivities of the di�erent slices. So far, the reconstruction artifact

described above has never been observed on datasets which were reconstructed with the proposed

seeding and coil sensitivity regularization methods.

Convergence of the reconstruction algorithm The reconstructed image intensity for the b0

image as well as the mean di�usion-weighted image were measured as a function of the number

of Newton iterations in a region of white brain matter with approximately homogeneous signal.
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(a) Image content, d = 0 (b) First PC of coil sensitivities, d = 0

(c) Image content, d = 1 (d) First PC of coil sensitivities, d = 1

Figure 28 � Suppression of reconstruction errors (marked with arrows) due to coil pro�le
regularization with strength d. The complex-valued coil sensitivities are represented using the
colour for the phase and the brightness for the magnitude.

The result displayed in �gure 29b shows a convergent behaviour of the reconstruction algorithm

and a constant image intensity for 9 or more Newton iterations. The standard deviations of the

intensities in the region increase with more than 9 iterations, which indicates an increase in the

noise level. The choice of 9 Newton iterations is con�rmed by visual inspection of the corresponding

images shown in �gure 29: the images (b0 and b1000) reconstructed with 11 Newton iterations

appear more corrupted by noise than those reconstructed with 9 Newton iterations. However, a

reconstruction with 7 Newton iterations leads to less spatial acuity.
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(a) Region used for evaluation
of convergence

(b) Reconstructed image intensity in the region shown in �gure
29a .

(c) b0, 7 iterations (d) b0, 9 iterations (e) b0, 11 iterations

(f) b1000, 7 iterations (g) b1000, 9 iterations (h) b1000, 11 iterations

Figure 29 � Image quality and regional intensity as a function of the number of Newton
iterations. The b-values are given in units of smm−2. The images shown for b1000 are
averages of magnitudes over 6 directions.
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4.4.3 Discussion

Slice-based regularization of the coil sensitivities led to the avoidance of reconstruction errors with

a �black hole� in the image and phase singularities in the coil sensitivities. However, it is likely that

the avoidance of such �black hole� artifacts is in part due to the new initialization, since a correct

initial estimation of phase maps should reduce the likelihood for the reconstruction algorithm to

converge to a cost function minimum with an incorrect phase singularity. Recently, Wang et al

[66] observed the removal of the same artifact in a time series of cardiac FLASH MR images by

estimating the coil sensitivities from a larger number of frames. This is consistent with the results

reported in this thesis, since the proposed regularization e�ectively increases the amount of data

from which every set of coil sensitivities is estimated. An alternative method for the avoidance of

such black holes is the ENLIVE (Extended Non-Linear InVersion inspired by ESPIRiT) algorithm

which was recently published by Holme et al. [28], where multiple sets of coil sensitivities are

reconstructed with a symmetry-breaking constraint which e�ectively penalizes the formation of a

black hole.

Besides providing an initial estimate of the phase distributions for the coil sensitivities, the

seeding was shown to accelerate the convergence of the nonlinear reconstruction, in particular with

regard to the scaling of intensity values of both the image content and the coil sensitivities. Since

convergence of this scaling is necessary to avoid an unpredictable degree of image regularization

in the �nal result, the practical e�ect of the proposed seeding method is at least a 5-fold reduction

of the computation time for the nonlinear reconstruction step, which is crucial for any application

in clinical practice. Without the proposed initialization, the relative intensity scaling of image

content and coil sensitivities converges much slower than the relative intensity distribution within

the image. This can be attributed to the fact that this scaling is determined by the regularization

term only.

4.5 In vivo studies using optimized imaging protocols

4.5.1 Methods

Based on experimental in-vivo optimization of acquisition and image reconstruction parameters,

two protocols for rapid di�usion-weighted imaging (DWI) of the entire brain were developed for

possible clinical use: �fast DWI� at an in-plane resolution of 1.5 mm, a slice thickness of 4 mm and

a total acquisition time of 84 s, and �high-resolution DWI� at an in-plane resolution of 1.25 mm,

a slice thickness of 3 mm and an acquisition time of 168 s. The acquisition and reconstruction

parameters of these protocols are shown in table 1.

These imaging protocols were tested for robustness to image artifacts on ten volunteers. More-

over, the performance of the high-resolution protocol was tested on two patients in a preliminary

trial.
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Sequence Fast DWI High-resolution DWI

In-plane resolution [mm] 1.5 1.25
Matrix size 128 152

Field of view [mm] 192 190
Slice thickness [mm] 4 3
Max. number of slices 55 54
b-value [s mm−2 ] 1000 1000
No. of averages 1 2

Di�usion directions 6 6
TR [ms] 12000 12000

Total acquisition time 84 s 168 s
Bandwidth [Hz/Pixel] 500 500

Radial spokes 35 35
TSE [ms] 35.5 35.7
TRα [ms] 4.41 4.54
TE [ms] 5.36 5.54

Newton iterations 9 9
Slice regularization strength 1 1

Table 1 � Optimized imaging protocols.

4.5.2 Results

Figure 30 shows the previous state-of-the-art image quality [36] for di�usion-weighted STEAM

MRI with cartesian sampling and image reconstruction using the Generalized Autocalibrating

Partial Parallel Acquisition (GRAPPA) algorithm [18]. The total acquisition time for these data

sets was 330 s, with an in-plane resolution of 1.44 mm, a slice thickness of 5 mm, and a b-value

of 1000 s mm−2 . The image quality achieved using the optimized undersampled radial STEAM

DWI protocols (table 1) is shown in �gure 31 for the fast DWI protocol, and in �gure 32 for the

high-resolution DWI protocol. Similar image quality was achieved in 10 volunteers on which these

protocols were tested. In particular, no susceptibility artifacts and none of the image artifacts

shown in sections 4.3 and 4.4.2 were observed in this study with either of the two optimized

protocols.

Comparison of the mean di�usion-weighted images with the STEAM DWI results from �gure

30 show that undersampled radial STEAM DWI with iterative image reconstruction yield visually

superior image quality as characterized by spatial acuity and contrast between gray and white

matter compared to the results published by Khalil et al. This was achieved with comparable

voxel volumes and a 4-fold reduction in acquisition time (fast DWI) or, for high-resolution DWI, a

2-fold reduction in both acquisition time and voxel volume. SNR quanti�cation for the b0 images

acquired with high-resolution STEAM DWI yielded inconsistent results for two tested methods.

Using the same method as Khalil et al. [36], with an estimation of the noise level from the standard
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Figure 30 � Previous state-of-the-art image quality for EPI (row A) and STEAM DWI (row
B). Reprint from ref. [36], �g. 2. This result shows susceptibility-induced artifacts marked
with arrows, which are avoided with use of the STEAM DWI sequence.

deviation of the intensity in a region outside the brain, the result was an SNR of 87. The �di�erence

method�, where the noise level is estimated from the di�erence between two identical subsequent

acquisitions, resulted in an SNR estimate of 20.

The ADC values measured in the centrum semiovale, a large region containing white brain

matter (see �gure 33) for the 10 volunteers yielded ADC values of (683± 18) · 10−6 mm2 s−1 (fast

DWI) and (680±24) ·10−6 mm2 s−1 (high-resolution DWI) which are in agreement with each other

and with the range of literature values of (687±23) ·10−6 mm2 s−1 [29], (703±36) ·10−6 mm2 s−1

[7] and (736± 40) · 10−6 mm2 s−1 [30].

The STEAM DWI results from preliminary trials on one patient with subacute lacunar stroke

and one patient with an epidermoid cyst are displayed in �gure 34. These images provide relevant

diagnostic information which is not corrupted by any susceptibility artifacts. The hindered di�u-

sion caused by the stroke can be located very well in the mean di�usion-weighted STEAM image.

DWI also allows a detailed characterization of the inner structure of the cyst, which appears ho-

mogeneous in the non-di�usion-weighted image. The di�usion-weighted image shows dark regions,

which contain �uid, as well as bright regions of jelly-like compartments.
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(a) b0, upper slice (b) b1000, upper slice (c) ADC, upper slice

(d) b0, middle slice (e) b1000, middle slice (f) ADC, middle slice

(g) b0, lower slice (h) b1000, lower slice (i) ADC, lower slice

Figure 31 � Image quality obtained with fast di�usion-weighted imaging protocol. The b-values
are given in units of smm−2 . The images shown for b1000 are averages of magnitudes over 6
directions.
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(a) b0, upper slice (b) b1000, upper slice (c) ADC, upper slice

(d) b0, middle slice (e) b1000, middle slice (f) ADC, middle slice

(g) b0, lower slice (h) b1000, lower slice (i) ADC, lower slice

Figure 32 � Image quality obtained with high-resolution di�usion-weighted imaging protocol.
The b-values are given in units of smm−2 . The images shown for b1000 are averages of
magnitudes over 6 directions.
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Figure 33 � Region of interest in the cen-
trum semiovale for the validation of ADC
measurements.

Subject Fast DWI High-resolution DWI

#1 680± 12 656± 8
#2 715± 10 682± 9
#3 684± 10 698± 8
#4 665± 10 664± 9
#5 656± 10 645± 8
#6 687± 9 669± 8
#7 673± 10 689± 8
#8 680± 10 709± 8
#9 682± 9 666± 9
#10 708± 9 718± 8

Mean ± SD 683± 18 680± 24

Table 2 � ADC values in the centrum semio-
vale [10−6 mm−2 s−1]
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(a) b0, stroke (b) b1000, stroke (c) ADC, stroke

(d) b0, cyst (e) b1000, cyst (f) ADC, cyst

Figure 34 � High-resolution DWI applied to patients with a lacunar stroke (upper row) and an
epidermoid cyst (lower row). The restricted di�usion for stroke is well seen in the di�usion-
weighted (b1000) image (b). The di�usion-weighted image of the cyst (e) details its internal
structure which contains �uid (dark) and jelly-like (bright) compartments. The b-values are
given in units of smm−2 . The images shown for b1000 are averages of magnitudes over 6
directions.
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4.6 Discussion

This thesis reports the �rst successful development and application of a di�usion-weighted single-

shot STEAM MRI technique with radial sampling of k-space. Two imaging protocols were pro-

posed, one emphasizing spatial resolution, the other emphasizing low scan times. These protocols

allow di�usion-weighted imaging in clinically feasible scan time, resolution and image quality,

which was reproducible in 10 tested volunteers.

To achieve this result, the new developments in the image acquisition and reconstruction tech-

nique were crucial. The modi�ed variable �ip angle model avoided local streaking artifacts with

minimal SNR loss, and stable image reconstruction was achieved with a combination of regulariza-

tion of the coil sensitivities across the slices and a new method of data scaling and initialization.

The bene�ts of a radial sampling trajectory and NLINV-based image reconstruction for DW-

STEAM imaging can be understood by comparison with the latest methodological publication on

cartesian DW-STEAM of the brain by Karaus et al. [33]. This technique uses partial Fourier

imaging, i.e. the exploitation of the symmetries of the Fourier transform, and parallel imaging

with GRAPPA reconstruction [18] to acquire images with an undersampled cartesian trajectory

of 31 lines, whereas the radial STEAM protocols use 35 spokes. However, the in-plane resolution

for the cartesian sequence was 1.8 mm, with a total of 84 pixels in the phase encoding direction,

versus 1.25 mm resolution and 152x152 pixels for the undersampled radial high-resolution DWI

protocol. Hence, the use of a radial trajectory with NLINV-based reconstruction increased the

undersampling factor from 2.7 to 4.3. This increase of the undersampling factor was possible

mainly due to the superior performance of NLINV compared to GRAPPA for undersampled k-

space trajectories [60], but also the favorable undersampling properties of radial trajectories due

to a high sampling density in the center of k-space. With an undersampling factor of 2.7, the

number of radial spokes would be 56 instead of 35. This would reduce the maximum number of

acquired slices for high-resolution DWI at TR = 12 s from 54 to 38. In-vivo experiments have

shown that this would be insu�cient for reliable whole-brain coverage, which requires 47 slices of 3

mm thickness. This proves that the proposed image acquisition and reconstruction technique has

considerably reduced the scan time for whole-brain DWI at the resolution de�ned by the proposed

high-resolution protocol. Imaging protocols with even higher spatial resolution would bene�t even

more from the improved undersampling properties, because the scan time would be de�ned only

by the duration of the pulse sequence itself and not by an optimization of the image contrast

and SNR which is a�ected by T1 relaxation for short repetition times. An additional bene�t of

accelerated acquisition of each slice is that signal losses due to T1 relaxation between the second

90° pulse and the readout pulses is reduced, while the SNR loss due to a lower number of radial

spokes is compensated by the higher SNR per spoke due to higher �ip angles.

Comparison of the results of the described radial single-shot STEAM technique to the recently

published results by Khalil et al. for cartesian DW-STEAM imaging clearly show a major ad-
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vancement. The image quality is arguably improved while the scan time is either reduced by a

factor of 4 at comparable spatial resolution (fast DWI) or by a factor of 2 at half the voxel vol-

ume (high-resolution DWI). Exact quanti�cation of this improvement in terms of SNR is di�cult

because Khalil et al. have calculated the SNR by estimating the noise level from a background re-

gion. Apart from the fact that this method is generally compromised by high uncertainties [9], the

reconstruction method proposed in this thesis does not produce homogeneous background noise.

Therefore, the calculated SNR improvement from 36 (Khalil et al.) to 87 probably overestimates

the real SNR increase. On the other hand, the di�erence method [9] which yielded an SNR of 20

for high-resolution DWI systematically underestimates the SNR, because motion and brain pulsa-

tions are included in the di�erence image and lead to an overestimated noise level. Therefore, a

meaningful quantitative value of the relative increase in SNR per measuring time due to the new

methodological developments could not be computed; based on the two diverging estimates, the

factor should be between 2 and 9.

The observed improvement of SNR e�ciency can be explained by a combination of the e�ects

of methodological developments and improved hardware.

The Siemens Tim Trio 3T scanner used by Khalil et al. provides a maximal gradient strength

of 40 mT
m
, whereas the Siemens Prisma 3T scanner used for the experiments described in this thesis

allows for 80 mT
m
. This has reduced the spin echo time from 44 ms [36] to 35.7 ms. For white

matter with T2 = 80 ms [67], this results in 10 % SNR gain, for gray matter with T2 = 110 ms,

the SNR gain is 7%. Another possible source of SNR increase is the use of a 64-channel head coil

for signal acquisition for this work, whereas Khalil et al. used a 12-channel head coil.

Besides some SNR improvement due to improved undersampling properties, two major factors

in the methodological developments which increase the SNR can be identi�ed.

Firstly, the L2 regularization term in the reconstruction algorithm suppresses image noise.

Compared to image reconstruction by gridding and fast Fourier transforms (FFT), the improved

SNR in nonlinear inversion with L2 regularization can clearly be seen in the cardiac images in

section 3. Even though no equivalence between the gridding reconstruction and the GRAPPA

reconstruction used for cartesian STEAM data can be assumed, the L2 regularization term in

NLINV should also lead to an improvement in SNR in comparison to GRAPPA reconstruction,

which does not include any regularization. Ref. [60] provides a direct comparison of images

reconstructed with GRAPPA and NLINV from the same data, which supports this claim.

Secondly, the application of the non-local means �lter improves the SNR as estimated using

the di�erence method by a factor of 2. This is consistent with the theoretical prediction using a

�lter strength of 0.5 (parameter αmax in ref. [38]). It is, however, unclear if the images presented

by Khalil et al. were processed with an image �lter provided by the vendor of the MRI device,

which was not explicitly mentioned in their clinically oriented publication.

For a quanti�cation of the SNR improvement achieved by the proposed imaging technique

excluding e�ects of di�erent hardware, and of the in�uence which each of the described e�ects have
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on image SNR, a re-development of cartesian STEAM DWI and GRAPPA image reconstruction

as used by Khalil et al. would be necessary. This was beyond the scope of this work. Moreover,

both experimental results and theoretical considerations show that inferior results compared to

the proposed method are to be expected. Hence, such an extensive re-development project would

not be of any practical use beyond a more quantitative description of the improvements of the

SNR due to the e�ects of radial undersampling, iterative image reconstruction and denoising as

described above.

The described imaging technique is the �rst implementation of single-shot STEAM DWI which

yields di�usion-weighted images of the brain with clinically feasible scan time, resolution and

image quality. First results on patients as shown in this thesis are promising and motivate further

clinical studies on the performance of this technique in diagnostic brain MRI. The following section

describes the application of STEAM DWI to prostate imaging, where the bene�t of avoiding

susceptibility artifacts is even greater than in brain imaging.
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5 Di�usion-weighted STEAM MRI of the prostate

5.1 Introduction

Prostate cancer is the most common form of cancer which a�ects adult males. Di�usion-weighted

MRI is a potentially useful tool for detection and classi�cation of lesions as well as assessment

of treatment response [54]. However, di�usion-weighted EPI of the prostate is prone to major

susceptibility-induced artifacts which can lead to image distortions [42] as well as local errors in the

ADC maps which may lead to false diagnosis [54]. This is due to the sharp local inhomogeneities

of the magnetic susceptibility in the vicinity of the prostate, in particular at the boundary to

the colon which may be �lled with air (see �gure 35). Thus, the single-shot STEAM sequence

is a potentially useful technique for prostate DWI. In this chapter, the �rst application of the

di�usion-weighted STEAM sequence presented in section 4.2 to prostate imaging is described.

To develop an imaging protocol which is competitive with current clinical practice, imaging

parameters were adapted to those of the clinical prostate DW-EPI protocol developed by Siemens

for imaging with the Magnetom Prisma (3T) MRI device and a body-array coil. This commercial

EPI protocol uses an in-plane resolution of 1.43 mm, a slice thickness of 3.5 mm, a maximal b-value

of 800 s mm−2 and a total acquisition time of 4 min.

The use of the body-array coil and the spine coil for image acquisition in the prostate generally

leads to lower SNR compared to brain imaging with the 64-channel head coil. This is caused by the

greater distance between the prostate and the coils, which are situated below the table carrying the

patient (spine coil) or �xed around the patient's hips (body-array coil). Shorter distances between

the prostate and the receive coils are possible using endorectal coils, but only at the cost of major

inconvenience for the patient and a risk of poor patient compliance, and little chance of testing

any novel imaging techniques on healthy volunteers. The study of DW MRI of the prostate for

this work is therefore limited to image acquisition with a body-array coil and spine coil.

The low SNR of the acquired data has two important consequences. Firstly, averaging over

multiple acquisitions is necessary to achieve adequate SNR. Secondly, averaging over magnitude

images, as done for high-resolution brain DWI, leads to a systematic underestimation of the ADC.

To avoid both ADC underestimation which results from magnitude averaging, and the errors

caused by complex averaging due to inconsistent motion-associated phases, a multi-shot imaging

imaging approach was developed, which is described in the following section.
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(a) Transverse slice with prostate (b) Coronal slice with prostate

Figure 35 � Anatomical location of the prostate and surrounding tissue

5.2 Methods

5.2.1 ADC measurements from data with low SNR

The e�ect of low SNR on the measurement of the ADC can be understood with the following

calculation: we assume a true image intensity S0 for b = 0 and S1 for the di�usion-weighted image,

both real and positive. The true di�usion coe�cient D = 1
b
ln
(
S0

S1

)
. If both the real and the

imaginary part of S0 and S1 are corrupted by Gaussian noise with a standard deviation of σ, the

corresponding expectation values E [S0,1] =
´
z∈C
N (z, 0, σ)

√
(S0,1 + <(z))2 + (=(z))2dz , with N

the complex-valued normal distribution with a standard deviation of σ. The estimated di�usion

coe�cient will tend to D′ = 1
b
ln
(
E[S0]
E[S1]

)
< D. The resulting systematic relative error D−D′

D
is

shown in �gure 36 as a function of SNR = S0

σ
.

5.2.2 Multi-shot image reconstruction

To reconstruct di�usion-weighted images and ADC maps while avoiding this systematic error, a

multi-shot image reconstruction algorithm was developed. This algorithm is based on the method

developed by Uecker et al. for segmented cartesian STEAM DWI [61]. The image content for

one di�usion-weighted image is jointly reconstructed from the data of all averages (shots), with

precalculated phase maps included in the reconstruction model. The algorithm uses the following

steps:

1. Preprocessing and nonlinear inverse reconstruction with coil sensitivity regularization of the
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Figure 36 � The systematic relative error of the di�usion coe�cient calculated with magnitude
averaging as a function of the SNR of the image with b = 0. In all cases, the estimated di�usion
coe�cient is lower than the true di�usion coe�cient.

entire dataset as described in section 4.4. This results in an image Im for each shot m =

1, ...,M , coil sensitivities Cn for virtual channels n = 1, ..., N .

2. Calculation of phase maps eiϕm . Three di�erent options can be used here:

(a) Calculation without phase map processing: eiϕm = Im
|Im| .

(b) Denoising with NLM: eiϕm = NLM (Im)
|NLM (Im)| .

(c) k-space truncation: as (a), but with the image Im reconstructed from gridded data

truncated in k-space (see �gure 37). The default truncation factor is 0.2, this parameter

is used unless stated otherwise.

3. Linear multi-shot reconstruction of image content: Minimization of the functional∑
m,n

∥∥Ym,n − PmF(Cne
iϕmr)

∥∥2

2
+ α ‖r‖2

2

with respect to the image content r using conjugate gradients. The regularization parameter

α is the same as for the �nal Newton iteration in step 1.

4. Post-processing:

(a) Calculation of trace-weighted images for all b-values and denoising with NLM.

(b) Calculation of the ADC map.
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i. Direct calculation for two b-values b1,b2: ADC = 1
b1−b2 [ln(Tra(b1))− ln(Tra(b2))],

where Tra(b1,2) denotes the trace-weighted images for the two b-values.

ii. For more than two b-values: weighted least squares �t [37].

Figure 37 � K-space truncation for the reconstruction of phase maps. The degree of truncation
is de�ned by the factor f, with a default value of 0.2.

5.2.3 Validation of the reconstruction algorithm

This reconstruction method was validated on a numerical phantom consisting of disjoint ellipses

which are de�ned analytically. The non-di�usion-weighted intensity in all ellipses has a magnitude

of one. To simulate isotropic di�usion, the di�usion tensor is assumed to be the identity, multiplied

by an ADC value prede�ned for each ellipse. The magnitude of the di�usion-weighted image

intensity is chosen according the monoexponential di�usion model. To simulate the e�ect of

unpredictable bulk motion, a complex phase is chosen randomly for each ellipse, each di�usion

weighting and each shot. The geometry and the ADC values of the phantom are shown in �gure

38.

Numerical experiments were performed with experimentally realistic parameters: 3 di�usion

directions, 7 shots for b = 0, 17 shots for b = 550 s mm−2 , 19 spokes per shot, and 30 coils with a

sinusoidal coil model. After simulated radial data sampling [55], white Gaussian noise was added

to the raw data to simulate noisy data acquisition. The amplitude of the noise was chosen to

match a prede�ned SNR =
‖D‖22
‖N‖22

of 1.5 for each individual imaging channel, with the raw data D

and the noise N . The ADC was measured in a region of interest of the numerical phantom as

a function of simulated SNR after single-shot reconstruction and multi-shot reconstruction using

variants 2a, 2b, and 2c for processing of the phase maps, see subsection 5.2.2.
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(a) Geometry of the numerical phantom with a
random phase for each ellipse.

(b) ADC values of the ellipses of the numerical
phantom, in units of 10−3 mm−2 s−1

Figure 38 � The numerical phantom used for validation of the image reconstruction algorithm.

In vivo validation of ADC measurements was performed on a region of interest in the central

gland of the prostate using an image acquisition protocol with 35 radial spokes and b = 600 smm−2 .

To assess the dependence of the resulting ADC values on the SNR, the slice thickness was varied

between 3.5 mm and 6.5 mm. As in the numerical experiment, the results were compared for

variants 2a, 2b, and 2c (subsection 5.2.2).

Besides its e�ect on ADC measurements, multi-shot imaging o�ers the possibility of increasing

the undersampling factor for the individual shots. This is achieved by rotating the sampling

trajectory by an angle of 2π/(p ∗M) for each shot, with p the number of spokes per shot and M

the number of shots.

5.2.4 Optimization of imaging parameters

To develop a protocol for in-vivo imaging, adaptation of the following imaging parameters was

performed by experimental in-vivo optimization of image quality:

� b-values: Results from a protocol with b = 50/400/800 s mm−2 were compared with a

protocol using b = 50/600 s mm−2 with regard to image quality and resulting ADC values.

� The repetition time TR was optimized with regard to the image quality of a single di�usion-

weighted image without post-processing. A sampling trajectory of 15 spokes and the number

of averages was adjusted for a constant acquisition time of 72 s for one di�usion-weighting.

The use of TR values similar to, or even smaller than T1 required a series of pre-scans before

the start of the sequence to ensure that the signal losses due to T1 decay a�ect the quality

of all sections equally.
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� At a �xed TR chosen in the previous step, the e�ect of the number of spokes on the trace-

weighted images at b = 600 s mm−2 was investigated.

5.2.5 Comparison with EPI

The di�usion-weighted STEAM MRI protocol with optimized imaging parameters was applied

to a healthy volunteer. The resulting trace-weighted images and ADC maps were qualitatively

compared against the results from the commercial clinical EPI protocol. The only modi�cations

to this protocol were an adjustment of the b-values and repetition times to the STEAM protocol

to achieve a fair comparison. Reconstruction and further processing of the EPI results uses the

default GRAPPA algorithm and settings provided by the vendor for use in clinical examinations.

Both protocols are shown in table 3.

Sequence STEAM EPI

In-plane resolution [mm] 1.43 1.43
Matrix size 140 140

Field of view [mm] 200 200
Slice thickness [mm] 3.5 3.5
Number of slices 21 21

b-value #1 [s mm−2 ] 50 50
Averages/shots #1 7 7
b-value #2 [s mm−2 ] 600 600
Averages/shots #2 17 17
Di�usion directions 3 3

TR [ms] 5000 5000
Total acquisition time 6 min 25 s 6 min 25 s
Bandwidth [Hz/Pixel] 200 1700

Radial spokes 19 -
TSE [ms] 30.8 61
TRα [ms] 7.72 -
TE [ms] 8.92 -

Table 3 � Optimized imaging protocols used for �nal comparisons of image quality

5.3 Results

5.3.1 Image reconstruction: numerical phantom

Phase maps reconstructed from the numerical phantom with a raw data SNR of 1.5 per channel are

shown in �gure 39. The phase map reconstructed without further processing is strongly corrupted

by noise. Both processing methods for phase maps, k-space truncation and NLM, yield phase

maps of superior quality; the result for NLM is slightly superior to k-space truncation with regard
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(a) Phase maps without further processing (b) Phase map reconstructed from truncated k-
space

(c) True phase map for the simulated data (d) Phase map denoised with non-local means

Figure 39 � Reconstructed phase maps of numerical phantom the SNR per receive channel in
the raw data was 1.5.

to the suppression of low frequency noise and spatial acuity near boundaries between two regions

of constant phase.

The e�ect of the di�erent phase maps on the reconstructed ADC maps is seen in �gure 40.

Multi-shot reconstruction using the unprocessed, noisy phase maps leads to a systematic underes-

timation of the ADC. With either of the two processing methods for the phase maps, the resulting

ADC values correspond to the ground truth, and the image qualities of the resulting ADC maps

are similar to each other.

ADC evaluation in two regions of interest after single-shot reconstruction and multi-shot re-

construction with and without phase map processing shows a dependence of the minimal SNR

per channel for accurate ADC measurement on the reconstruction method (�gure 41). For single-
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and multi-shot reconstruction without phase map processing, this value was 3, for multi-shot

reconstruction with phase map processing using NLM or k-space truncation, it was 1.5.

(a) Multi-shot reconstruction, phase maps not
processed further

(b) Multi-shot reconstruction, phase maps from
truncated k-space

(c) True ADC values in the simulated data. Re-
gions a and b used for quantitative evaluation
(see �gure 41)

(d) Multi-shot reconstruction, phase maps de-
noised with non-local means

Figure 40 � Multi-shot reconstruction of numerical phantom, ADC maps. The ADC is given
in units of 10−3 mm−2 s−1.
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(a) Reconstructed ADC values in region a

(b) Reconstructed ADC values in region b

Figure 41 � ADC values measured from reconstructions of the numerical phantom. The regions
for evaluation are shown in �gure 40.

5.3.2 Image reconstruction: In vivo imaging of the prostate

The phase maps acquired with a slice thickness of 3.5 mm have a patchy appearance with a large

degree of low-frequency noise after reconstruction from a truncated k-space (�gure 42c). The phase

map calculated with NLM denoising shows some remaining high-frequency noise (�gure 42b), but

74



no arti�cial patches. The unprocessed phase map shown in �gure 42a is clearly dominated by

noise.

(a) Phase map without processing (b) Phase map denoised with non-local means

(c) Phase map truncated in k-space (factor 0.2) (d) Phase map truncated in k-space (factor 0.6)

Figure 42 � Phase maps reconstructed in vivo, slice thickness 3.5 mm.

ADC evaluation in the central gland on in-vivo acquisitions of the prostate shows a strong

dependence of the ADC values on the slice thickness for single- or multi-shot reconstruction without

phase map processing, whereas phase map processing yields ADC values independent from the slice

thickness (�gures 43, 44) and in agreement with the reference value of (1.47±0.24)∗10−3 mm2 s−1

[12].

The two di�erent phase map processing methods, NLM denoising and k-space truncation, yield

very similar image quality in the trace-weighted image and the ADC map (see �gure 45). The

di�erences of the ADC values in the central gland are not signi�cant (�gure 44).
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(a) ADC map, no processing of phase maps, slice
thickness 3.5 mm

(b) ADC map, no processing of phase maps, slice
thickness 5.5 mm

(c) ADC map, denoising with non-local means,
slice thickness 3.5 mm

(d) ADC map, denoised with non-local means,
slice thickness 5.5 mm

Figure 43 � ADC maps of the prostate computed with and without denoising of phase maps.
The region of interest delineated in red was used for quantitative evaluation (see �gure 44).
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Figure 44 � Dependence of measured ADC values on the slice thickness for single shot re-
construction (see chapter 4), multi-shot reconstruction without processing of phase maps [61],
and multi-shot reconstruction with additional processing of phase maps. The ADC (mean ±
standard error) was evaluated on the region in the central gland shown in �gure 43.
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(a) Trace weighted image, k-space truncation (b) Trace-weighted image, NLM denoising

(c) ADC, k-space truncation (d) ADC, NLM denoising

Figure 45 � Comparison of resulting image quality with reconstruction using k-space truncation
and NLM denoising of phase maps
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5.3.3 Parameter optimization for multi-shot prostate imaging

b-values In �gure 46, the image contrast of trace-weighted prostate images and the ADC maps is

shown as a function of the b-value. The trace-weighted image with b = 800 s mm−2 shows inferior

image quality which can be attributed to low SNR. Two ADC maps were calculated, one using data

with b = 50/400/800 s mm−2 and one from data with b = 50/600 s mm−2 . In the central gland,

the ADC measured with b = 50/400/800 s mm−2 was (1.24±0.02)∗10−3 mm2 s−1, i.e. signi�cantly

lower than the value of (1.30 ± 0.02) ∗ 10−3 mm2 s−1 measured with b = 50/600 s mm−2 . The

global mean ADC for the entire slice was 12.2% lower for b = 50/400/800 s mm−2 .

(a) Trace weighted image, b50 (b) Trace weighted image,
b600

(c) Trace weighted image,
b800

(d) Trace weighted image,
b400

(e) ADC, b50/600 (f) ADC, b50/400/800

Figure 46 � Contrast and image quality as a function of the b-value. All b-values are given in
units of s mm−2.

Repetition time Figure 47 shows that a rotated k-space trajectory for multi-shot imaging allows

for 15 spokes per shot and 7 shots without undersampling artifacts, whereas 15 spokes lead to

undersampling artifacts if the k-space trajectory is not rotated. The possibility for undersampling

creates a greater �exibility for the choice of the repetition time TR, which can be experimentally
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optimized with respect to image quality. Figure 48 shows that a single di�usion-weighted image at

b = 600 s mm−2 is least corrupted by noise with a repetition time of 4.8 s or 5.5 s, whereas higher

or lower repetition times lead more noisy images if the total acquisition time is kept constant.

Therefore, a repetition time of 5 s is a suitable choice.

(a) No k-space rotation (b) Rotated k-space trajectory

Figure 47 � E�ect of rotated k-space trajectory on trace-weighted images from undersampled
data (15 spokes). The images were reconstructed with NLM denoising of phase maps.

Number of radial spokes The image quality of trace-weighted images at b = 600 s mm−2

was optimized with respect to the number of radial spokes (�gure 49). The signal-to-noise ratio

increases with a decreasing number of spokes, however, for less than 15 spokes, the images are

corrupted by undersampling artifacts. A pragmatic balance between these two e�ects is achieved

for 19 radial spokes.
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(a) 3 x TR = 24s (b) 5 x TR = 14.4 s (c) 7 x TR = 10.3 s (d) 9 x TR = 8 s

(e) 11 x TR = 6.5 s (f) 13 x TR = 5.5 s (g) 15 x TR = 4.8 s (h) 17 x TR = 4.2 s

(i) 19 x TR = 3.8 s (j) 25 x TR = 2.9 s (k) 31 x TR = 2.3 s (l) 35 x TR = 2.1 s

Figure 48 � Experimental optimization of repetition time choice, with a constant acquisition
time of 72 s, single di�usion-weighting of b600, 15 spokes. The sub-captions indicate the
numbers of shots and the repetition times.
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(a) 35 spokes (b) 27 spokes (c) 19 spokes

(d) 15 spokes (e) 11 spokes (f) 7 spokes

Figure 49 � Quality of Trace-weighted images as a function of the number of radial spokes
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5.3.4 Comparison with EPI

The trace-weighted images and ADC maps acquired with the optimized STEAM protocol and the

adapted commercial EPI protocol (table 3) are shown in �gure 50. The image quality provided by

the STEAM protocol shows a potential for the acquisition of diagnostic information, despite lower

image SNR compared to EPI. However, EPI acquisition produces severe distortions at the boundary

between the prostate and the colon in both the trace-weighted images and the ADC maps. Here,

the STEAM protocol yields superior spatial acuity and a clearly de�ned and undistorted tissue

boundary.

(a) Trace weighted image, b50,
STEAM

(b) Trace weighted image,
b600, STEAM

(c) ADC, STEAM

(d) Trace weighted image,
b50, EPI

(e) Trace weighted image,
b600, EPI

(f) ADC, EPI

Figure 50 � Comparison of STEAM acquisition with optimized parameters and a commercial
EPI prostate protocol. Imaging parameters are shown in table 3.

5.4 Discussion

The numerical simulations for validating the di�erent variants of the reconstruction algorithm

show that compared to magnitude averaging, direct application of the multi-shot reconstruction

algorithm by Uecker et al. [61], i.e., multi-shot reconstruction without phase map smoothing, does
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not reduce the systematic error of ADC calculations from low-SNR data. This indicates that the

inclusion of noisy phase maps in the multi-shot reconstruction model leads to a similar noise-related

increase in di�usion-weighted image intensity as the averaging of magnitude images. Conversely,

Uecker et al. report a substantial, visible increase in the SNR of di�usion-weighted images of

the brain acquired with cartesian sampling which was achieved by their multi-shot reconstruction

compared to single-shot reconstruction with averaging over magnitude images. The �ndings do

not directly contradict each other, since Uecker et al. do not report quantitative values of the ADC

or of a possible increase in di�usion-weighted image intensity. However, even if the image intensity

is not a�ected, visibly lower SNR in the di�usion-weighted images should lead to higher statistical

uncertainties of the ADC in single-shot reconstruction with magnitude averaging compared to

multi-shot reconstruction without phase map processing. The simulations performed for this work

do not show this. One possible reason is the application of the NLM denoising algorithm to the

reconstructed images, which may even out the di�erences in the statistical errors.

The numerical simulations show that multi-shot reconstruction with an additional processing

step to decrease the noise level of the phase maps solves the problem of accurate ADC calculation

from data with low SNR. Both NLM denoising and k-spcae truncation reduce the minimal SNR

for accurate ADC measurements by a factor of 2. The behavior of the ADC measured in the

prostate as a function of slice thickness, i.e. an increase with increasing slice thickness which is

removed by either of the two processing methods for phase maps, shows that the data generated

in STEAM DWI of the prostate are in the critical SNR range where image reconstruction with

phase map processing yields accurate ADC values, whereas image reconstruction without phase

map processing leads to SNR-dependent systematic errors.

The remarkable robustness of the �nal reconstruction result to major qualitative di�erences in

the reconstructed phase maps for NLM vs. k-space truncation shows that a further re�nement of

the phase map smoothing technique would probably have little practical e�ect on di�usion-weighted

STEAM data of the prostate. NLM denoising has been chosen as the preferred method because

it ensures that phase variations with high spatial frequencies are included in the reconstruction

model. Such phase variations have been observed in the brain [61] and cannot be ruled out in the

prostate. For data acquired with higher undersampling factors and higher SNR, k-space truncation

or other methods for the removal of high spatial frequencies may be more suitable to reduce the

undersampling artifacts in the phase maps.

Besides avoiding systematic errors in the measurement of the apparent di�usion coe�cient,

the multi-shot reconstruction technique with phase map processing allows higher undersampling

factors and thereby enables the optimization of the choice of TR with respect to SNR e�ciency,

i.e. SNR per acquisition time. For the case of averaging, a number m of image acquisitions

would lead to an SNR ∼
√
m. For any sequence which depletes the longitudinal magnetization

and is repeated multiple times, the SNR per acquisition is proportional to 1 − e−TR/T1 . Hence,

the SNR e�ciency η ∼ 1−e−TR/T1
√

TR
, and η is maximal for TR = 1.256 T1 . For the prostate
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(central gland), T1 = 1.579± 0.042 s at 3T [8], i.e. the optimal TR would be 2 s. However, this

calculation neglects the depletion of longitudinal magnetization from the acquisition of neighboring

slices. In particular, the low-angle pulses in the sequence for slice-selective excitation have a low

bandwidth-time product and thus strongly deplete the longitudinal magnetization in the vicinity

of the acquired slice. Moreover, the accuracy of the relation SNR ∼
√
m is not guaranteed for

the multi-shot reconstruction algorithm, where the SNR is balanced against spatial acuity with a

regularization parameter. Hence, an experimental optimization on volunteers was necessary.

The results show that the image quality of a single di�usion-weighted image is robust to changes

of TR between 4.2 s and 6.5 s, while corruption by noise is substantially stronger for higher and

lower repetition times. This allows the choice of TR from this range. A quanti�cation of the SNR on

these data was impractical, because measuring SNR with the di�erence method [9], i.e. estimating

the noise level from the di�erence image from two subsequent acquisitions with identical imaging

parameters, would lead to an unpredictable overestimation of the noise due to minor motion. Since

the background noise is not homogeneous, the noise level can also not be reliably estimated from

a background region. However, the robustness of the image quality with respect to changes in

TR of up to 20% indicates that optimization strategies on quantitative SNR estimates would not

substantially improve the quality of the results.

The experiment on the di�usion-weighted image quality and the ADC values as a function

of the b-value clearly justi�es the use of b = 600 s mm−2 instead of b = 400 s mm−2 and

b = 800 s mm−2 . The visible contrast in the resulting ADC and trace-weighted images is similar,

while the SNR in the b = 800 s mm−2 image is much lower than in the b = 600 s mm−2 image.

Even though the measured ADC in the prostate is known to decrease with increasing b-values [13],

this cannot explain the observed global decrease of the ADC with increasing maximal b-value.

This can be attributed to the low SNR in the b = 800 s mm−2 data leading to a systematic ADC

underestimation. This result proves the advantage of setting the maximal b-value to 600 s mm−2

for prostate imaging. Moreover, ref. [13] shows that the sensitivity and speci�city of prostate

cancer diagnosis are comparable for b = 600 s mm−2 and. b = 1000 s mm−2 .

The �nal STEAM imaging protocol (table 3) which was developed based on the experimental

parameter optimization yields trace-weighted images and ADC maps which show a clearly de�ned

and undistorted shape of the prostate, in particular near the intestinal wall. Despite the lower SNR

compared to the EPI result, STEAM imaging has a signi�cant potential for the correct diagnosis of

tumors, particularly near the intestinal wall. Diagnostic errors due to susceptibility-induced image

distortions and alterations of the image intensity are ruled out with use of the STEAM sequence.

The practical diagnostic advantage from the avoidance of susceptibility artifacts has been shown

in a study on stroke diagnosis [36]. This advantage is expected to be even more prominent in

prostate imaging due to the higher gradients of magnetic susceptibility and the observed severe

image distortions caused by the use of EPI. This work shows that undersampled radial STEAM

DWI of the prostate is feasible. A clinical trial on patients with prostate cancer is clearly justi�ed.
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6 Di�usion-weighted STEAM MRI using inner-volume exci-

tation

6.1 Introduction

The prostate is located at the center of transverse sections through the lower abdomen and �lls

only a small part of the �eld of view of 200 mm used in the experiments described in section

5. The remaining tissue is a potential source of image artifacts which can also a�ect the image

quality in the prostate. One example for this is streaking artifacts which can arise from tissue

motion outside of the tissue of interest [5] leading to spoke-dependent dephasing and signal loss.

Aditionally, alterations of the Larmor frequency due to magnetic susceptibilities, chemical shifts,

or magnetic �eld inhomogeneities can cause streakings similar to those shown for the fat tissue in

the scalp (see section 4.3.1).

Using inner-volume excitation, the �eld of view can be reduced to limit potential sources of

such artifacts. An additional advantage is that imaging with a lower number of spokes is possible,

because the undersampling factor with a �xed number of spokes is proportional to the width of

the �eld of view. A previous method for STEAM imaging with inner-volume excitation [25] was

extended to multiple slices to develop a protocol for inner-volume STEAM DWI of the prostate

with the same coverage in the slice direction as the protocol for slice-selective excitation. The

e�ect of inner-volume excitation on streaking artifacts and image quality was investigated in a

study on four healthy volunteers and the physical sources of SNR loss in inner-volume excitation

were characterized with theoretical calculations and experiments on phantoms.

6.2 Methods

6.2.1 Imaging sequence

The imaging sequence for inner-volume excitation as well as the di�erence with respect to the

sequence for slice-selective excitation are shown in �gure 51. For slice-selective excitation, all slice

selection gradients are applied in the direction normal to the image section, and the sequence

(preparation - readout) is repeated for multiple slices. For inner-volume excitation, slice selection

gradients are applied in two perpendicular directions in the imaging plane for the di�usion-weighted

spin echo and the second 90° pulse. Hence, the preparation pulses excite a region of tissue which

is bounded in the in-plane directions but not in the slice direction (see �gure 52). Therefore, after

the image acquisition for one slice, the longitudinal magnetization in all slices is depleted, and

stimulated echoes with su�cient amplitudes can only be generated after waiting times on a scale

of T1.

For this reason, multi-slice inner-volume STEAM DWI with acceptable acquisition times re-

quires the readout of multiple slices after one application of the preparation module. To keep
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the same acquisition times as for slice-selective excitation, every second slice is read out following

one preparation. This is done in an interleaved manner (see �gure 51) to avoid di�erences in

image contrast and SNR between the slices. A sequential readout of the slices would result in a

slice-dependent time gap between preparation and readout, and a corresponding slice-dependent

T1 relaxation, leading to a large variation with respect to both SNR and T1 contrast between the

slices.

(a) The STEAM sequence with slice-
selective excitation.

(b) The STEAM sequence with inner-
volume excitation.

(c) Sequential acquisition of multiple slices
with slice-selective excitation.

(d) Interleaved acquisition with inner-
volume excitation.

Figure 51 � Image acquisition with slice-selective and inner-volume excitation. For slice-
selective excitation, all RF pulses are selective in the slice direction. The preparation module
(red) followed by the readout module (blue) is repeated for each slice. For inner-volume ex-
citation, the di�usion-weighted spin echo is selective in one readout direction, the second 90°
pulse is selective in the perpendicular readout direction. The low-angle pulses for generating
stimulated echoes are selective in the slice direction. Each preparation sequence block which
prepares all slices is followed by a readout of multiple slices in an interleaved order, i.e. one
radial spoke in k-space is read out for every second slice; this is repeated for all spokes.
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(a) Slice-selective excitation: same �eld of view
as this anatomical image

(b) Inner-volume excitation: the �eld of view is
reduced to a region around the prostate

(c) The position of transverse slices shown on a
coronal anatomical image for slice-selective ex-
citation.

(d) The position of transverse slices shown on a
coronal anatomical image for inner-volume ex-
citation.

Figure 52 � Slice positions and �elds of view for slice-selective excitation and inner-volume
excitation.
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6.2.2 Characterization of signal losses

For a comparison of STEAM DWI of the prostate with inner-volume and slice-selective excitation,

it is necessary to consider four e�ects which can lead to di�erences in SNR.

Firstly, the slice pro�le is de�ned only by the low-angle readout pulses if inner-volume excitation

is used, whereas the slice pro�le with slice-selective excitation is the product of the slice pro�les of

the readout pulses and the preparation pulses.

Secondly, inner-volume selection leads to signal loss, particularly at the edges of the �eld of

view, which is related to the slice pro�les of the preparation pulses.

Thirdly, in the interleaved multi-slice readout module, each slice is read out with a repetition

time TRα multiplied by a factor m, with m being the number of slices in the readout train. This

causes major signal losses due to T1 relaxation. These signal losses can ameliorated by sampling

a lower number of radial spokes for a reduced �eld of view.

Figure 53 � Section of the phantom used for the measurement of slice pro�les. The regions A
and B are used for quantitative evaluation.
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Adaptation of the slice pro�le The slice pro�le of the inner-volume sequence was adapted

to that of the slice-selective sequence. Slice pro�les were measured using the Siemens structure

phantom which contains a section �lled with water and two plastic wedges oriented in opposite

directions with a ramp of 11.3°. A MR image of a transverse slice of this region thus contains

areas totally occupied by the wedges (dark, no MR signal), areas occupied by water (bright,

much MR signal), and transition regions, where a fraction of the acquired slice is occupied by the

wedge, see �gure 53. The width of these transition regions is proportional to the slice thickness.

Quantitatively, the slice pro�le, i.e. signal strength as a function of the z coordinate normal to

the slice in a homogeneous sample, can be described in terms of the derivative of the intensity

in the x direction in regions A and B (�gure 53).S(z) = 0.5 (SA(z) + SB(z)) with SA(z) =

tan(α) d
dx
M � IA(x) and SB(z) = −tan(α) d

dx
M � IB(x). α = 11.3° is the angle of the wedges to

the image plane,M denotes a Gaussian kernel with which the measured slice pro�les are convoluted

to remove the in�uence of image noise, and IA = 〈I(x, y)〉y,(x,y)∈A , IB = 〈I(x, y)〉y,(x,y)∈B. The slice

pro�les were measured with slice-selective excitation using 35 radial spokes, a negligible b-value of

10 s mm−2 and 15 shots. To measure the expected slice pro�les for inner-volume excitation, the

same sequence was used, but the slice-selective gradients in the preparation module were switched

o�, so that only the readout pulses determine the slice pro�le. This measurement was repeated

for bandwidth-time-products of the readout pulses between 2 and 5.5. The root-mean-square

deviation to the slice pro�le from slice-selective excitation was measured for all inner-volume slice

pro�les, and the bandwidth-time product which yielded the lowest deviation was used for further

experiments.

(a) The water-�lled bottle used as a phan-
tom

(b) The bottle matches the �eld of view of
80 mm used for inner-volume excitation

Figure 54 � The phantom to characterize the signal loss from inner-volume selection.
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Inner-volume selection The signal loss from inner-volume selection was measured using a

plastic bottle �lled with water which �ts exactly into the dimensions of the desired square �eld of

view with a width of 80 mm (�gure 54). Two datasets with b=0 and 19 radial spokes were acquired

with inner-volume excitation (A1 and A2), and two datasets were acquired with the same protocol,

but with the gradients used for inner-volume selection switched o� (B1 and B2). The relative

signal-to-noise ratios of the di�erent acquisition modes was estimated as SNRA =
‖A1‖2+‖A2‖2√

2‖A1−A2‖2
,

SNRB =
‖B1‖2+‖B2‖2√

2‖B1−B2‖2
, and the relative SNR loss l = 1 − SNRA

SNRB
. To characterize the spatial

dependence of the signal loss, images I(A1, A2, B1, B2) were reconstructed from all four datasets

using NLINV, and the magnitude ratio R = |I(A1)|+|I(A2)|
|I(B1)|+|I(B2)| was computed.

Readout repetition times The e�ect of the prolonged repetition time TRα and the number of

spokes on the signal-to-noise ratio was estimated using theoretical calculations. In the variable �ip

angle model, the signal strength from all radial spokes s = M1sin(α1) where M1 is proportional

to the initial longitudinally prepared magnetization, and α1 is given by the recursive formula

αi = arctan
(
sin αi+1e

−TRα
T1

)
, with αp = αmax = 40 for p radial spokes. To estimate the expected

e�ect of the signal strength s on the SNR of the raw data, the signal S = s
√
p was computed,

which is proportional to the expected L2 norm of the raw data. The signal S was calculated

with the parameters of the STEAM protocol for slice-selective excitation (see table 4), as well as

for STEAM imaging with inner-volume excitation and a readout of 5 to 11 radial spokes, as a

function of the number of slices in the readout train. Furthermore, a calculation was performed

to estimate the slice thickness necessary to achieve inner-volume imaging of the prostate with an

SNR equivalent to the SNR achieved with slice-selective excitation. As a function of the slice

thickness t, the number of slices q in the readout train necessary for a coverage of z = 21 ∗ 3.5 mm

in the slice direction (slice-selective excitation protocol) was �rst computed: q =
⌈
0.5
(
z
t

+ 1
)⌉
.

The quantity S was then computed from the parameters depicted in table 4, with 5 to 11 spokes,

TRα multiplied by q, and the magnetization scaled proportionally to the slice thickness t.

These signal strengths were compared to a target signal, which was de�ned as the simulated

signal strength from the slice-selective excitation protocol, with a correction factor for signal loss

due to inner-volume selection. To account for a signal loss l as de�ned in the previous paragraph,

the target signal must be increased by multiplication with 1
1−l .

6.2.3 In-vivo experiments

For comparison of image quality of the di�usion-weighted images with and without inner-volume

excitation, di�usion-weighted images of the prostate of a healthy volunteer were acquired with four

di�erent protocols, shown in table 4:

1. Slice-selective excitation.

2. Inner-volume excitation, one slice.
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3. Inner-volume excitation, 21 slices.

4. Inner-volume-excitation with thicker slices expected to achieve an SNR equivalent to slice-

selective excitation.

Protocol No. 1 2 3 4

Excitation mode slice-selective inner volume inner volume inner volume
In-plane resolution [mm] 1.43 1.43 1.43 1.43

Matrix size 140 56 56 56
Field of view [mm] 200 80 80 80
Slice thickness [mm] 3.5 3.5 3.5 4.7
Number of slices 21 21 21 17

b-value #1 [s mm−2] 50 50 50 50
Averages/shots #1 7 7 7 7
b-value #2 [s mm−2] 600 600 600 600
Averages/shots #2 17 17 17 17
Di�usion directions 3 3 3 3

TR [ms] 5000 5000 5000 5000
Total acquisition time 6 min 25 s 6 min 25 s 6 min 25 s 6 min 25 s
Bandwidth [Hz/Pixel] 200 200 200 200

Radial spokes 19 7 7 7
TSE [ms] 30.8 29.9 29.9 29.9
TRα [ms] 7.72 8.09 8.09 8.09
TE [ms] 8.92 8.96 8.96 8.96

Table 4 � Optimized imaging protocols used for �nal comparisons of image quality.

In addition to this comparison of image quality, protocols 1 and 3 were run on four healthy

volunteers. The trace-weighted images with b = 50 s mm−2 and b = 600 s mm−2 were visually

inspected for streaking artifacts and the numbers of corrupted image sections was counted to assess

whether inner-volume excitation is useful and necessary for artifact-free prostate DWI.
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6.3 Results

(a) RMS deviation between the slice pro�les for inner-volume and slice-selective preparation as a function
of the bandwidth-time product of the readout pulses after inner-volume preparation.

(b) Measured slice pro�les for inner-volume preparation with a readout bandwidth-time-product of 4.5
and slice-selective preparation.

Figure 55 � Adaptation of slice pro�les measured with inner-volume excitation to slice-selective
excitation.
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6.3.1 Characterization of signal losses

Adaptation of the slice pro�le The measurement of the root-mean-square deviation between

the slice pro�les resulting from inner-volume vs. slice-selective excitation results in a minimal

deviation for readout pulses with a bandwidth-time product of 4.5 after inner-volume excitation

(�gure 55a). The resulting slice pro�le, as well as the one measured for slice-selective excitation,

are plotted in �gure 55b. This plot shows that comparable slice pro�les are achieved which do not

cause substantial di�erences of image SNR or spatial resolution between the two sequence variants.

Inner-volume selection The single-slice experiment to characterize the loss in SNR due to

imperfect slice pro�les of the inner-volume-selective pulses resulted in a measured relative SNR

loss in the raw data of l = 0.09. The corresponding reduction of the L2-norm of the reconstructed

images was also 9%. Figure 56 shows the spatial distribution the intensity loss due to inner-volume

selection. This shows a steep decrease in image intensity towards the boundaries of the �eld of

view within a margin of 1/8 of the image dimensions on each side, whereas the intensity in the

image excluding this margin is well retained (L2-norm reduced by 3.1%).

(a) Ratio of image intensities measured with and
without inner-volume-selective gradients

(b) Image section of phantom with �eld
of view

Figure 56 � Characterization of signal loss due to inner volume selection.

Readout repetition times Calculations of estimated signal strength for inner-volume excita-

tion show that for a readout train of 11 slices, which is necessary for a coverage of 21 slices, the

signal strength is reduced with an increasing number of spokes due to T1 relaxation, whereas for

one or two slices, the signal strength slightly increases with the number of spokes (�gure 57a).
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(a) Simulated signal strength for inner-volume excitation relative to slice-selective excitation with 19 spokes
as a function of the number of slices in the readout train.

(b) Simulated signal strength for inner-volume excitation as a function of slice thickness; the numbers of
slices in the readout train were chosen to allow for a volume coverage of 73.5 mm. A signal strength of
1 is equivalent to the signal strength from one slice with a thickness of 3.5 mm acquired with 19 spokes.
The target signal of 1.09 exceeds this signal strength to compensate for signal loss due to inner-volume
selection.

Figure 57 � Simulated signal strength for inner-volume excitation as a function of slice thick-
ness, with a coverage of 73.5 mm in the slice direction.

These calculations predict a reduction in signal strength of 21.6% for a readout train of 11

slices with 7 spokes as de�ned by protocol 3 in table 4 compared to single-slice readout with 19
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spokes (protocol 1). Simulations on the expected signal strength per slice for a coverage equivalent

to 21 3.5 mm thick slices show that the slice thickness must be increased from 3.5 to 4.7 mm to

compensate for the signal losses due to T1 decay and inner-volume selection (�gure 57).

6.3.2 In-vivo experiments

(a) Slice-selective excitation, slice thickness 3.5
mm, 19 spokes

(b) Inner-volume excitation, single slice, 7 spokes

(c) Inner-volume excitation, 21 slices with a
thickness of 3.5 mm, 7 spokes

(d) Inner-volume excitation, 17 slices with a
thickness 4.7 mm, 7 spokes

Figure 58 � Trace weighted images of the prostate at b = 600 s mm−2 with slice-selective
excitation and inner-volume excitation.
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Figure 58 shows the quality of trace-weighted images of the prostate acquired with slice-selective

excitation with 19 spokes and inner-volume excitation with 7 spokes. Visual image inspection

con�rms that, compared to slice-selective excitation, inner-volume excitation with 1 slice does not

lead to any substantial signal loss. In accordance with the simulation result, inner-volume imaging

of 21 slices with a thickness of 3.5 mm leads to visibly reduced SNR. The image quality obtained

using inner-volume excitation of 17 slices with a thickness of 4.7 mm, i.e. the theoretically calcu-

lated slice thickness necessary to compensate for the SNR losses, is comparable to that resulting

from the slice-selective excitation, as expected.

The experiment on the number of image sections corrupted by streaking artifacts for inner-

volume excitation vs. slice-selective excitation yielded the following results: None of the trace-

weighted images with b = 600 s mm−2 were a�ected by streakings. From a total of 47 trace-

weighted image sections acquired with b = 50 s mm−2 , 3 sections were corrupted by streakings in

inner-volume excitation mode. With the protocol using slice-selective excitation, the total number

of corrupted sections was 4. These included the 3 sections where inner-volume excitation also

produced streakings, which were attributed to �ow in the adjacent bladder. The trace-weighted

image of the one section where streakings occurred only for slice-selective excitation is shown in

�gure 59. Figure 60 shows the trace-weighted images generated in a single-slice experiment where

streakings from sources outside the prostate were suppressed due to inner-volume excitation. Here,

the number of spokes was 15 for both excitation modes.

(a) Trace weighted image, b50,
slice-selective excitation, full
�eld of view

(b) Zoomed view of (a) (c) Trace weighted image,
b50, inner-volume excitation

Figure 59 � One slice from the multi-slice study on streaking reduction by inner-volume excita-
tion. The streaking artifacts marked by the arrows are removed in the inner-volume excitation
mode.
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(a) Trace weighted image, b50,
slice-selective excitation, full
�eld of view.

(b) View of (a) zoomed to 80
mm.

(c) Trace weighted image,
b50, inner-volume excitation

(d) Trace weighted image,
b600, slice-selective excita-
tion, full �eld of view.

(e) View of (d) zoomed to 80
mm.

(f) Trace weighted image,
b600, inner-volume excitation

Figure 60 � Reduction of streaking artifacts (red arrows) from outside the prostate due to
inner-volume excitation. The data were acquired in a single-slice experiment with 15 radial
spokes for both sequence variants. The �eld of view was 200 mm for slice-selective excitation
and 80 mm for inner-volume excitation.

6.4 Discussion

For inner-volume excitation, the decay of image intensity towards the edges of the �eld of view

indicates that the radiofrequency pulses in the preparation module of the sequence successfully

discriminate between the �eld of view which is excited, and the surroundings, which are not excited.

In-vivo images of the prostates of volunteers showed that this property can remove streaking

artifacts which originate from tissue outside the prostate. However, a systematic comparison

of the prostate images of four volunteers acquired with slice-selective excitation using optimized

imaging protocols showed that streaking removal was necessary and e�ective in only one out of

47 image sections. Removal of streakings caused by �ow in the bladder is di�cult to achieve with

this technique because the bladder is directly adjacent to the prostate. The novel multi-slice inner-
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volume imaging technique strongly reduces the image SNR compared to slice-selective excitation

for a total coverage of 21 slices, despite the use of extremely undersampled radial trajectories to

counteract signal losses from T1-relaxation. This clearly outweighs the advantage that a removal

of occasional streakings may have for the quality of the resulting trace-weighted images and ADC

maps. However, for one image slice, inner-volume excitation does not decrease the SNR and can

therefore be judged as the favorable imaging method. Previously, single-slice inner-volume STEAM

DWI with cartesian sampling has been successfully applied to the spine [25] and the rabbit shank

[24]. For spine imaging, the technique developed for this work can o�er the possibility of imaging

multiple slices, and with a smaller number of slices (e.g. below 10), the SNR loss would not be as

severe. In such a scenario, inner-volume imaging may be advantageous compared to slice-selective

excitation because organs with respiratory and cardiac motion will be excluded from the tissue

region which is excited.
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7 Summary and outlook

7.1 Summary

This thesis describes the successful development and in vivo application of a novel DW MRI tech-

nique that combines a single-shot STEAM MRI sequence with a strongly undersampled radial

trajectory and an iterative image reconstruction by nonlinear inversion and optimized regular-

ization. The results obtained for DW MRI of the human brain and prostate bear considerable

potential to replace current clinical DW-MRI protocols based on EPI.

The improved single-shot STEAM MRI sequence on which these advances are based bene�ts

from multiple methodological developments. For example, the newly introduced variable �ip angle

scheme and the modi�ed spoiling method e�ectively suppress unwanted spurious signal contribu-

tions and related image artifacts. The combination of this single-shot STEAM sequence with radial

undersampling and nonlinear inverse reconstruction regained SNR in comparison to a preceding

proof-of-concept version based on Cartesian encoding and conventional image reconstruction. This

non-DW sequence allowed for black-blood MRI of the human heart, despite a residual sensitivity

of these measurements to myocardial motion.

Apart from further modi�cations of the STEAM sequence, the extension of the basic technique

to DW single-shot STEAM MRI also required a re�nement of the nonlinear inverse reconstruction.

Together, the �nal strategy yielded excellent results for DW MRI of the human brain which

particularly applies to the achievable image quality, spatial resolution, and measuring time for

whole-brain studies. Because of the absence of susceptibility-induced image artifacts, DW single-

shot STEAM MRI bears signi�cant potential to replace DW-EPI sequences which currently are in

exclusive clinical use.

In order to guarantee reproducible image quality under diverse brain MRI conditions, the

iterative reconstruction process required innovations in the preprocessing of multi-slice datasets,

in data scaling, and with respect to the initialization of estimated unknowns as well as an additional

spatial regularization of coil sensitivities. In comparison with a recent brain study using DW single-

shot STEAM MRI with conventional Cartesian encoding and image reconstruction by Fourier

transformation, the new protocol o�ers improved image quality, while simultaneously allowing for

either a reduction of the measuring time by a factor of 4 or a corresponding reduction of the voxel

size, i.e. increased spatial resolution.

An extension of the DW single-shot STEAM MRI sequence to studies of the human prostate

as a second clinically relevant application has to deal with low SNR as a special challenge. This is

caused by the anatomical location of the prostate and the desire to use remote (rather than rectal)

radiofrequency coils for signal reception to improve patient compliance and general acceptance.

The problem of accurate ADC quanti�cation was solved by a multi-shot STEAM MRI technique

using segmented radial k-space trajectories in conjunction with a joint reconstruction of multiple
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segments which involved the denoising of motion-associated phase maps to ensure phase consistency

across segments. The resulting DW images and ADC maps of the prostate of healthy volunteers

not only demonstrate the feasibility of DW multi-shot STEAM MRI, but further indicate a major

bene�t of the artifact-free STEAM technique in comparison to results obtained by a state-of-

the-art clinical DW-MRI protocol based on EPI. In particular, in contrast to EPI the absence of

susceptibility-induced distortions ensures meaningful diagnostic information even along the critical

boundary between the prostate and the air-�lled colon.

Finally, preliminary applications of a newly developed DW multi-shot STEAM MRI sequence

with spatially selective excitation for prostate studies within an inner volume showed promising

results. Occasional artifacts from outer abdominal tissues with susceptibility di�erences, strong fat

contributions or local tissue motion were e�ectively suppressed. So far, the approach su�ers from

reduced SNR for a large number of slices. The bene�ts of artifact suppression therefore outweigh

the SNR penalty only for single-slice acquisitions, which are not suitable for clinical protocols

covering the entire prostate.

7.2 Outlook

The results of this thesis demonstrate signi�cant clinical potential of the developed DW STEAM

MRI technique for diagnostic problems. The approach may replace applications hitherto served

by EPI-based techniques which are prone to susceptibility-related artefacts. This potential should

be further evaluated in clinical trials for DW MRI of brain and prostate. The inner-volume DW

STEAM MRI method may be useful for spine MRI with multiple sections. Here, the exclusion

of artifacts from surrounding tissue would e�ectively eliminate problems due to respiratory and

cardiac motion. Clinical applications of the proposed DW STEAM MRI techniques will require an

online implementation of the reconstruction algorithm using multiple graphical processing units

as previously developed in our lab for real-time MRI.

Other future developments should explore a model-based mapping technique for the di�usion

tensor which directly estimates all di�usion parameters from the raw data, for example by a non-

linear inverse reconstruction algorithm with an L1-based regularization of the motion-associated

phase maps. This would avoid navigator echoes for phase map estimation which were necessary

for a previously proposed model-based reconstruction of the di�usion tensor [39]. Another foresee-

able extension of the DW STEAM MRI sequence is the use of many more gradient directions for

di�usion encoding and the subsequent determination of pixel-wise orientation distribution func-

tions (rather than simple di�usion tensors) with applications to nerve �ber tractography. This

would enable new DW MRI studies and virtual �ber reconstructions in anatomical regions where

EPI-based techniques are prone to susceptibility artifacts, for example, the optic nerve.
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Abbreviations

ADC apparent di�usion coe�cient

BW bandwidth per pixel

BWTP bandwidth-time product

CHESS chemical shift selective

DW di�usion-weighted

DWI di�usion-weighted imaging

ECG electrocardiography

ENLIVE extended non-linear inversion inspired by ESPIRiT

EPI echo-planar imaging

FA fractional anisotropy

FID free induction decay

FLASH fast low angle shot

FOV �eld of view

GDC gradient delay correction

GPU graphics processing unit

FFT fast Fourier transform

GRAPPA generalized autocalibrating partial parallel acquisition

MRI magnetic resonance imaging

MR magnetic resonance

NLINV nonlinear inversion

NLM non-local means

NMR nuclear magnetic resonance

PCA principal components analysis

RF radiofrequency

102



SNR signal-to-noise ratio

STEAM stimulated echo acquisition mode

T1 spin-lattice relaxation time

T2* e�ective spin-spin relaxation time

T2 spin-spin relaxation time

TE echo time

TM mixing time

TRα readout repetition time

TR repetition time

TSE spin echo time
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