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CHAPTER 1

Introduction

1. Aspirations

When we want to understand algebraic objects we study which properties they
satisfy and how they act on some natural structures. The objects we want to un-
derstand in this thesis are certain invertible mappings of words over a finite fixed
alphabet. We consider such mappings that preserve the length of the words and
have the property that the image of a prefix is again a prefix of the mapped word.
These objects are called tree automorphisms because we can write every word on a
tree starting with one-letter-words in the first level, two-letter-words in the second
level and so on, connecting a word to its immediate prefix (see Figure 1). A tree
automorphism permutes these words while making sure that connected words stay
connected.
We shall consider in this thesis groups of tree automorphisms; namely sets of tree
automorphisms that are closed under composition and inverses. The algebraic struc-
tures we consider are therefore groups given with an action on the set of words.
Which properties do such groups enjoy? For this we consider equations in these
groups: Formulas with unknowns, equalities and constants from the group. For
example a group G satisfies the property that every element has a square-root if
"∀g ∈ G∃x ∈ G : x2 = g" holds. Namely the equation X2g−1 = 1 is solvable for all
g.
For a specific class C of equations and a collection of tree automorphisms G the
Diophantine problem for C in G asks whether there exists an algorithm that decides
for every equation in C if there exists a solution with elements in G.
To have an algorithm that decides if an equation is solvable we need in particular a
finite description of the tree automorphism. There are uncountably many different
tree automorphisms and we can hence not describe every such automorphism by
finite data. Thus we focus on special tree automorphisms that have a certain self-
similarity structure.
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Figure 1. The first levels of a tree on the alphabet {1, 2}.
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8 1. INTRODUCTION

For some classes C of equations the Diophantine problems for C are classic decision
problems in algebraic structures. For example to decide whether the equations
of type x−1gx = h have a solution for fixed elements g and h is known as the
conjugacy problem or "Transformationsproblem" in the original text by Max Dehn
(see [Deh11]).
For general groups even for finitely presented ones this problem is known to be
undecidable. For the self-similar groups we’re considering in this text this particular
decision problem is already rather well studied. It is known to be solvable in the
group of so called bounded tree automorphisms (see [BBSZ13]) and for some very
prominent examples of self similar groups: A. Rozhkov and Yu. Leonov proved this
independently for the Grigorchuk group ([Roz98] and [Leo98]) and J. Wilson and
P. Zalesskii proved this for the Gupta-Sidki group ([WZ97]). Moreover this problem
is known to be solvable in a large class of so called branch groups (see [GW00]).
On the other hand there are examples of self-similar groups that have undecidable
conjugacy problem (see [vSV12]).
The aim of this thesis is to develop a toolkit to decide also other quadratic equations
and to find conditions under which these tools work. It turns out that for explicitly
given groups the question of solvability of some equations reduces to a large but
finite number of calculations. In principle it would be possible but boring and easily
erroneous to do the corresponding calculations by hand. We implemented some
new methods for the computer algebra system GAP ([GAP14]) that help to do
these calculations. On one hand this gives the opportunity to solve explicitly given
examples and on the other to get an intuition for common patterns and to find
proves that certain equations always have a solution.
We use the developed tools to compute the commutator width of some self-similar
groups, i.e. the minimal number n such that every element of the derived subgroup
G′ is a product of n commutators. Furthermore we describe for some groups which
other equations always have a solution.

2. Notations

We will denote the symmetric group on a setA by Sym(A) or ifA is the set of natural
numbers {1, . . . , n} by Sn. Permutations in Sn will be denoted in cycle notation and
act from the right. Thus for example (1, 2)(2, 3) = (1, 3, 2). Analogously we will
write Alt(A) and An for the alternating group.
The groups occurring in the text will often act from the right as well and we thus
denote the conjugation of a group element g by an element h by gh := h−1gh and
denote the commutator of g and h by [g, h] := g−1h−1gh.

3. Self-similar groups

We briefly introduce self-similar groups as groups acting on a regular rooted tree by
tree automorphisms. For a more detailed introduction into this topic and examples
see Chapter 2. A good reference for this field of research is the book [Nek05] by V.
Nekrashevych.
For a finite set A we will consider the free monoid A∗ as an infinite regular rooted
tree by defining the empty word to be the root and connect two words of length `
and ` − 1 by an edge if the shorter word is a prefix of the longer. We then denote
by Aut(A∗) the group of all tree automorphisms of the tree A∗. An automorphism
α ∈ Aut(A∗) can be uniquely described by its action on the root and its action on the
subtrees with roots A hanging from the root. In particular we have an isomorphism
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Φ: Aut(A∗) ∼−→ Aut(A∗) o Sym(A) = Aut(A∗)|A| o Sym(A). It is convenient to
identify α ∈ Aut(A∗) with Φ(α) and write α = 〈〈α1, . . . , αn〉〉σ. We will call the
automorphisms αi the states of α and σ the activity of α and write α@i := αi and
act(α) := σ.
A group G ≤ Aut(A∗) is self-similar if Φ restricts to an embedding Φ: G 7→ G o
Sym(A). In other words a self-similar group is a group G together with a free
monoid A∗, an action of G on A∗ that preserves the word length and prefixes and
an action @ of the monoid A∗ on G satisfying the axiom (gh)@x = (g@x)(h@xg).
More generally if we fix a finite set S and consider the free group FS on this generat-
ing set we can define a mapping called self-similarity structure Ψ: S×A → FS ×A.
Note that we only need finite data to specify such a mapping Ψ. We can extend the
mapping to FS ×A∗ with the following recursive formulas for Ψ = Ψs ×Ψa:

Ψs(gh,w`) = Ψs(g, w`) ·Ψs(h,Ψa(g, w`)) for g ∈ FS , h ∈ S
Ψa(gh,w`) = Ψa(gh,w) ·Ψa(Ψs(gh,w), `) and w ∈ A∗, ` ∈ A.

This way we obtain an action Ψa of the free group FS on A∗ by tree automorphisms.
We define by G(Ψ) the subgroup of Aut(A∗) that is the quotient of FS by the kernel
of these action. In case G is a finitely generated self-similar group with generating
set S and thus a quotient of the free group FS we obtain such a structure by setting
Ψ(g, x) = (g@x, xg) for g ∈ S and x ∈ A. Then we have G(Ψ) = G. A tree
automorphism α is called functional recursive if there is a self-similarity structure
Ψ such that α ∈ G(Ψ). The set of all functional recursive tree automorphisms
of a tree A∗ form a self-similar group RAut(A∗). A group generated by finitely
many functional recursive elements will in general not be self-similar but can be
embedded in a finitely generated self similar one. We will thus call subgroups of
finitely generated self-similar groups functional recursive groups.
A tree automorphism α ∈ Aut(A∗) is finite-state if there is a finite subset S ⊂
Aut(A∗) such that α ∈ S and for all β ∈ S and x ∈ A we have β@x ∈ S. An
automaton group is a group that is finitely generated by finite state elements. Finite
state automorphisms are in bijection to Mealy machines (or Mealy transducers) a
variant of finite state automata. Given a Mealy machine M without the choice of
an initial vertex we can define for every vertex v the machine (M, v) with initial
state v. The group G(M) generated by this machines is then both an automaton
group and a self-similar group.

Aut(A∗)

RAut(A∗)

FAut(A∗)
G(Ψ) G(M)

astart 1

1|2

2|1 1|1

2|2

b = 〈〈b, b2〉〉(1, 2) 1

Figure 2. Euler diagram of tree automorphisms, with some exam-
ples of self similar groups G(Ψ) and G(M).



10 1. INTRODUCTION
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Figure 3. Gluing of the equation [X,Y ]g to a torus with a hole.

From the viewpoint of definability we can compare the full automorphism group
Aut(A∗) to the real numbers; most of them are not definable with finite data. The
algebraic numbers are described finitely e.g. by the polynomial they satisfy. In
this analogy the algebraic numbers correspond to the functional recursive automor-
phisms. In both cases this is not the maximal set of finitely definable objects. E.g.
we can have the real number π or the automorphism that changes that positions of
a word that are 1 in the infinite decimal representation of π. Finally the rational
numbers correspond to finite state automorphisms as kind of finite objects.
We will often reduce a question about a group G ≤ Aut(A∗) of tree automorphisms
to the same question about the states of the automorphisms. This is especially useful
if the group G is contracting. That is: There is a finite set N called the nucleus of
the group such that for every group element g ∈ G the states g@w lie in the set N
for all words w ∈ A∗ long enough.

4. Equations

We fix a set X and denote by FX the free group with generating set X . The elements
of X will be called variables. For an arbitrary group G a G-equation is an element E
of the free product group FX ∗G. A solution for a G-equation E is a homomorphism
ϕ : FX → G with the property that (ϕ ∗ idG)(E) = 1. We can regard E as a reduced
word over the alphabet G∪X∪X−1. If for every variableX ∈ X that occurs in E also
the variable X−1 occurs, we call E an oriented quadratic equation. If every variable
occurs exactly twice then E is an unoriented quadratic equation. This terminology
originates from the classification of surfaces. If we write a quadratic equation on
the edges of a closed polygon and give the edge an orientation corresponding to the
exponent ±1 of the generators Xi and then glue the edges of the polygon with same
labels together we obtain a surface with holes. See Figure 3 for an example of this
gluing. This analogy is used by M. Culler in [Cul81] to solve some equations in free
groups.
The class of quadratic equations already covers many important cases: For example
the question whether a group element g is a product of 2 commutators is equivalent
to the question whether the equation [X1, X2][X3, X4]g−1 has a solution. Or the
question whether two group elements g and h are conjugate is equivalent to the
question whether the equation gX1h−1 has a solution. The theory of quadratic
equations was first developed by R. Lyndon in [Lyn59] for equations in free groups.
An equation with a linear component, i.e. it exists a variable X that occurs exactly
once, is always solvable hence we do not consider equations with a linear term.
Sometimes we need a solution of an equation to fulfill a certain constraint that is
a homomorphism γ from FX to a finite quotient Q of G. Then the constrained
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equation (E , γ) has a solution s if s solves E and has the property that s(X) lies in
the residue class of γ(X) for every X ∈ X .

5. Main method

Let Φ: G → G o Sym(A) be a self-similar group and E ∈ FX ∗ G be an equation in
variables {X1, . . . , Xn} ⊂ X . Denote further by {Yi,j | i = 1, . . . , n, j = 1, . . . , |A|} ⊂
X some more variables. We choose a constraint σ : FX → Sym(A) and define

Φσ : FX ∗G→ (FX ∗G) o Sn
Xi 7→ 〈〈Yi,1, . . . , Yi,|A|〉〉σ(Xi)
g 7→ Φ(g).

Then Φσ(E) is a system of |A| equations in the variables {Yi,j | i, j} and one ad-
ditional element of Sym(A) e.g. Φσ(E) = 〈〈E1, . . . , E|A|〉〉τσ,E . If E is solvable with
solution s then for σ = act ◦s we have τσ,E = 1 and the system Φσ(E) is solvable
with solution s′ : Yi,j 7→ s(Xi)@j.
On the other hand if there is such a homomorphism σ such that Φσ(E) is of trivial
activity and is solvable by a solution s′ then the equation E is solvable in Aut(A∗)
with solution s : Xi 7→ 〈〈s′(Xi,1), . . . , s′(Xi,|A|)〉〉σ(Xi).
Thus for layered self-similar groups G, i.e. a group such that the embedding Φ is an
isomorphism, the solvability of E and the system Φσ(E) is the same.
For quadratic equations E it turns out that the system Φσ(E) is always equivalent
to a system of pairwise independent quadratic equations.
If the group G is not layered but regular branched, that is there is a finite index
normal subgroup K E G that fulfills K |A| ≤ Φ(K), then we can in general not lift
arbitrary solutions for Φσ(E) to a solution of E .
But by choosing constraints γ not only to the symmetric group but to the quotient
G/K we can find a constraint γ′ for the system Φγ(E) such that a solution for the
constrained system (Φγ(E), γ′) will admit a solution for the constrained equation
(E , γ).
In Chapter 4 we will describe in detail some conditions under which this helps to
solve equations.

6. Results

6.1. Layered Groups. We already remarked that if the group G is layered
then every solution of Φσ(E) can be lifted back to a solution of E . With that we can
prove the following:

Theorem 1.1. Every element of the derived group of Aut(A∗) is a commutator.

Also more generally: We can define the distance between two tree automorphisms α
and β by 2−n where n is the largest level such that the action on the finite subtree
up to level n of α and β is identical. With this length Aut(A∗) becomes a profinite
group as the inverse limit of the finite groups acting on the first n levels of the tree.

Theorem 1.2. If G ≤ Aut(A∗) is layered and complete and for every element g in
the derived subgroup G′ the permutation act(g) is a commutator then every element
of the derived group G′ is a commutator.
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The Neumann-Segal groups are examples of finitely generated layered groups. For
n ∈ N these are groups Nn acting on the n-ary tree by the following generators.

aπ = 〈〈1, . . . , 1〉〉π, απ = 〈〈aπ, απ, 1, . . . , 1〉〉 for π ∈ An,

Nn = 〈απ, aπ | π ∈ An〉 .

For n ≥ 5 the groups Nn are layered and perfect. With a similar method as before
we can prove:

Theorem 1.3. For n ≥ 5 every element in the group Nn is a commutator.

Furthermore the proof is constructive and we implemented an algorithm that, given
an element g ∈ Nn in the form of its representing Mealy machine, returns two
elements of the group that satisfy the equation [X,Y ]g = 1.
Moreover we prove that for every n there is a constant Cn such that every element
of Nn is a product of Cn conjugates of an arbitrary nontrivial permutation σ ∈ An

and conclude the following theorem:

Theorem 1.4. There is an algorithm that decides for every quadratic oriented equa-
tion in the Neumann-Segal group if a solution exists.

A self-similar group is contracting if in the general case the states of elements are
shorter than the element itself with respect to the word metric. We note that this is
the key ingredient for the calculation in the Neumann-Segal group and prove more
generally:

Theorem 1.5. Every layered contracting self-similar group, where every element of
the nucleus is a commutator, is of commutator width 1.

6.2. Grigorchuk Group. The Grigorchuk group G is a regular branched self-
similar group acting on the binary tree generated by the four elements

a = 〈〈1,1〉〉(1, 2), b = 〈〈a, c〉〉, c = 〈〈a, d〉〉, d = 〈〈1, b〉〉.

The branching subgroup K is the normal closure of 〈(ab)2〉 and the quotient G/K is
of order 16. Instead of pure equations in G we consider equations with constraints
γ : GX → G/K. Elements of K have only trivial activity hence we can deduce the
activity of an element g ∈ G by its image in G/K and thus define the homomorphism
Φγ as before.
We use a result of I. Lysenok from [LMU16]) that there is a finite number of
constraints Γ such that every constrained oriented quadratic equation is equivalent
to a constrained equation (E , γ) with γ ∈ Γ. If we consider the equation E =
[X1, X2] · · · [X2n−1, X2n]g for g ∈ G′ then for most constraints γ the system Φγ(E)
is solvable if an equation with higher genus E ′ = [X1, X2] · · · [X4n−3, X4n−2]g′ is
solvable. We use the computer algebra software GAP ([GAP14]) to compute this
set Γ explicitly and possible constraints for the equation E ′ to derive the following
theorem:

Theorem 1.6. The Grigorchuk group G and its branching subgroup K has commu-
tator width 2.

With a similar method as before we see that for a good choice of constraints γ
the equations Φγ(

∏6
i=1 a

Xig) are equivalent to products of commutators and certain
constraints and obtain the result that answers a question of Elisabeth Fink (see
[Fin14]):



7. GAP 13

Corollary 1.7. Every element of G′ is a product of 6 conjugates of the generator
a and there are elements g ∈ G′ which are not products of 4 conjugates of a.
Every element g ∈ G is a product of at most 8 conjugates of the generator a.

To complete the picture of the commutator width in the group G we use the de-
scription of the subgroup lattice in G which can be found in [BGŠ03]) to obtain:

Theorem 1.8. Every finitely generated subgroup of G has finite commutator width;
however, their commutator width cannot be bounded, not even among finite-index
subgroups. Furthermore there is a subgroup of G of infinite commutator width.

6.3. Gupta-Sidki Group. The computations for the Grigorchuk group were
quite explicit but the general method works well for other similar groups. We adapt
the specific computations for the Gupta-Sidki 3 group and show:

Theorem 1.9. The Gupta-Sidki group has commutator width at most 2.

However in contrast to the case of the Grigorchuk group we could not prove that
the commutator width of the Gupta-Sidki group is larger then one.

6.4. Order problem. S. Sidki introduced in [Sid00] the notion of bounded
tree automorphisms: A tree automorphism α ∈ Aut(A∗) is bounded by a polynomial
p if the number of elements in the n-th level of the tree A∗ that are not fixed by α
is bounded by p(n). An automorphism that is bounded by a constant polynomial
will be called bounded and a group G ≤ Aut(A∗) will be called bounded if it is
generated by bounded elements.
It is well known that the order problem is solvable in bounded self-similar groups
(see [BBSZ13]). On the other hand very recent results ([Gil17, BM17]) show that
the order problem in finitely generated self-similar groups can be unsolvable.
L. Bartholdi, V. Kaimanovich and V. Nekrashevych introduced in [BKN10] the
so called mothergroup. This is a finitely generated self-similar group that contains
every bounded group as a subgroup. This notion was extended by G. Amir, O.
Angel and B. Virág in [GOB13] to d-mothergroupsMn,d on an alphabet of size n.
All groups bounded by a polynomial of degree d can be embedded into such a group
Mn,d for some n, that is possibly larger then the alphabet of the original group. We
can show:

Theorem 1.10. The order problem in the mothergroupM2,1 is decidable.

This is a further indication that it could be true that the order problem is decidable
in the group Poly(∞), the group of all tree automorphisms bounded by a polynomial
of any degree.

7. GAP

Some results of this text are inspired by experiments in the computer algebra system
GAP ([GAP14]). The GAP package fr by L. Bartholdi already allows computations
in self-similar groups (see [Bar16b]). I build upon it a set of tools to manipulate
equation in them. In fact the GAP package I developed is more general and can be
used to study equations in all kinds of groups.
This package is freely distributed under the terms of the GNU General Public Li-
cense an extension to GAP. It is stored as an repository on git-hub under the url
https://github.com/ThGroth/gap-equations. All examples in this thesis that
refer to a file can be found in the directory phd/ of this repository.
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With this package it is possible to define an equation E ∈ FN ∗ G stored internally
as word over elements of G and variables.
gap> G := FreeGroup("g");;
gap> EqG := EquationGroup(G);;
gap> F := VariablesOfEquationGroup(EqG);

[ FreeProductElm([ X1 ]), FreeProductElm([ X2 ]), ... ]

gap> x1:=F[1];; x2:=F[2];; x3:=F[3];; g:=G.1;;
gap> eq := Equation(x1^-1*x2*g*x1*x3^2*g*x2^-1);

Equation in [ X1, X2, X3 ]

gap> Print(eq);

FreeProductElm([ X1^-1*X2, g, X1*X3^2, g, X2^-1 ])
One of the main features of the package is for now its implementation of a normal
form for quadratic equations.
gap> IsQuadraticEquation(eq);

true

gap> nf := NormalFormOfEquation(eq);

<Equation in [ X1, X2, X3 ]>

gap> Print(nf);

FreeProductElm([ X1^2*X2^2*X3^2, g^2 ])

gap> eq^NormalizingHomomorphism(nf)=nf;

true
For a self-similar group G, an equation E ∈ FN ∗G and a homomorphism σ : FN →
Sym(A) we have the system of equations Φσ(E). We can compute this new system of
equations with the method DecompositionEquation and for a quadratic equation
the equivalent system that consists again of quadratic equations:
gap> G := GrigorchukGroup;; a:=G.1;; b:=G.2;;
gap> EqG := EquationGroup(G);;
gap> eq := Equation(Comm(EqG.5,EqG.6)*b*b^a);;
gap> deq := DecompositionEquation(eq,[(),(1,2)]);

DecomposedEquation in [ Xn1, Xn2, Xn3, Xn4 ]

gap> djf := DisjointFormOfDecomposedEquation(deq);
gap> Sys := EquationComponents(djf);

[ <Equation in [ Xn2, Xn3, Xn4 ]>, <Equation in [ ]> ]

gap> deq^DisjointFormHomomorphism(djf)=djf;

true
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With this methods we have an environment in which we can implement some algo-
rithms to solve equations. One such algorithm is implemented in the example file
examples/NeumannSegal.g:
gap> Read("examples/NeumannSegal.g");
gap> Nn := NeumannSegalGroup(5);

<recursive group over [ 1 .. 5 ] with 4 generators>

gap> Nn := NeumannSegalGroup(5);;
gap> eq := RandomQuadraticEquation(EquationGroup(Nn),10);

<Equation in [ X1, X3, X4, X5, X9 ]>

gap> sol := SolveEquation(eq);;
gap> List(EquationVariablesEmbedded(eq),x->x^sol);

[ <Mealy element on alphabet [ 1 .. 5 ] with 60 states>,
<Mealy element on alphabet [ 1 .. 5 ] with 2 states>,
<Mealy element on alphabet [ 1 .. 5 ] with 36 states>,
<Mealy element on alphabet [ 1 .. 5 ] with 7 states>,
<Mealy element on alphabet [ 1 .. 5 ] with 7 states> ]

gap> IsSolution(sol,eq);

true
For more examples for what is possible with the equations package see Chapter 5,
Section 3 and the manual in Appendix B.





CHAPTER 2

Groups of tree automorphisms

For convenience of the later proofs we will define the general setup for self-similar
group. Groups generated by automata are already studied since the 60’s (see for
example [Gs61]) and gained larger attention since R. Grigorchuk defined the now
famous Grigorchuk group (see [Gri80]) as a group of measure preserving transfor-
mations of an interval, which soon turned out to be easy to describe in the language
of automaton groups. For our definitions we follow roughly the book [Nek05] by
V. Nekrashevych.

1. Trees

Definition 2.1. A graph will consist of a set V of vertices and a set E ⊂ V × V of
edges or a set E ⊂ V × V × L of labeled edges for a set L of labels.
In particular edges have a direction (and will hence sometimes called arrows) and
we allow loops and multiple edges (with different labels).
Definition 2.2. A one-rooted regular tree of degree d is a tree where one vertex
(the root) has valency d and all other vertices have valency d + 1. The set of the
vertices and edges can be described by its levels. The n-th level is the set of vertices
with distance n to the root.
In this text all trees will be one-rooted and regular hence the term tree will always
refer to an one-rooted regular tree.
Definition 2.3.

(1) The free monoid on a finite set A is notated as A∗ and is called the set of
words over the alphabet A.

(2) The set Aω is the set of all infinite words.
Remark 2.4. A∗ forms a tree of degree |A| with vertex set A∗ and the set of edges
equal to {(v, vx) | v ∈ A∗, x ∈ A}.
Definition 2.5. The length of a word w ∈ A∗ is the minimal number of free
generators which are necessary to form the word.

|w| = min{n ∈ N | w =
n∏
i=1

xi, xi ∈ A}.

The length |w| equals the level of w in the tree.
1.1. Automorphisms of rooted Trees and wreath products.

Definition 2.6. Let T = (V,E) and T ′ = (V ′, E′) be trees. A mapping f : V →
V ′ is called a tree homomorphism if for each edge (v, w) ∈ E there is an edge
(f(v), f(w)) ∈ E′.
Remark 2.7. If T and T ′ are two trees of the same degree, then they are isomorphic.
Especially a subtree (a subset of the tree which is itself a tree) is isomorphic to the
whole tree.

17
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Definition 2.8. The group of all tree automorphisms of a tree T will be denoted
by Aut(T ). Because the automorphisms have a lot in common with permutations,
we will consider their action on the tree as a right action.

Lemma 2.9. The levels of a tree are invariant under a tree automorphism.

Proof. Let a be a tree automorphism. The root is fixed by a because the
valency is invariant under tree homomorphisms. Then by induction every level is
fixed. �

The action of a tree automorphism on a finite proportion of the tree can be described
by permutations. For a tree of degree d and a subgroup G ≤ Aut(T ) we denote by
Permn(G) ↪→ Sdn the subgroup of Aut(T ) that acts on the n-th level of the tree like
G does and that stabilizes all levelsm form > n. Further we denote by Stabn(G) the
subgroup of G that stabilizes the n-th level. The groups Permn(G) can be described
by wreath products:

Definition 2.10. Let P and G be groups and A be a right P -set. Then the unre-
stricted wreath product is:

G oA P := GA o P ,

where the semi direct product is defined respective to the induced action of P on
GA: a ∈ P defines a map a : A → A, x 7→ xa. For f : A → G define fa := a ◦ f .

In our purpose the set A will be finite and P be a subgroup of the symmetric group
on A. The set GA is then the set of |A|-tupels and the action of P on GA is given
by permutation of the indices. If the set A is clear from the context we will omit it
from the notation and simply write G o P . Let us for now fix a set A = {1, . . . , d}
and a group P ≤ Sd.
With g1, . . . , gd ∈ G and σ ∈ P we will denote an element of G oP by 〈〈g1, . . . , gd〉〉σ.
Then the multiplication of two elements can be computed as following:

〈〈g1, . . . , gd〉〉σ · 〈〈h1, . . . , hd〉〉τ = 〈〈g1 · h(1)σ, · · · , gd · h(d)σ〉〉σ · τ.

Let T = A∗ be the rooted tree of degree d. For a group G ≤ Aut(T ) the wreath
product G o A acts on T by an element g = 〈〈g1, . . . , gd〉〉σ on a word `1 . . . `n ∈ A∗
by:

(`1 . . . `n)g = `σ1 (`2 . . . `n)g` for all `i ∈ A, n ∈ N.

Lemma 2.11. Let T be the tree of degree d. We then have the following isomorphisms:

Permn+1(Aut(T )) ' Permn(Aut(T )) o Sd ' Sd oAn Permn(Aut(T ))(1)
Aut(T ) ' lim←−

n

Permn(Aut(T )),(2)

Φ: Aut(T ) '−→ Aut(T ) o Sd .(3)

Proof. For g ∈ Permn+1(Aut(T )) there is a unique σ ∈ Sd such that `g = `σ

for all ` ∈ A and furthermore for each ` ∈ A there is a unique g` ∈ Permn(Aut(T ))
such that (`v)g = `σvg` . Furthermore there is a unique h ∈ Permn(Aut(T )) and for
v ∈ An there are σv ∈ Sd such that (v`)g = vh`σv for all ` ∈ A.
Hence the mappings g 7→ 〈〈g1, . . . , gd〉〉σ and g 7→ 〈〈σv | v ∈ An〉〉h give rise to the
claimed isomorphisms.
For the inverse limit we define the bonding maps to be the natural projections:

fn,n+1 : Permn+1(Aut(T )) ' Sd oPermn(Aut(T ))→ Permn(Aut(T )).
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Hence (gi)∞i=1 ∈ lim Permn(Aut(T )) <
∏
n Permn if and only if we have gn =

〈〈· · ·〉〉gn−1 for all n ∈ N and every tree automorphism can be written in that form.
(3) then follows automatically. �

Remark 2.12. The inverse limit defines a topology on Aut(T ) under that the
group is complete. We can define the distance between elements g, h ∈ Aut(T )
by the following construction: Let n be the maximal number m such that gh−1 ∈
Stabm(Aut(T )) or n =∞ if this holds for every m. Then dist(x, y) := 2−n.

Definition 2.13. Let a ∈ Aut(T ) and Φ be as in the proof of the last lemma and
Φ(a) = 〈〈a1, . . . , ad〉〉σa. We call the a` states of a and notate a` =: a@` and call σa
the activity of a and write σa =: act(a). Furthermore for w = `v ∈ T we define
recursively a@w = (a@l)@v.

Corollary 2.14. We have the following computation rules:

(vw)a = vawa@v, (ab)@v = (a@v)(b@va), (a@v)−1 = a−1@va,

(`v)a = `act(a)va@l, act(ab) = act(a) act(b), act(a−1) = act(a)−1

for all ` ∈ {1, . . . , d}, v, w ∈ T , and a, b ∈ Aut(T ).

Definition 2.15. A subgroup G ≤ Aut(A∗) is called self-similar (or state closed)
if for all g ∈ G and all x ∈ A we have g@x ∈ G. I.e all states of group members are
also group members.
The embedding Φ then restricts to Φ: G ↪→ G o Sym(A).

1.2. Automata. The term state refers to an alternative way to define the tree
automorphisms. We can define a tree automorphism by an invertible (possibly
infinite) Mealy machine.

Definition 2.16. A Mealy machine is a certain type of a state automaton and
consist of the following data:

(1) A finite set A called the alphabet.
(2) A nonempty set S, the so called set of states.
(3) A transition map t = tA × tS : A× S → A× S.
(4) An element s0 ∈ S, the so called start state.

If the set S is finite we will call the machine finite-state.

We will often depict a finite-state Mealy machine by a graph with vertex set S.
Whenever t(`, s) = (k, t) we will draw an arrow from s to t with label "`|k". The
start state will be indicated by an incoming edge labeled start.
Let M = (A,S, tA × tS , s) be a Mealy machine. The transition map extends to
A∗ × S by the recursive definition:

t̃ = t̃A × t̃S : A∗ × S → A∗ × S
(`v, s) 7→ tA(`, s)tA(v, tS(`, s)) for ` ∈ A and v ∈ A∗.

The action of M on v ∈ A∗ is then defined to be t̃A(v, s0) which by definition fixes
the levels of the tree.

Example 2.17. Consider the following automaton M called the adding machine:
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M =

{1, 2}, {a,1},
(1, a) 7→ (2,1),
(2, a) 7→ (1, a),
(1,1) 7→ (1,1),
(2,1) 7→ (2,1),

, a

 , astart 1

1|2

2|1 1|1

2|2
The action of the automaton replaces all occurrences of twos by ones until it reads
the first one. If one reads the word from right to left and replaces the alphabet by
{0, 1} the automaton gives the result of a binary addition of one.

1.3. Minimal Automata. Two formally different automata can define the
same action on the tree. We want to have a faithful action on the tree and hence
define equivalent automata and the minimal automaton.

Definition 2.18. Two Mealy machines M1, M2 with the same alphabet are equiv-
alent if their corresponding actions on the tree are identical.
In an equivalence class of Mealy machines, a machine is called minimal machine or
minimal automaton if its set of states has minimal size.

Definition 2.19. Let M = (A,S, t = tA × tS , s0) and M′ = (A,S ′, t′ = t′A × t′S , s′0)
be equivalent Mealy machines. A map ϕ : S → S ′ is called a state homomorphism if

(1) ϕ(s0) = s′0
(2) ϕ(tS(a, s)) = t′S(a, ϕ(s)) for all a ∈ A and s ∈ S.

If there is an inverse state homomorphism, ϕ is called a state isomorphism and the
two machines are isomorphic.

Remark 2.20. If ϕ is bijective, the inverse is automatically a state homomorphism.

A classic result in automata theory is that there is a minimal form and there are
a large variety of algorithms that minimize automata. For some examples see the
standard book [HU79].

Proposition 2.21. For every finite state Mealy machine there is an equivalent min-
imal machine, which is unique up to state isomorphisms and we can construct the
minimal machine by an algorithm.

Proof. Let M = (A,S, tA× tS , s0) be a Mealy machine. The minimal machine
can’t have unreachable states. For this purpose we define the set of reachable states
by following recursion.

R0 = ∅, ζ0 = {s0}
Ri = Ri−1 ∪ ζi−1, ζi = {tS(x, a) | a ∈ A, x ∈ ζi−1, tS(x, a) /∈ Ri}, for i > 0 .

As there are only finitely many states and Ri grows as long as ζi 6= ∅, there is an n
such that ζn = ∅. Then the set of reachable states is Rn.
We can hence assume without loss of generality that M has only reachable states
by replacing the set of states accordingly and restricting the transition map.
The next step is to determine equivalent states and remove them. Two states r, s ∈ S
are equivalent (r ∼ s) if the machines Mr = (A,S, t, r) and Ms = (A,S, t, s) are
equivalent. Hence r ∼ s if and only if tA(`, r) = tA(`, s) and tS(`, r) ∼ tS(`, s) for
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a,astart a,1

1,a 1,1

2|2

1|1

2|1

1|2

2|1
1|2 1|1

2|2

(a) Square of the adding machine

a2start a

1

1|1
2|2

2|1

1|2

1|1
2|2

(b) Minimal form of (a)
Figure 4. Equivalent machines

all ` ∈ A. This leads to a recursive problem:

E0 = {(s, s) | s ∈ S}, C0 = {(r, s)},
Ei = Ei−1 ∪ Ci−1,

Ci = {(tS(`, u), tS(`, v)) | (u, v) ∈ Ci−1, ` ∈ A} \ Ei,
ei = |{x | tA(x, u) 6= tA(x, v), (u, v) ∈ Ci−1}|, for i > 0.

As long as ei = 0 for all i ≤ m and (r, s) ∈ Em the machines Mr and Ms have the
same action on words of length at most m. Hence the states r and s are equivalent
if and only if there is an n ∈ N such that ei = 0 for all i ≤ n and Cn = ∅.
Since the sets Ei grow in every step as long as Ci is nonempty, this is a finite problem.
For the minimal automaton M′ we choose as set of states S ′ the set of equivalence
classes of S. The start state is the equivalence class of s0 and the transition-map is

t′ : A× S ′ → A× S ′

(`, [s]) 7→ ([tS(`, s)], tA(`, s)) .

This mapping is well-defined because tA(`, r) = tA(`, s) and tS(`, r) ∼ tS(`, s) for
r ∼ s and ` ∈ A. We have now defined an equivalent machine M′ = (A,S ′, t′, s′0).
Claim: M′ is indeed minimal.
Assume there is an equivalent minimal machine M′′ = (A,S ′′, t′′, s′′0). Since M′′

is minimal it cannot have unreachable states. Hence for every s′′ ∈ S′′ there is a
ws′′ ∈ A∗ such that s′′ = t′′(ws′′ , s′′0).
We define a map ϕ : S ′′ → S ′ by s′′ 7→ t′S(ws′′ , s′0). This mapping is well-defined
since for w,w′ with t′′S(w, s′0) = t′′S(w′, s′0) we have

tA(w, s0)tA(v, tS(w, s0)) = tA(wv, s0) = t′′A(wv, s′′0) = t′′A(w, s′′0)t′′A(v, t′′S(w, s′′0))

and hence t′′A(u, t′′S(v, s′′0)) = tA(u, tS(v, s0)) for all u, v ∈ A∗. Especially

tA(v, tS(w, s0)) = t′′A(v, t′′S(w, s′′0)) = t′′A(v, t′′S(w′, s′′0)) = tA(v, tS(w′, s0))

for all v ∈ A∗. Hence tS(w, s0) ∼ tS(w′, s0) and thus t′S(w, s′0) = t′S(w′, s′0).
This map ϕ is surjective because M′ contains only reachable states. Hence M′′ has
at least as many states as M′. If the number of states matches then the map ϕ is a
state isomorphism and hence the minimal machine is unique. �

For an example of a minimal machine see Figure 4.
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For two Mealy machines over the same alphabet M = (A,S, tA × tS , s0) and M′ =
(A,S ′, t′A × t′S , s′0) the product machine MM′ is defined as the machine with states
S × S ′, start state (s0, s

′
0) and transition map

(`, (r, s)) 7→ t′A(tA(`, r), s) , (tS(`, r), t′S(tA(`, r), s)).

This transition map is build in the way such that the action of MM′ on v ∈ A∗ is
the same as first act by M and then by M′.

Lemma 2.22. The set of all machines with fixed alphabet A up to isomorphic ma-
chines forms a semigroup.

Proof. It is clear that the previous defined product is associative and that the
the product of a machine and the trivial machine N = (A, {1}, (`,1) 7→ (`,1),1) is
isomorphic to the original one. �

1.4. Corresponding tree automorphisms. Given a tree of degree d and an
automorphism a ∈ Aut(T ) we can define a corresponding Mealy machine by setting
A = {1, . . . , d}, S = Aut(T ), s0 = a and t(`, b) = (`b, b@`) for ` ∈ A and b ∈ S.
On the other hand: Not every Mealy machine defines a tree automorphism because
the transition map doesn’t need to be bijective. For example the machine

M = ({1, 2}, {s0}, (1, s0) 7→ (1, s0), (2, s0) 7→ (1, s0), s0)

maps every word to the word consisting only of zeros.

Definition 2.23. Let M = (A,S, tA × tS , s0) be an Mealy machine. If tA(·, s) is a
bijection on A for every s ∈ S we will call M an invertible Mealy machine.

The justification for this naming is given by the following lemma:

Lemma 2.24. Let M = (A,S, tA × tS , s0) be an invertible Mealy machine then M
defines a tree automorphism.

Proof. Let d = |A|, T be the tree of degree d and σs ∈ Sd be the permutation
defined by the bijection tA(·, s). We can define mappings ϕn : S → Permn(Aut(T ))
recursively by

ϕn : s 7→
{

Φ−1 (〈〈ϕn−1(tS(1, s)), . . . , ϕn−1(tS(d, s))〉〉σs) if n > 0
1Aut(T ) if n=0.

The limit limϕn(s0) then gives a tree automorphism with the same action on the
tree as the Mealy machine. �

Corollary 2.25. If M is an invertible Mealy machine with alphabet A, then there
is a machine M−1 such that MM−1 is isomorphic to the trivial machine.

For simplicity of the notation we will from now on identify tree automorphisms and
their images under Φ. Furthermore we will allow us to write recursive definitions
having in mind that Aut(T ) is complete and thus to define an element uniquely
by a Cauchy sequence. For example we will write a = 〈〈1, a〉〉(1, 2) to describe
the tree automorphism corresponding to the adding machine or even further: The
automorphism b = 〈〈b, b2〉〉(1, 2) will correspond to the following infinite automaton:
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b4 b6 b9 b13 · · ·

b14 · · ·

b b2 b3 b7 b10 b15 · · ·

b5 b11 b16 · · ·

b17 · · ·

b8 b12 b18 · · ·

1|2

2|1
1|1
2|2

1|2

2|1

1|1
2|2

1|2

2|1

1|1
2|2

1|2

2|1

1|1
2|2

1|2

2|1
1|1
2|2

1|2

2|1
1|1
2|2

1.5. Formal self-similar groups. Since now self-similar groups where always
subgroups of Aut(T ). We can define formal self-similar groups without a tree. In
Definition 2.15 we see that the defining relation of a self-similar subgroup of Aut(T )
depends on the embedding Φ.
Definition 2.26. Let G be a group, P a finite group acting on a finite set A, and
Φ: G ↪→ GoAP be an embedding. The pair (G,Φ) is called a self-similarity structure.
Given a self-similarity structure (G,Φ) we have an action of G on A via the action
of P on A. We can extend this action in the usual way recursively on A∗ by
(wx)g = wgxg@w for w ∈ A∗, x ∈ A and g ∈ G to obtain a not necessarily faithful
action by tree automorphisms. Let us denote by ϕ this mapping G→ Aut(A∗). We
define the group G(G,Φ) to be the quotient G/ kerϕ.
Example 2.27. Let F3 = 〈f, g, h〉 be the free group on three generators then we can
define a self similarity structure by:

Φ: F3 → F3 o S2, f 7→ 〈〈g, g〉〉, g 7→ 〈〈h, g〉〉(1, 2), h 7→ 〈〈h, h2〉〉.
We see immediately that the generator h acts as the identity on the tree and a
quick inspection shows that g acts like the adding machine and f like g2 and hence
G(F3,Φ) ' Z.

1.6. Functionally recursive groups. We note that the class of self-similar
groups as defined in Definition 2.15 is not closed under subgroups. For example:
Denote by a ∈ Aut({1, 2}∗) the adding machine automorphism (see Example 2.17).
Then the group G =

〈
a2〉 is not self-similar because a = a2@1 /∈ G.

Definition 2.28. Let S be a finite subset of Aut(A∗). The set S is called function-
ally recursive if for all s ∈ S and x ∈ A the state s@x is an element of the group
generated by S.
An automorphism a ∈ Aut(T ) is then called functionally recursive if there is a
functionally recursive set S with a ∈ S.
Lemma 2.29. The set of all functionally recursive automorphisms forms a group.

Proof. Let s, t be functionally recursive automorphisms with the corresponding
functionally recursive sets S, T . Then the states of s−1t are members of the group
generated by the finite set S ∪ T . �
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Notation 2.30. The group RAut(T ) is the group of all functionally recursive au-
tomorphisms of the tree T .

1.7. Finite State Automorphisms. A stronger condition on automorphisms
than being functionally recursive is the notion of finite state automorphisms.
Definition 2.31. A finite set F ⊂ Aut(A∗) is called finite state if for all f ∈ F and
x ∈ A holds that f@x ∈ F .
An automorphism f is then called finite state if there is a finite state set F with
f ∈ F . A minimal finite state set for a finite state automorphism is then called the
state set of f :

States(f) = {f@w | w ∈ A∗} .
A group is called finite state if all its elements are finite state.
Lemma 2.32. The set of all finite state automorphisms in Aut(T ) forms a group.
Notation 2.33. The group FAut(T ) is the group of all finite state automorphisms
of the tree T .

Proof. With the computation rules for states (Corollary 2.14) it’s clear that for
f, g ∈ FAut(A∗) we have States(f−1g) ⊆ {s−1t | s ∈ States(f), t ∈ States(g)}. �

Lemma 2.34. The group of all minimal Mealy machines on an alphabet A is iso-
morphic to FAut(A∗).
Corollary 2.35. The word problem in FAut(A∗) is solvable. That is: Given an
element a in FAut(A∗) by its wreath recursive definition there is an algorithm to
determine in finite time if a is the trivial automorphism.

2. Bounded groups

Definition 2.36 ([Sid00]). A tree automorphism a is called bounded if there is a
constant C such that for all n holds:

|{w ∈ An | a@w 6= 1}| ≤ C .

For example the binary adding machine automorphism a is bounded by C = 1 and
an is bounded by C = dn/2e for every n ∈ N.
A more general approach are polynomial automorphisms.
Definition 2.37. A tree automorphism a is polynomial bounded of degree d if there
is a polynomial p of degree d such that for all n

|{w ∈ An | a@w 6= 1}| ≤ p(n) .
Example 2.38.

• A polynomial finite state automorphism which isn’t bounded:

astart a1 1

2|2

1|2 1|2

2|1

1|1
2|2

(A1)

Exactly all words with at least two "2"’s result in the trivial state. Hence
the word consisting of "1"’s and the n words in An with exactly one "2"
result in a nontrivial state. Therefore a is a polynomial tree automorphism
with polynomial p(n) = n + 1. The state a1 is bounded with bounding
constant 1.
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• A bounded automorphism which is not finite state:

c := 〈〈c1,1〉〉, cn := 〈〈cn+1,1〉〉σn with σn =
{

(0, 1) if n = 2m for some m
1 else

.

For every length n the only word which doesn’t result in the trivial state is
the word consisting only of zeros. Hence c is bounded by 1. All states are
different because for every n < m ∈ N we have
(0 . . . 0︸ ︷︷ ︸

2n+1
)c2n = 1 0 . . . 0︸ ︷︷ ︸

2n−2
1 and (0 . . . 0︸ ︷︷ ︸

2n+1
)c2m = 1 0 . . . 0︸ ︷︷ ︸

2n−2
0.

Therefore all the states ci are different and c can’t be finite state.
Lemma 2.39. The finite state polynomial automorphisms of degree d form a group.

Proof. Define for tree automorphisms a ∈ Aut(A∗) the set of words in each
level n ∈ N which doesn’t result in the trivial state:

W (a, n) = {w ∈ An | a@w 6= 1}.
Let a, b be degree d polynomial bounded automorphisms hence there are degree d
polynomials p, q with |W (a, n)| ≤ p(n) and |W (b, n)| ≤ q(n) for all n ∈ N.
Define V (n) = {wa | w ∈ W (a, n) ∪W (b, n)}. For v ∈ An \ V (n) we have va−1

/∈
W (a, n) ∪W (b, n) and therefore

(a−1b)@v = a−1@v · b@va−1 =
(
a@va

−1)−1
· b@va−1 = 1.

Consequently |W (a−1b, n)| ≤ p(n) + q(n). �

Notation 2.40. The group of finite state degree d polynomial bounded automor-
phisms of the n-ary tree is denoted by Polyn(d).
Said Sidki developed an easy to apply rule to determine if a finite state automorphism
is bounded by the analysis of the cyclic structure of the graph of the corresponding
automaton (see [Sid00]).
In short words: A finite state automorphism is bounded if and only if a corresponding
Mealy machine has on each directed path from the start state to an identity state
at most one circle.
Definition 2.41.

(1) A non-trivial tree automorphism a is called circular if there is w ∈ An such
that a@v = a. A word w with this property such that no prefix of w has
the same property is called a circular word for this circle.

(2) The number of circles for an automorphism a is defined by the number of
distinct circular words.
#C(a) := |{w ∈ A∗ | a@w = a @ε < v < w : a@v = a}| ∈ N0 ∪∞ .

(3) We call two circular automorphisms a, b equivalent if there is a circular
word w for a that has a prefix v ≤ w such that a@v = b. The equivalence
class will be called a circle and denote the class by [a].

(4) The multiplicity µ of a circle [a] is 1 if for all b ∈ [a] we have #C([a]) = 1.
Otherwise it will be ∞.

(5) The number of circles of an automorphism a on a word w is the number of
all distinct non-trivial circles along this path with multiplicity:

#w
C(a) =

∑
[b]∈{[a@v] : v≤w}\[1]

µ([b]) .
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(6) The number of circles for a finite state automorphism a is then defined as
the maximal path-circle-number:

# Circles(a) := max{#w
C(a) | w ∈ A∗} .

(7) A tree automorphism a is called pre-circular if # Circles(a) > 0 and finitary
if # Circles(a) = 0.

Notation 2.42. The group of finitary automorphisms on an n-ary tree will be
denoted by Polyn(−1).
Example 2.43.

(1) The automaton A1 has two disjoint circles with multiplicity 1 which are
connected with a directed path. Therefore # Circles(a) = 2.

(2) The automorphism a as given by the following automaton

astart b 1|2

2|1

1|1
2|2

and the state b = a@2 are both circular and belong to the same circle.
The number of circles for b is three (circular words are 1, 22, 21) and a has
an infinite number of circles, because 22, 212, 2112, 21 . . . 12 are all circular
words.

Lemma 2.44. If a is a polynomial bounded automorphism then every circle in a has
multiplicity 1.

Proof. Let b be a circular automorphism with at least two distinct circular
words v, w. Then we have 2n distinct words of length at most n ·max{|v|, |w|} that
result in a nontrivial state. Hence the set W (b, n) = {w ∈ An | a@w 6= 1} grows
exponentially and any automorphism a that has b as state can’t be polynomial
bounded by any degree. �

Proposition 2.45. [Sid00] For a finite state tree automorphism b ∈ Aut(T ) of an
n-ary tree T we have b ∈ Polyn(d) if and only if # Circles(b) ≤ d+ 1.

Proof. If a is a finitary automorphism the claim is obvious. Let d > −1 and
a be a degree d polynomial bounded automorphism. Define the sets of first and
second reachable circles:

C0(n) = {[a@w] | w ∈ An, a@w is circular, @v < w such that a@v is circular}
C1(n) = {[a@w] | w ∈ An,∃v < w : a@v is circular⇒ [a@v] ∈ C0(n)} \ C0(n).

If C1(n) is empty then # Circles(a) = 1 and we have nothing to show. We note that
the size of the set W0(n) = {w ∈ An | [a@w] ∈ C0} is bounded by a constant and
the size of W1(n) = {w ∈ An | [a@w] ∈ C1(n)} is bounded by a linear polynomial
in n. Because the size of the set W (a, n) = {w ∈ An | a@w 6= 1} is bounded by a
degree d polynomial, the size of the sets W (c, n) for c ∈ [b] ∈ C1(n) is bounded by a
degree d− 1 polynomial and hence by induction # Circles(b) ≤ d. By the definition
of C1(n) therefore # Circles(a) ≤ d+ 1. �

Corollary/Definition 2.46. A tree automorphism a is finitary if there is an
n ∈ N such that for all w ∈ Am, m ≥ n holds that a@w = 1. The minimal n with
this property is called the depth of the automorphism.
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3. Contracting groups

That some self-similar groups enjoy the property to be contracting is already used in
the papers by R. Grigorchuk in the proof of the properties of the Grigorchuk group.
The terminology we present here however follows the wording of V. Nekrashevych’s
book [Nek05].

Definition 2.47. A self-similar group G is contracting if there is a finite self-similar
set N ⊂ G such that for all g ∈ G there is a bound ng ∈ N such that for all longer
words w ∈ Am, m ≥ ng the states g@w belong to N .
The minimal such set N is called the nucleus of G. A finite state automorphism a
is called contracting if the group generated by the states of a is contracting.

Lemma 2.48. If G is a contracting group, then every element in G is finite state.

Proof. Let N be the nucleus of G and g ∈ G , then g@w ∈ N for all w ∈ A≥ng .
Thus S(g) is contained in {g@w | w ∈ A≤ng} ∪N which is finite. �

If one considers the word metric on a finitely generated group G, there is a different
description of being contracting that explains the name in a more obvious manner.

Lemma 2.49. If G is finitely generated and contracting, then there is λ < 1 and
C, n ∈ N such that for all g ∈ G and w ∈ A≥n it holds:

|g@w| < λ|g|+ C .

Proof. Let N be the nucleus of G and C be larger then the largest length of
elements in N and fix an arbitrary integer ` > 1. Since G is contracting, we can
find for every element h ∈ G an integer nh such that h@v ∈ N for every word v of
length at least nh. We take

n = max{nh | |h| < `C}.
Let us fix an element g ∈ G with length |g| = k`C + C1 for an integer k and
some C1 < `C. Hence we can find elements h0, . . . , hk ∈ G with |hi| ≤ `C and
g =

∏k
i=0 hi. For v ∈ Am with m ≥ n we thus have g@v =

∏k
i=0 hi@v

ti with
ti =

∏i
j=0 hj . Because for every word w of length at least n we have hi@w ∈ N for

every i and hence |hi@w| ≤ C − 1. Thus

|g@v| ≤
k∑
i=0
|h@vti | ≤ (k + 1)(C − 1) ≤ 1

`
|g|+ C − 1 < 1

`
|g|+ C.

�

Corollary 2.50. We can choose λ in Lemma 2.49 arbitrarily small with the cost
of increasing the constant n.

Example 2.51.
(i) It is easy to see that the group generated by the adding machine a is contracting

with nucleus N = {a, a−1,1} and contracting constants nam = dlog2(m)e.
More generally: All groups generated by the states of a finite state bounded
automorphism are contracting (see [BN03, Theorem 5.3.]).

(ii) The group generated by the automaton A1 is not contracting because an@1m =
an for everym and hence an would be an element of the nucleus for every n. All
those elements are distinct because an@2 = an1 and a1 is the adding machine
and thus of infinite order.
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(iii) Finitely generated contracting groups need not to be generated by bounded
elements: The group generated by the following not bounded Mealy machine
is contracting with nucleus N = {1, a, a−1, b, b−1, a−1b, b−1a}.

astart b 1

1|3
2|2
3|1

1|2
2|1
3|3 1|1

2|2
3|3

(iv) The infinitely generated group Poly(−1) is contracting with trivial nucleus.

Lemma 2.52. If G is a contracting group with nucleus N such that all elements of
the nucleus are in Polyd then G ≤ Polyd.

Proof. For g ∈ G denote by n the number such that g@w ∈ N for all w ∈ A≥n
and by p a degree d polynomial in m that bounds the number of words of length m
that result in a nontrivial state of a nucleus element.
Then the set W (m) = {w ∈ Am | g@w 6= 1} is bounded in size by |A|n + p(m) and
hence g ∈ Polyd. �

Lemma 2.53. The nucleus of a finitely generated contracting group given by the
wreath recursive definitions of its generators is computable.

Proof. Let S = S−1 be a finite set of generators of a contracting group G with
1 ∈ S. We define the following ascending family of finite sets:

N0 = {s@v | s ∈ S, v ∈ A≥|States (s)|},

Nm = {(ts)@v | s ∈ S, t ∈ Nm−1, v ∈ A≥|States (ts)|}.
Consider x = (ts)@v ∈ Nm \ Nm−1. Then the element ts is not finitary and hence
there are words v1, v2, v3 such that v = v1v2v3 and (ts)@v1 is circular with circular
word v2. Hence x = (ts)@v1v

`
2v3 for every integer ` and thus x is in the nucleus of

G. Because the nucleus is finite the sequence of sets Nk becomes constant and the
nucleus is contained in this limit. �

Definition 2.54. A self-similar group G ≤ Aut(A∗) is recurrent if G acts transi-
tively on the first level of the tree A and {g@x | g ∈ StabG(x)} = G for all x ∈ A.

Definition 2.55. A self-similar group G ≤ Aut(A∗) is weakly-recurrent if G acts
transitively on the first level of the tree A and {g@x | g ∈ G, x ∈ A} = G.

Proposition 2.56. The isomorphism problem is solvable among finitely generated
weakly-recurrent contracting groups over a fixed alphabet. That is: There exists
an algorithm that, given two sets of generators with its wreath recursive definition,
decides whether the groups generated by the corresponding sets are equal.

This is already well known for some time, we follow the proof of [Nek05].

Proof. We prove that a finitely generated recurrent contracting self-similar
group is generated by its nucleus. Then to decide whether two groups are equal we
only need to compute their nuclei and compare if they are equal.
Let G be a contracting group with nucleus N and generating set S. Let further n
be the minimal number such that for all s ∈ S and words w of length at least n we
have s@w ∈ N . Thus for every g ∈ G that is a product of m generators the state
g@w is a product of at most m elements of N . Because G is weakly-recurrent we
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have G = {g@w | w ∈ An, g ∈ G} and hence every element of g is generated by
elements of the nucleus. �

It is still an open problem if there exists an algorithm that decides if a given set of
finite state generators generate a contracting group.

4. Branch groups

Definition 2.57. A self-similar group G ≤ Aut(A∗) is layered if the embedding
Φ: G ↪→ G oA Perm1(G) is an isomorphism.

Example 2.58.
(1) The groups Aut(A∗), RAut(A∗), FAut(A∗), Polyn(A∗) for n ≥ −1 are all

layered.
(2) The group generated by the adding machine G = 〈a〉 is not layered since
〈〈a, a2〉〉 /∈ G.

We will see a finitely generated example of a layered group in Section 5.3.

Definition 2.59. A self-similar group G ≤ Aut(A∗) is regular branched if it has a
normal subgroup K of finite index such that KA ≤ Φ(K).
A normal subgroup K with this property is called a branching subgroup.

Note that to require G to have a layered normal subgroup of finite index is a stronger
condition. We do not assume that the branching subgroup is self-similar. But it is
functionally recursive by its definition.

Definition 2.60 ([Bar13]). A branch structure of a group G ↪→ G o Sn consists of
(1) a branching subgroup K E G;
(2) the quotient Q = G/K and the factor homomorphism π : G→ Q;
(3) a group Q1 ⊂ Q o Sn such that 〈〈q1, . . . , qn〉〉σ ∈ Q1 for qi ∈ Q and σ ∈ Sn if

and only if 〈〈g1, . . . , gn〉〉σ ∈ G for one and hence all gi ∈ π−1(qi);
(4) a map ω : Q1 → Q with the following property: if g = 〈〈g1, . . . , gn〉〉σ ∈ G

then ω(〈〈π(g1), . . . , π(gn)〉〉σ) = π(g).

Lemma 2.61. All regular branched groups have a branch structure.

Proof. Let G be a regular branched group with branching subgroup K and
canonical factor homomorphism π : G → G/K. If g = 〈〈g1, . . . , gn〉〉σ is a group
element then also 〈〈k1, . . . , kn〉〉 ·g is a member of G for every choice of ki ∈ K. Hence
the map ω : 〈〈gπ1 , . . . , gπn〉〉σ → (〈〈g1, . . . , gn〉〉σ)π is well defined.

�

5. Examples

5.1. Grigorchuk group. The first Grigorchuk group defined for the first time
by R. Grigorchuk in [Gri80] is a finitely generated self-similar group acting faithfully
on the binary rooted tree with generators:

a = 〈〈1,1〉〉(1, 2), b = 〈〈a, c〉〉, c = 〈〈a, d〉〉, d = 〈〈1, b〉〉.
This group is famous to be the first example of a group of intermediate word growth
and thus answers a question of J. Milnor (see [CWM+68] and [Gri83]). An
overview over some of its other remarkable properties can be found in the overview
article [Gri05].

Notation 2.62. We will denote the Grigorchuk group by G.
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c

a b

d1
1|1
2|2

1|2 2|1

1|1

2|2

1|1

2|21|1

2|2

Figure 5. Generating automaton for the Grigorchuk group

Note that G is already generated by a and any two of {b, c, d} because bc = d. Some
other useful short identities are

a2 = b2 = c2 = d2 = bcd = 1,

ba = 〈〈c, a〉〉, ca = 〈〈d, a〉〉, da = 〈〈b,1〉〉,
(ad)4 = (ac)8 = (ab)16 = 1.

Lemma 2.63. The stabilizer of the first level is given by Stab1(G) = 〈b, c, d, ba, ca, da〉.
Proof. It is obvious that Stab1(G) ⊇ 〈b, c, d, ba, ca, da〉. If g ∈ Stab1(G) is

written as reduced word w(a, b, c, d) over the generators of G then the number of
occurrences of a has to be even and two letters in b, c, d have to be separated by a
because otherwise the word is not reduced. �

Lemma 2.64. The Grigorchuk group is bounded.
Proof. This is a direct consequence of Proposition 2.45 and the graph repre-

sentation of the generating automaton (Figure 5). �

Corollary 2.65. The group G is contracting with nucleus {b, c, d, a,1}. �

Lemma 2.66. The group G is recurrent.
Proof. From the above identities we have especially: a = b@1, b = da@1,

c = ba@1 and hence G = {x@1 | x ∈ Stab1(G)} = {xa@2 | x ∈ Stab1(G)}. �

Lemma 2.67 ([Roz93]). The Grigorchuk group is regular branched with branching
subgroup

K :=
〈

(ab)2
〉G

=
〈

(ab)2, (bada)2, (abad)2
〉
.

The quotient Q := G/K has order 16. �

Lemma 2.68. The group G is not complete.
Proof. We define a Cauchy sequence (xm)m∈N in G by:

x(n)
m =

{
〈〈x(n+1),(ab)2,

m 〉〉 if n < m

1 otherwise
, xm = x(1)

m .

For every m ∈ N we have that xm ∈ K because both states are members of K. In
Aut(T ) the Cauchy sequence converges towards x = 〈〈x, (ab)2〉〉. If we assume that
x ∈ G then x has to be in the nucleus because x@1 . . . 1 = x for arbitrary long words.
But it is immediate to check that x 6= 1, a, b, c, d.

�
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5.2. Gupta-Sidki group. The Gupta-Sidki p-groups defined in [GS83] are
for any prime p a two generated self-similar group acting faithfully on the p-nary
rooted tree with generators:

a = 〈〈1, . . . ,1〉〉(1, 2, . . . , p), t = 〈〈a, a−1,1, . . . ,1, t〉〉.

t

a

a2

1

1|1
2|2
3|3

1|2
2|3
3|1

1|3
2|1
3|2

1|1

2|2

3|3

(a) Gupta-Sidki 3-group

t

a

a4

1

1|1
2|2
3|3
4|4
5|5

1|2 4|5
2|3 5|1
3|4

1|5 4|3
2|1 5|4
3|2

1|1

2|2

3|3
4|4

5|5

(b) Gupta-Sidki 5-group
Figure 6. Generating automata for some Gupta-Sidki p-groups

Notation 2.69. We will denote the Gupta-Sidki p-group by Sp.
Lemma 2.70 ([GS83]). The group Sp is indeed a p-group. �

Lemma 2.71. The Gupta-Sidki p-group is bounded for every prime p.
Proof. This is a direct consequence of Proposition 2.45. �

5.3. Neumann-Segal groups. We define for n ∈ N groups Nn acting on the
n-ary tree by the following generators.

aπ = 〈〈1, . . . , 1〉〉π,
απ = 〈〈aπ, απ, 1, . . . , 1〉〉 for π ∈ An,

Nn = 〈aπ | π ∈ An〉 ,
Mn = 〈απ | π ∈ An〉 ,
Nn = 〈Nn,Mn〉 .

Note that Nn
∼= Mn

∼= An. This construction was first done by D. Segal in [Seg00]
similar to a construction of P. Neumann in [Neu86]. In [BdlH10] L. Bartholdi and
P. de la Harpe proved some properties about this group.
Lemma 2.72 ([Bar03]). The groups Nn are layered for n ≥ 5.

Proof. It’s well known that the alternating group An is perfect for n ≥ 5 and
that furthermore every element is a commutator (see [Mil99]). For fixed π ∈ An we
choose ρ, σ ∈ An such that π = [ρ, σ]. Then aπ = [aρ, aσ] and απ = [αρ, ασ]. With
τ := (2, 3)(4, 5) we then have

bπ := [αρ, αaτσ ] = 〈〈aπ, 1, . . . , 1〉〉
βπ := b−1

π · απ = 〈〈1, απ, 1, 1, 1〉〉.
Now it is obvious that the set {bπ, βπ, aπ | π ∈ An} generates Nn oAn. �
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a t2|1

1|2

1|1

2|2

Figure 7. Mealy machine generating the lamplighter group.

Lemma 2.73. The groups Nn are contracting with nucleus N (Nn) = Nn ∪Mn.

Proof. It is immediate to see that Nn∪Mn is contained in the nucleus because
the elements in Mn are circular. In the same manner as in the proof of Lemma 2.53
we see that products of those generators have no additional circular elements. �

5.4. Menagerie of self-similar groups.

Lemma 2.74. If G is a self-similar group acting on a d-ary tree and H a self-similar
group acting on a e-ary tree. Then the product G × H acts self similarly on a
(d · e)-ary tree. Furthermore if G and H are both automaton groups then so is the
product.

Proof. Let G ≤ Aut(A∗1) and H ≤ Aut(A∗2) be two self-similar groups and
g ∈ G, h ∈ H two elements. We define the action on and by (x, y) ∈ A1 × A2 as
following:

(x, y)(g,h) = (xg, yh), (g, h)@(x, y) = (g@x, h@y)
for w ∈ (A1 × A2)∗ and x ∈ A1 × A2 we extend this action in the usual sense
recursively by (wx)(g,h) = w(g,h)x(g,h)@w. A short calculation shows that this action
fulfills the self-similarity axiom:

(g1g2, h1h2)@(x, y) = (g1@x · g2@xg1 , h1@y · h2@yh1)
= (g1@x, h1@y)(g2@xg1 , h2@yh1)

= (g1, h1)@(x, y) · (g2, h2)@(x, y)(g1,h1).

The given definition ensures directly that if g and h are finite state homomorphisms
on their corresponding trees then so is (g, h). �

Lemma 2.75. Every finite group can be realized as a self-similar automaton group.

Proof. By Cayley’s theorem every finite group embeds into a symmetric group
Sn for some n and we can hence realize it as a automaton group generated by finitary
automata of depth one. �

Corollary 2.76. Every finitely generated abelian group is isomorphic to a self
similar automaton group.

Proof. We did already see that the adding machine generates the free group
of rank 1 and because every finitely generated abelian group is isomorphic to Zn ×
Ck1 × . . . × Ckm for some n ∈ N and cyclic groups Ck1 ,. . . , Ckm the result follows
from Lemma 2.74. �

The free abelian group Z acts on itself by addition. The group Z/2Z oZZ is known as
the lamplighter group. It was proved by R. Grigorchuk and A. Żuk in [GZ01] that
it is generated by the two state automaton displayed in Figure 7. For more general
lamplighter groups P. Silva and B. Steinberg proved the following:
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x1

x2

x3

2|1

1|2

1|1
2|2

1|2

2|1

Figure 8. Mealy machine generating the free group 〈x1, x2, x3〉.

Proposition 2.77 ([SS05]). Let H be a finite abelian group. Then the groups H oZZ
are isomorphic to some self similar automaton groups.

Lemma 2.78 ([BS98]). The groups GLn(Z) are isomorphic to automaton groups on
an alphabet of size 2n.

Corollary 2.79 ([BS98]). The free groups on arbitrary rank are isomorphic to
automaton groups.

The automaton groups given by A. Brunner and S. Sidki that generate GLn(Z) are
not generated by all states of a single automaton and hence the given examples are
not self-similar. Y. Glasner and S. Mozes used in [GM05] the idea of bi-reversible
automata, i.e. an invertible Mealy machine whose dual is also an invertible Mealy
machine, to construct self-similar automaton groups that are isomorphic to free
groups. An example for a Mealy machine that generates a free group of rank three
was already given by S. Aleshin in [Ale83] depicted in Figure 8 although it was
only proved two decades later by M. and V. Vorobets in [VV07] that this machine
indeed generates a free group.





CHAPTER 3

Equations

1. Basic Definitions

We fix a set X and call its elements variables. We assume that X is infinite countable,
is well ordered, and that its family of finite subsets is also well ordered, by size and
then lexicographic order. We denote by FX the free group on the generating set X .

Definition 3.1. Let G be a group. A G-group is a group with a distinguished copy
of G inside it; a typical example is G ∗H for some group H. A G-homomorphism
between G-groups is a homomorphism that is the identity between the marked copies
of G.
A G-equation is an element E of the G-group FX ∗ G, regarded as a reduced word
in X ∪ X−1 ∪ G. For E a G-equation, its set of variables Var(E) ⊂ X is the set of
symbols in X that occur in it; namely Var(E) is the minimal subset of X such that
E belongs to FVar(E) ∗G.
An evaluation is a G-homomorphism e : FX ∗ G → G. A solution of an equation E
is an evaluation s satisfying s(E) = 1. If a solution exists for E then the equation E
is called solvable. The set of elements X ∈ X with s(X) 6= 1 is called the support
of the solution.

The support of a solution for an equation E may be assumed to be a subset of FVar(E)
and hence the data of a solution is equivalent to a map Var(E)→ G. The question
whether an equation E is solvable will be referred to as the Diophantine problem of
E .
For every homomorphism ϕ : G → H there is a unique extension to an FX -homo-
morphism ϕ∗ : FX ∗ G → FX ∗H. In this manner every G-equation E gives rise to
an H-equation ϕ∗(E), which is solvable whenever E is solvable.

Definition 3.2. Let E ,F ∈ FX ∗G be two G-equations. We say that E and F are
equivalent if there is a G-automorphism ϕ of FX ∗G that maps E to F . We denote
by Stab(E) the group of G-automorphisms of E .

Lemma 3.3. Let E be an equation and let ϕ be a G-endomorphism of FX ∗ G. If
ϕ(E) is solvable then so is E. In particular the Diophantine problem is the same for
equivalent equations.

Proof. If s is a solution for ϕ(E), then s ◦ ϕ is a solution for E . �

1.1. Quadratic equations. A G-equation E is called quadratic if for each
variable X ∈ Var(E) exactly two letters of E are X or X−1, when E is regarded as
a reduced word.
A G-equation E is called oriented if for each variable X ∈ Var(E) the number of
occurrences with positive and with negative sign coincide, namely if E maps to the
identity under the natural map FX ∗ G → FX /[FX , FX ] ∗ 1. Otherwise E is called
unoriented.

35



36 3. EQUATIONS

Lemma 3.4. Being oriented or not is preserved under equivalence of equations.

Proof. E is oriented if and only if it belongs to the normal closure of [FX , FX ]∗
G; this subgroup is preserved by all G-endomorphisms of FX ∗G. �

2. Normal form of quadratic equations

Definition 3.5. For m,n ≥ 0, Xi, Yi, Zi ∈ X and ci ∈ G the following two kinds of
equations are called in normal form:

On,m : [X1, Y1][X2, Y2] · · · [Xn, Yn]cZ1
1 · · · c

Zm−1
m−1 cm(1)

Un,m : X2
1X

2
2 · · ·X2

nc
Z1
1 · · · c

Zm−1
m−1 cm .(2)

The form On,m is called the oriented case and Un,m for n > 0 the unoriented case.
The parameter n is referred to as genus of the normal form of an equation. The pair
(n,m) will be called the signature of the quadratic equation.

We recall the following result, and give the details of the proof in an algorithmic
manner, because we will need them in practice:

Theorem 3.6 ([CE81, GK92]). Every quadratic equation E ∈ FX ∗G is equivalent
to an equation in normal form, and the isomorphism can be effectively computed.

Proof. The proof proceeds by induction on the number of variables. Starting
with the oriented case: if the reduced equation E has no variables then it is already
in normal form O0,1. If there is a variable X ∈ X occurring in E then X−1 also
appears. Therefore the equation has the form E = uX−1vXw or can be brought to
this form by applying the automorphism X 7→ X−1. Choose X ∈ X in such a way
that Var(v) is minimal.
We distinguish between multiple cases:

Case 1.0: v ∈ G. The word uw has fewer variables than E and can thus be brought
into normal form r ∈ On,m by a G-isomorphism ϕ. If r ends with a variable,
we use the G-isomorphism ϕ ◦ (X 7→ Xw−1) to map E to the equation
rvX ∈ On,m+1. If r ends with a group constant b, say r = sb, we use the
isomorphism ϕ ◦ (X 7→ Xbw−1) to map E to the equation svXb ∈ On,m+1.

Case 1.1: v ∈ X ∪ X−1. For simplicity let us assume v ∈ X ; in the other case
we can apply the G-homomorphism v 7→ v−1. Now there are two pos-
sibilities: either v−1 occurs in u or v−1 occurs in w. In the first case
E = u1v

−1u2X
−1vXw, and then the G-isomorphism X 7→ Xu1u2, v 7→ vu1

yields the equation [v,X]u1u2w. In the second case E = uX−1vXw1v
−1w2

is transformed to [X, v]uw1w2 by the G-isomorphism X 7→ Xuw1w−1
1 ,

v 7→ v−uw1 . In both cases u1u2w, respectively uw1w2 have fewer vari-
ables and so composition with the corresponding G-isomorphism results in
a normal form.

Case 2: Length(v) > 1. In this case v is a word consisting of elements X ∪ X−1

with each symbol occurring at most once as v was chosen with minimal
variable set, and some elements of G. If v starts with a constant b ∈ G
we use the G-homomorphism X 7→ bX to achieve that v starts with a
variable Y ∈ X , possibly by using the G-homomorphism Y 7→ Y −1. As in
Case 1.1 there are two possibilities: Y −1 is either part of u or part of w.
In the first case E = u1Y

−1u2X
−1Y v1Xw we can use the G-isomorphism

X 7→ Xu1v1u2, Y 7→ Y u1v1v−1
1 to obtain [Y,X]u1v1u2w. In the second we

use the G-isomorphism X 7→ Xuw1v1v−1
1 w−1

1 , Y 7→ Y −uw1v1v−1
1 to obtain
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[X,Y ]uw1v1w2. In both cases the second subword has again fewer variables
and can be brought into normal form by induction.

Therefore each oriented equation can be brought to normal form by G-isomorphisms.
In the unoriented case there is a variable X ∈ X such that E = uXvXw. Choose
v to have a minimal number of variables. By induction, the shorter word uv−1w is
equivalent by ϕ to a normal form r.
The G-isomorphism ϕ ◦ (X 7→ Xuv−1) maps E to X2r. If r ∈ Un,m for some n,m,
there remains nothing to do. Otherwise r = [Y, Z]s, and then the G-homomorphism

X 7→ XY Z, Y 7→ Z−1Y −1X−1Y ZXY Z, Z 7→ Z−1Y −1X−1Z

mapsX2r toX2Y 2Z2s. This homomorphism is indeed an isomorphism, with inverse
X 7→ X2Y −1X−1, Y 7→ XYX−1Z−1X−1, Z 7→ XZ.

Note that s ∈ On,m. If n ≥ 1 then this procedure can be repeated with Z, in place
of X, r. �

For a quadratic equation E we denote by nf(E) := nfE(E) the image of E under the
G-isomorphism nfE constructed in the proof.

2.1. Constrained equations.

Definition 3.7 ([LMU16]). Given an equation E ∈ FX ∗ G, a group H, a homo-
morphism π : G → H and a homomorphism γ : FX → H, the pair (E , γ) is called a
constrained equation and γ is called a constraint for the equation E on H.
A solution for (E , γ) is a solution s for E with the additional property that π ◦s = γ.

We note that the constraint γ needs only be specified on Var(E).

2.2. Systems of equations.

Definition 3.8. A system of equations is a tuple S ∈ (F ∗G)n. A solution for such
a system is a G-homomorphism s : F ∗ G → G such that for the projections πi on
the i-th coordinate the maps s ◦ πi are solutions for the equations πi(S).
A constraint for a system S is a homomorphism γ : F → H such that γ ◦ πi are
constraints for the equations πi(S).

Definition 3.9. If for all i 6= j the intersections of Varπi(S)∩Var(πj(S)) are empty
the system S is called an independent system.

For a G-homomorphism ϕ and a system of equations S ∈ (F ∗ G)m by applying ϕ
to S we mean applying the homomorphism to every component and hence identify
ϕ with the m-fold direct product of ϕ.





CHAPTER 4

Decidable Equations

Definition 4.1. Let G ≤ H be two arbitrary groups. Two elements g, h ∈ G are
said to be conjugate in H if the equation gXh is solvable in H. We then write
g ∼H h−1.
The element f ∈ H such that gf = h is referred to as the conjugator of g and h.
If there exists an algorithm that decides for every pair of elements g, h ∈ G if they
are conjugate in G then we say that the group G has solvable conjugacy problem.

1. Commutator width

LetG be a group. It is well-known that usually elements ofG′ are not commutators—
for example, [X1, X2] · · · [X2n−1, X2n] is not a commutator in the free group F2n when
n > 1.

Definition 4.2. The commutator width of a group G is the minimal n ∈ N ∪ ∞
such that every element of the commutator subgroup G′ is a product of at most n
commutators.

1.1. Commutator width of Aut(T2). To give a general idea of a method to
solve equations in self-similar groups we consider as an example the group of the
binary tree T2 and the group Aut(T2). This group is layered and hence for two
elements g, h ∈ Aut(Tn) the element 〈〈g, h〉〉 is also a member of the group. This will
allow us to solve an equation by solving the equation for the states and then lift the
solution.

Proposition 4.3. The commutator width of Aut(T2) is 1.

For the proof we need a small observation:

Lemma 4.4. Let G be a self-similar group acting on a binary tree. If g ∈ H ′ then
g@2 · g@1 ∈ H ′.

Proof. It suffices to consider a commutator g = [g1, g2] in G′. Then g@2 · g@1
is the product, in some order, of the eight terms (gi@j)ε for all i, j ∈ {1, 2} and
ε ∈ {±1} each occurring exactly once. �

Proof of Proposition 4.3. Given any element g ∈ Aut(T2)′ we consider the
equation [X,Y ]g. If we replace in the equation the variable X by 〈〈X1, X2〉〉 and Y by
〈〈Y1, Y2〉〉(1, 2) we obtain 〈〈X−1

1 Y −1
2 X2Y2g@1, X−1

2 Y −1
1 X1Y1g@2〉〉. Therefore, [X,Y ]g

is solvable if the system of equations {X−1
2 Y −1

2 X2Y2g@1, X−1
1 Y −1

1 X1Y1g@2} is solv-
able. We apply the Aut(T2)-homomorphism X1 7→ X1, X2 7→ Y −1

1 X1Y1g@2, Yi 7→ Yi
to eliminate one equation and one variable.
Therefore the solvability of the constrained equation ([X,Y ]g, (X 7→ 1, Y 7→ (1, 2)))
follows from the solvability of X−1

1 Y −1
2 Y −1

1 X1Y1(g@2)Y2g@1 which is under the
normal form Aut(T2)-isomorphism Y1 7→ Y1Y

−1
2 equivalent to the solvability of

39
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[X1, Y1](g@2)Y2g@1. After choosing Y2 = 1 we are again in the original situation
because g@2g@1 ∈ H ′.
This allows us to recursively define a solution s for the equation [X,Y ]g as follows:

s(X) = 〈〈a1, b
−1
1 a1b1g@2〉〉, s(Y ) = 〈〈b1,1〉〉(1, 2), c1 = g@2 · g@1,

and for all i ≥ 1

ai = 〈〈ai+1, b
−1
i+1ai+1bi+1ci@2〉〉, bi = 〈〈bi+1,1〉〉(1, 2), ci+1 = ci@2 · ci@1.

Note that the elements ai, bi ∈ Aut(T2) are well-defined, although they are con-
structed recursively out of the aj , bj for larger j. Indeed, if one considers the re-
cursions above for i ∈ {1, . . . , n} and sets an+1 = bn+1 = 1, one defines in this
manner elements a(n)

1 , b
(n)
1 ∈ Aut(T2) which form Cauchy sequences, and therefore

have well-defined limits a1 = lim a
(n)
1 and b1 = lim b

(n)
1 . �

2. The branching homomorphism

The goal of this section is to give a map that reduces the question of decidability of
an equation to the decidability of an equation in the states of the former one.
For this purpose we fix a self-similar group G

Φ
↪−→ G o Sn and a group Q with a

projection π : G� Q.
We notate the following two free groups with its free generators:

FN = 〈X` | ` ∈ N〉 , FN×n = 〈X`,k | ` ∈ N, 1 ≤ k ≤ n〉 .

Furthermore we enrich a constraint γcon : FN → Q with an activity and write an
enriched constraint as a pair: γ = (γcon, γact) : FN → Q × Sn such that γact(x`) ∈
act(π−1(γcon(x`)) for all ` ∈ N. Note that in our application Q will often be a
quotient group of G and act will be well defined on Q and therefore γact will be
uniquely defined by γcon. In that cases we will omit γact from the notation.
We define the following homomorphism which we will call the branching homomor-
phism:

Φγ : FN ∗G→ (FN×n ∗G) o Sn
X` 7→ 〈〈X`,1, X`,2, . . . , X`,n〉〉γact(Xi)

g 7→ Φ(g).

Consider a quadratic equation E ∈ FN ∗ G together with an enriched constraint
γ = (γcon, γact) : FN → H×Sn and denote by E1, . . . , En equations such that Φγ(E) =
〈〈E1, . . . , En〉〉τ .
Note that if τ 6= 1 then the pair (E, γ) is unsolvable and on the other hand if (E, γ)
is solvable then so is the system of equations (Ei)i=1...n.
The system (Ei)i now seems to be more complicated then the single equation E , but
with a few changes of variables we can obtain an independent system.
If G is a layered group, we can lift solutions from the new system to the old equation
and don’t need any constraints. In this case we will take the trivial group for H.
An enriched constraint then consists only of the homomorphism σ : FN → Sn.

Proposition 4.5. Let G be a layered self-similar group G ' G oP with P ≤ Sn and
E ∈ FN ∗G be a quadratic equation.
Then E is solvable if and only if there is a σ : FN → P such that act(Φσ(E)) = 1

and the system Φσ(E) is solvable.
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Proof. If s is a solution for E , define σ : X` 7→ act(s(X`)) then t : X`,k 7→
s(X`)@k is a solution for Φσ(E).
On the other hand if there is a σ : FN → Sn such that act(Φσ(E)) = 1 and t is a
solution for Φσ(E), then s : X` 7→ 〈〈t(X`,1), . . . , t(X`,n)〉〉σ(X`) defines a solution for
E . �

The idea now is to generalize this proposition for regular branch groups G. Fix a
regular branched group G ↪→ G o Sn, a branch structure (K,Q, π,Q1, ω) for G and
an equation E ∈ FN ∗G in m variables. We denote by FE the rank m free subgroup
of FN generated by Var(E). Similarly we denote by FE×n the free subgroup of FN×n
with generating set {X`,k | X` ∈ Var(E), 1 ≤ k ≤ n}.
Let us assume that K has the property that act(k) = 1 for all k ∈ K. Then any
constraint γ : FE → Q yields a map γact : FE → Sn.
Let us for now fix a constraint γ : FE → Q such that act(Φγ(E)) = 1.
If we have a solution s for the system of equations Φγ(E) with the property that

(1) g` := 〈〈s(X`,1), . . . , s(X`,n)〉〉γact(X`) ∈ G and π (g`)) = γ(X`) for all 1 ≤ ` ≤ m

we can lift the solution s to a solution t : X` 7→ g` for (E , γ).
This property can be rewritten in terms of constraints of s. Denote by γ′ : FE×n → Q
a constraint such that

〈〈γ′(X`,1), . . . , γ′(X`,n)〉〉γact(X`) ∈ ω−1(γ(X`)).

A solution s for the constrained equation (Φγ(E), γ′) fulfills property (1). Since Q1
is finite, there are only finitely many such constraints γ′. We will denote by Γ1(γ)
the set of all those constraints γ′. Furthermore for the system (Φγ(E), γ′) to be
solvable it is necessary that the equation is solvable modulo K. Therefore we loose
no solutions if we restrict the set of constraints to

ΓE1 (γ) = {γ′ ∈ Γ1 | (γ′ ∗ π)(Ek) = 1 ∀k ∈ N}.

With this notation an analog for Proposition 4.5 for branch groups is:

Proposition 4.6. Let G be a regular branched group with fixed branch structure
(K,Q, π,Q1, ω) such that act(K) = 1 and let (E , γ) be a quadratic equation with
constraint γ : FN → Q.
Then (E , γ) is solvable if and only if act(Φγ(E)) = 1 and one of the constrained
equation systems (Φγ(E), γ′) for γ′ ∈ ΓE1 (γ) is solvable.

The next step is to reduce the constrained system of equations to an independent
system without affecting the solvability.
Let G be a regular branch group with fixed branch structure as in the last propo-
sition, let E be a quadratic equation and Φγ(E) = 〈〈E1, . . . , En〉〉 for a constraint
γ.
If for i 6= j there is X ∈ Var(Ei)∩Var(Ej) then X /∈ Var(Ek) for all k 6= i, j since E is
quadratic. We can assume without loss of generality that X occurs in Ei (otherwise
apply the G-isomorphism X 7→ X−1) and then Ei = V1XV2 and Ej = W1YW2 with
Y ∈ {X−1, X} depending whether E is oriented or not.
Applying the G-homomorphism ϕ : X 7→ V −1

1 V −1
2 to the system (Ei)i=1...n trivializes

one equation. The solvability however stays the same.

Lemma 4.7. For a constraint γ′ ∈ ΓE1 (γ) the system ((E1, . . . , En), γ′) is solvable if
and only if the system ((ϕ(E1), . . . , ϕ(En)), γ′) is solvable.
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Proof. If s is a solution for ((ϕ(Ei))i=1...n, γ
′) we can define the G-evaluation

t : Xi 7→
{
s(Xi) if Xi 6= X

s(V −1
1 V −1

2 ) if Xi = X
.

The homomorphism t is a solution for (Ei)i=1...n and because (γ′ ∗ π)(V −1
1 V −1

2 ) =
γ′(X) it solves ((Ei)i=1...n, γ

′). On the other hand if t is a solution for (Ei) then t(X)
is forced to be identical to t(V −1

1 V2). �

This process can be repeated until there are no equations with a common set of
variables left.
The appearance of the resulting system of equations can depend on the order in
which the common variable are removed; the solvability however is equivalent under
all such choices, as seen earlier. With a fixed enumeration on the generators of FN
we can choose to always eliminate the smallest common variable and in that way
determine a well defined homomorphism ϕ that replaces the system S = Φγ(E) by
an equivalent independent system.

Notation 4.8. We denote by Φϕ
γ (E) the reduced system (ϕ(E1), . . . , ϕ(En)).

Lemma 4.9. Let E ∈ FN ∗ G be a quadratic equation with a constraint γ and
γ′ ∈ ΓE1 (γ) be a derived constraint then the solvability of Φγ(E) is equivalent to
the solvability of Φϕ

γ (E).

Proof. This is just an iteration of Lemma 4.7. �

Lemma 4.10. Let E ∈ FN ∗ G be a quadratic equation with a constraint γ and
Φϕ
γ (E) = (E1, . . . , En) then Ei is again a quadratic equation for every i = 1, . . . , n. If
E is oriented then also all Ei are oriented.

Proof. Let X` ∈ Var(E) be a variable then every variable X`,k for k = 1, . . . , n
will occur in the system Φγ(X`) exactly once and hence every variable X`,k for
` ∈ N will occur either twice or not at all in the system Φγ(E) and since Φϕ

γ (E) is an
independent system every equation in the system is quadratic.
If E is oriented then X−1

`,k for k = 1, . . . , n will occur in the system Φγ(X−1
` ) exactly

once. The result follows. �

Example 4.11. It is not true that all nontrivial components of Φγ(E) are unoriented
if E is unoriented: Consider γ : X,Y 7→ (), Z 7→ (1, 2) and E = [X,Y ]Z2 ∼ X2Y 2Z2

then Φϕ
γ (E) has a nontrivial oriented component.

Let us again write Φϕ
γ (E) = (E1, . . . , En). According to the last lemma we can find a

G-isomorphism ψE,γ that maps each Ei to a normal form in FN×n ∗G ' FN ∗G.

Notation 4.12. We denote by Φnf
γ (E) the system (ψE,γ(E1), . . . , ψE,γ(En)).

The system Φnf
γ (E) is an independent system of quadratic equations and we have

the following result:

Proposition 4.13. Let G be a regular branched group with fixed branch structure
(K,Q, π,Q1, ω) such that act(K) = 1 and let E be a quadratic equation with con-
straint γ : FN → Q.
The constrained equation (E , γ) is solvable if and only if there is

γ′′ ∈ {(γ′ ∗ π) ◦ ψE,γ : FN → Q | γ′ ∈ ΓE1 (γ)}
such that the system (Φnf

γ (E), γ′′) is solvable.
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For layered groups this proposition becomes much simpler since property (1) is
always satisfied.

Corollary 4.14. Let G ≤ Aut(A∗) be a layered group and E ∈ FN ∗ G be an
equation. Then E is solvable if and only if there is an enriched constraint σ : FN →
Sym(A) with (σ ∗ act)(E) = 1 such that the system Φnf

σ (E) is solvable.

This proposition is in applications useful if the equations in Φnf
σ (E) are in a certain

sense easier then the equation E .
To demonstrate the use of this notion even without this premise we prove a more
general version of Proposition 4.3:

Proposition 4.15. The group Aut(T ) has commutator width 1 for every tree T .

We have the same lemma as before:

Lemma 4.16. If G ≤ Aut(A∗) is a self-similar group and g ∈ G′ then
∏
x∈A g@x ∈

G′.

Proof. We only need to show this for a commutator g = [f, h].∏
x∈A

g@x =
∏
x∈A

(h@xh−1)−1(h@xh−1f−1)−1(h@xh−1f−1)(f@xh−1f−1h).

We can obtain the identity by reordering the factors of this product and hence∏
x∈A g@x ∈ G′. �

Proof of 4.15. We have noted already that the group Aut(A∗) is layered. Let
us denote by n the cardinality of A. For every element g ∈ Aut(A∗) we want to
solve the equation [X,Y ]g and for that purpose consider the enriched constraint
σ : X 7→ (), Y 7→ (1, 2, . . . , n). Then E is solvable if the system Φσ(E) = 〈〈E1, . . . , En〉〉
is solvable. We have common variables in Ei and Ei+1 for all i modulo n and hence
without doing any further calculations we know that the system is equivalent to a
single quadratic equation involving all states of g.
By eventually sending some variables to the identity we see that the solvability
of the equation is implied by the solvability of [X1, Y1]

∏
x∈A(g@x) which is of the

same form as our initial equation. Now we can iterate this procedure and with the
same argument as in the proof of Lemma 4.3 the limit of the corresponding Cauchy
sequence is a solution to the initial equation. �

Looking again at the proof we obtain the following corollary:

Corollary 4.17. Let G ≤ Aut(A∗) be a layered, self-similar group and G̃ be its
completion with respect to the topology of Aut(A∗). If the group Perm(G) has com-
mutator width 1 then for every element g ∈ G′ the equation [X,Y ]g has a solution
in G̃.

3. Alternating group

We will use the branching homomorphism Φ from the last section to show that every
element in the Neumann-Segal group is a commutator. For this we also need the
corresponding computations in the alternating groups An.

Theorem 4.18 ([Mil99]). For n ≥ 5 each group An is perfect and of commutator
width 1.
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This theorem is a special case of Ore’s theorem, conjectured by Ore in [Ore51] and
finally proved in [LOST10]. Here the proof by Miller is sketched again to give the
explicit formulas for the commutating elements. Some special cases are altered a bit
to be of use in Proposition 4.20.

Proof. We have the identity [x, y]a = [xa, ya] for every element x, y, a in a
group G and hence it suffices to show that for every conjugacy class of Sn that is in
An there is a representative which is a commutator. We distinguish 10 cases:

(1) z = (1, 2, . . . , 2r + 1) with r > 1 even,
(2) z = (1, 2, . . . , 2r + 1) with r > 1 odd,
(3) z = (1, 2, . . . , 2s)(2s+ 1, 2s+ 2, . . . , 2r) with 0 < s ≤ r

2 , r even,
(4) z = (1, 2, . . . , 2s)(2s+ 1, 2s+ 2, . . . , 2r) with 0 < s ≤ r−1

2 , r odd,
(5) z = (1, . . . 2r + 1)(2r + 2, 2r + 3, 2r + 4) with r > 1 even if n > 5,
(6) z = (1, . . . 2r + 1)(2r + 2, 2r + 3, 2r + 4) with r > 1 odd if n > 5,
(7) z = (1, 2, . . . , 2s)(2s+1, 2s+2, . . . , 2r)(2r+1, 2r+2, 2r+3) with 0 < s ≤ r

2 ,
r even if n > 5,

(8) z = (1, 2, 3)(4, . . . , 2r+ 3)(2r+ 4, . . . , 2r+ 2s+ 3) with 0 < s ≤ r−1
2 , r odd

if n > 5,
(9) z = (1, 2, 3)(4, 5, 6) if n > 5,

(10) z = (1, 2, 3).
The idea in general is as follows: Write z depending on r even or odd as product
of two cycles of the same (odd) length with either one or three intersections. Then
one cycle is conjugate by an element of An to the inverse of the other and thus the
product is a commutator.

Case 1. As z = (1, . . . , r + 1) · (1, r + 2, . . . , 2r + 1) and (1, . . . , r + 1)−1 =
(1, r + 2, 2r + 1)c with c = (2, 2r + 1)(3, 2r) . . . (r + 1, r + 2) it holds that

z = [ (2, 2r + 1)(3, 2r) . . . (r + 1, r + 2) , (1, r + 2, r + 3, . . . , 2r + 1) ] .

Case 2. As z = (1, r + 2, 2, 3, . . . , r + 1) · (1, r + 2, 2, r + 3, r + 4, . . . , 2r + 1)
and (1, r + 2, 2, 3, . . . , r + 1)−1 = (1, r + 2, 2, r + 3, r + 4, . . . , 2r + 1)c with c =
(1, 2)(2r + 1, 3, 2r, 4)(5, 2r − 1)(6, 2r − 2) . . . (r + 1, r + 3) it holds that

z = [(1, 2)(2r+ 1, 3, 2r, 4)(5, 2r− 1) . . . (r+ 1, r+ 3) , (1, r+ 2, 2, r+ 3, . . . , 2r+ 1)].

Case 3. As z = (1, 2, 3, . . . , r + 1) · (1, r + 2, r + 3, . . . , 2r − 1, 2r, 2s + 1) and
(1, 2, 3, . . . , r + 1)−1 = (1, r + 2, r + 3, . . . , 2r − 1, 2r, 2s + 1)c with c = (2s +
1, 2)(2r, 3)(2r − 1, 4) . . . (r + 2, r + 1) it holds that

z = [(2s+ 1, 2)(2r, 3)(2r − 1, 4) . . . (r + 2, r + 1) , (1, r + 2, r + 3, . . . , 2r, 2s+ 1)].

Case 4. As z = (1, r + 2, 2, 3, . . . , r + 1) · (1, r + 2, 2, r + 3, r + 4, . . . , 2r, 2s + 1)
and (1, 2, 3, . . . , r + 1)−1 = (1, r + 2, 2, r + 3, r + 4, . . . , 2r − 1, 2r, 2s + 1)c with
c = (1, 2)(2s+ 1, 3, 2r, 4)(2r− 1, 5) . . . (r+ 3, r+ 1) if s > 1 and c = (1, 2)(2r, 4)(2r−
1, 5) . . . (r + 3, r + 1) respectively if s = 1 it holds that

z = [ (1, 2)(2s+ 1, 3, 2r, 4)(2r − 1, 5) . . . (r + 3, r + 1) ,
(1, r + 2, 2, r + 3, r + 4, . . . , 2r, 2s+ 1) ] if s > 1,

z = [ (1, 2)(2r, 4)(2r − 1, 5) . . . (r + 3, r + 1) ,
(1, r + 2, 2, r + 3, r + 4, . . . , 2r, 2s+ 1) ] if s = 1.
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Case 5. As we have the same decomposition like in case 1 but with c not in An
but c = (2r + 1, 2, 2r, 3)(4, 2r − 1) . . . (r + 1, r + 2) we have

z = [ (2r + 1, 2, 2r, 3)(4, 2r − 1) . . . (r + 1, r + 2)(2r + 2, 2r + 4) ,
(1, r + 2, r + 3, . . . , 2r + 1)(2r + 2, 2r + 4, 2r + 3) ] .

Case 6. As we have the same decomposition like in case 2 but with c not in An
but c = (1, 2)(3, 2r + 1)(4, 2r)(5, 2r − 1) . . . (r + 1, r + 3) we have

z = [ (1, 2)(3, 2r + 1)(4, 2r) . . . (r + 1, r + 3)(2r + 2, 2r + 4) ,
(1, r + 2, r + 3, . . . , 2r + 1)(2r + 2, 2r + 4, 2r + 3) ] .

Case 7. In this case some sub-cases need to be considered. We take the same
decomposition as in case 3 but a different c:

s > 1 : c = (2s+ 1, 2, 2r, 3)(2r − 1, 4)(2r − 1, 5) . . . (r + 2, r + 1),
s = 1, r > 2 : c = (3, 2)(2r, 3, 2r − 1, 4)(2r − 2, 5) . . . (r + 2, r + 1).

Then
z = [ c · (2r + 1, 2r + 3) , (1, r + 2, r + 3, . . . , 2r, 2s+ 1) · (2r + 1, 2r + 3, 2r + 2) ]

For s = 1 and r = 2 choose
z = [ (1, 2)(2r + 1, 2r + 3) , (1, 3)(2, 4)(2r + 1, 2r + 3, 2r + 2) ].

Case 8. Like in case 7 some sub-cases need to be considered. We take the same
decomposition as in case 4 but a different c:

s > 1 : c = (1, 2)(2s+ 1, 3)(2r, 4)(2r − 1, 5) . . . (r + 3, r + 1),
s = 1, r > 3 : c = (1, 2)(2r, 4, 2r − 1, 5)(2r − 2, 6) . . . (n+ 3, n+ 1).

Then
z = [ c · (2r + 1, 2r + 3) , (1, r + 2, r + 3, . . . , 2r, 2s+ 1) · (2r + 1, 2r + 3, 2r + 2) ].
For s = 1 and r = 3 choose

z = [ (1, 4, 3, 6)(2r + 1, 2r + 3) , (1, 2, 3, 5, 4)(2r + 1, 2r + 3, 2r + 2) ].
Case 9.

z = [ (1, 3)(5, 6) , (1, 3, 2, 6, 4) ].
Case 10.

z = [ (1, 3, 5) , (1, 3, 5, 2, 4) ].
All elements of An are products of conjugates of the Cases 1-9 or conjugate to Case
10 and with pairwise disjoint support. Therefore for n ≥ 5 every element of An is a
commutator of two elements of An. �

For the use in the following denote by C : An → An × An the map which sends an
element σ to (π, τ) where π and τ are chosen as in the previous proof such that
[π, τ ] = σ.

Corollary 4.19. If σ is not a 3-cycle then
supp(C(σ)) ⊂ supp(σ)× supp(σ).

We have implemented this function C in GAP in the file examples/Ore.g.
gap> GetCommutators((1,2,3)(4,5)(7,8,9,10));

[ (1,3)(4,8,7,10), (1,3,2)(4,5,7,9,8) ]
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4. Neumann-Segal group

The calculations done in the previous section are of use to compute the commutator
width in some self-similar groups which are generated by copies of An’s. For this
the following proposition is of importance:

Proposition 4.20. Let n ≥ 5, A of size n and G < Aut(A∗) oAn and g ∈ G. Then
there is a homomorphism σ : FN → An such that Φnf

σ ([X,Y ]g) = 〈〈E1, . . . , En〉〉()
where each Ei has either genus greater 1, is trivial or of the form [Xi, Yi]g@xi for
some xi ∈ A.
The map σ can be chosen such that (σ(X), σ(Y )) = C(act(g)−1) with the map C
from the proof of Theorem 4.18.

Proof. Let g ∈ G be as given in the proposition and let the homomorphism σ
be such that (σ(X), σ(Y )) = C(act(g)−1). If j /∈ supp(act(g)) then by Corollary 4.19
it is Φσ([X,Y ]g)@j = [Xj , Yj ]g@j.
We denote for an easier notation g = 〈〈g1, . . . , gn〉〉τ and Φσ(X) = 〈〈X1, . . . , Xn〉〉σ(X)
and Φσ(Y ) = 〈〈Y1, . . . , Yn〉〉σ(Y ). Now the proof goes along the same 10 cases for τ
as the proof of Theorem 4.18.
In the first case it is τ = (1, 2, . . . , 2r + 1)−1 with 1 < r ≤ n even. Then σ(x) =
(2, 2r + 1)(3, 2r) . . . (r + 1, r + 2) and σ(y) = (1, r + 2, r + 3, . . . , 2r + 1). Thus

Φσ([X,Y ]g) = 〈〈X−1
1 Y −1

2r+1X2r+1Y2g2,

X−1
2r+1Y

−1
2r X2rY3g3, . . . , X

−1
r+3Y

−1
r+2Xr+2Yr+1gr+1,

X−1
r+2Y

−1
1 X1Y1gr+2,

X−1
r+1Y

−1
r+1Xr+1Yr+2gr+3, . . . X

−1
3 Y −1

3 X3Y2rg2r+1,

X−1
2 Y −1

2 X2Y2r+1g1,

[X2r+2, Y2r+2]g2r+2, . . . , [Xn, Yn]gn〉〉.

The G-homomorphism

ϕ : X2r+1 7→ Y −1
2r X2rY3g3, Yr+1 7→ Xr+1Yr+2gr+3X

−1
r+1,

...
...

Xr+3 7→ Y −1
r+2Xr+2Yr+1gr+1, Y3 7→ X3Y2rg2r+1X

−1
3 ,

Xr+2 7→ Y −1
1 X1Y1gr+2, Y2 7→ X2Y2r+1g1X

−1
2 ,

maps the system Φσ([X,Y ]g) to

Φϕ
σ([X,Y ]g) = 〈〈X−1

1

r−1∏
j=0

Y −1
2r+1−j

Y −1
1 X1Y1gr+2

·

r−2∏
j=0

Xr+1−jYr+2+jgr+3+jX
−1
r+1−jgr+1−j

X2Y2r+1g1X
−1
2 g2,

1, . . . , 1, [X2r+2, Y2r+2]g2r+2, . . . , [Xn, Yn]gn〉〉.

So all but the first state are already in the requested situation. After normalizing
the first state we obtain:

Φnf
σ ([X,Y ]g)@1 = [X1, Y1][Xr+1, Yr+2][Xr, Yr+3] · · · [X2, Y2r+1]g1g2r+1g2r · · · g3g2.
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This has genus r + 1 > 2.

genus(Φσ([X,Y ]g)@i) =


r + 1 for i = 1
0 for 1 < i ≤ 2r + 1
1 for 2r + 1 < i ≤ n.

Similar computations lead to the genera in the other cases:
If τ−1 = (1, 2, . . . , 2r + 1) with r odd then we have:

genus(Φσ([X,Y ]g)@i) =


r + 1 for i = 1
0 for 1 < i ≤ 2r + 1
1 for 2r + 1 < i ≤ n.

If τ−1 = (1, 2, . . . , 2s)(2s+ 1, 2s+ 2, . . . , 2r) with 0 < s ≤ r
2 , r even or with 0 < s ≤

r−1
2 , r odd we have:

genus(Φσ([X,Y ]g)@i) =


r for i = 1
0 for 1 < i ≤ 2r
1 for 2r < i ≤ n.

If τ−1 = (1, . . . 2r + 1)(2r + 2, 2r + 3, 2r + 4) with r > 1 even or odd we have:

genus(Φσ([X,Y ]g)@i) =



r + 1 for i = 1
0 for 1 < i ≤ 2r + 1
2 for i = 2r + 2
0 for 2r + 2 < i ≤ 2r + 4
1 for 2r + 4 ≤ n.

If τ−1 = (1, 2, . . . , 2s)(2s + 1, 2s + 2, . . . , 2r)(2r + 1, 2r + 2, 2r + 3) with 0 < s ≤ r
2 ,

r even or with 0 < s ≤ r−1
2 , r odd:

genus(Φσ([X,Y ]g)@i) =



r + 1 for i = 1
0 for 1 < i ≤ 2r
2 for i = 2r + 1
0 for 2r + 1 < i ≤ 2r + 3
1 for 2r + 3 < i ≤ n.

If τ−1 = (1, 2, 3)(4, 5, 6) we have:

genus(Φσ([X,Y ]g)@i) =


3 for i = 1
0 for 1 < i ≤ 6
1 for 6 < i ≤ n.

If τ−1 = (1, 2, 3) we have:

genus(Φσ([X,Y ]g)@i) =


2 for i = 1
0 for 1 < i ≤ 5
1 for 5 < i ≤ n.

�
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Remark 4.21. In the proof the calculations are done for a very specific σ; in fact
many choices for σ with [σ(X), σ(Y )]τ = 1 lead to the same result. With σ(Y ) being
a large enough cycle all involved pairs of states share a common symbol and thus
they can be brought to a form with just one nontrivial state. To obtain a maximal
genus it is sufficient that σ(X) consists of disjoint transpositions.

4.1. An example. We will now apply Proposition 4.20 to the Neumann-Segal
groups defined in Chapter 2, Section 5.3 to compute its commutator width. To
avoid too many indices we will in this section fix an n and write N := Nn with the
generating subgroups N := Nn, M := Mn.

Definition 4.22. Let G be a contracting self-similar group over an alphabet A.
Denote by dN (g) the distance from an element g ∈ G to the nucleus:

dN (g) := min {n ∈ N | g@w ∈ N (G) ∀w ∈ An} .

Lemma 4.23. The distance dN can be computed recursively:

dN (g) =
{

0 if g ∈ N (G),
max{dN (g@x) | x ∈ A}+ 1 else.

�

Since N is generated by the two finite subgroups N and M , every element g ∈ N
can be written in the form

(∗) g =
(

s∏
i=1

nimi

)
ns+1 with ni ∈ N,mi ∈M.

Lemma 4.24. dN (n1gn2) ≤ max{dN (g), 1} for all g ∈ N and ni ∈ N .

Proof. If dN (n1gn2) ≤ 1 nothing is to show. Otherwise n1gn2 /∈ N (N) and so
dN (n1gn2) = max{dN (g@x) + 1 | x ∈ A} but the sets of states of g and n1gn2 are
identical, therefore the inequality follows. �

Definition 4.25. We call the minimal s such that g can be written in the form (∗)
the M -length of g and notate:

#M (g) := min
{
s ∈ N

∣∣∣∣∣g =
(

s∏
i=1

nimi

)
ns+1 with ni ∈ N,mi ∈M

}
.

Lemma 4.26.
(1) #M (g@x) ≤

⌈
#M (g)

2

⌉
for all x in A and all g ∈ N.

(2) #M (
∏
x∈A g@π(x)) ≤ #M (g) for all π ∈ Sn and all g ∈ N.

Proof. Every element from M has at most two non trivial states. One belongs
to M and another belongs to N . Elements from N have only trivial states thus the
states of a group element of M -length r have in sum at most again r members of
M . This proves (2).
The product of states has maximal M -length when the elements from M and N
alternate thus the maximal M -length of a single state is bounded by d#Mg/2e. �

Proposition 4.27. dN (g) ≤ max{0, dlog2(#Mg)e+ 1}.

Proof. We do an Induction on #Mg. States from elements inM are already in
N (N) hence the proposition is clear for all g with #Mg ≤ 1. If #Mg = s ≥ 2 then
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by Lemma 4.26 the inequality #M (g@x) < #M (g) holds and so with the induction
hypothesis and the recursive definition of dN we obtain:

dN (g) = dN (g@x) + 1 ≤
⌈
log2

⌈
s

2

⌉⌉
+ 2 for a x ∈ A .

With the identity dlog2(s+ 1)e = dlog2(s)e for odd s then the claim follows. �

Proposition 4.28. The group N has commutator width 1.

Proof. The proof is by induction on #Mg. If #Mg = 0 then we have g ∈ N (N)
and thus it is a commutator because every element of An has commutator width 1.
For g ∈ N we consider the equation [X,Y ]g and take σ as in Proposition 4.20. If
Ei := Φnf

σ ([X,Y ]g)@i has genus 1 then we have Ei = [Xi, Yi]g@i. By Lemma 4.26 we
have #M (g@i) < #M (g) so this equation Ei has a solution ϕi by induction.
If the genus of Ei is greater than 1 then Ei = [X1, Y1] · · · [Xr, Yr](g@`1)Z1 · · · (g@`s)Zs
with `j non trivial and pairwise distinct and s ≤ n. If s = 1 this equation Ei has
again a solution ϕi by induction. If s > 1 there is a solution ϕ′i for the equation
[Xr, Yr]g@`1 and a solution ϕ′′i for [X1, Y1]

∏s
j=2X@`j because again by Lemma 4.26

we have #M (g@`1),#M (
∏s
j=2 g@`j) < #M (g). The solutions ϕ′i and ϕ′′i can be

chosen with disjoint support and thus there is a solution ϕi solving both equations.
Now all ϕi for nontrivial Ei can be chosen with minimal and thus disjoint support.
Thus the join ◦ni=1 ϕi is a solution for all Ei. �

This proposition can be extended to similar groups. The same proof gives the
following proposition:

Proposition 4.29. Let G be a contracting layered group with G ' G oAn for n ≥ 5,
where there is a sub-multiplicative function d : G → N0 such that d(

∏n
i=1 g@i

σ) ≤
d(g) for all σ ∈ Sn and d(g@k) < d(g) for all g /∈ N (G).
If additionally each element of the nucleus is a commutator, then G has commutator
width 1 .

4.2. Conjugacy problem. In this section, we show that the conjugacy prob-
lem of the groups Nn is solvable. For this purpose we repeat some more general
results.

Lemma 4.30 ([BBSZ13]). Let G < Aut(A∗) be a self-similar group and g, h ∈ G
be conjugate by a conjugator f ∈ G i.e. gf = h. Then we have for every x ∈ A with
mx = |{xgi | i ≥ 1}| that gmx@x is conjugate to hmx@xf with conjugator f@x.

Proof. We fix x ∈ A and first note that if g and h are conjugate then so
are their activities and thus the size of the forward orbit of x under act(g) and
act(h) are identical and equal m := mx. If f is a conjugator we furthermore have
h@xfh

i = (gf )@xfhi = f−1@xg
if · g@xgi · f@xgi+1 . Then the following chain of

equations proves the claim:

hm@xf =
m−1∏
i=0

h@xfh
i = f−1@xf ·

m−1∏
i=0

g@xg
i · f@xgm = (f@x)−1 · gm@xf · f@x.

�

Lemma 4.31 ([BBSZ13]). Let G ' G oP < Aut(A∗) be a layered self-similar group
and g, h ∈ G and σ ∈ P be such that act(g)σ = act(h) and for all x ∈ A with
mx = |{xgi | i ≥ 1}| we have that gmx@x and hmx@xσ are conjugate in G.
Then g and h are also conjugate in G.
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Proof. Assume the activities of g and h are conjugate by a conjugator σ and
assume gmx@x ∼ hmx@xσ by a conjugator f̃x for every x. Let us further denote by α
the activity of g and decompose A into the orbits under α and choose a transversal
T of these orbits. We define for t ∈ T and 0 ≤ i < mt: ftαi := (gi@t)−1f̃th

i@tσ) and
f = 〈〈fx | x ∈ A〉〉σ. Then for every t ∈ T and 0 ≤ i < mt we have:

gf@tα
iσ = (f@tαi)−1 · g@tαi · f@tαi+1

= (hi@tσ)−1(f@t)−1gi@t · g@tαi · (gi+1@t)−1f@t · hi+1@tσ

= h−i@tα
iσhi+1@tσ = h@tα

iσ.

Thus gf@x = h@x for all x ∈ A and hence gf = h. �

In the proof we see in the level of states we only need for every forward orbit of g a
representative x such that gmx@x ∼ hmx@xσ and thus we have the following slightly
stronger corollary:
Corollary 4.32. Let G ' G o P < Aut(A∗) be a layered self-similar group and
g, h ∈ G and σ ∈ P be such that act(g)σ = act(h). Let T be a transversal of the
forward orbits A/ 〈g〉. If for every x ∈ T with mx = |{xgi | i ≥ 1}| we have that
gmx@x and hmx@xσ are conjugate in G then g and h are also conjugate in G.
Remark 4.33. If we formulate the question whether two elements g, h are conjugate
into the introduced language of equations and consider the equation E = gXh then
the independent system Φϕ

σ() consists of the equation X−1gmx@xX.
In [BBSZ13] the authors show among other results that the conjugacy problem is
decidable for the group Poly(0). For that purpose they construct a finite graph. We
use a similar approach to prove the following:
Proposition 4.34. The conjugacy problem in Nn is solvable for every n ≥ 5.

Proof. As before we fix some n ∈ N and denote N = Nn, N = Nn and M =
Mn. For two elements g, h ∈ N we do an induction on #M (g, h) := #M (g)+#M (h).
First let g, h ∈ N (G) = N ∪M . If not both of g, h are in N or not both are in
M then they are obviously not conjugate to each other. If both are in N they are
conjugate to each other if and only if their activities are conjugate to each other in
An.
If both g and h are in M say g = ατ , h = απ then they have trivial activity and so
by Lemma 4.30 they can only by conjugate if their states are. This can only be the
case if aτ ∼ aπ and thus if and only if τ ∼ π.
We assume now that #M (g, h) = C > 2 and that there is an algorithm to decide
whether g′ ∼ h′ for all g′ and h′ with smaller value of #M (g′, h′). We define a graph
with the finite set P = {(g′, h′) ∈ N2 | #M (g′, h′) ≤ C} as vertices.
For all the pairs (g, h) with #M (g, h) < C we can mark the corresponding vertex by
induction with the color green if g ∼ h and with the color red if g 6∼ h.
For fixed (g, h) ∈ P with #M (g, h) = C we write the activity of g in terms of cycles
i.e. as (1, . . . , `1)(`1 +1, . . . , `2) . . . (. . . `k) and choose as transversal the set T = {`i |
i = 1, . . . , k}. The size of the orbit containing `i is then mi := m`i = `i − `i−1
(with `0 = 0). We have always #M (hmi@`i) ≤ #M (h) and #M (gmi@`i) ≤ #M (g).
For every σ that is a conjugator for the activities of g and h and every `i ∈ T we
draw an edge from (g, h) to (gmi@`i, hmi@`σi ) with label `i|`σi . Note that because of
Lemma 4.26 for every σ there is at most one edges that goes to a not already colored
vertex.
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We will repeat this process for every other pair (g, h) ∈ P with #M (g, h) = C. The
general situation is visualized as an example in Figure 9.

g ∼ h

· · ·gm1@`1 ∼ hm1@`σ1 gmk@`k ∼ hmk@`σk

decidableg2 ∼ h2gm ∼ hm

decidable decidable

decidable

`1|`σ1
· · · `i|`σi

`k|`σk

σ′

Figure 9. The decision graph for the problem g ∼ h.

We now again fix an uncolored vertex (g, h) and consider all σ that conjugate the
activities of g and h. If for such σ there is an outgoing edge labeled by σ leading to
a red vertex then we remove all edges from this vertex labeled with σ. If there are
no outgoing edges left we mark (g, h) as red. If otherwise for one such σ all edges
labeled with σ lead to green vertices then we mark (g, h) green. Corollary 4.32 and
Lemma 4.30 imply that green vertices are indeed conjugacy pairs and red ones are
not conjugate.
If there are uncolored vertices left then there is a circle in the graph. If (g, h) is
a vertex on that circle and f ∈ Poly(0) a conjugator for g and h then f is itself
circular i.e. it exists v ∈ A∗ such that f@w = f . Thus f ∈ N only if f ∈ N (N).
Because the nucleus is finite we can simply test if this is the case and color the vertex
accordingly. After coloring all states on circles in the graph we can again use the
previous step to color all remaining vertices. �

4.3. Product of Conjugates. We will show the decidability of oriented equa-
tions in Nn of genus 0. As an in-between step we will prove that every element of
Nn is a product of boundedly many conjugates of every fixed element of Nn.

Proposition 4.35. There is a constant Cn ∈ N depending only on n such that for
every σ ∈ Nn, σ 6= 1 and g ∈ Nn the equation

∏Cn
i=1 σ

Z
i g has a solution. I.e every

element g ∈ Nn is a product of at most Cn conjugates of any fixed nontrivial element
of Nn.

Proof for the case n = 5. In the group A5 we can verify with a simple cal-
culation:
Claim 1: For every two elements σ, τ ∈ A5 with σ 6= 1 there are elements x, y, z ∈
A5 such that σxσyσz = τ .
Moreover we can again by direct calculations verify:
Claim 2: For every σ ∈ N , σ 6= 1 and equation σXσY σZg there is a constraint
γ : 〈X,Y, Z〉 → A5 such that Φnf

γ (σXσY σZg) consists of exactly one nontrivial equa-
tion and that is of positive genus.
Let σ ∈ N be nontrivial and γ a constraint like in the second claim. Then, because
every element of N5 is a commutator, the system Φγ(σXσY σZg) = 〈〈E1, . . . , E5〉〉τ is
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solvable and hence there is a solution for the equation σXσY σZτ−1g. Thus claim 1
gives us a solution for the equation E =

∏6
i=1 σ

Zig. �

For the proof of the general case we will need some properties of the alternating
group.

Lemma 4.36. For every σ ∈ An the identity can be written as a product of either 2
or of 4 conjugates of σ.

Proof. It is clear that it is sufficient to prove the result only for one represen-
tative of each conjugacy class of σ.
Let σ = (1, 2, . . . ,m) by a cycle of odd length m. There is always an element π ∈ Sm
such that σπ = σ−1. E.g. we can take π = (2,m)(3,m−1) · · · ((m+1)/2, (m+3)/2).
If m ≡ 1 (mod 4) then π ∈ Am. Moreover for

π′ = (2,m)(3,m− 1) · · ·
(
m− 1

2 ,
m+ 5

2

)(
1, m+ 1

2 ,
m+ 3

2

)
we have σσπ′ = (1, m+1

2 )(n−1
2 , n) and hence σσπ′σσπ′ = 1. If m ≡ 3 (mod 4) then

π ∈ Am.
For the case thatm is even we can similarly set π = (2,m)(3,m−1) · · · (m/2,m/2+2)
to obtain σσπ = 1 and π′ = (2,m)(3,m−1) · · · (m/2− 1,m/2 + 3) (1,m/2,m/2 + 2)
to get σσπ′ = (1,m/2)(m/2 − 1,m) with π ∈ Am if m ≡ 2 (mod 4) and π′ ∈ Am if
m ≡ 0 (mod 4).
This gives the following result: Let σ =

∏s+r
i=1 σi be the decomposition of σ into

disjoint cycles with σi of odd length `i for i = 1, . . . , s and of even length `i for
i = s+ 1, . . . , s+ r. If either |suppσ| ≤ n− 2 or the sum

` =
s∑
i=1

`i − 1
2 +

s+r∑
i=s+1

`ei
2

is even then there is π ∈ An such that σσπ = 1. Otherwise there is π′ ∈ An such
that σσπσσπ = 1. �

Lemma 4.37. For every σ ∈ An the identity is a product of 3 conjugates of σ.

Proof. If σ is a simple cycle of odd length, say σ = (1, 2, . . . , n) then we take:

x =

(1, 2, n)(3, 4, n− 2) · · ·
(
n−1

2 , n+1
2 , n+3

2

)
if n ≡ 3 (mod 4)

(1, 2, n)(3, 4, n− 2) · · ·
(
n−3

2 , n−1
2 , n+5

2

)
if n ≡ 1 (mod 4),

and obtain σ · σx · σx−1 = 1. For a product of two cycles of even length say σ =
(1, . . . , 2m)(2m+ 1, . . . , 2n) we take if m and n are odd:
x =(1, 2m, 2m+ 1)(3, 2nm− 2, 2m− 1) · · · (m,m+ 1,m+ 2)·

(2m+ 2, 2m+ 3, 2n)(2m+ 4, 2m+ 5, 2n− 2) · · · (n+m,n+m+ 1, n+m+ 2).
If m is odd and and n is even:
x =(1, 2m, 2m+ 1)(3, 2nm− 2, 2m− 1) · · · (m,m+ 1,m+ 2)·

(2m+ 2, 2m+ 3, 2n)(2m+ 4, 2m+ 5, 2n− 2) · · · (n+m− 1, n+m,n+m+ 3).
If m is even and and n is odd:
x =(1, 2m, 2m+ 1)(3, 2nm− 2, 2m− 1) · · · (m− 1,m,m+ 3)·

(2m+ 2, 2m+ 3, 2n)(2m+ 4, 2m+ 5, 2n− 2) · · · (n+m,n+m+ 1, n+m+ 2).
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And if m and n are both even:

x =(1, 2m, 2m+ 1)(3, 2nm− 2, 2m− 1) · · · (m− 1,m,m+ 3)·
(2m+ 2, 2m+ 3, 2n)(2m+ 4, 2m+ 5, 2n− 2) · · · (n+m− 1, n+m,n+m+ 3).

With this choice we get σ · σx · σx−1 = 1. �

Proof of Proposition 4.35 (general case). We will similar to the n = 5
case prove two claims, that together imply the result.
Claim 1: There is a constant C ∈ N such that for every σ ∈ An \{1} and τ ∈ An

there are elements xi ∈ An such that
∏C
i=1 σ

xi = τ .
First note that the group generated by {σx | x ∈ An} is normal in An and because
An is simple the set generates the whole group. Hence every element is a product
of boundedly many conjugates of σ. For every τ ∈ An denote by Cσ,τ ≤ diam(An)
the integer such that τ is a product of Cσ,τ conjugates of σ. We need that there is
a constant C such that every τ is a product of exactly C conjugates of σ.
If all the values of Cσ,τ for different τ coincide, then nothing else is to do. According
to Lemma 4.36 and Lemma 4.37 also every τ is either a product of Cσ,τ + 2`+ 3k or
Cσ,τ + 3`+ 4k conjugates of σ for every `, k ∈ N. Because gcd(2, 3) = gcd(3, 4) = 1
in both cases we can find a common bound C ∈ N such that every τ is a product of
exactly C conjugates of σ.
Claim 2: For every σ ∈ Nn, σ 6= 1 and an equation E =

∏3r
i=1 σ

Xig with r =
dn5 e there is a constraint γ : 〈X1, . . . , X3r〉 → An such that Φnf

γ (E) consists only of
equations of positive genus and trivial equations.
It is obviously sufficient to prove the second claim only for the conjugacy classes of σ.
We will prove it first for those σ that are longest cycles in An. For the longest cycles
there are two different conjugacy classes. We have thus a few cases to consider: If
n is odd there could be σ = (1, . . . , n) and σ = (1, . . . , n − 2, n, n − 1) and if n is
even there can be σ = (1, . . . , n − 1) and σ = (1, . . . , n − 2, n). For the first case
σ = (1, 2, . . . , n) we choose γ : Xi 7→ () for i = 1, 2, 3 and obtain:

Φγ

( 3∏
i=1

σXig

)
= 〈〈X−1

1,iX1,i+1X
−1
2,i+1X2,i+2X

−1
3,i+2X3,i+3g@i+ 3 | i ≡ 1, . . . , n

mod n
〉〉τg,σ.

Then the Nn-homomorphism

ϕ : X1,i 7→ X1,i+1X
−1
2,i+1X2,i+2X

−1
3,i+2X3,i+3g@i+ 3 for i 6= 1, i (mod n)

trivializes all but one equation: Φϕ
γ (σX1σX2σX3g)@1 = 〈〈E ′,1, . . . ,1〉〉 which is of

positive genus:

E ′ = X−1
2,1X2,2X

−1
3,2X3,3(g@3)X−1

2,nX2,1X
−1
3,1X3,2(g@2) · · ·X−1

2,2X2,3X
−1
3,3X3,4(g@4)

X−1
2,1X2,2X2,1X

−1
3,1X3,2(g@2) · · ·X−1

3,2X3,3(g@3)X−1
2,nX

−1
2,2X2,3X

−1
3,3X3,4(g@4)

X−1
3,1X3,2(g@2) · · ·X−1

3,2X3,3(g@3)X−1
2,n[X2,1, X

−1
2,2 ]X2,3X

−1
3,3X3,4(g@4).

X2,2 7→ X2,2X2,n(g@3)−1X−1
3,3X3,2

X2,1 7→ X2,1X2,n(g@3)−1X−1
3,3 · · · (g@2)−1X−1

3,2X3,1
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n genus(E ′)
5 4
6 4
7 6
8 7
9 7
10 9
11 10
12 10

n genus(E ′)
13 12
14 13
15 13
16 15
17 16
18 16
19 18
20 19

Table 1. Genus of the derived equations for small values of n.

The exact value of the genus depends on n; in Table 1 we give the genera for small
values of n. For the other cases very similar calculations yield the same result. So
in the cases of this choices of σ the value r = 1 already suffices. For the equation E
we can iterate the choice of γ for the next variables and thus choose γ : Xi 7→ () for
all i. Then the resulting equation is dn/5e times the genus of the the equation E ′.
If σ is a cycle of shorter length i.e. σ ∈ Am for m < n then the same choice of γ as
before results in

Φγ

( 3∏
i=1

σXig

)
= 〈〈E ′,1, . . . ,1, g@m+ 1, g@m+ 2, . . . , g@n〉〉τg,σ.

There is π ∈ Alt(n) such that

Φγ◦π

( 3∏
i=1

σXig

)
= 〈〈g@1, . . . , g@m, E ′,1, . . . ,1, g@2m+ 1, g@2m+ 2, . . . , g@n〉〉τg,σ.

The product of at most d nme such shifted version has the requested property. Because
of the earlier proof for the case n = 5 this provides the result.
If σ = σ1 · · ·σ` is the product of disjoint cycles we have seen before that the support
of the constraints γi that give the previous result for σi are pairwise disjoint. Hence
for γ = ◦`i=1γi we obtain Φγ(E) = 〈〈E ′1,1, . . . ,1, E ′2,1, . . . ,1, E ′`,1, . . .〉〉τg,σ. Where
each equation E ′i for i = 1 . . . , ` is of positive genus. �

The normal form of an equation of genus 0 in FN ∗ Nn is E = gZ1
1 · · · gZrr gr+1.

We generalized the previously defined M -length of an element g to such kind of
equations. The generalized M -length for an equation E = gZ1

1 · · · gZrr gr+1 is defined
by

#M (E) =
r+1∑
i=1

#M (gi).

We start with an observation:

Lemma 4.38. If E ∈ FN ∗N is an oriented equation of genus 0 with #M (E) = 0 then
E is solvable if and only if (1 ∗ act)(E) is solvable in FN ∗An.

Proof. We only need to prove the "if" part. Let σ : FN → An be a solution for
(1 ∗ act)(E). If #ME = 0 then E =

∏s
i=1 n

Zi
i ns+1 with ni ∈ N and thus all states

of Φσ(E) are in FN and hence solvable by the trivial homomorphism. Therefore the
map Zi 7→ 〈〈1, . . . , 1〉〉σ(Zi) is a solution for E . �

Proposition 4.39. The question whether an oriented equation E ∈ FN ∗N of genus
0 has a solution is decidable.
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Proof. The proof is again an induction on #ME . The case #ME = 0 is already
done in Lemma 4.38. We assume now that #M (E) > 0. Similar to the proof of
Proposition 4.34 we note that if Φnf

γ (E) = 〈〈E1, . . . , En〉〉 then #M (Ei) ≤ #M (E) for
every choice of an enriched constraint γ. Whenever the #M value gets strictly
smaller we can decide by induction if the equation is solvable. Also if #M (Ei) =
#M (E) then #M (Ej) = 0 for all j 6= i. Thus in the worst case we get a sequence of
equations E(i) all with #ME(i) = #M (E). In the proof of Proposition 4.34 we could
use that the set of those derived equations E(i) was finite. If this is the case we can
proceed similarly. But it can be that this sequence is infinite.
In the case that E =

∏s
i=1 n

Zi
i ns+1 with s > 1 it can occur that Ei has positive

genus. In that case we already know that then the equation Ei is solvable. But it
can also occur that Ei has signature (0, s′) with s′ > s. Hence the set of equations
{E(i) | i ∈ N} is possibly infinite. Let us assume we have such an infinite sequence
of equations E(i) of signature (0, si).
In particular there is an i ∈ N such that si > Cn ·|Nn|+#M (E), with Cn the constant
from Proposition 4.35, and because we have #M (E(i)) ≤ #M (E) the equation E(i) is
thus equivalent to

si−Cn−1∏
j=1

g
Zj
j

Cn∏
j=1

σZ
′
jgsi−Cn for some gk ∈ Nn and σ ∈ Nn.

According to Proposition 4.35 this is always solvable. �

Corollary 4.40. All quadratic oriented equations over G are decidable.

Proof. If an equation has genus greater 0 then by Proposition 4.28 it is solvable.
�

5. Grigorchuk group

For the Grigorchuk group G it is already shown by I. Lysenok, A. Miasnikov and
A. Ushakov in [LMU16] that there exists an algorithm to decide for an arbitrary
quadratic equations E ∈ FN ∗G if it is solvable. The algorithm however is not made
explicit it depends on initial choices on a set far too large to compute. In the same
paper it is shown that the commutator width of the group G is finite but no bound
could be given with that method.
In joint work with Laurent Bartholdi and Igor Lysenok we proved that the commu-
tator width of the Grigorchuk group is two in the paper [BGL17] that is also in the
Appendix A. Furthermore in that paper we prove that every element in the derived
subgroup is a product of at most 6 conjugates of the generator a.
Here we mention some ideas that are not contained in the paper. We remark that for
example the unoriented equation E = X2

1X
2
2X

2
3X

2
4X

2
5g is equivalent to the equation

E ′ = X2
1 [X2, X3][X4, X5]g under the G-isomorphism

X1 7→ X2
1X
−1
2 X−1

1

X2 7→ X1X2X
−1
1 X−1

3 X−1
1

X3 7→ X1X3X1X3X
−1
4 X−1

3 X−1
1

X4 7→ X1X3X4X
−1
3 X−1

1 X−1
5 X−1

3 X−1
1

X5 7→ X1X3X5.
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Hence if g is in the derived subgroup G′ then the equation E has always a solution
and if g /∈ G′ then it has no solution because every generator of G is of order two
and thus the square of any element is in the derived subgroup.
The equations E = gX1

1 g2 for g1, g2 ∈ G are solvable if and only if g1 is conjugate to
g2. This problem is already known to be decidable and there is an implementation
of an algorithm in the GAP package fr.
Given an arbitrary equation E that is not already known to be solvable by the
previously mentioned results we can try to solve the equations that occur if we
apply the homomorphism Φγ for some enriched constraints γ. If we want to lift
the solution back we need to consider constraints γ : FN → G/K like we did for the
computation of the commutator width. But for an overview how the signature of
the equation changes under Φγ it is sufficient to consider only the activity part γact
of the enriched constraint. In figure 10 we give an overview how the signature (r, s)
of an oriented equation E =

∏r
i=1[X2i−1, X2i]

∏s−1
i=1 g

X2r+i
i gs behaves after applying

the Φγ in correspondence of the activities act(gi) and γact.

(0, 2) (0, 4) (0, 6) (0, 10)

(1, 1) (1, 2) (1, 4) (1, 8)

(2, 2) (2, 6)

(3, 4)

γact = 1

all cases act(gi) = 1∀i

act(gi) = (1, 2)∀i

act(gi) = 1∀i

act(gi) = (1, 2) for many i

act(gi) = (1, 2)∀iγact(Xi) = 1∀i
act(g1) = 1

act(g1) 6= 1

act(gi) = 1∀i

Figure 10. Diagram that describes how the signature of an oriented
quadratic equation over a group G ≤ Aut({1, 2}∗) changes under
application of Φγ .

With the equation package this sort of computations are easy to make. In the file
examples/GrigorchukGenus.g there are two methods defined that both require two
arguments r and s. The function PossibleDerivedSignaturesOriented prints the
occurring signatures of equations in Φγ(

∏r
i=1[X2i−1, X2i]

∏s−1
i=1 g

X2r+i
i gs) depending

on the different cases for the activities of gi and of γact. For the unoriented equa-
tions the function PossibleDerivedSignaturesUnoriented prints the signatures
of the equations in Φγ(

∏r
i=1X

2
i

∏s−1
i=1 g

Xr+i
i gs) given additionally an indication if the

derived equation is oriented or not.
The limited number of steps that are needed to obtain an equation of genus at least
two indicates that an algorithm using this and constraints like in the proof of the
commutator width will very likely be able to decide the solvability of an equation in
the Grigorchuk group.
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6. Gupta-Sidki group

In a very analogous way to the computation in the Grigorchuk group G we give an
upper bound for the commutator width of the Gupta-Sidki Group S3.

Lemma 4.41 ([Sid87]). The group Sp is regular branched with the derived subgroup
Sp
′ as branching subgroup.

Lemma 4.42 ([Sid87]). Some normal subgroups of S3 with their corresponding in-
dices are:

Γ = 〈t〉S3 = Stab1(S3) = 〈〈〈t, ta, ta2〉〉〉,
S3
′ = 〈[a, t], [a, t]a, [a, t]t, [a, t]at〉,

Γ′ = S3
′ ×S3

′ ×S3
′,

γ3(S3) = [S3,S3
′] = Stab2(S3) = Γ′〈〈〈t, t, t〉〉〉,

S3/Γ ' C3,

Q := S3/S3
′ ' C3 × C3,

S3
′/γ3(S3) ' C3,

S3
′/Γ′ ' C3 o C3,

S3
′/S3

′′ ' C3 × C3 × C3 × C3,

S3

Γ

S3
′

γ3(S3)

Γ′

S3
′′

Stab1(S3)

Stab2(S3)

=

=

.

3

9

3
3

9

3

9

We fix a finite subset {X1, . . . , X2n} of generators of FN say 〈{X1, . . . , X2n}〉 =: FX
and denote by Un the group of G-automorphisms FX ∗G→ FX ∗G that is generated
by the following automorphisms of FX :

ϕi : Xi 7→ Xi−1Xi, others fixed for i = 2, 4, . . . , 2n,

ϕi : Xi 7→ Xi+1Xi, others fixed for i = 1, 3, . . . , 2n− 1,

Xi 7→ Xi+1X
−1
i+2Xi,

ψi : Xi+1 7→ Xi+1X
−1
i+2Xi+1Xi+2X

−1
i+1, for i = 1, 3, . . . , 2n− 3

Xi+2 7→ Xi+1X
−1
i+2Xi+2Xi+2X

−1
i+1,

Xi+3 7→ Xi+1X
−1
i+2Xi+3, others fixed

Xi 7→ Xi+2,

ξi : Xi+1 7→ Xi+3, for i = 1, 3, . . . , 2n− 3
Xi+2 7→ [Xi+3, Xi+2] Xi [Xi+2, Xi+3],
Xi+3 7→ [Xi+3, Xi+2] Xi+1 [Xi+2, Xi+3],

others fixed.

Note that Un is a subgroup of Stab(Rn) in particular if we consider its elements as
S3-isomorphisms it fixes for all g ∈ S the equation E =

∏n
i=1[X2i−1, X2i]g.

Lemma 4.43. If we identify the set of homomorphisms {γ : FN → Q | supp(γ) ⊂
〈X1, . . . , Xn〉} with Qn. Then∣∣∣Q2n/Un

∣∣∣ = 8 for all n ≥ 2.
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Furthermore for every such coset in Qn/Un there is a representative that has non-
trivial entries only in the first 4 coordinates.

Proof. For n = 2 this is a direct computation with GAP with the method
OrbitDomain. See the file examples/GupstaSidkiCW.g for details. If we write t̄
and ā for the images of a and b correspondingly under the natural homomorphism
π : S3 → Q then a system of representatives of Q4/U2 is:

γ1 = (1,1,1,1), γ2 = (t̄,1,1,1),
γ3 = (ā,1,1,1), γ4 = (t̄a,1,1,1),
γ5 = (t̄2ā,1,1,1), γ6 = (t̄, ā,1,1),
γ7 = (t̄, ā2,1,1), γ8 = (t̄,1, ā,1).

For the general case we proceed similar to [LMU16, Lemma 6.4]. The group Q
is polycyclic with polycyclic sequence 1 < 〈ā〉 < 〈ā, t̄〉 = Q. The group Q is also
abelian hence the induced action of Un becomes:

ϕi(q1, q2, . . . , q2n) =
{

(q1, . . . , qi−1, qi−1qi, qi+1, . . . , q2n) if i is even
(q1, . . . , qi−1, qi+1qi, qi+1, . . . , q2n) if i is odd

ψi(q1, q2, . . . , q2n) = (q1, . . . , qi−1, qi+1q
−1
i+2qi, qi+1, qi+2, qi+1q

−1
i+2qi+3, qi+4, . . . , q2n)

ξi(q1, q2, . . . , q2n) = (q1, . . . , qi−1, qi+2, qi+3, qi, qi+1).

We partition the group Q into three sets S1 = {1, ā, ā2}, S2 = {t̄, t̄ā, t̄ā2} and
S3 = {t̄2, t̄2ā, t̄2ā2} and look at a block (q1, q2) ∈ Q2. We want to transform this
block by elements of U1 to an element in Q× 〈ā〉. If we have q2 ∈ S1 nothing is to
do. If it is q2 ∈ S2 and q1 ∈ S1 then after applying ϕ1 we obtain (q2q1, q2) ∈ S2×S2.
In that case we proceed with applying ϕ2 two times to obtain (q2q1, q2q1q2q1q2) ∈
S2 × S1. If it is q2 ∈ S1 and q1 ∈ S3 we need only apply ϕ2 once to obtain
(q1, q1q2) ∈ S3 × S1. Similarly we proceed in the case that q2 ∈ S3. See Table 2 for
the needed homomorphism in that case. Hence a constraint γ ∈ Q2n is equivalent

q1\q2 S1 S2 S3
S1 1 ϕ2ϕ2ϕ1 ϕ2ϕ2ϕ1
S2 1 ϕ2ϕ2 ϕ2
S3 1 ϕ2 ϕ2ϕ2

Table 2. The elements of U1 that are needed to send an element
(q1, q2) to one in Q× 〈a〉.

to one of the form (q1, p1, q2, p2, . . . , qn, pn) with pi ∈ 〈ā〉.
Now we take a block B = (q1, p1, q2, p2) ∈ Q×〈ā〉×Q×〈ā〉. This block is equivalent
to one of the form (q2, p̃2, p̃1, p1) ∈ Q × S3

1 : If q2 ∈ S1 nothing is to do. If q1 ∈ S2
then ξ1(B) has the required form. If both q1 and q2 are in the same set S2 or S3
then ξ1ϕ4ψ1(B) = (q2, p1p2, p1q

−1
2 q1) ∈ Q× S3

1 . If q1 and q2 are in different sets S2
and S3 then ξ1ϕ

2
4ψ

2
1(B) = (q2, p

2
1p2, p

2
1q
−2
2 q1, p1) ∈ Q× S3

1 .
Hence γ is equivalent to (q1, p2, . . . , p2n) with pi ∈ 〈ā〉. Now we continue analogously
with a next step. A block (p1, p2) is equivalent to one of the form (p̃1,1) and a block
(p1,1, p2,1) to one of the form (p̃1,1,1,1):
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(1, ā) (ā, ā) (ā, ā2) (ā,1)

(1, ā2) (ā2, ā2) (ā2, ā) (ā2,1)

ϕ1 ϕ2 ϕ2

ϕ1 ϕ2 ϕ2

(ā,1, ā2,1) (ā2,1, ā2, ā)

(ā2,1, ā2),1 (1,1, ā2, ā)

(1,1, ā2,1) (ā2,1,1,1)

(ā2,1, ā,1) (ā,1, ā, ā2)

(ā,1, ā),1 (1,1, ā, ā2)

(1,1, ā,1) (ā,1,1,1)

.

ψ1

ϕ4 ψ1
ϕ4

ξ1

ψ1

ϕ4 ψ1
ϕ4

ξ1

Therefore γ is equivalent to an element (q1, p1, p2,1, . . . ,1) ∈ Q× 〈ā〉 × 〈ā〉 × 12n−3

and with the computed result for the first four coordinates we obtain the result. �

We denote the set of the 8 constraints γ1, . . . , γn : FN → Q that correspond to
representatives of those 8 orbits by R.
We want to solve the equations E = [X1, X2][X3, X4]g for every g ∈ S3

′. Applying
the branching homomorphism will give us equations of higher genus. We hence
abbreviate the oriented quadratic equation [X1, X2] · · · [X2n−1, X2n] by Rn(X∗).

Definition 4.44. Given g ∈ S3
′ and γ ∈ R, the tuple (g, γ) is called a good pair if

(Rng, γ) is solvable for some n ∈ N.

Definition 4.45. We denote by

τ : S3 → S3/S3
′′ and ρ : S3/S3

′′ → (S3/S3
′′)/(S3

′/S3
′′) ' S3/S3

′

the natural projections.

Lemma 4.46. The pair (g, γ) is a good pair if and only if there is a solution s : FN →
S3/S3

′′ for R2τ(g) with s(Xi) ∈ ρ−1(γ(Xi)).

Proof. If (g, γ) is a good pair and s a solution for (Rng, γ) then s(Xi) ∈ S3
′

for i ≥ 4, so s(Rn) = s(R2) ·h′ for some h′ ∈ S3
′′. Therefore there is a solution τ ◦ s

for R2τ(g) with s(Xi) = γ(Xi).
If there is a solution s : FN → S3/S3

′′ for R2τ(g) such that each s(Xi) is con-
tained in ρ−1(γ(Xi)) then for gi ∈ τ−1(s(Xi)) there is some h′ ∈ S3

′′ such that
R2(g1, . . . , g4)h′g = 1 and so (g, γ) is a good pair. �

Corollary/Definition 4.47. For q ∈ S3/S3
′′ and γ ∈ R the pair (q, γ) is called

a good pair if (g, γ) is a good pair for an arbitrary (and hence every) preimage of
g ∈ τ−1(q).

Lemma 4.48. Let x, y ∈ S3 be arbitrary elements and σ ∈ S3. Consider the map

hx,y,σ : S3 → S3, g 7→ g@σ(1)x · g@σ(2)y · g@σ(3).

If g ∈ S3
′′ then hx,y,σ(g) ∈ Stab(2) for all choices of x, y and σ. Furthermore the

map

h̄x,y,σ : S3
′/S3

′′ → S3
′/ Stab(2), gS3

′′ 7→ (g@σ(1)x · g@σ(2)y · g@σ(3)) Stab(2)

is well defined.
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Proof. We can directly verify that all generators of S3
′′ enjoy the claimed

property. Because all elements of S3
′′ have no activity the maps hx,y,σ are then

homomorphisms. �

Lemma 4.49. The map act : S3/S3
′′ → S3, gS3

′′ 7→ act(g) is well defined and for
i = 1, 2, 3 the map @i : S3

′/S3
′′, gS3

′′ 7→ (g@i)G′ is well defined.

Proof. The first statement is clear because every element g ∈ S3
′′ has trivial

activity.
Also every element g ∈ S3

′ has trivial activity. Hence the map @i : S3
′ → S3,

g 7→ g@i is a homomorphism for every i = 1, 2, 3.
It is easy to check that for every generator g ∈ S3

′′ we have that g@i ∈ S3
′ and

thus we obtain the result. �

The activity of every element g ∈ S3
′ is trivial and hence every constraint γ : FN → Q

admits a unique enriched constraint γ = (γcon, γact).
We fix the set {1, a, a2, t, at, a2t, t2, at2, a2t2} as transversal for S3/S3

′ and denote
by rep: S3/S3

′ the corresponding left inverse of π.
We fix an element q ∈ S3

′/S3
′′ and an active constraint γ ∈ R such that (q, γ)

forms a good pair. We consider all g ∈ S3
′ such that gτ = q.

Let E =
∏n
i=1[X2i−1, X2i]g be an equation and Φγ(E) = 〈〈E1, E2, E3〉〉 then the sets

Var(E1) ∩ Var(E2) and Var(E2) ∩ Var(E3) are not empty because γ has nontrivial
activity in some component. Hence Φϕ

γ (E) contains exactly one nontrivial equation.
Let ψγ,n be the normalization homomorphism that maps Φϕ

γ (E) to its normal form.
Then a direct computation gives us that

ψγ,n(E) = Φnf
γ (E) = R3n−2(X∗)(g@µ(3))X6n−3 · (g@µ(2))X6n−2 · g@µ(1)

holds for some µ ∈ S3. Note that according to Lemma 4.49 the value of (g@i)π
depends only on q.
We need a small variation of the definition of ΓE1 than we defined it in Section 2:

Γq,n2 (γ) = {(γ′ ∗ π) ◦ ψ−1
γ,n | γ′ ∈ Γ1(γ), γ′(Xi) = 1 for i > 12, (γ′ ∗ act)(R2q) = 1}.

To show that we can take Γq,n2 (γ) independent of n we need to go back to the
normalization process of Φγ :
Let g = 〈〈g1, g2, g3〉〉 ∈ S3

′ be an arbitrary element and γ ∈ R be a reduced constraint,
n ≥ 2 and E(n) =

∏n
i=1[X2i−1, X2i]g be an equation. Let further be Φγ(E(2)) =

〈〈E1, E2, E3〉〉〈〈g1, g2, g3〉〉 with decomposition E1 = U1X
−1U2, E2 = V1XV2Y V3 and

E3 = W1Y
−1W2 for some choice of variables X and Y . (This decomposition does

always exist with with eventually changing the signs of X or Y ).
Consider the following sequences ofS3-homomorphisms to obtain the form Φnf

γ (E(n)):
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Φγ(E(n)) = 〈〈E1, E2, E3〉〉〈〈
∏n
i=3[X2i−1,k, X2i,k] | k = 1, 2, 3〉〉〈〈g1, g2, g3〉〉

U1V2W2
∏n
i=3[X2i−1,3, X2i,3]g3W1V3

∏n
i=3[X2i−1,2, X2i,2]g2V1

∏n
i=3[X2i−1,1, X2i,1]g1

U1V2W2g3W1V3g2V1g1
∏n
i=3[X2i−1,3, X2i,3]

∏n
i=3[X2i−1,2, X2i,2]

∏n
i=3[X2i−1,1, X2i,1]

R4(X∗,∗)g
X3,3
µ(3) g

X4,1
µ(2) gµ(1)

∏n
i=3[X2i−1,3, X2i,3]

∏n
i=3[X2i−1,2, X2i,2]

∏n
i=3[X2i−1,1, X2i,1]

R3(n−2)+4g
X3,3
µ(3) g

X4,1
µ(2) gµ(1) = Φnf

γ (E(n)).

Y 7→W2
∏n
i=3[X2i−1,3, X2i,3]g3W1

X 7→ V −1
1 g−1

2
∏n
i=3[X2i,2, X2i−1,2]V −1

3 W−1
1 g−1

3
∏n
i=3[X2i,3, X2i−1,3]W−1

2 V −1
2

Xk,1 7→ X
g−1

1
k,1 ∀k > 4

Xk,2 7→ X
g−1

1 V −1
1 g−1

2
k,1 ∀k > 4

Xk,3 7→ X
g−1

1 V −1
1 g−1

2 V −1
3 W−1

1 g−1
3

k,1 ∀k > 4

nfU1V2W2g3W1V3g2V1g1

Xk,i 7→ X
g
X3,3
3 g

X4,1
2 g1

k,i ∀k > 4, i = 1, 2, 3

We denote by ψn,γ the composition of this S3-homomorphisms and remark that
ψ−1
γ,n(X3,3) = ψ−1

γ,2(X3,3), ψ−1
γ,n(X4,1) = ψ−1

γ,2(X4,1) and if γ′ : FN×3 → Q is such that
γ′(Xi,k) = 1 for all i > 2 and k = 1, 2, 3 then (γ′ ∗ π) ◦ ψn,γ = (γ′ ∗ π) ◦ ψ2,γ . Hence
Γn,q2 (γ) = Γ2,q

2 (γ) =: Γq2(γ).
We fix now further γ′ ∈ Γq2(γ) and denote

x := rep(γ′(X3,3)), y := rep(γ′(X4,1)).

Because x and y are specified by the choice of γ′ in Γq2(γ) we denote further
by hq,γ′ = hx,y,µ the map as defined in Lemma 4.48 and consider the equation
E ′ = R3n−2hq,γ′(g). There exists an element p ∈ Stab2 /S3

′′ such that hq,γ′(g)τ =
h̄x,y,µ(q) · p. Hence if all the constrained equations R3n−2f with f τ ∈ h̄x,y,µ(q) ·
Stab2 /S3

′′ are solvable, then the constrained equations (Rng, γ) are solvable for all
gτ = q.
In the case that (γ′, h̄x,y,µ(q) · p) is a good pair for all p ∈ Stab2(S3)/S3

′′ we call γ′
a good succeeding constraint for the pair (q, γ). We will use this set later again and
denote by

Desc(γ′, q) = {h̄x,y,µ(q) · p | p ∈ Stab2(S3)/S3
′′} ⊂ S3

′/S3
′′

the set of possible descendants of q under the choice of γ′ ∈ Γq2(γ).

Proposition 4.50. There is a subset R1 ⊂ R with the following properties:
(1) All γ ∈ R1 have nontrivial activity in some component.
(2) For all q ∈ S3

′/S3
′′ there is γ ∈ R1 such that (q, γ) is a good pair.

(3) For every good pair (q, γ) with q ∈ S3
′/S3

′′ and γ ∈ R1 there is a good
succeeding constraint γ′ that is under an automorphism ϕ ∈ Un equivalent
to an element of R1.
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Proof. We can compute the sets Γq2(γ) explicitly for every q ∈ S3
′/S3

′′ and
every reduced constraint γ. If we take for R1 the set of constraints {γ4, . . . , γ5} we
can verify that all properties are satisfied by a direct computation.
We implemented this computation in GAP. See the file examples/GuptaSidkiGW.g
and Chapter 5, Section 3.3 for details.

�

The previous proposition already shows that every element g ∈ S3
′ is a product of

at most two commutators of elements in S̃3 the completion of S3.
We fix now for every good pair (γ, q) with γ ∈ R1 a good succeeding constraint
suc(γ, q) ∈ R1. Furthermore for g ∈ S3

′ and an initial constraint γ ∈ R1 such
that (g, γ) is a good pair we define the succeeding sequence of (g, γ) by setting
(g0, γ0) = (g, γ), γk+1 = suc(γk, gτk) and gk+1 = hx,y,µ(gk) where the x, y and µ are
determined by γk+1.
So far the procedure is quite analogue to the proof of the commutator width of the
Grigorchuk group. The analog next step would be to use the following lemma.

Lemma 4.51. Let (gk, γk) be the succeeding sequence of a good pair (g, γ). If (gi, γi) =
(gj , γj) for some distinct i, j then the equation (Rng, γ) is solvable for all n ≥ 2.

However we could not prove that for a succeeding sequence (gi, γi)i∈N the set {gi |
i ∈ N} is always finite. We will in the following define a length on S3 that grows at
most linearly when passing to the next element of the succeeding sequence.
Then a refinement of the term good succeeding constraint will prove the final step.

Definition 4.52. For g ∈ S3 let `(g) be the minimal number m such that g is a
product of m elements t’s and t2’s and an arbitrary number of a’s. I.e

`(g) = min{m ∈ N | g = h0

m∏
i=1

T hii , Ti = t, t2, hi = 1, a, a2}.

Lemma 4.53. Every element g ∈ S3
′ is a product of at most `(g) + 1 commutators.

Proof. We note first that for g ∈ S3
′ there is a representation of g of the form

g = h0
∏m
i=1 T

hi
i with Ti ∈ {t, t2} and hi ∈ {1, a, a2} with h0 = 1 because otherwise

the element g would be of nontrivial activity. Now we can multiply g with a product
of at mostm commutators C1, . . . , Cm to obtain the form g = T ′1 ·T ′a2 ·T ′a

2
3 ·C1 · · ·Cm

with T ′i ∈ {1, t, t2}. There are only finitely many such elements T ′1 · T ′a2 · T ′a
2

3 ∈ S3
′

hence there is a constant N such that every such element is a product of at most
N commutators and hence every element g ∈ S3

′ is a product of at most `(g) +N

commutators. In fact N can chosen to be 1 because every such element T ′1 ·T ′a2 ·T ′a
2

3 ∈
S3
′ is a commutator.

1 = [1,1],
t2ta = [t, a],

t(t2)a = [t2, a],

t2ta
2 = [t, a2],

ttata
2 = [a2t2, t2a2],

(t2)ata2 = [ta, a],

t(t2)a2 = [t2, a2],

ta(t2)a2 = [t2a, a],

t2(t2)a(t2)a2 = [a2t, ta2].

�

Corollary 4.54. For every g ∈ S3
′ there is a reduced constraint γ ∈ R such that

the equation (R`(g)+1g, γ) is solvable.
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Lemma 4.55. Let x, y ∈ {1, a, a2, t, at, a2t, t2, at2, a2t2} be elements of the previously
chosen transversal of S3/S3

′ and σ ∈ S3 be an arbitrary permutation. Then we
have for every g ∈ S3 that `(hx,y,σ(g)) ≤ `(g) + 4.

Proof. Let `(g) = n and g and hx,y,σ(g) be written as a word over the letters
a, a2, t, t2 in the minimal form according to the definition of `.
The number of occurrences of the elements t and t2 in the states g@1, g@2 and
g@3 depends only on the the number of occurrences of this letters in the word
representing g and is bounded in sum by `(g) hence `(hx,y,σ(g)) ≤ `(g) + 2(`(x) +
`(y)) ≤ `(g) + 4. �

We denote four sets:
GP = {(q, γ) ∈ S3

′/S3
′′ ×R1 | (q, γ) is a good pair },

S0 = {q ∈ S3
′/S3

′′ | ∃!γ ∈ R : (q, γ) is a good pair },
S1 = {(q, γ) ∈ GP | ∀γ′ ∈ Γq2(γ)∃q′ ∈ Desc: q′ /∈ S0},
S2 = {(q, γ) ∈ GP | ∃γ′ ∈ Γq2(γ)∀q′ ∈ Desc: q′ /∈ S1}.

Lemma 4.56. S1 = S2.

Proof. This is again a finite calculation. The classification in which of these
sets a good pair (q, γ) lies can be done during the verification of Proposition 4.50.
It is implemented in GAP. For details see the file examples/GuptaSidkiCW.g and
Chapter 5, Section 3.3. �

Proposition 4.57. For every g ∈ S3
′ the equation R2g has a solution.

Proof. Let g ∈ S3
′ be an arbitrary element and (p, γ) ∈ GP be a good pair

such that gτ = p. The existence of such a good pair is granted by Proposition 4.50.
Let (gi, γi) be the corresponding succeeding sequence. There is n ∈ N such that
`(g) + 4n+ 1 ≤ 3n + 1 and thus the equation (R2g, γ) is solvable if the constrained
equation (R`(gn)+1gn, γn) is solvable.
Let q = gτn. According to Proposition 4.50 we do already know that (q, γn) ∈ GP. If
q ∈ S0 then there is only one reduced constraint that forms a good pair with q and
hence because of Lemma 4.53 the constrained equation (R`(gn)+1gn, γn) is solvable.
If (q, γn) /∈ S1 then there exists γ′ ∈ Γq2(γn) such that (hq,γ′(gn)τ , γ′) ∈ S0. Thus the
equation (R`(hq,γ′ (g))+1hq,γ′(g), γn) is solvable and hence also (R`(gn)+1gn, γn).
If we have that (q, γn) ∈ S1 then, according to Lemma 4.56, it exists γ′ ∈ Γq2(γn)
such that (hq,γ′(gn)τ , γ′) /∈ S1. Let us denote by g′ = hq,γ′(gn) and by q′ = g′τ .
Then it exists γ′′ ∈ Γq

′

2 (γ′) such that (hq′,γ′′(g′))τ ∈ S0. Hence as seen before all the
constrained equations (R`(hq′,γ′′ (g′))+1hq′,γ′′(g′), γ′′), (R`(g′)+1g

′, γ′), (R`(gn)+1gn, γn)
and (R2g, γ) are solvable.

�

Remark 4.58. We note that the question whether S3 has commutator width 1 is
still open.
In the Grigorchuk group we were able to find a finite quotient that has commutator
width 2. But in the Gupta-Sidki group the size of the groups Permn(S3) grows to
fast. For n = 2, 3, 4, 5, 6 the size of Permn(S3) is 33, 37, 319, 355 and 3163. For the
cases n ≤ 4 these groups have commutator width one.
If the commutator width of S3 is 1 then one could try to start with the equation
[X1, X1]g and after the choice of a good active constraint γ we would need to solve
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R2g, γ

R4g1, γ1

R3n+1gn, γn R`(gn)+1gn, γn

R3`(gn)+1hq,γ′(gn), γ′ R`(hq,γ′ (gn))+1hq,γ′(gn), γ′

R3`(g′)+1hq′,γ′′(g′), γ′′

R`(hq′,γ′′ (g′))+1hq′,γ′′(g′), γ′′

Solvable if q ∈ S0.

Solvable if (q, γ) /∈ S1.

Solvable if (q, γ) ∈ S1.

Figure 11. Diagram that shows how the solution of the equation
R2g is derived. The arrows indicate that a solution can be lifted.

[X1, X2]gX3
2 g1 for some γ′ ∈ Γg1(γ). Note that we cannot reduce γ′ by U2 any further

because U2 only fixes the commutator part. Then in a second step we would need
to solve the constrained equations in Φγ′([X1, X2]gX3

2 g1) for a constraint depending
on γ′. If g2 is active then this is equivalent to an equation of genus 2. If there is
always a choice such that we would obtain an equation with constraint γ ∈ R1 then
this would show that the commutator width of S3 is one. Unfortunately there are
too many choices to test them all.

7. Mothergroups

The easiest examples of bounded groups and polynomial bounded groups have in
common that their generating automata have only circles of length one and no
activity in these circles. This is not a strong restriction: We can define groups, so
called mothergroups where every element has this property and embed arbitrary
bounded elements in this group. This groups where introduced in [BKN10] to
prove the amenability of bounded self-similar groups. The notion was then extended
in [GOB13] to obtain mothergroups of higher degree.

Definition 4.59 ([GOB13]). For n ≥ 2 and d ≥ −1 the (n, d)-mothergroup Mn,d

is defined as follows:
a−1,π = 〈〈1, . . . , 1〉〉π for π ∈ Sn,
ai,π = 〈〈ai,π, ai−1,π, 1, . . . , 1〉〉 for π ∈ Sn, 0 ≤ i ≤ d,
b0,π = 〈〈b0,π, 1, . . . , 1〉〉π for π ∈ StabSn(1),
bi,π = 〈〈bi,π, bi−1,π, 1, . . . , 1〉〉 for π ∈ StabSn(1), 1 ≤ i ≤ d,
Ai = 〈ai,π | π ∈ Sn〉 for − 1 ≤ i ≤ d,
Bi = 〈bi,π | π ∈ StabSn(1)〉 for 0 ≤ i ≤ d,

Mn,d = 〈Aj , Bk | −1 ≤ j ≤ d, 0 ≤ k ≤ d〉 .
Note that Ai ∼= Sn and Bi ∼= StabSn(1) ∼= Sn−1 for every i.
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Definition 4.60 ([BKN10]). The n-mothergroup Mn is defined as follows:

aπ = 〈〈1, . . . , 1〉〉π for π ∈ Sn,
bπ,π2,...,πn = 〈〈bπ,π2,...,πn , aπ2 , . . . , aπn〉〉π for π ∈ StabSn(1), πi ∈ Sn,

Mn = 〈aπ1 , bπ,π2,...,πn | π ∈ StabSn(1), πi ∈ Sn〉 .

Lemma 4.61. The mothergroupsMn,d of degree d ≥ 1 are not contracting.

Proof. It is enough to prove this for Mn,1 as Mn,1 < Mn,d for all d ≥ 1.
Choose π ∈ Sn with π(1) = 2, π(2) = 1. The group 〈a1,π, a0,π, a−1,π〉 is a subgroup
ofMn,1. If it would be contracting, then (a1 · a0)` is in the nucleus for all ` since

(a1 · a0)`@ 1 . . . 1︸ ︷︷ ︸
m

= (a1 · a0)` for all `,m.

But a1 · a0 is of infinite order and thus there cannot be a finite nucleus. �

Lemma 4.62. Mn,0 =Mn

Proof. It is

a−1,π = aπ,

a0,π = b1,π,1,...,1,

b0,π = bπ,1,...,1.

Therefore Gn,0 <Mn. For the other direction it is now enough to see that:

bπ,π2,...,πn = a0,π2 · a
b0,(2,3)
0,π3 · ab0,(2,4)

0,π4 · · · ab0,(2,n)
0,πn · b0,π.

Hence Gn,0 =Mn. �

7.1. Properties of mothergroup elements. The following theorem moti-
vates the consideration of the order problems in the mothergroups.

Theorem 4.63 ([GOB13],[BKN10]). Every finitely generated subgroup of Polyn(d)
can be embedded in a mothergroupMm,d for some m ∈ N possibly larger than n and
this embedding can be effectively constructed.

Corollary 4.64. The order problem of the groups Polyn(d) reduces to the order
problem in the groupsMn,d.

Example 4.65. The adding machine can be embedded into the mothergroupM2,0.

astart

1

1|2

2|1

1|1
2|2

↪→

āstart

τ āτ

1

2|1
1|2

1|1

2|2

1|2 2|1

1|1
2|2
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7.2. Order problem in the group Mn,d. In [BBSZ13] it is shown that the
order of bounded group elements can be computed.

Definition 4.66 ([BBSZ13]). Let g ∈ Aut(A∗) be a tree automorphism. Then the
orbit signalizer is defined as the set

OS(g) = {(gm)@w | w ∈ A∗,m = |Orbg(w)|}.

We want to build a graph from the orbit signalizer and therefore make the following
definition.

Definition 4.67. Let g ∈ Aut(A∗) and w ∈ A∗, then we define the orbit signalizer
successor of g under the word w by

ossw(g) = g|Orbg(w)|@w.

So the orbit signalizer is the set OS(g) = {ossw(g) | w ∈ A∗}.

Lemma 4.68. The successor can be computed iteratively by ossvx(g) = ossx(ossv(g))
for x ∈ A and v ∈ A∗.

Proof. Denote m = |Orbg(vx)| and n = |Orbg(v)| then we have n | m and:

ossvx(g) = gm@vx = g@vx · g@(vx)g · . . . · g@(vx)gm−1

= g@vx · g@vaxg@v · . . . · g@vgm−1
xg

m−1@v

= g@vx · . . . · g@vgn−1
xg

n−1@v · g@vxgn@v · . . . · g@vgm−1
xg

m−1@v

=
(
g@v · . . . · g@vgn−1)

@x · . . . ·
(
g@v · . . . · g@vgn−1)

@xg
m−n@v

=
(
g|Orbg(v)|@v

)|Orbgn@v(x)|
@x = ossx(ossv(g)) .

�

Definition 4.69. We define the graph of the orbit signalizer of a group element
g ∈ Aut(A∗) by the graph with vertex set OS(g) and draw an edge (h, ossx(h)) with
label |Orbh(x)| for every h ∈ OS(g) and x ∈ A.

Proposition 4.70 ([BBSZ13]). Let g ∈ Aut(A∗) be a tree automorphism and
denote by |g| the order of the element. Then:

(1) |g| = lcm{|ossx(g)| | x ∈ A} · |act(g)|.
(2) If the orbit signalizer OS(g) is finite for all g in a collection G ⊆ Aut(A∗)

then the order problem for G is decidable.
(3) If g ∈ G is finite state and OS(g) is infinite, then g is of infinite order.

Lemma 4.71 ([BBSZ13]). All elements g ∈ Poly(0) have finite orbit signalizer.

Corollary 4.72 ([BBSZ13]). The order problem of the groupsMn,0 is decidable.

We present a different proof for the caseM2,0:

Lemma 4.73. Every nontrivial element of M2,0 is either of order 2 or of infinite
order.

Proof. Let us denote the two generators ofM2,0 by a = (1, 2) and x = 〈〈x, a〉〉.
Then every element ofM2,0 is conjugate to either (ax)n for some n or to (ax)na for
some n ∈ N. Since ax is of infinite order all elements of the first kind are of infinite
order as well. Moreover (ax)na(ax)na = (ax)n−na2 = 1 and hence all elements of
the second kind are of order 2. �
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We will now consider the groupM2,1 in more details. It is by definition generated
by a−1, a0 and a1 all the b-generators are trivial. For simplicity let us denote a =
a−1, x = a0, y = a1. All those generators are of order two.
In this group the orbit signalizer of elements is is not necessarily finite.

Example 4.74. Consider g = yxya or more generally gn = yxy(xa)na. Then the
decomposition of g2n is 〈〈yxy(xa)n, xax(ax)n〉〉(1, 2) and hence the orbit signalizer of
g is the infinite graph with vertices {g2n | n ∈ N}. Note that all elements in this set
are distinct because xa is of infinite order.

The order problem reduces to the question whether the orbit signalizer of an element
is finite or infinite.

Remark 4.75. There are not many short nontrivial relators inM2,1. One nontrivial
group relation is yxayayaxy(ax)2a = 1.

Lemma 4.76. The order problem inM2,1 is decidable.

Proof. Every element g ∈ M2,1 can be written (not necessarily unique) in
the form g = (xa)n0aε0

∏m
i=1 y(xa)niaε0 for ni ∈ Z and εi ∈ {0, 1}. We choose a

representation in this form with minimal m and denote by #y(g) this minimal m
and prove by induction on #y(g) that we can compute the order of g.
If #y(g) = 0 then g ∈ M2,0 and hence we can determine its order. Assume now
that #y(g) > 0 then g is conjugate to an element of the form

∏m
i=1 y(xa)niaε0 . We

associate to each such element a triple (m,n, `) with n =
∑
|ni| aka "number of x’s"

and ` =
∑
ni + εi aka "number of a’s". The element g has nontrivial activity if and

only if ` is odd for any such representation.
If g is inactive then |g| = lcm{|g@1|, |g@2|} and at least one of the two has smaller
m-length and we thus know its order by induction. The set

{ossw(g) | w ∈ A∗,#y(ossw(g)) = #y(g), act(ossv(g)) = 1∀v ≤ w}
is finite (because g is finite state) and hence we can either determine the order of g
or we need to determine the order of an active element with same m-length.
If g is active we distinct between the possible associated triples (m,n, `).
(e, o, o): If m is even and n is odd. Then |g| = 2|g@1 · g@2| and g@1 · g@2 is of the

form (m′, n′, `′) with again m′ even, and n′, `′ odd. An element of this form
is always active and hence never trivial. Thus in this case |g| =∞.

(e, e, o): If m and n are even the orbit successor h = oss1(g) is of type (e, e, e) and
hence inactive. The state h@2 has always a smaller value of #y and we
hence know its order. If h@1 has also a smaller #y value we know the order
of h. Otherwise if we write h =

∏m
i=1 y(xa)niaεi we have that ni+εi is even

for all i and hence

(1) h@1 =
m∏
i=1

y(xa)
⌈
ni
2

⌉
ani (mod 2).

Moreover if we denote by no the number of odd ni’s we have
∑m
i=1dni2 e =

1
2
∑
nino and because no is an even number therefore the type of h@1 is

either (e, o, o) or (e, e, e). If it’s the first one we already know how to
compute the order and if it’s the second one we are in the same case again
but with an eventually shorter element.

(o, o, o): If g is of this type then its order is twice the order of the successor oss1(g)
that is of type (o, e, o) which we will consider next.
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(e, o, o)

(e, e, o) (e, e, e)

(o, o, o)

(o, e, o) (o, o, e)

↘ #y

↘ x

↘ x

Figure 12. Diagram describing the different cases.

(o, e, o): Assume g is of type (m,n, `) with n even and m and ` odd. Then its order
is twice that of h = oss1(g) and this is of type (o, o, e). As before the order
of h is the least common multiple of the order of its states. If no state has
the same #y value as h we can compute the order by induction. Otherwise
we write h =

∏m
i=1 y(xa)niaεi and have again the equality (1). This time

however no is odd and hence the type of h@1 is either (o, o, e) or (o, e, o). If
we stay in the case (o, o, e) the number of x’s gets shorter but in the other
case it can get longer again. The type of h is (in absolute values) at most
(m,m+n, n) and hence the number of x′s in h@1 is at most m+n+no

2 . Note
that no is bounded by m. If we assume the worst case that m is larger then
n and we iterate between this cases (o, o, e) → (o, e, o) → (o, o, e) we end
up by a maximal number of x’s of at most

∑∞
k=0 2−km = 2m and hence we

can compute the order in this case.
�



CHAPTER 5

Computer algebra

The results in the previous chapter often rely on a large number of computations
some of them can be done easily by hand but with a larger number of computations
the number of potential errors increases. Many of the calculations follow the same
pattern. Very often the normal form of an equation has to be determined and
similarly often we compute the image of a constrained equation (E , γ) under Φγ .
It is convenient to at least check the results on this computations by a computer.
To be able to do so we need to implement some layers of abstraction to use a similar
language in the source code of the algorithms.
Most of this abstraction layers are already implemented in the GAP system.

1. The system GAP

The computer algebra system GAP ([GAP14]) is an open source computer algebra
system originally focused for computations in groups.
Beside a core system that provides basic functionality the program is structured into
packages that provide specialized methods. For more information about the system
see the documentation [GAP17].

2. Implementation of equations

We introduce a new package for GAP with the name equations. It aims to allow
definition of equations as defined in Chapter 3 with basic functionality like comput-
ing the normal form of quadratic equations or determining the genus of an equation.
However in the current state the package becomes much more useful in combination
with the package fr ([Bar16b]) that allows computations in functionally recursive
groups.

2.1. Free products. In the definition of an equation E ∈ F ∗ G we need the
free product of F and G. GAP already supports free products of finitely presented
groups but we need a more basic approach. For this purpose we declared a new
filter to the system with the name IsGeneralFreeProduct that is implemented by
simply storing the two given groups and embeddings from the free factors.
We use this filter as collection for FreeProductElements. Those elements consist of
a mixed type list where the elements are in one of the free factors and a second list
which stores the correspondence of elements to its free factors. During its creation
the list will be automatically reduced such that two consecutive list entries never lie
in the same free factor.
gap> F := FreeGroup(2);; S3 := SymmetricGroup(3);;
gap> G := FreeProduct(F,S3);;
gap> Print(FreeProductElm(G,[F.1,F.2,(1,2),F.1],[1,1,2,1]));

FreeProductElm([ f1*f2, (1,2), f1 ])
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gap> G := FreeProduct(S3,S3);;
gap> Print(FreeProductElm(G,[(1,2,3),(1,2),(1,2)],[1,1,2]));

FreeProductElm([ f1*f2, (1,2), f1 ])

There is a second representation of this elements that does not reduces the given
word.

gap> G := FreeProduct(F,S3);;
gap> Print(FreeProductElmLetterRep(G,[F.1,F.2,(1,2),F.1],[1,1,2,1]));

FreeProductElm([ f1, f2, (1,2), f1 ])

2.2. Equations. We assign to the object GeneralFreeProduct the attribute
IsEquationGroup if the second free factor is a free group. Internally we store the
equation group in an ComponentElementRep with two components group and free.
We can construct an equation group by the command EquationGroup that takes
the two free factors as arguments. We can omit the second factor. It will then be
the countable generated free group automatically.
To define an equation we can either specify the equation group and a list that
represents the equation as word over the free factors of the equation group.

gap> F := FreeGroup(2);; S3 := SymmetricGroup(3);;
gap> EqG := EquationGroup(S3,F);;
gap> eq := Equation(EqG,[(1,2),F.1^2,(1,2,3),F.2^2,(2,3)]);

Equation in [ f1, f2 ]

gap> Print(eq);

FreeProductElm([ f1^2, (1,2,3), f2^2, (1,2,3) ])

Alternatively we can first get the possible variables of the equation group by the
command VariablesOfEquationGroup. These variables are already members of
the equation group and we can hence form an equation simply by multiplying this
elements to others. A new method for \* for equations and general group elements
is implemented to make this possible.
The equation is stored as a cyclical reduced FreeProductElm.

gap> EqG := EquationGroup(SymmetricGroup(3));;
gap> vars := VariablesOfEquationGroup(EqG);
gap> eq := Equation(vars[1]*(1,2,3)*vars[2]^-1*vars[1]*vars[2]);

Equation in [ X1, X2 ]

For a more detailed overview of all methods of the equations package see the manual,
which is in the Appendix B.

3. Examples of Computations

The following examples are distributed with the equation package. The files are in
the phd/ directory of the git-hub repository of the package available under the url
https://github.com/ThGroth/gap-equations.
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3.1. Neumann-Segal groups. In Proposition 4.28 we proved that the Neu-
mann-Segal groups Nn have commutator width 1 for n ≥ 5.
The calculation rely partly on the computation of the commutator width of An. In
the file examples/Ore.g we implemented a function GetCommutators that given an
element σ ∈ An computes two elements π1, π2 ∈ An such that [π1, π2] = σ. The
implementation follows precisely the constructions in the proof of Proposition 4.18.
gap> Read("examples/Ore.g");
gap> sigma := (1,2,3)(4,5)(7,8,9,10);;
gap> pi := GetCommutators(sigma);

[ (1,3)(4,8,7,10), (1,3,2)(4,5,7,9,8) ]

gap> Comm(pi)=sigma;

true
In the file examples/NeumannSegel.g we implemented the methods used in the
proof of Proposition 4.28. We define a function CommutatorEquationSolver that
computes for every g ∈ Nn a solution for the equation [X,Y ]g.
gap> Read("examples/NeumannSegal.g");
gap> Nn := NeumannSegalGroup(7);

<recursive group over [ 1 .. 7 ] with 4 generators>

gap> RandNn := m ->Product([1..m],i->Random(GeneratorsOfGroup(Nn)));;
gap> g := RandNn(10);

<Mealy element on alphabet [ 1 .. 7 ] with 8 states>

gap> res := CommutatorEquationSolver(g);

[ <Mealy element on alphabet [ 1 .. 7 ] with 62 states>,
<Mealy element on alphabet [ 1 .. 7 ] with 52 states> ]

gap> IsOne(Comm(res)*g);

true
For large n quite some time of the computation is used to compute the sets Nn

and Mn that form the nucleus of the group Nn. If many computations for the
same n should be done, it is more convenient to pass these sets to the function
CommutatorEquationSolver.
NeumannSegalRandomTest := function(deg,len,num)

local Nn,RandomNn,N,M,i,g;
Nn := NeumannSegalGroup(deg);
RandNn := m ->Product([1..m],i->Random(GeneratorsOfGroup(Nn)));
N := List(AlternatingGroup(deg),s->api(s,deg));;
M := List(AlternatingGroup(deg),s->alphapi(s,deg));;
Print("Nucleus␣computed\n");
for i in [1..num] do
g := RandNn(Random([1..len]));
if not IsOne(Comm(CommutatorEquationSolver(g,N,M))*g) then
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Error("There␣is␣a␣problem␣with␣g",g);
fi;
Print(Int(i*100/num),"%␣done.\r");

od;
Print("100%␣done.␣Everything␣great\n");

end;
gap> NeumannSegalRandomTest(9,10,50);

Nucleus computed
100% done. Everything great

The rest of the file examples/NeumannSegal.g contains the computations that are
needed for the proof of Proposition 4.35. In particular it contains the computations
that show that every element of N5 is a product of 6 conjugates of an arbitrary
nontrivial permutation and the computations of the genera portrayed in Table 1.

3.2. Grigorchuk group. All the files and examples that are mentioned in
the paper [BGL17] can be found in the directory GrigorchukCommutatorWidth/
of the git-hub repository. Additionally we provide two functions to compute all
possible signatures of the equations in Φγ(E) given only the signature of the equation
E ∈ FN ∗G in the file examples/GrigorchukGenus.g; one for the oriented case and
one for the unoriented.
Given a signature (n, `) of an oriented or unoriented equation E we know that E
is equivalent to an equation of the form E = V

∏`−1
i=1 g

Xi
i g` with V ∈ FN and

gi ∈ G. The states of Φγ(E) do not depend on the activity of g`. To obtain
all possible signatures of the equations in Φnf

γ (E) it is therefore sufficient to take
into account all possibilities of act(gi) with 1 ≤ i < ` and γact. The function
PossibleDerivedSignaturesOriented lists all possibilities of act(gi) and collects
the outcome under the different values of γact. For example we consider equations
with signature (1, 2):

gap> Read("examples/GrigorchukGenus.g");
gap> PossibleDerivedSignaturesOriented(1,2);

FreeProductElm([ X1^-1*X2^-1*X1*X2*X3^-1, g1, X3, g2 ])
Signatures for act(g_i)=[(),()]: [ [ [1,2], 2 ], [ [1,4], 6 ] ]
Signatures for act(g_i)=[(1,2),()]: [ [ [ 2, 2 ], 8 ] ]

This prints first the initial equation E . Then the output tells us that in the case
of act(g1) = () there are two constraints γ such that the signature of the first state
of Φγ(E) is (1, 2) and 6 constraints γ such that the signature is (1, 4). In the case
that act(g2) = (1, 2) the signature of the descendant equation is independent of the
constraint always (2, 2).
Similarly the function PossibleDerivedSignaturesOriented computes the derived
signatures of unoriented equations. In contrast to the unoriented case it needs not
be the case that all the equations in Φγ(E) are unoriented if E was. Thus the output
of the function contains an additional letter to indicate if the corresponding equation
is oriented or unoriented.

gap> PossibleDerivedSignaturesUnoriented(2,1);
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FreeProductElm([ X1^2*X2^2, g1 ])
Signatures for act(g_i)=[ () ]:
O:[ 1, 2 ], 1
U:[ 2, 1 ], 1
U:[ 2, 2 ], 2

Thus for two choices of constraints γ the equations in Φγ(X2
1g

X2
1 ) are oriented of

signature (1, 2) and for all other cases the derived equations are unoriented and
either of signature (2, 1) or (2, 2).

3.3. Gupta-Sidki group. In Chapter 4, Section 6 we need multiple results
that are calculated in GAP. The code that implements these computations can be
found in the file examples/GuptaSidkiCW.g.
Execution of the file will take about 3 hours of computation on an ordinary machine.
There is some status indication what is computed and longer calculations provide
a progress bar. Note that it will need more then 6GB of RAM thus it should be
executed using the -o parameter of GAP to provide more RAM. For example use
gap -o 7G examples/GuptaSidkiCW.g.
The first computation proves Lemma 4.43 and computes the orbits of Q4/U2 and
a representative system of these orbits. It uses the branch structure of S3 and
therefore needs the fr package.
The next step is the computation of the groups S3/S3

′′ and S3/Stab(2) and the
corresponding quotient homomorphisms. This is faster using the L-presentations of
the groups and therefore we use the package lpres (see [BH16]).
After this the good pairs are computed as described in Lemma 4.46. The compu-
tation of the set Γq2(γ) for every q ∈ S3

′/S3
′′ and reduced constraint γ is the most

time consuming. The function GetSuccessor serves multiple purposes it does not
only compute the set Γq2(γ) but also verifies that Proposition 4.50 is true for the set

R1 = {(t̄ā,1,1,1), (t̄2ā,1,1,1), (t̄, ā,1,1), (t̄, ā2,1,1), (t̄,1, ā,1)}.
During the computation the good pairs in (q, γ) ∈ S3

′/S3
′′ are also tested against

the properties of Lemma 4.56.





CHAPTER 6

Conclusions

We have put some pieces to the mosaic of decision problems in self-similar groups.
The inspection of decomposed equations with the help of computer algebra turns
out to be very useful in particular also for those proofs that do not depend on the
explicit calculation but are inspired by computer experiments. Our results leave
space for enhancement:

1. Future work

For the Gupta-Sidki group it would be nice to pin down to the exact value of the
commutator width. Moreover there are open questions for equations in tree au-
tomorphisms: Can we decide for all finitely generated bounded tree automorphism
groups which quadratic equations hold? How about polynomially bounded automor-
phisms? Can this be generalized to systems of equations and equations of higher
degree?
For the question of the order problem it would be great to have a result also for higher
degree mothergroups thus we could conclude that the order problem is decidable for
all polynomial bounded tree automorphisms.
In the same directions the equation package can develop. An integration of equation
systems, and constrained equations as new objects can further enhance computer
experiments. Moreover the functionality could be extended into the direction of
equations over free groups. This theory is already well studied and algorithms for
deciding equations already exists but are not yet implemented in GAP.
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CHAPTER A

Commutator Width In The First Grigorchuk group

The following paper is joint work with Laurent Bartholdi and Igor Lysenok. The
core ideas were developed in June 2016 during a joint visit in the École normale
supérieure de Paris.
I had studied a preprint of the article [LMU16] that already contained the idea of
constrained equations and that it suffices for oriented equations of signature (n, 1)
over the Grigorchuk group G to consider a finite number (220) of constraints. The
authors conclude that the commutator width of the G is finite.
I wrote some computer code to show that indeed 90 constraints already suffice.
Together with the branching process of equations and some other properties of quo-
tients of the Grigorchuk group I proved this reduced the question whether every
element of G′ is a product of at most two commutators to a finite set of conditions.
I implemented the branching process in the computer algebra system GAP to show
that all these conditions are satisfied.
Later we extended the results to subgroups of G and I found an element in G′ that
is not a commutator.
Furthermore I found out that the same method could be used to prove that every
element of G′ is a product of at most 6 conjugates of the generator a.
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Commutator width in the first Grigorchuk
group

Thorsten Groth
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Abstract. Let G be the first Grigorchuk group. We show that the commutator
width of G is 2: every element g ∈ [G, G] is a product of two commutators, and
also of six conjugates of a. Furthermore, we show that every finitely generated
subgroup H ≤ G has finite commutator width, which however can be arbitrarily
large, and that G contains a subgroup of infinite commutator width. The proofs
were assisted by the computer algebra system GAP.

1. Introduction

Let Γ be a group and let Γ′ = [Γ,Γ] denote its derived subgroup. The commutator
width of Γ is the least n ∈ N ∪ ∞ such that every element of Γ′ is a product of n
commutators.
We compute, in this article, the commutator width of the first Grigorchuk group
G, see §1.2 for a brief introduction. This is a prominent example from the class of
branched groups, and as such is a good testing ground for decision and algebraic
problems in group theory. We prove:
Theorem A. The first Grigorchuk group and its branching subgroup have commu-
tator width 2.
It was already proven in [LMU16] that the commutator width of G is finite, with-
out providing an explicit bound. Our result also answers a question of Elisabeth
Fink [Fin14, Question 3]:
Corollary B. Every element of G′ is a product of 6 conjugates of the generator a
and there are elements g ∈ G′ which are not products of 4 conjugates of a.
There are examples of groups of finite commutator width with subgroups of infi-
nite commutator width; and even finitely presented, perfect examples in which the
subgroup has finite index, see Example 1.1. However, we can prove:
Theorem C. Every finitely generated subgroup of G has finite commutator width;
however, their commutator width cannot be bounded, even among finite-index sub-
groups. Furthermore, there is a subgroup of G of infinite commutator width.

1.1. Commutator width. Let Γ be a group. It is well-known that usually
elements of Γ′ are not commutators—for example, [X1, X2] · · · [X2n−1, X2n] is not a
commutator in the free group F2n when n > 1. In fact, every non-abelian free group
has infinite commutator width, see [Rhe68].
On the other hand, some classes of groups have finite commutator width: finitely
generated virtually abelian-by-nilpotent groups [Seg09], and finitely generated solv-
able groups of class 3, see [Rhe69].
Finite groups are trivial examples of groups of finite commutator width. There
are finite groups in which some elements are not commutators, the smallest having
order 96, see [Gur80]. On the other hand, non-abelian finite simple groups have
commutator width 1, as was conjectured by Ore in 1951, see [Ore51], and proven
in 2010, see [LOST10]. The commutator width cannot be bounded among finite
groups; for example, Γn = 〈x1, . . . , x2n | xp1, . . . , x

p
2n, γ3(〈x1, . . . , x2n)〉 is a finite

class-2 nilpotent group in which Γ′n has order p(
2n
2 ) but at most

(p2n

2
)
elements are

commutators, so Γn’s commutator width is at least n/2.
Commutator width of groups, and of elements, has proven to be an important group
property, in particular via its connections with “stable commutator length” and
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bounded cohomology [Cal09]. It is also related to solvability of quadratic equa-
tions in groups: a group Γ has commutator width ≤ n if and only if the equation
[X1, X2] · · · [X2n−1, X2n]g = 1 is solvable for all g ∈ Γ′. Needless to say, there
are groups in which solvability of equations is algorithmically undecidable. It was
proven in [LMU16] that there exists an algorithm to check solvability of quadratic
equations in the first Grigorchuk group.
We note that if the character table of a group Γ is computable, then it may be used
to compute the commutator width: Burnside shows (or, rather, hints) in [Bur55,
§238, Ex. 7] that an element g ∈ Γ may be expressed as a product of r commutators
if and only if ∑

χ∈Irr(Γ)

χ(g)
χ(1)2r−1 > 0.

This may yield another proof of Theorem A, using the quite explicit description of
Irr(G) given in [Bar13].
Consider a group Γ and a subgroup ∆. There is in general little connection between
the commutator width of Γ and that of ∆. If ∆ has finite commutator width and
[Γ : ∆] is finite, then obviously Γ also has finite commutator width—for example,
because Γ/ core(∆)′ is virtually abelian, and every commutator in Γ can be written
as a product of a commutator in ∆ with the lift of one in Γ/ core(∆)′, but that seems
to be all that can be said. Danny Calegari pointed to us the following example:

Example 1.1. Consider the group ∆ of orientation-preserving self-homeomorphisms
of R that commute with integer translations, and let Γ be the extension of ∆ by the
involution x 7→ −x. Then, by [EHN81, Theorems 2.3 and 2.4], every element of
Γ′ = ∆ is a commutator in Γ, while the commutator width of ∆ is infinite.
Both Γ and ∆ can be made perfect by replacing them respectively with (Γ oA5)′ and
∆ o A5; and can be made finitely presented by restricting to those self-homeomor-
phisms that are piecewise-affine with dyadic slopes and breakpoints.

1.2. Branched groups. We briefly introduce the first Grigorchuk group [Gri80]
and some of its properties. For a more detailed introduction into the topic of self-
similar groups we refer to [BGŠ03, Nek05] and to Section 3.
A self-similar group is a group Γ endowed with an injective homomorphism Ψ: Γ→
Γ o Sn for some symmetric group Sn. It is regular branched if there exists a finite-
index subgroup K ≤ Γ such that Ψ(K) ≥ Kn. It is convenient to write 〈〈g1, . . . , gn〉〉π
for an element g ∈ Γ o Sn. We call gi the states of g and π its activity. It is also
convenient to identify, in a self-similar group, elements with their image under Ψ.
A self-similar group may be specified by giving a set S of generators, some relations
that they satisfy, and defining Ψ on S. There is then a maximal quotient Γ of the
free group FS on which Ψ induces an injective homomorphism to Γ o Sn.
The first Grigorchuk group G may be defined in this manner. It is the group gener-
ated by S = {a, b, c, d}, with a2 = b2 = c2 = d2 = bcd = 1, and with

a = 〈〈1,1〉〉(1, 2), b = 〈〈a, c〉〉, c = 〈〈a, d〉〉, d = 〈〈1, b〉〉.

Here are some remarkable properties of G: it is an infinite torsion group, and more
precisely for every g ∈ G we have g2n = 1 for some n ∈ N. On the other hand,
it is not an Engel group, namely it is not true that for every g, h ∈ G we have
[g, h, . . . , h] = 1 for a long-enough iterated commutator [Bar16a]. It is a group
of intermediate word growth [Gri83], and answered in this manner a celebrated
question of Milnor.
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We have decided to concentrate on the first Grigorchuk group in the computational
aspects of this text; though our code would function just as well for other examples
of self-similar branched groups, such as the Gupta-Sidki groups [GS83].

1.3. Sketch of proofs. The general idea for the proof of Theorem A is the de-
composition of group elements into states via Ψ. We show that each element g ∈ G′ is
a product of two commutators by solving the equation E = [X1, X2] · · · [X2n−1, X2n]g
for all n ≥ 2.
If there is a solution then the values of the variables Xi have some activities σi. If
we fix a possible activity of the variables of E then by passing to the states of the
Xi we are led to two new equations which (under mild assumptions and after some
normalization process) yields a single equation of the same form but of higher genus.
Not all solutions for the new equations lead back to solutions of the original equation.
Thus instead of pure equations we consider constrained equations: we require the
variables to lie in specified cosets of the finite-index subgroup K. The pair composed
of a constraint and an element g ∈ G will be a good pair if there is some n such that
the constrained equation [X1, X2] · · · [X2n−1, X2n]g is solvable. It turns out that this
only depends on the image of g in the finite quotient G/K ′.
Then by direct computation we show that every good pair leads to another good
pair in which the genus of the equation increases. We build a graph of good pairs
which turns out to be finite since the constants of the new equation are states of the
old equation and we can use the strong contracting property of G.
The computations could in principle be done by hand, but one of our motivations
was precisely to see to which point they could be automated. We implemented
them in the computer algebra system GAP [GAP14]. The source code for these
computations is distributed with this document as ancillary material. It can be
validated using precomputed data on a GAP standard installation by running the
command gap verify.g in its main directory.
To perform more advanced experimentation with the code and to recreate the pre-
computed data, the required version of GAP must be at least 4.7.6 and the packages
FR [Bar16b] and LPRES [BH16] must be installed.

2. Equations

We fix a set X and call its elements variables. We assume that X is infinite countable,
is well ordered, and that its family of finite subsets is also well ordered, by size and
then lexicographic order. We denote by FX the free group on the generating set X .
We use 1 for the identity element of groups, and for the identity maps, to distinguish
it from the numerical 1.

Definition 2.1 (G-group, G-homomorphism). Let G be a group. A G-group is a
group with a distinguished copy of G inside it; a typical example is H ∗G for some
group H. A G-homomorphism between G-groups is a homomorphism that is the
identity between the marked copies of G.
A G-equation is an element E of the G-group FX ∗ G, regarded as a reduced word
in X ∪ X−1 ∪ G. For E a G-equation, its set of variables Var(E) ⊂ X is the set of
symbols in X that occur in it; namely, Var(E) is the minimal subset of X such that
E belongs to FVar(E) ∗G.
An evaluation is a G-homomorphism e : FX ∗ G → G. A solution of an equation E
is an evaluation s satisfying s(E) = 1. If a solution exists for E then the equation E
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is called solvable. The set of elements X ∈ X with s(X) 6= 1 is called the support
of the solution.
The support of a solution for an equation E may be assumed to be a subset of FVar(E)
and hence the data of a solution is equivalent to a map Var(E)→ G. The question
of whether an equation E is solvable will be referred to as the Diophantine problem
of E .
Every homomorphism ϕ : G→ H extends uniquely to an FX -homomorphism ϕ∗ : FX ∗
G→ FX ∗H. In this manner, every G-equation E gives rise to an H-equation ϕ∗(E),
which is solvable whenever E is solvable.
Definition 2.2 (Equivalence of equations). Let E ,F ∈ FX ∗G be two G-equations.
We say that E and F are equivalent if there is a G-automorphism ϕ of FX ∗G that
maps E to F . We denote by Stab(E) the group of G-automorphisms of E .
Lemma 2.3. Let E be an equation and let ϕ be a G-endomorphism of FX ∗ G. If
ϕ(E) is solvable then so is E. In particular, the Diophantine problem is the same for
equivalent equations.

Proof. If s is a solution for ϕ(E), then s ◦ ϕ is a solution for E . �

2.1. Quadratic equations. A G-equation E is called quadratic if for each
variable X ∈ Var(E) exactly two letters of E are X or X−1, when E is regarded as
a reduced word.
A G-equation E is is called oriented if for each variable X ∈ Var(E) the number of
occurrences with positive and with negative sign coincide, namely if E maps to the
identity under the natural map FX ∗ G → FX /[FX , FX ] ∗ 1. Otherwise E is called
unoriented.
Lemma 2.4. Being oriented or not is preserved under equivalence of equations.

Proof. E is oriented if and only if it belongs to the normal closure of [FX , FX ]∗
G; this subgroup is preserved by all G-endomorphisms of FX ∗G. �

2.2. Normal form of quadratic equations.
Definition 2.5 (On,m,Un,m). For m,n ≥ 0, Xi, Yi, Zi ∈ X and ci ∈ G the following
two kinds of equations are called in normal form:

On,m : [X1, Y1][X2, Y2] · · · [Xn, Yn]cZ1
1 · · · c

Zm−1
m−1 cm(1)

Un,m : X2
1X

2
2 · · ·X2

nc
Z1
1 · · · c

Zm−1
m−1 cm .(2)

The form On,m is called the oriented case and Un,m for n > 0 the unoriented case.
The parameter n is referred to as the genus of the normal form of an equation.
We recall the following result, and give the details of the proof in an algorithmic
manner, because we will need them in practice:
Theorem 2.6 ([CE81]). Every quadratic equation E ∈ FX ∗ G is equivalent to an
equation in normal form, and the G-isomorphism can be effectively computed.

Proof. The proof proceeds by induction on the number of variables. Starting
with the oriented case: if the reduced equation E has no variables then it is already
in normal form O0,1. If there is a variable X ∈ X occurring in E then X−1 also
appears. Therefore the equation has the form E = uX−1vXw or can be brought to
this form by applying the automorphism X 7→ X−1. Choose X ∈ X in such a way
that Var(v) is minimal.
We distinguish between multiple cases:
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Case 1.0: v ∈ G. The word uw has fewer variables than E and can thus be brought
into normal form r ∈ On,m by a G-isomorphism ϕ. If r ends with a variable,
we use the G-isomorphism ϕ ◦ (X 7→ Xw−1) to map E to the equation
rvX ∈ On,m+1. If r ends with a group constant b, say r = sb, we use the
isomorphism ϕ ◦ (X 7→ Xbw−1) to map E to the equation svXb ∈ On,m+1.

Case 1.1: v ∈ X ∪ X−1. For simplicity let us assume v ∈ X ; in the other case
we can apply the G-homomorphism v 7→ v−1. Now there are two pos-
sibilities: either v−1 occurs in u or v−1 occurs in w. In the first case
E = u1v

−1u2X
−1vXw, and then the G-isomorphism X 7→ Xu1u2, v 7→ vu1

yields the equation [v,X]u1u2w. In the second case E = uX−1vXw1v
−1w2

is transformed to [X, v]uw1w2 by the G-isomorphism X 7→ Xuw1w−1
1 ,

v 7→ v−uw1 . In both cases u1u2w, respectively uw1w2 have fewer vari-
ables and so composition with the corresponding G-isomorphism results in
a normal form.

Case 2: Length(v) > 1. In this case v is a word consisting of elements X ∪ X−1

with each symbol occurring at most once as v was chosen with minimal
variable set, and some elements of G. If v starts with a constant b ∈ G
we use the G-homomorphism X 7→ bX to achieve that v starts with a
variable Y ∈ X , possibly by using the G-homomorphism Y 7→ Y −1. As in
Case 1.1 there are two possibilities: Y −1 is either part of u or part of w.
In the first case E = u1Y

−1u2X
−1Y v1Xw we can use the G-isomorphism

X 7→ Xu1v1u2, Y 7→ Y u1v1v−1
1 to obtain [Y,X]u1v1u2w. In the second we

use the G-isomorphism X 7→ Xuw1v1v−1
1 w−1

1 , Y 7→ Y −uw1v1v−1
1 to obtain

[X,Y ]uw1v1w2. In both cases the second subword has again fewer variables
and can be brought into normal form by induction.

Therefore each oriented equation can be brought to normal form by G-isomorphisms.
In the unoriented case there is a variable X ∈ X such that E = uXvXw. Choose
v to have a minimal number of variables. By induction, the shorter word uv−1w is
equivalent by ϕ to a normal form r.
The G-isomorphism ϕ ◦ (X 7→ Xuv−1) maps E to X2r. If r ∈ Un,m for some n,m,
there remains nothing to do. Otherwise r = [Y, Z]s, and then the G-homomorphism

X 7→ XY Z, Y 7→ Z−1Y −1X−1Y ZXY Z, Z 7→ Z−1Y −1X−1Z

mapsX2r toX2Y 2Z2s. This homomorphism is indeed an isomorphism, with inverse

X 7→ X2Y −1X−1, Y 7→ XYX−1Z−1X−1, Z 7→ XZ.

Note that s ∈ On,m. If n ≥ 1 then this procedure can be repeated with Z, in place
of X, r. �

For a quadratic equation E we denote by nf(E) := nfE(E) the image of E under the
G-isomorphism nfE constructed in the proof.
From now on we will consider oriented equations On,1. For this we will use the
abbreviation

Rn(X1, . . . , X2n) =
n∏
i=1

[X2i−1, X2i]

and often write Rn = Rn(X1, . . . , X2n) if the Xi are the first generators of FX .

2.3. Constrained equations.
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Definition 2.7 (Constrained equations [LMU16]). Given an equation E ∈ FX ∗G,
a group H, a homomorphism π : G→ H and a homomorphism γ : FX → H, the pair
(E , γ) is called a constrained equation and γ is called a constraint for the equation
E on H.
A solution for (E , γ) is a solution s for E with the additional property that π ◦s = γ.

We note that the constraint γ needs only to be specified on Var(E).

3. Self-similar groups

Let Tn be the regular rooted n-ary tree and let Sn be the symmetric group on n
symbols. The group Aut(Tn) consists of all root-preserving graph automorphisms
of the tree Tn.
Let T1,n, . . . , Tn,n be the subtrees hanging from neighbors of the root. Every g ∈
Aut(Tn) permutes the Ti,n by a permutation σ and simultaneously acts on each of
them by isomorphisms gi : Ti,n → Tiσ ,n.
Note that for all i the tree Tn is isomorphic to Ti,n; identifying each Ti,n with
Tn, we identify each gi with an element of Aut(Tn), and obtain in this manner an
isomorphism

Ψ: Aut(Tn) ∼−→ Aut(Tn) o Sn
g 7→ 〈〈g1, . . . , gn〉〉σ.

A self-similar group is a subgroup G of Aut(Tn) satisfying G ≤ Ψ(G). For the sake
of notation we will identify elements with their image under this embedding and will
write g = 〈〈g1, . . . , gn〉〉σ for elements g ∈ G. Furthermore we will call gi ∈ G the
states of the element g, will write g@i := gi to address the states, will call σ ∈ Sn
the activity of the element g, and will write act(g) := σ.

3.1. Commutator width of Aut(T2). To give an idea of how the commutator
width of Grigorchuk’s group is computed, we consider as an easier example the group
Aut(T2). In this group we have the following useful property: for every two elements
g, h ∈ Aut(Tn) the element 〈〈g, h〉〉 is also a member of the group. This is only true up
to finite index in the Grigorchuk group and will produce extra complications there.

Proposition 3.1. The commutator width of Aut(T2) is 1.

For the proof we need a small observation:

Lemma 3.2. Let H be a self-similar group acting on a binary tree. If g ∈ H ′ then
g@2 · g@1 ∈ H ′.

Proof. It suffices to consider a commutator g = [g1, g2] in H ′. Then g@2 · g@1
is the product, in some order, of all eight terms (gi@j)ε for all i, j ∈ {1, 2} and
ε ∈ {±1}. �

Proof of Proposition 3.1. Given any element g ∈ Aut(T2)′ we consider
the equation [X,Y ]g. If in it we replace the variable X by 〈〈X1, X2〉〉 and Y by
〈〈Y1, Y2〉〉(1, 2) we obtain 〈〈X−1

1 Y −1
2 X2Y2g@1, X−1

2 Y −1
1 X1Y1g@2〉〉. Therefore, [X,Y ]g

is solvable if the system of equations {X−1
2 Y −1

2 X2Y2g@1, X−1
1 Y −1

1 X1Y1g@2} is solv-
able. We apply the Aut(T2)-homomorphism X1 7→ X1, X2 7→ Y −1

1 X1Y1g@2, Yi 7→ Yi
to eliminate one equation and one variable.
Thus the solvability of the constrained equation ([X,Y ]g, (X 7→ 1, Y 7→ (1, 2))) fol-
lows from the solvability of X−1

1 Y −1
2 Y −1

1 X1Y1(g@2)Y2(g@1) which is under the nor-
mal form Aut(T2)-isomorphism Y1 7→ Y1Y

−1
2 equivalent to the solvability of the
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equation [X1, Y1](g@2)Y2g@1. After choosing Y2 = 1 we are again in the original
situation since g@2g@1 ∈ H ′.
This allows us to recursively define a solution s for the equation [X,Y ]g as follows:

s(X) = 〈〈a1, b
−1
1 a1b1g@2〉〉, s(Y ) = 〈〈b1,1〉〉(1, 2), c1 = g@2 · g@1,

and for all i ≥ 1
ai = 〈〈ai+1, b

−1
i+1ai+1bi+1ci@2〉〉, bi = 〈〈bi+1,1〉〉(1, 2), ci+1 = ci@2 · ci@1.

Note that the elements ai, bi ∈ Aut(T2) are well-defined, although they are con-
structed recursively out of the aj , bj for larger j. Indeed, if one considers the re-
cursions above for i ∈ {1, . . . , n} and sets an+1 = bn+1 = 1, one defines in this
manner elements a(n)

1 , b
(n)
1 ∈ Aut(T2) which form Cauchy sequences, and therefore

have well-defined limits a1 = lim a
(n)
1 and b1 = lim b

(n)
1 . �

4. The first Grigorchuk Group

The first Grigorchuk group [Gri80] is a finitely generated self-similar group acting
faithfully on the binary rooted tree, with generators

a = 〈〈1,1〉〉(1, 2), b = 〈〈a, c〉〉, c = 〈〈a, d〉〉, d = 〈〈1, b〉〉.
Some useful identities are

a2 = b2 = c2 = d2 = bcd = 1,

ba = 〈〈c, a〉〉, ca = 〈〈d, a〉〉, da = 〈〈b,1〉〉,
(ad)4 = (ac)8 = (ab)16 = 1.

Definition 4.1 (Regular branched group). A self-similar group Γ is called regular
branched if it has a finite-index subgroup K ≤ Γ such that K×n ≤ Ψ(K).

Lemma 4.2 ([Roz93]). The Grigorchuk group is regular branched with branching
subgroup

K :=
〈

(ab)2
〉G

=
〈

(ab)2, (bada)2, (abad)2
〉
.

The quotient Q := G/K has order 16. �

For an equation E ∈ FX ∗ G, recall that Stab(E) denotes the group of G-automor-
phisms of E .
Denote by Un the subgroup of Stab(Rn) generated by the following automorphisms
of F2n:

ϕi : Xi 7→ Xi−1Xi, others fixed for i = 2, 4, . . . , 2n,

ϕi : Xi 7→ Xi+1Xi, others fixed for i = 1, 3, . . . , 2n− 1,

Xi 7→ Xi+1X
−1
i+2Xi,

ψi : Xi+1 7→ Xi+1X
−1
i+2Xi+1Xi+2X

−1
i+1, for i = 1, 3, . . . , 2n− 3

Xi+2 7→ Xi+1X
−1
i+2Xi+2Xi+2X

−1
i+1,

Xi+3 7→ Xi+1X
−1
i+2Xi+3, others fixed

Remark 4.3. In fact, we have Un = Stab(Rn) though formally we do not need the
equality. Due to classical results of Dehn–Nielsen, Stab(Rn) is isomorphic to the
mapping class groups M(n, 0) of the closed orientable surface of genus n. It can be
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checked that the automorphisms ϕi and ψi represent the Humphries generators of
M(n, 0). For details on mapping class groups, see for example [FM11].
Lemma 4.4 ([LMU16]). Given n ∈ N and a homomorphism γ : FX → Q with
supp(γ) ⊂ 〈X1, . . . , X2n〉 there is an element ϕ ∈ Un < Aut(FX ) such that supp(γ ◦
ϕ) ∈ 〈X1, . . . , X5〉. �

Lemma 4.5. Identify the set {γ : FX → Q | supp(γ) ⊂ 〈X1, . . . , Xn〉} with Qn. Then∣∣∣Q2n/Un
∣∣∣ ≤ 90 for all n.

Proof. Note that according to our identification we have Qm ⊂ Qn for m < n.
By Lemma 4.4 every orbit Q2n/Un has a representative in Q5. Let Rn denote a set of
representatives of Q2n/Un in Q5. Since Un ⊂ Un+1 we can assume that Rn+1 ⊂ Rn

for n ≥ 3.
Direct computation shows that |R3| = 90, see Section 6.3. �

Remark 4.6. In fact we have
∣∣Q2n/Un

∣∣ = 90 for all n ≥ 3. To prove this one can
show by direct computation that R3 = R4 = R5 and then show for all θ ∈ Un, n ≥ 6
and γ, γ′ ∈ R3, γ 6= γ′ that γ ◦ θ 6= γ′.
Notation 4.7 (R, reduced constraint). Lemmas 4.4 and 4.5 imply that there is
a set of 90 homomorphisms γ : FX → Q with supp(γ) ⊂ 〈X1, . . . , X5〉 that is a
representative system of the orbits Q2n/Un for each n ≥ 3. Fix such a set R
and for γ : FX → Q with finite support (say X1, . . . , X2n) denote by ϕγ the G-
homomorphism in Un such that γ ◦ ϕγ ∈ R.
The element γ ◦ ϕγ will be called a reduced constraint.
Lemma 4.8. The solvability of a constrained equation (Rng, γ) is equivalent to the
solvability of (Rng, γ ◦ ϕγ).

Proof. If s is a solution for (Rng, γ) then s◦ϕγ is a solution for (Rng, γ◦ϕγ). �
Definition 4.9 (Branch structure [Bar13]). A branch structure for a group G ↪→
G o Sn consists of

(1) a branching subgroup K E G of finite index;
(2) the corresponding quotientQ = G/K and the factor homomorphism π : G→

Q;
(3) a groupQ1 ⊂ QoSn such that 〈〈q1, . . . , qn〉〉σ ∈ Q1 if and only if 〈〈g1, . . . , gn〉〉σ ∈

G for all gi ∈ π−1(qi);
(4) a map ω : Q1 → Q with the following property: if g = 〈〈g1, . . . , gn〉〉σ ∈ G

then ω(〈〈π(g1), . . . , π(gn)〉〉σ) = π(g).
All regular branched groups have a branch structure (see [Bar13, Remark after
Definition 5.1]). We will from now on fix such a structure for G and take the group
K defined in Lemma 4.2 as branching subgroup and denote by Q the factor group
with natural homomorphism π : G→ G/K = Q.
Remark 4.10. The branch structure of G is included in the FR package and can
be computed by the method BranchStructure(GrigorchukGroup).

4.1. Good Pairs. It is not true that for every g ∈ G′ and every constraint
γ there is an n ∈ N such that the constrained equation (Rng, γ) is solvable. For
example (

Rn(ab)2, (γ : Xi 7→ 1 ∀i)
)

is not solvable for any n because (ab)2 /∈ K ′. This motivates the following definition.
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Definition 4.11 (Good pair). Given g ∈ G′ and γ ∈ R, the tuple (g, γ) is called a
good pair if (Rng, γ) is solvable for some n ∈ N.

Lemma 4.12. Denote by

τ : G→ G/K ′ and ρ : G/K ′ → (G/K ′)/(K/K ′) ' G/K

the natural projections.
The pair (g, γ) is a good pair if and only if there is a solution s : FX → G/K ′ for
R3τ(g) with s(Xi) ∈ ρ−1(γ(Xi)).

Proof. If (g, γ) is a good pair and s a solution for (Rng, γ) then s(Xi) ∈ K for
i ≥ 6, so s(Rn) = s(R3) · k′ for some k′ ∈ K ′. Therefore there is a solution τ ◦ s for
R3τ(g) with s(Xi) = γ(Xi).
On the other hand if there is a solution s : FX → G/K ′ for R3τ(g) with for each
s(Xi) ∈ ρ−1(γ(Xi)) then for gi ∈ τ−1(s(Xi)) there is some k′ ∈ K ′ such that
R3(g1, . . . , g6)k′g = 1 and so (g, γ) is a good pair. �

The previous lemma shows that the question whether (g, γ) is a good pair depends
only on the image of g in G/K ′. For q ∈ Q, we call (q, γ) a good pair if (g, γ) is a
good pair for one (and hence all) preimages of q under τ .

Corollary 4.13. The following are equivalent:
(a) K has finite commutator width;
(b) there is an n ∈ N such that (Rng, γ) is solvable for all good pairs (g, γ) with

g ∈ G′ and γ ∈ R.

Proof. (b)⇒(a): if k ∈ K ′ then (k,1) is a good pair, so (Rnk,1) is solvable in
G; and the constraints ensures that it is solvable in K. Therefore the commutator
width of K is at most n.
(a)⇒(b): if (g, γ) is a good pair there is an m′ ∈ N and a solution s for (Rm′g, γ).
As π(s(Xi)) = 1 for all i ≥ 6 there is k ∈ K ′ such that s is a solution for (R3kg, γ).
By (a) there is an m such that all k can be written as product of m commutators
of elements of K and therefore there is a solution for (Rm+3g, γ). We may take
n = m+ 3. �

We study now more carefully the quotients G/K, G/K ′ and G/(K ×K).

Lemma 4.14. Let us write k1 := (ab)2, k2 := 〈〈1, k1〉〉 = (abad)2 and k3 := 〈〈k1,1〉〉 =
(bada)2. Then

G′ =
〈
k1, k2, k3, (ad)2

〉
,

K = 〈k1, k2, k3〉 ,
K ×K = {〈〈k, k′〉〉 | k, k′ ∈ K}

=
〈
k2, k3, [k1, k2], [k1, k3], [k−1

1 , k2], [k−1
1 , k3]

〉
,

K ′ = 〈[k1, k2]〉G

=
〈

[k2, k1], [k1, k
−1
2 ], [k2, k1]k2 , [k−1

1 , k2], [k2, k1]k1 , [k−1
2 , k−1

1 ]
〉{1,a}

Furthermore these groups form a tower with indices

[G : G′] = 8, [G′ : K] = 2, [K : K ×K] = 4, [K ×K : K ′] = 16.



4. THE FIRST GRIGORCHUK GROUP 91

Proof. The chain of indices is shown for example in [BGŠ03] and the gen-
erating sets can be verified using the GAP standard methods NormalClosure and
Index. �

4.2. Succeeding pairs.

Definition 4.15 (Ract, active constraints). We define the activity act(q) of an
element q ∈ Q as the activity of an arbitrary element of π−1(q). This is well defined
since all elements of K have trivial activity.
Consider a constraint γ : FX → Q. Define act(γ) : FX → C2 by X 7→ act(γ(X)).
Denote by Ract the reduced constraints in R that have a nontrivial activity.

Lemma 4.16. For each q ∈ G′/K ′ there is γ ∈ Ract such that (q, γ) is a good pair.

Proof. This is a finite problem which can be checked in GAP with the function
verifyLemmaExistGoodConstraints. For more details see Section 6.1. �

We will now give a procedure to start with a constrained equation say of class On,1
and result with an equations of class O2n−1,1 and a a set of constraints such that
the solvability of any of the later constrained equations implies the solvability of the
original one.
Instead of an infinitely generated free group FX we can restrict ourselves to a finite
set X of order 2n for the variables of the original equation and another set Y for
the variables of the resulting equation. For fixed n we notate the free groups FX , FY
and FY ′ on the following generating sets:

X = {X` | 1 ≤ ` ≤ 2n}, Y = {Y`,i | 1 ≤ ` ≤ 2n, i = 1, 2}, Y ′ = Y \ {Y6,1, Y6,2}.

Denote by S the set {1, a, b, c, d, ab, ad, ba} ⊂ G. We will define for all q ∈ G′/K ′ a
map Γq which for any n ≥ 3 maps a reduced constraint γ ∈ Ract, say γ : FX → Q,
to a set of constraints γ′ : FY → Q with the following property:

(*) There is x ∈ S with γ′(Y6,1) = π(x), such that for all g ∈ G′ with τ(g) =
q the solvability of the constrained equation (R2n−1(g@2)x · g@1, γ′|FY′ )
implies the solvability of (Rng, γ).

We will define this map in several steps and afterwards show that for all good pairs
(q, γ) and all g such that τ(g) = q there is some constraint γ′ ∈ Γq(γ) such that
((g@2)x · g@1, γ′|FY′ ) is a good pair.
For the first step we take the branching structure (K,Q, π,Q1, ω) of the Grigorchuk
group as before and complete the set S to a transversal S′ of G/K. Denote by
rep: Q→ S′ the map such that π(rep(q)) = q.

Γn1 (γ) =
{
γ′ : FY → Q

∣∣∣∣ 〈〈γ′(Y`,1, γ′(Y`,2)〉〉 ∈ ω−1(γ(X`)),
γ′(Yk,i) = 1, 1 ≤ ` ≤ 6, k > 6, i = 1, 2

}
.

For some formal equalities for equations in G we will need two auxiliary free groups
FG = 〈g〉, FH = 〈g1, g2〉, and define homomorphisms

Φγ :
FX ∗ FG → (FY ∗ FH) o C2,

g 7→ 〈〈g1, g2〉〉,
Xi 7→ 〈〈Yi,1, Yi,2〉〉 act(γ(Xi)),

Φ̃γ :
FX ∗G → (FY ∗G) o C2,

g 7→ Ψ(g),
Xi 7→ 〈〈Yi,1, Yi,2〉〉 act(γ(Xi)).

Lemma 4.17. If γ is a constraint with nontrivial activity, and Φγ(Rng) = 〈〈w1, w2〉〉
then Var(w1) ∩Var(w2) 6= ∅.
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Proof. Let ` ∈ 1 . . . 2n be such that γ(X`) has nontrivial activity. Then Rn
contains either a factor [X`, Xk] or [Xk, X`] for another generator Xk 6= X`. Assume
without loss of generality the first case. Let σ be the activity of γ(Xk) then Φγ(Rng)
contains a factor

[〈〈Y`,1, Y`,2〉〉(1, 2), 〈〈Yk,1, Yk,2〉〉σ] =
{
〈〈Y −1

`,2 Y
−1
k,2 Y`,2Yk,1, Y

−1
`,1 Y

−1
k,1 Y`,1Yk,2〉〉 if σ = 1

〈〈Y −1
`,2 Y

−1
k,1 Y`,1Yk,2, Y

−1
`,1 Y

−1
k,2 Y`,2Yk,1〉〉 if σ = (1, 2).

In both cases Yk,1, Yk,2 ∈ Var(w1) ∩Var(w2). �

For q1, q2 ∈ Q and n ≥ 3 ∈ N define

Γq1,q2,n
2 (γ) =

{
γ′ ∈ Γn1 (γ)

∣∣∣∣$ :
FH→Q
g1 7→q1
g2 7→q2

satisfies (γ′ ∗$)2(Φγ(Rng)) = 〈〈1,1〉〉
}
.

For γ ∈ Ract denote by v and w the elements of F{Y1,1,...,Y6,2} such that Φγ(R3g) =
〈〈v, w〉〉〈〈g1, g2〉〉. Then

Φγ(Rn(X∗)g) = 〈〈v, w〉〉〈〈Rn−3(Y7,1, . . . , Y2n,1)g1, Rn−3(Y7,2, . . . , Y2n,2)g2〉〉.

By Lemma 4.17 there is Y0 ∈ Y ∪ Y−1 such that v = v1Y0v2 and w = w1Y
−1

0 w2.
Then the FH-homomorphism

`Y0,n :
FY ∗ FH → FY ∗ FH,

Y 7→
{
Y if Y 6= Y0

w2Rn−3(Y7,2, . . . , Y2n,2)g2w1 if Y = Y0

maps the second coordinate of Φγ(Rn(X∗)g) to 1 and the first coordinate to an
equation

E = v1w2Rn−3(Y7,2, . . . , Y2n,2)g2w1v2Rn−3(Y7,1, . . . , Y2n,1)g1.

For γ′ ∈ Γq1,q2,n
2 (γ) we have γ′(Y0) = (γ′ ∗$)(w2g2w1) = (γ′ ∗$)(`Y0,n(Y0)) and

hence
(1) γ′ = (γ′ ∗$) ◦ `Y0,n for all γ′ ∈ Γq1,q2,n

2 (γ), $ : gi 7→ qi, Y0.

Consider the automorphisms

ψ1 :

FY ∗ FH → FY ∗ FH
Yk,1 7→ Y

g−1
1

k,1

Yk,2 7→ Y
(g2w1v1g1)−1

k,2
Yk,j 7→ Yk,j ,

ψ2 :

FY ∗ FH → FY ∗ FH
Yk,1 7→ Y

g
Y6,1
2 g1

k,1 for k > 6

Yk,2 7→ Y
g
Y6,1
2 g1

k,2 for k > 6
Yk,j 7→ Yk,j for k ≤ 6, j = 1, 2

ψ3 :

FY ∗ FH → FY ∗ FH
Y2k,1 7→ Yn+k,2 for k > 3

Y2k−1,1 7→ Yn+k,1 for k > 3
Y2k,2 7→ Y3+k,2 for k > 3

Y2k−1,2 7→ Y3+k,1 for k > 3
Yk,` 7→ Yk,` for k ≤ 6, ` = 1, 2

and note that for nfγ,n,Y0 := ψ3 ◦ ψ2 ◦ nfv1w2g2w1v2g1 ◦ ψ1 we have

nfγ,n,Y0(E) = R2n−1(Y1,1, Y1,2, . . . ,�
�Y6,1,�

�Y6,2, . . . , Y2n,2)gY6,1
2 g1.

This leads to the following definition.

Γq1,q2,n,Y0
3 (γ) =

{
γ′ ◦ nf−1

γ,n,Y0
: FY → Q

∣∣∣γ′ ∈ Γq1,q2,n
2

}
.
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Note that nfγ,n,Y0 fixes the sets {Yk,` | k > 6, ` = 1, 2} and {Yk,` | k ≤ 6, ` = 1, 2}
and hence for k > 6 we have γ′′(Yk,`) = 1 for all γ′′ ∈ Γq1,q2,n,Y0

3 (γ) independently of
qi, n, Y0 and γ and therefore we can naturally identify the mappings Γq1,q2,n,Y0

3 and
Γq1,q2,3,Y0

3 for every n ≥ 3. Note further that nfγ,n,Y0(Y0) = Y6,2.
Given g ∈ G′, gi = g@i for i = 1, 2, an active constraint γ ∈ Ract and γ′′ ∈
Γπ(g1),π(g1),n,Y0

3 (γ) then a solution for the the constrained equation

E ′ = (R2n−1(Y∗,∗)g
rep(γ′′(Y6,1))
2 g1, γ

′′)
can be extended by the map Y6,1 7→ rep(γ′′(Y6,1)) to a solution s′ of the equa-
tion (R2n−1(Y∗,∗)g

Y6,1
2 g1, γ

′′). Notate the epimorphism iH : FH → G, gk 7→ gk and
note that since nfγ,n,Y0 is an FH-homomorphism n := (1 ∗ iH) ◦ nfγ,n,Y0 maps E to
R2n−1(Y∗,∗)g

Y6,1
2 g1. Moreover by (1) we have that γ′ := γ′′ ◦ n ∈ Γq1,q2,n

2 (γ).
Hence the map

s : Yi,j 7→
{
w2g2w1 if i, j = 6, 2
s′ ◦ n(Yi,j) otherwise

is a solution for
(
(1 ∗ iH) ◦ Φγ(Rng), γ′) and thus also for

(
Φ̃γ(Rng), γ′

)
. By the

definition of ω the element ti := 〈〈s(Yi,1), s(Yi,2)〉〉 act(γ(Xi)) belongs to G for all i.
Moreover since γ′ ∈ Γn1 (γ) we have π(ti) = γ(Xi). Thus the mapping Xi 7→ ti is a
solution for (Rng, γ).
The map Γq1,q2,n,Y0

3 does depend on the choice of the variable Y0. To remove this
dependency we observe that the set of all variables Y0 ∈ Var(v) ∩ Var(w) does not
depend on n and define

Γq1,q2
4 (γ) =

⋃
Y0∈Var(v)∩Var(w)

Γq1,q2,3,Y0
3 (γ).

Note that q1, q2 ∈ Q are determined by q ∈ G′/K ′ in the sense that there is a map
@̄i : G′/K ′ → Q such that if τ(g) = q and gi = g@i then qi = q@̄i. This map @̄i is
well defined since k′@i ∈ K for all k′ ∈ K ′. Thus we can write Γq1,q2

4 (γ) as Γq4(γ),
and filter out those constraints that do not fulfill the requested properties; we finally
define

Γq(γ) :=
{
γ′ ∈ Γq4(γ)

∣∣act(γ′) 6= 1, γ′(Y6,1) ∈ π(S)
}
.(2)

Note that (*) holds automatically by construction.

Proposition 4.18. For each good pair (q, γ) with q ∈ G′/K ′ and γ ∈ Ract the
set Γq(γ) contains some constraint γ′ such that for all g with τ(g) = q the pair(
(g@2)rep(γ′(Y6,1)) · g@1, γ′|FY′

)
is a good pair.

For the proof of this proposition we need an auxiliary lemma:

Lemma 4.19. The map

p̄h :
G′/K ′ → G′/K ×K
gK ′ 7→

(
(g@2)h · g@1

)
K ×K

is well defined.

Proof. We need to show that k@i ∈ K×K for i = 1, 2 and k ∈ K ′. Remember
the generators k1 = (ab)2, k2 = (abad)2. Then

[k1, k2] = bba(dba)2bab(bad)2 = 〈〈1, cabab〉〉 = 〈〈1, 〈〈1, dabac〉〉〉〉 = 〈〈1, 〈〈1, k−1
2 k1〉〉〉〉.
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So both states of [k1, k2] are in K × K. Now take an arbitrary element k ∈ K ′.
There is n ∈ N, ε ∈ {1,−1} and gi ∈ G such that k =

∏n
j=1[k1, k2]εgj and therefore

k@i =
n∏
j=1

(([k1, k2]εgj )@i) =
n∏
j=1

(
([k1, k2])@ig

−1
j

)εgj@i
g−1
j

∈ K ×K

Then for k ∈ K ′ we have
ph(gk) = ((gk)@2)h · (gk)@1 = (g@2)h · (k@2)h · g@1 · k@1 ∈ ((g@2)h · g@1)K ×K.

�

Proof of Proposition 4.18. In the construction above it is clear that the
sets Γq,Y0

3 and hence Γq,Y0
4 are nonempty. For the finitely many γ ∈ Ract checking

whether some of the finitely many γ′ ∈ Γq4(γ) fulfill γ′(Y6,1) ∈ π(S) and act(γ′) 6= 1

(i.e. γ′ ∈ Γq(γ)) is implemented in the procedure below.
Define for h ∈ G maps ph : G→ G by g 7→ (g@2)h · g@1. These maps are in general
not homomorphisms but by Lemma 3.2 for g ∈ G′ we have ph(g) ∈ G′ for all h ∈ G.
By Lemma 4.19 we can define the map p̄h : G′/K ′ → G′/(K ×K) and the natural
homomorphism

ρ′ : G′/K ′ →
(
G′/K ′

)
/
(
K ×K/K ′

)
' G′/(K ×K)

and now we only need to show that there is a γ′ ∈ Γq(γ) such that all preimages
of p̄rep(γ′(Y6,1))(q) under ρ′ form good pairs with γ′|FY′ . In formulas with P the
predicate of being a good pair what needs to be checked is:
∀q ∈ G′/K ′ ∀γ ∈ Ract ∃γ′ ∈ Γq(γ) ∀r ∈ ρ′−1(p̄rep(γ′(Y6,1))(q)) : P(q, γ)⇒ P(r, γ′|FY′ ).
This last formula quantifies only over finite sets, and could be implemented. It can
be checked in GAP with the function verifyPropExistsSuccessor. �

Definition 4.20 (Succeding pair). For each q ∈ G′/K ′ and γ ∈ Ract such that
(q, γ) is a good pair fix a constraint γ′ ∈ Γq(γ) and an element x = rep(γ′(Y6,1)) ∈ S
with the property of Proposition 4.18.
By Lemma 4.8 we can replace γ′|FY′ by a reduced constraint γ′r. For a good pair
(g, γ) ∈ G′ × Ract the succeeding pair is defined as ((g@2)xg@1, γ′r). Moreover by
applying this iteratively we get the succeeding sequence (gk, γk) of (g, γ): (g0, γ0) =
(g, γ) and (gk+1, γk+1) is the succeding pair of (gk, γk).
The following lemma illustrates the use of the construction.
Lemma 4.21. Let (gk, γk) be the succeeding sequence of a good pair (g, γ). If (gi, γi) =
(gj , γj) for some distinct i, j then the equation (Rng, γ) is solvable for all n ≥ 3.

Proof. By (*) for any i, j with i < j and any n ≥ 3 there exists n′ > n such
that solvability of (Rn′gj , γj) implies solvability of (Rngi, γi). If (gi, γi) = (gj , γj)
then n′ can be taken arbitrarily large. If (g, γ) is a good pair then (gi, γi) is also
a good pair by construction. We deduce the solvability of (Rngi, γi) and hence the
solvability of (Rng, γ). �

4.3. Product of 3 commutators. We will prove that every element g ∈ G′
is a product of three commutators by proving that all succeeding sequences (gk, γk)
as defined after Proposition 4.18 loop after finitely many steps. For this purpose
remember the map px : g 7→ (g@2)xg@1 from the proof of Proposition 4.18. We will
show that for each g ∈ G′ the sequence of sets

Sucg1 = {g}, Sucgn = {px(h) | h ∈ Sucgn−1, x ∈ S}
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stabilizes in a finite set.
In [Bar98] there is a choice of weights on generators which result in a length on G
with good properties.

Lemma 4.22 ([Bar98]). Let η ≈ 0.811 be the real root of x3 +x2 +x− 2 and set the
weights

ω(a) = 1− η3 ω(c) = 1− η2

ω(b) = η3 ω(d) = 1− η

then

η(ω(b) + ω(a)) = ω(c) + ω(a)
η(ω(c) + ω(a)) = ω(d) + ω(a)
η(ω(d) + ω(a)) = ω(b). �

The next lemma is a small variation of a lemma in [Bar98].

Lemma 4.23. Denote by ∂ω the length on G induced by the weight ω. Then there
are constants C ∈ N, δ < 1 such that for all x ∈ S, g ∈ G with ∂ω(g) > C it holds
∂ω(px(g)) ≤ δ∂ω(g).

Corollary 4.24. The sequences of sets

Sucg1 = {g}, Sucgn = {px(h) | h ∈ Sucgn−1, x ∈ S}

stabilizes at a finite step for all g ∈ G.

Proof of Lemma (see [Bar98, Proposition 5]). Each element g ∈ G can be
written in a word of minimal length of the form g = aεx1ax2a . . . xna

ζ where xi ∈
{b, c, d} and ε, ζ ∈ {0, 1}. Denote by nb, nc, nd the number of occurrences of b, c, d
accordingly. Then

∂ω(g) = (n− 1 + ε+ ζ)ω(a) + nbω(b) + ncω(c) + ndω(d)
∂ω(px(g)) ≤ (nb + nc)ω(a) + nbω(c) + ncω(d) + ndω(b) + 2∂ω(x)

= η ((nb + nc + nd)ω(a) + nbω(b) + ncω(c) + ndω(d)) + 2∂ω(x)
= η(∂ω(g) + (1− ε− ζ)ω(a)) + 2∂ω(x)
≤ η(∂ω(g) + ω(a)) + 2(ω(a) + ω(b))
= η(∂ω(g) + ω(a)) + 2.

Thus the length of px(g) growths with a linear factor smaller than 1 in terms of the
length of g. Therefore the claim holds. For instance one could take δ = 0.86 and
C = 50 or δ = 0.96 and C = 16. �

This completes the proof of the following proposition:

Proposition 4.25. If n ≥ 3 and (g, γ) is a good pair with active constraint γ with
supp(γ) ⊂ {X1, . . . , X2n} then the constrained equation (Rn(X1, . . . , X2n)g, γ) is
solvable. �

Corollary 4.26. The Grigorchuk group G has commutator width at most 3.

Proof. This is a direct consequence of the proposition and Lemma 4.16. �
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4.4. Product of 2 commutators. The case of products of two commutators
can be reduced to the case of three commutators by using the same method as
before.
We can compute the orbits of Q4/U2 and take a representative system denoted by
R4. It turns out that there are 86 orbits and we can check that there are again
enough active constraints:

Lemma 4.27. For each q ∈ G′/K ′ there is γ ∈ R4
act such that (q, γ) is a good pair.

Proof. This can be checked in GAP with the function
verifyLemmaExistGoodGammasForRed4. �

To formulate an analog of Proposition 4.18 we literally transfer the definition of
the function Γq to the case n = 2. Denote the new function Γq,2. For a constraint
γ : F{X1,...,X4} → Q with nontrivial activity it produces a set Γq,2(γ) of constraints
γ′ : F{Y1,1,...,Y4,2} → Q.

Proposition 4.28. For each good pair (q, γ) with q ∈ G′/K ′ and γ ∈ R4
act the set

Γq,2(γ) contains some active constraint γ′ such that for all g with τ(g) = q the pair(
(g@2)rep(γ′(Y4,1)) · g@1, γ′|F{Y1,1,...Y3,2}

)
is a good pair.

Proof. The proof is the same as for Proposition 4.18. The corresponding for-
mula which needs to be checked is

∀q ∈ G′/K ′ ∀γ ∈ R4
act ∃γ′ ∈ Γq(γ) ∀r ∈ ρ′−1(p̄rep(γ′(Y4,1))(q)) : P(q, γ)⇒ P(r, γ′).

This can be checked in GAP with the function verifyPropExistsSuccessor. �

The resulting succeeding pairs are now equations of genus 3 with an active constraint.
Those are already shown to be solvable by Proposition 4.25. Hence we have the
following corollary which improves Proposition 4.25:

Corollary 4.29. If n ≥ 2 and (g, γ) is a good pair with active constraint γ with
supp(γ) ⊂ {X1, . . . , Xn} then the constrained equation (Rn(X1, . . . , X2n)g, γ) is solv-
able.

Together with Lemma 4.27 this proves the first part of Theorem A.

Corollary 4.30. K has commutator width at most 2.

Proof. To show that K has commutator width at most 2 it is sufficient to
show that the constrained equations (R2g,1) have solutions for all g ∈ K ′. Since
1 has trivial activity one cannot directly apply Proposition 4.25. However one can
check that all pairs (h, γ1), (f, γ2) such that g = 〈〈h, f〉〉 and γ1 = (1,1, π(bad),1),
γ2 = (1,1,1, π(ca)) are good pairs with active constraints and hence admit solutions
s1, s2 : F4 → G.
We can then define the map s : F4 → G,Xi 7→ 〈〈s1(Xi), s2(Xi)〉〉; it is a solution for
R2g and s(Xi) ∈ K for all i = 1, . . . , 4. Therefore the commutator width of K is at
most 2.
This can be checked in GAP with the function verifyCorollaryFiniteCWK. �

4.5. Not every element is a commutator. The procedure used to prove
that every element is a product of two commutators can not be used to prove that
every element is a commutator since for equations of genus 1 the genus does not
increase by passing to a succeeding pair.
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In fact not every element g ∈ G′ is a commutator. This can be seen by considering
finite quotients. A commutator in the group would be also a commutator in the
quotient group.
We will define an epimorphism to a finite group with commutator width 2.
Analogously to the construction of Ψ: Aut(Tn) → Aut(Tn) o Sn we can define a
homomorphism Ψn : G→ Go2n (G/StabG(n)) by mapping an element g to its actions
on the subtrees with root in level n and the activity on th n-th level of the tree.
Consider the following epimorphism:

germ:
G→ 〈b, c, d〉 ' C2 × C2,
a 7→ 1,

b, c, d 7→ b, c, d.

It extends to an epimorphism germn : G o2nG/ StabG(n)→ germ(G) o2nG/ StabG(n).
We will call the image germ(G) =: G0 the 0-th germgroup and furthermore Gn :=
germn ◦Ψn(G) the n-th germgroup.
The 4-th germgroup of the Grigorchuk group has order 226 and has commutator
width 2. If the FR package is present this group can be constructed in GAP with
the following command.

gap> Range(EpimorphismGermGroup(GrigorchukGroup,4))

There is an element in the commutator subgroup of this germgroup which is not a
commutator. This element is part of the precomputed data and can be accessed in
GAP as PCD.nonCommutatorGermGroup4. For the computation of this element we
used the character table of G4. For more details see Section 6.2.
A corresponding preimage in G with a minimal number of states is the automa-
ton shown in Figure 13. The construction of the element can be found in the file
gap/precomputeNonCommutator.g. With the representation in standard generators
it is easy to show using the homomorphism π on the generators that this element is
even a member of K. This finishes the proof of Theorem A.

4.6. Bounded conjugacy width. In [Fin14] it is proven that G has finite
bounded conjugacy width. Here we give an explicit bound on this width.

Proposition 4.31. Let g be in G′. Then the equation
aX1aX2aX3aX4aX5ag = 1

is solvable in G.

Proof. We need to solve the constrained equation (E = aX1aX2aX3aX4aX5ag, γ)
for some constraint γ. Independently of the chosen constraint, replacement of the
variable Xi by 〈〈Yi, Zi〉〉 act(γ(Xi)) leads after normalization to an equivalent equa-
tion R2(g@2)(g@1). Similarly to the construction of Γq in the previous section, one
can find for each q ∈ G′/K ′ a constraint γ such that γ(E1∗π) = 1 and γ′ ∈ Γ1(γ) such
that for all g ∈ π−1(q) the pairs (g@2g@1, γ′) are good pairs and γ′ is an active con-
straint. Therefore the constrained equation (R2(g@2)(g@1), γ′) is solvable by Corol-
lary 4.29 for each g ∈ G′ and hence the equation aX1aX2aX3aX4aX5ag. This can be
checked in GAP with the function verifyExistGoodConjugacyConstraints. �

Lemma 4.32. There exits an element g ∈ G′ such that the equation
aX1aX2aX3ag = 1

is not solvable.
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Figure 13. Element of the derived subgroup of the Grigorchuk
group which is not a commutator. In standard generators:
(acabacad)3acab(ac)2(acabacad)2(acab)3acadacab(ac)2

(acabacad)2(acabacadacab(ac)3abacad(acab)2)5acabacadacab(ac)2

(acabacad)2(acabacadac)2(abac)3adacab(ac)2(acabacad)3

acab(ac)2(acab(ac)3abacad)2acabacad((acabacadacab(ac)2)2

acabacad(acab)3acadacab(ac)2)2((acabacad)3acab)2

acab(acabacad)2acab(ac)2(acabacad)3acab(ac)3aba
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Proof. As before independently of the activities of a possible constraint γ and of
the element g ∈ G′ the normalform of Φ̃γ(aX1aX2aX3ag) turns out to be R1(g@2)g@1.
So all there is to prove is that there is an element h ∈ K where the products of states
h@2 · h@1 is not a commutator.
The element g displayed in Figure 13 provides such an element. It can easily be ver-
ified that 〈〈π(cag), π(ac)〉〉 ∈ Q1 and ω(〈〈π(cag), π(ac)〉〉) = 1. Thus by the properties
of the branch structure we have 〈〈π(cag), π(ac)〉〉 ∈ K < G′. �

This finishes the proof of Corollary B.

Definition 4.33 (Conjugacy width [Fin14]). The conjugacy width of a group G
with respect to a generating set S is the smallest number N ∈ N such that every
element g ∈ G is a product of at most N conjugates of generators s ∈ S.

Corollary 4.34. The Grigorchuk group G with generating set {a, b, c, d} has con-
jugacy width at most 8.

Proof. The following set T is a transversal of G/G′:

T = {1, a, daa, da, b, aba, cad, bda}.

Therefore, every element g ∈ G can be written as g = th with t ∈ T and h ∈ G′. As
every element of G′ is a product of at most 6 conjugates of a this proves the claim.

�

5. Proof of Theorem C

We will prove the statement first for finite-index subgroups.

Proposition 5.1. All finite-index subgroups H ≤ G have finite commutator width.

Proof. Note that from Corollary 4.30 it follows that K ×K and furthermore
K×n have commutator width 2.
Let H be a subgroup of finite index. Since G has the congruence subgroup property
([BG02]) we can find a nontrivial normal subgroup N = StabG(m) < H for some
m ∈ N. Furthermore since K is inactive we have

K < StabG(1), K ×K < StabG(2), K×4 < StabG(3).

Furthermore we have StabG(n) = StabG(3)×2n−3 for n ≥ 4 and hence for every
subgroup H of finite index there is an n such that K×2n ≤ H.
Since K ′ has finite index in K by Lemma 4.14, the index in [H,H] of [K×2n ,K×2n ]
is finite. Taking a transversal T of [H,H]/[K×2n ,K×2n ] we can find m ∈ N such
that every element in T is a product of at most m commutators in H. We can thus
write each element h ∈ [H,H] as product kt with k ∈ K×2n , t ∈ T and thus as a
product of at most 2 +m commutators. �

Proposition 5.2. All finitely generated subgroups H ≤ G are of finite commutator
width.

Proof. Every infinite finitely generated subgroup of G is abstractly commen-
surable to G, see [GW03, Theorem 1].
This, by definition, means that every infinite finitely generated subgroup H ≤ G
contains a finite-index subgroup which is isomorphic to a finite-index subgroup of G
and hence by Proposition 5.1 has finite commutator width. �
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To show that there cannot be a bound on the commutator width of subgroups we
need some auxiliary results. They are well-known, but since we could not find an
original reference we will sketch their proofs here.

Proposition 5.3.
(1) For all n ∈ N there is a finite 2-group of commutator width at least n.
(2) K contains every finite 2-group as a subgroup.
(3) Every finite 2-group is a quotient of two finite-index subgroups of G.

Proof.
(1) Consider the groups Γn = Fn/〈γ3(Fn), x2

1, . . . , x
2
n〉. These are extensions of

Cn2 by C
(n2)
2 and are class 2-nilpotent 2-groups. The derived subgroup is

hence of order 2(n2). Let T be a transversal of Γn/Γ′n. Thus T is of order
2n and for x, y ∈ Γn there are t, s ∈ T and x′, y′ ∈ Γ′ such that every
commutator [x, y] = [tx′, sy′] = [t, s]. Therefore there are at most

(2n
2
)

commutators.
This means there are at most

(2n
2
)m ≤ 2(2n−1)m products of m commu-

tators but the size of Γ′n is 2(n2) ≥ 2
n2
4 and hence the commutator width of

Γ8m is at least m.
(2) K contains for each n the n-fold iterated wreath product Wn(C2) = C2 o
· · · o C2. This can be shown by finding finitely many vertices of the tree
T2 which define a (spaced out) copy of the finite binary rooted tree with n
levels Tn2 , and finding elements ki ∈ K such that 〈ki〉 acts on Tn2 like the
full group of automorphisms Aut(Tn2 ) 'Wn(C2).

Then since Wn(C2) is a Sylow 2-subgroup of S2n every finite 2-group is
a subgroup of Wn(C2) for some n, and hence a subgroup of K.

(3) Consider again some the vertices of T2 which define a copy of the finite tree
Tn2 on which a subgroup of K acts like Wn(C2). If we take m large enough
such that all these vertices are above the m-th level we can find a copy of
Wn(C2) inside G/ StabG(m). �

In the following theorem we summarize our results for the commutator width of the
Grigorchuk group.

Theorem 5.4.
(1) G and its branching subgroup K have commutator width 2.
(2) All finitely generated subgroups H ≤ G have finite commutator width.
(3) The commutator width of subgroups is unbounded even among finite-index

subgroups.
(4) There is a subgroup of G with infinite commutator width.

Proof. Statements (1) and (2) are proven in Theorem A and Proposition 5.2.
For every n ∈ N we can find two groups H1, H2 of finite index in G such that H1/H2
has commutator width at least n. Then H1 has commutator width at least n as well
and thus the commutator width of finite-index subgroups can not be bounded.
For the last claim, consider a sequence (Hi) of subgroups of K such that Hi has
commutator width at least i. Let ψ0 : K → K × K ≤ K be the map k 7→ 〈〈k,1〉〉
and for i ≥ 1 let ψi : K → K × K ≤ K be the map k 7→ 〈〈1, ψi−1(k)〉〉. Then
H := 〈ψi(Hi) : i ∈ N〉 is a subgroup of K and hence of G and is isomorphic to the
restricted direct product of the Hi, so it has infinite width. �
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6. Implementation in GAP

6.1. Usage of the attached files. Typing the command gap verify.g in the
main directory of the archive will produce as output a list of functions with their
return value. All these functions should return true.
This approach uses precomputed data which are also in the archive, and is very fast.
Furthermore, these data can be recomputed if a sufficiently new version of GAP and
some packages are present. For details see Section 6.2.
This is what the functions check:

verifyLemma90orbits: This function verifies that there are indeed 90 orbits
of U3 on Q6 as claimed in Lemma 4.5.

verifyLemma86orbits: Analogously to the previous function this one verifies
that there are 86 orbits of U2 on Q4.

verifyLemmaExistGoodConstraints: This verifies that for each q ∈ G′/K ′
there is some γ ∈ Ract such that (q, γ) forms a good pair. This is claimed
in Lemma 4.16.

verifyLemmaExistGoodConstraints4: This is a sharper version of the pre-
vious function. It checks that the above statement is already true if one
replaces Ract by R4

act as claimed in Lemma 4.27.
verifyPropExistsSuccessor: This verifies that for each good pair (q, γ) ∈
G′/K ′ × (Ract ∪R4

act) there exists a γ′ ∈ Γq(γ) such that all preimages of
p̄rep(Y6,1)(q) under the map ρ′ form good pairs with the constraint γ′. This
is needed in the proof of Proposition 4.18 and Proposition 4.28.

verifyCorollaryFiniteCWK: Corollary 4.30 needs the existence of succeed-
ing good pairs of the pair (1,1) ∈ K ′/K ′ ×R4. This function verifies this
existence.

verifyExistGoodConjugacyConstraints: This verifies that for the equation
aX1aX2aX3aX4aX5a there are constraints γ that admit good succeeding
pairs. This is needed in the proof of Proposition 4.31.

verifyGermGroup4hasCW: This function verifies the existence of an element in
the derived subgroup of the 4-th level germgroup that is not a commutator.

6.2. Precomputed data. In the interactive gap shell started by gap verify.g
the precomputed data is read from some files in gap/PCD/ and stored in a record
PCD.
One can use the function RedoPrecomputation with one argument. In each case the
result is written to one ore multiple files and will override the original precomputed
data. The argument is a string and can be one of the following:

“orbits”: This will compute the 90 orbits of Aut(F6)/U3 and the 86 orbits
of Aut(F4)/U2. This computation will take about 12 hours on an ordinary
machine and has no progress bar.

“goodpairs”: First this will compute for each constraint γ ∈ R ∪R4 the set
of all q ∈ G′/K ′ such that (q, γ) is a good pair.

Then it computes for each good pair (q, γ) one γ′ ∈ Γq(γ) with decorated
X = Y6,1 orX = Y4,1 ∈ S as defined in equation (2) which fulfills depending
whether γ ∈ R4

act or γ ∈ Ract either Proposition 4.18 or Proposition 4.28.
This computation will take about half an hour on ordinary machines and
is equipped with a progress bar.

Afterwards the succeeding pairs of (1,1) which are needed for Corol-
lary 4.30 are computed.
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“conjugacywidth”: Denote by Eg the equation aX1aX2aX3aX4aX5ag. For
each τ(g) = q ∈ G′/K ′ this will compute a constraint γ : F5 → Q for the
equations Eg and a constraint γ′ : F4 → Q such that (γ ∗ π)(Eg) = 1,

E ′g := nf(Φ̃γ(Eg)) = [X1, X2][X3, X4](g@2)(g@1),

and (E ′g, γ′) is a good pair for all g with τ(g) = q.
The computation will take about one hour and is equipped with a

progress bar.
“charactertable”: This will compute the character table of the 4-th level

germgroup and the set of irreducible characters. As the germgroup is quite
large, this will take about 3 hours. There is no kind of progress bar.

“noncommutator”: Inside the 4-th level germgroup there is an element which
is not a commutator but in the commutator subgroup. Since this group is
finite we could in principle search by brute force for a commutator. Luckily
there are only 3106 irreducible characters in this group and therefore we
can use Burnside’s formula (1.1). The search will almost immediately give
a result. Most of the computation time is used to assert that the found
element is indeed not a commutator.

The element is then lifted to its preimage in G with a minimal number
of states.

Checking the assertion will take approximately 3 hours and is equipped
with a progress bar.

“all”: This will do all of the above one after another.
To recompute the orbits or the charactertable GAP should be started with the -o
flag to provide enough memory for the computation. For example start GAP by
gap -o 8G verify.g

6.3. Implementation details.
6.3.1. Reduced Constraints. The proof of Lemma 4.4 in [LMU16] provides a

constructive method to reduce any constraint to one with support only in the first
five variables. We have implemented this in the function ReducedConstraint in the
file gap/functionsFR.g.
It uses that the quotient Q = G/K is a polycyclic group with

C0 = Q = 〈π(a), π(b), π(d)〉 , C1 = 〈π(a), π(d)〉 , C2 = 〈π(ad)〉 .

We take the generators of Un as given in the proof of Lemma 4.5 plus additional
ones which switch two neighboring pairs:

si :

Xi 7→ Xi+2
Xi+1 7→ Xi+3

Xi+2 7→ X
[Xi+2,Xi+3]
i

Xi+3 7→ X
[Xi+2,Xi+3]
i+1

for i = 1, 3, . . . , 2n− 3.

It can easily be checked, that these are also contained in Un. These elements are
used to reduce a given constraint in a form of a list with entries in Q to a list where
all entries with index larger then 5 are trivial. This constraint can then be further
reduced by a lookup table for the orbits of Aut(F6)/U3.
If the file verify.g is loaded in a GAP environment with the FR package available
the function ReducedConstraint can be used as an alias to get reduced constraints.
For example:
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gap> f1 := Q.3;
gap> gamma:= [f1,f1,f1,f1,f1,f1];
gap> constr := ReducedConstraint(gamma);;
gap> Print(constr.constraint);

[ <id>, <id>, <id>, <id> , f1, <id>]
6.3.2. Good pairs. For g ∈ G and a constraint γ the question whether (g, γ) is a

good pair depends only on the image of g in G/K ′ and the representative of γ ∈ R.
(See Section 4.1.) So this is already a finite problem.
Given a given constraint γ, to obtain all q which form a good pair we can enumerate
all possible commutators [r1, r2][r3, r4][r5, r6] with ri ∈ ρ−1(γ(Xi)). Since |K/K ′| =
64, it would take too much time to consider all combinations at once; thus the
possible values for [r1, r2] are computed and in a second step triple products of
those elements are enumerated. This is implemented in the function goodPairs in
the file gap/functions.g.

6.3.3. Successors. The key ingredient for the proof of Theorem A is Proposi-
tion 4.18. The main computational effort there is to compute the sets Γq(γ) and
find good pairs inside them.
This is implemented exactly as explained in the construction of the map Γq in the
function GetSuccessor in the file gap/precomputeGoodPairs.g. Given an element
q ∈ G′/K ′ and an active constraint γ this function returns a tuple (γ′, X) with
γ ∈ R and X the decorated element Y6,1 or > Y4,1 depending if γ ∈ R4 or γ ∈ R.
Given an inactive constraint γ it returns a pair of constraints γ1, γ2 such that both
have nontrivial activity and with ω the map from the branch structure it holds:
ω(〈〈γ1(Xi), γ2(Xi)〉〉) = γ(Xi).
If the FR package is available the function GetSuccessorLookup can be used to
explore the successors of elements. It returns the succeeding pair. For example

gap> f4 := Q.1;
gap> gamma:= [f4,f4,f4,f4,f4,f4];;
gap> g := (a*b)^8;;
gap> IsGoodPair(g,gamma);

true

gap> suc := GetSuccessorLookup(g,gamma);;
gap> suc[1];

<Trivial Mealy element on alphabet [ 1 .. 2 ]>

gap> suc[2].constraint;

[ <id>, <id>, <id>, <id>, f1*f3, <id> ]
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Copyright
© 2016 by Thorsten Groth

Equations package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
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Chapter 1

Installation

The package is installed by unpacking the archive in the pkg/ directory of your GAP installation.
Example

gap> LoadPackage("equations");
true

110
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Chapter 2

Example Session

We show some examples for using this package. The used methods are described in the latter chapter.

2.1 Normal form of equations

Let us consider some equations over the alternating group A5. We start with defining the group in
which our equations live in:

Example
gap> LoadPackage("equations");
true
gap> A5 := AlternatingGroup(5);
Alt( [ 1 .. 5 ] )
gap> EqG := EquationGroup(A5);
<free product group>

Now we enter the equation E = X2(1,2,3)X−1
1 X−1

2 (1,3)(4,5)X3X1X−1
3 .

Example
gap> g := (1,2,3);;h := (1,3)(4,5);;
gap> vars := VariablesOfEquationGroup(EqG);
[ FreeProductElm([ X1 ]), FreeProductElm([ X2 ]), ... ]
gap> x1 := vars[1];; x2 := vars[2];; x3 := vars[3];;
gap> eq := Equation(x2*g*x1^-1*x2^-1*h*x3*x1*x3^-1);
Equation in [ X1, X2, X3 ]
gap> Print(eq);
FreeProductElm([ X2, (1,2,3), X1^-1*X2^-1, (1,3)(4,5), X3*X1*X3^-1 ])

Let us see what the normal form of this equation is:
Example

gap> Genus(eq);
1
gap> nf := NormalFormOfEquation(eq);
Equation in [ X1, X2, X3 ]
gap> Print(nf);
FreeProductElm([ X1^-1*X2^-1*X1*X2*X3^-1, (1,2,3), X3, (1,3)(4,5) ])

111
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We know a solution for this normal form: s:X1 7→ (1,2,4), X2 7→ (1,2,5), X3 7→ ().
Example

gap> s:=EquationEvaluation(EqG,EquationVariables(eq),[(1,2,4),(1,2,5),()]);
[ X1, X2, X3 ]"->"[ (1,2,4), (1,2,5), () ]
gap> IsSolution(s,nf);
true
gap> nf^s;
()
gap> IsSolution(s,eq);
false
gap> eq^s;
(1,2,4,3,5)

Let us compute the solution for E.
Example

gap> sE:= NormalizingHomomorphism(nf)*s;
CompositionMapping( [ X1, X2, X3 ]->[ (1,2,4), (1,2,5), () ],
CompositionMapping( [ X3, X2 ]->[ X2, X3 ], CompositionMapping(

CompositionMapping( CompositionMapping( [ X2 ]->[ (X2) ], [ X2 ]->[ X2^-1 ] ),
[ X3, X1 ]->[ <Free product element of length 5>,

<Free product element of length 3> ] ), CompositionMapping( [ X1 ]->[ X1 ],
[ X3 ]->[ X3^-1 ] ) ) ) )
gap> IsSolution(sE,eq);
true;
gap> List(EquationVariables(eq),x->ImageElm(sE,x));
[ (2,3,4), (), (1,2,5,4,3) ]

Thus sE :X1 7→ (2,3,4), X2 7→ (), X3 7→ (1,2,5,4,3) is a solution for the equaition E

2.2 Decomposition

Let us now study equations over groups acting on a rooted tree without having any explicitly given
group in mind. Say G≤Aut({1,2}∗) and g,h ∈G and assume we want to see how the decomposition
Φγ of the equation E = [X ,Y ]gZh looks like. This decomposition will depend on the activity of g and
on γact.

Example
gap> F := FreeGroup("X","Y","Z");; x:=F.1; y:=F.2; z:=F.3;
X
Y
Z
gap> G := FreeGroup("g","h");; g:=G.1; h := G.2;
g
h
gap> S2 := [(),(1,2)];
gap> EqG := EquationGroup(G,F);;
gap> eq := Equation(EqG,[Comm(x,y)*z^-1,g,z,h]);
Equation in [ X, Y, Z ]
gap> PhiE := [];
[ ]
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gap> for actg in S2 do
> DeqG := DecompositionEquationGroup(EqG,2,[actg,()]);;
> for gamma_act in Cartesian([S2,S2,S2]) do
> Add(PhiE,DecompositionEquation(DeqG,eq,gamma_act));
> od;
> od;
gap> Print(PhiE[1]);
Equation([ FreeProductElm([ X1^-1*Y1^-1*X1*Y1*Z1^-1, g1, Z1, h1 ]),

FreeProductElm([ X2^-1*Y2^-1*X2*Y2*Z2^-1, g2, Z2, h2 ]) ])
gap> Print(PhiE[16]);
Equation([ FreeProductElm([ X2^-1*Y1^-1*X1*Y2*Z2^-1, g2, Z1, h2 ]),

FreeProductElm([ X1^-1*Y2^-1*X2*Y1*Z1^-1, g1, Z2, h1 ]) ])

We see that for some (indeed for all but the first two cases) the states of the decomposition do not
form independent systems. Let us see how an equivalent independent system looks like and find out
which genus the corresponding equations have:

Example
gap> Apply(PhiE,E->DisjointFormOfDecomposedEquation(E));
gap> Print(PhiE[16]);
Equation([ FreeProductElm([ X2^-1*Y1^-1*Y2^-1*X2*Y1*Z1^-1, g1, Z2, h1, Y2*Z2^-1,
g2, Z1, h2 ]), FreeProductElm([ ]) ])

gap> Genus(EquationComponent(PhiE[16],1));
2
gap> List(PhiE,E->Genus(EquationComponent(E,1)));
[ 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 ]

2.3 Using the fr package

Finally let us do some computations in the Grigorchuk group. For example let us compute a solution
for the equation E = [X ,Y ]dacab.

Example
gap> LoadPackage("fr");;
gap> G := GrigorchukGroup;;
gap> a:= G.1;; b:=G.2;; c:=G.3;; d:= G.4;;
gap> EqG := EquationGroup(G);;
gap> x:=EqG.5;y:=EqG.6;
(X1)
(X2)
gap> eq := Equation(Comm(x,y)*d*a*c*a*b);
<Equation in [ X1, X2 ]>
gap> gamma_a := GroupHomomorphismByImages(
> Group(EquationVariables(eq)),SymmetricGroup(2),[(),(1,2)]);
[ X1, X2 ] -> [ (), (1,2) ]
gap> neq := DecompositionEquation(eq,gamma_a);
DecomposedEquation in [ Xn1, Xn2, Xn3, Xn4 ]
gap> deq := DisjointFormOfDecomposedEquation(neq);
DecomposedEquation in [ Xn2, Xn3, Xn4 ]
gap> nf := NormalFormOfEquation(EquationComponent(deq,1));
<Equation in [ Xn1, Xn2, Xn3 ]>
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gap> s := EquationEvaluation(DecomposedEquationGroup(EqG),
> EquationVariables(nf),[d,b,b]);
[ Xn1, Xn2, Xn3 ]->[ d, b, b ]
gap> IsSolution(s,nf);
true
gap> IsSolution(NormalizingHomomorphism(nf)*s,EquationComponent(deq,1));
true
gap> sol := DisjointFormHomomorphism(deq)*NormalizingHomomorphism(nf)*s;;
gap> ForAll(EquationComponents(neq),E->IsSolution(sol,E));
true;
gap> imgs := List(EquationVariables(neq),x->ImageElm(sol,x));
[ <Mealy element on alphabet [ 1 .. 2 ] with 6 states>,

<Mealy element on alphabet [ 1 .. 2 ] with 7 states>, b^-1,
<Mealy element on alphabet [ 1 .. 2 ] with 9 states> ]

gap> soleq := EquationEvaluation(EqG,EquationVariables(eq),
[ComposeElement([imgs[1],imgs[2]],()),
ComposeElement([imgs[3],imgs[4]],(1,2))] );

[ X1, X2 ]->[ <Mealy element on alphabet [ 1 .. 2 ] with 9 states>,
<Mealy element on alphabet [ 1 .. 2 ] with 10 states> ]

gap> IsSolution(soleq,eq);
true;
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Chapter 3

FreeProducts

3.1 Construction

This package installs some new method for the command FreeProduct. Before it was only possible
to construct free products of finitely presented groups.

3.1.1 FreeProductOp

. FreeProductOp(list, f.g., free, group) (operation)

Returns: The free product of all groups in list .
This is the method of choice if list contains at least one finetely generated free group but not

only free groups.

3.1.2 FreeProductOp

. FreeProductOp(list, inf.g., free, group) (operation)

Returns: The free product of all groups in list .
We choose this is the method if list contains at least one infinetely generated free group but not

only free groups.

3.1.3 FreeProductOp

. FreeProductOp(list, group) (operation)

Returns: The free product of all groups in list .
This method does always work. We refer to a more specific method if all of the groups are finitely

presented. I.e. they are in the filter IsFpGroup and finitely generated.
If the resulting group was constructed by one of the new methods they will be in the following

filter: IsGeneralFreeProduct

3.2 Filters

3.2.1 IsGeneralFreeProduct

. IsGeneralFreeProduct(obj) (filter)

Returns: true if obj is a general free product.

115
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This filter can be used to check whether a given group was created as general free product.

3.2.2 IsFreeProductElm

. IsFreeProductElm(obj) (filter)

3.2.3 IsFreeProductHomomorphism

. IsFreeProductHomomorphism(obj) (filter)

3.3 Construction

3.3.1 GeneralFreeProduct (group)

. GeneralFreeProduct(group) (operation)

Returns: A a new general free product isomorphic to group .
Takes a group which has free product information stored and returns a new group which lies in

the filter IsGeneralFreeProduct. The returned groups represents the free product of the groups in
FreeProductInfo.groups.

Example
gap> S2 := SymmetricGroup(2);; SetName(S2,"S2");
gap> S3 := SymmetricGroup(3);; SetName(F2,"F2");
gap> G := FreeProduct(S2,S3);
<fp group on the generators [ f1, f2, f3 ]>
gap> G := GeneralFreeProduct(G);
S2*S3

3.3.2 GeneratorsOfGroup (group)

. GeneratorsOfGroup(group) (operation)

Returns: The generators of group .

3.3.3 \= (G,H)

. \=(group, group) (operation)

Returns: True if the free factors of the groups G and H are equal.

3.4 Elements

3.4.1 FreeProductElm (group,list,list)

. FreeProductElm(group, word, factors) (operation)

. FreeProductElmLetterRep(group, word, factors) (operation)

Returns: A new element in the group group .
This function constructs a new free product element, belonging to the group group .
words is a dense list of elements of any of the factors of group .
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factors is a list of integers. word [i] must lie in the factor factors [i ] of group . If this is not
the case an error is thrown.

FreeProductElmLetterRep does not simplify the word by multipliying neighbored equal factor
elements but stores the letters as given.

Example
gap> F2 := FreeGroup(2);; SetName(F2,"F2");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
gap> G := FreeProduct(F2,S4);
F2*S4
gap> e := FreeProductElm(G,[F2.1,F2.2,(1,2),F2.1],[1,1,2,1]);
FreeProductElm of length 3
gap> Print(e^2);
FreeProductElm([ f1*f2, (1,2), f1^2*f2, (1,2), f1 ])
gap> Print(FreeProductElmLetterRep(G,[F2.1,F2.2,(1,2),F2.1],[1,1,2,1]));
FreeProductElm([ f1, f2, (1,2), f1 ])

There are two representations for this kind of elements.

3.4.2 IsFreeProductElmRep

. IsFreeProductElmRep(obj) (filter)

. IsFreeProductElmLetterRep(obj) (filter)

Returns: true if obj is a general free product element in standard/letter storing representation.

3.5 Basic operations

3.5.1 \* (freeproductelm,freeproductelm)

. \*(e1, e2) (operation)

Returns: The product of the two elements.

3.5.2 \* (freeproductelm,group elm)

. \*(e1, e2) (operation)

Returns: The product of e1 and the image of e2 under the embedding into the free product
group.

Only works if e2 lies in one of the free factors of the free product group.

3.5.3 InverseOp (freeproductelm)

. InverseOp(elm) (operation)

Returns: The inverse element

3.5.4 OneOp (freeproductelm)

. OneOp(elm) (operation)

Returns: The identity element
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3.5.5 \= (freeproductelm,freeproductelm)

. \=(e1, ee2) (operation)

Returns: True if the two elements are equal.
#

3.5.6 Length (freeproductelm)

. Length(e1) (operation)

Returns: The length of the list that stores the elements of the free factors

3.5.7 \[\] (freeproductelm,integer)

. \[\](e1, i) (operation)

Returns: The free product element consisting only of the i -th entry of the underlying list of
elements.

3.5.8 Position (freeproductelm)

. Position(e1) (operation)

Returns: The position of the element el in the underlyig list.
Example

gap> F2 := FreeGroup(2);; SetName(F2,"F2");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
gap> G := FreeProduct(F2,S4);
F2*S4
gap> e := FreeProductElm(G,[F2.1,F2.2,(1,2),F2.1],[1,1,2,1]);;Print(e);
FreeProductElm([ f1*f2, (1,2), f1 ])
gap> Length(e);
3
gap> Position(e,(1,2));
2
gap> Print(e[1]);
FreeProductElm([ f1*f2 ])

3.6 Homomorphisms

3.6.1 FreeProductHomomorphism (group,group,list)

. FreeProductHomomorphism(source, target, homs) (operation)

Returns: A new group homomorphism from source to target .
This function constructs a new group homomorphism from the general free product group source

to the general free product group target by mapping the factor i by the group homomorphism
homs [i] to the ith factor of target .

homs is a dense list of group homomorphisms where the source of homs [i] must be the ith factor
of source and the range of homs [i] must be the ith factor of target .

Example
gap> F2 := FreeGroup(2);; SetName(F2,"F2");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
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gap> A4 := AlternatingGroup(4);; SetName(A4,"A4");
gap> G := FreeProduct(F2,S4); H := FreeProduct(F2,A4);
F2*S4
F2*A4
gap> hf := GroupHomomorphismByImages(F2,F2,[F2.2,F2.1]);;
gap> hg := GroupHomomorphismByFunction(S4,A4,s->Comm(s,S4.2));;
gap> h := FreeProductHomomorphism(G,H,[hf,hg]);
<mapping: F2*S4 -> F2*A4 >
gap> e := FreeProductElm(G,[F2.1,F2.2,(1,2),F2.1],[1,1,2,1]);
FreeProductElm of length 3
gap> Print(e^h);
FreeProductElm([ f2*f1*f2 ])

3.6.2 IsGeneralFreeProductRep

. IsGeneralFreeProductRep(obj) (filter)

Returns: true if obj is a general free product element in standard/letter storing representation.

3.7 Other operations

3.7.1 Abs (assocword)

. Abs(obj) (operation)

Returns: An assocword without inverses of generators
In the word obj all occurencies of inverse generators are replaced by the coresponding generators.

Example
gap> F2 := FreeGroup(2);; SetName(F2,"F2");
gap> w := F2.1^-1*F2.2*F2.1*F2.2^-1;
f1^-1*f2*f1*f2^-1
gap> Abs(w);
(f1*f2)^2

3.7.2 \in (elm,list)

. \in(elm, list) (operation)

Returns: true if elm is in the infinite list list
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Chapter 4

Equations

We fix a set X and call its elements variables. We assume that X is infinite countable, is well
ordered, and its family of finite subsets is also well ordered, by size and then lexicographic order. We
denote by FX the free group on the generating set X .

Let G be a group. The equation group will be the free product G∗FX and the elements belonging
to G will be called constants.

A G-equation is an element E of the group FX ∗G regarded as a reduced word. For E a G-
equation, its set of variables Var(E)⊂X is the set of symbols in X that occur in it; namely, Var(E)
is the minimal subset of X such that E belongs to FVar(E) ∗G.

A quadratic equation is an equation in which each variable X ∈ Var(E) occurs exactly twice. A
quadratic equation is called oriented if for each variable X ∈ Var(X ) both letters X and X−1 occure
in the reduced word E.

4.1 Construction

4.1.1 IsEquationGroup

. IsEquationGroup(obj) (filter)

Returns: true if obj is a general free product over to groups G,F where F is a free group.
The free factor F represents the group of variables for the equations.

4.1.2 EquationGroup (group,group)

. EquationGroup(G, F) (operation)

Returns: A a new G -group for equations over G .
Uses the FreeProduct method to create the free product object. The second argument F must be

a free group.
Example

gap> S2 := SymmetricGroup(2);; SetName(S2,"S2");
gap> F := FreeGroup(infinity,"xn",["x1","x2"]);;SetName(F,"F");
gap> EqG := EquationGroup(S2,F);
S2*F

120

120 B. DOCUMENTATION OF THE EQUATION PACKAGE



4.1.3 EquationGroup (group)

. EquationGroup(G) (operation)

Returns: A a new G -group for equations over G .
Uses the FreeProduct method to create the free product object of the given group and the free

group on infinitely many generators
Example

gap> S2 := SymmetricGroup(2);; SetName(S2,"S2");
gap> EqG := EquationGroup(S2);
S2*Free(oo)

4.1.4 VariablesOfEquationGroup (group)

. VariablesOfEquationGroup(G) (attribute)

Returns: A list of the embedded free generators of the free facotor
If the equation group G was constructed with an infinitely generated free group as the group of

variables, this returns an infinite list of generators.

4.1.5 ConstantsOfEquationGroup (group)

. ConstantsOfEquationGroup(G) (attribute)

Returns: The image of the embedding of the group of constants in G

4.1.6 Equation (group,list)

. Equation(G, L) (operation)

Returns: A a new element of the equation group G
Creates a FreeProductElm from the list L . By default this elements will be cyclicaly reduced.

Example
gap> F2 := FreeGroup(2);; SetName(F2,"F2");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
gap> G := EquationGroup(S4,F2);
S4*F2
gap> e := Equation(G,[F2.1,F2.2,(1,2),F2.1]);
Equation in [ f1, f2 ]
gap> Print(e);
FreeProductElm([ f1*f2, (1,2), f1 ])

4.1.7 Equation (free product elm)

. Equation(elm) (operation)

Returns: A a new element of the equation group G
Creates a FreeProductElm from the FreeProductElm elm . By default this elements will be

cyclicaly reduced.
Example

gap> G := EquationGroup(SymmetricGroup(4));
<free product group>
gap> e := Equation(G.4*G.1*G.2*G.3);
<Equation in [ X1, X2 ]>
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gap> Print(e);
FreeProductElm([ X2, (2,3,4), X1 ])

4.1.8 EquationVariables (groupelement)

. EquationVariables(E) (attribute)

Returns: A list of all variables occuring in E .
The elements of the result are elements of the group of variables in the EquationGroup. See in

contrast the attribute EquationVariablesEmbedded.

4.1.9 EquationVariablesEmbedded (groupelement)

. EquationVariablesEmbedded(E) (attribute)

Returns: A list of all variables occuring in E .
The elements of the result are elements of the EquationGroup. and thus FreeProductElms of

length 1. See in contrast the attributeEquationVariables.

4.1.10 EquationLetterRep (equation)

. EquationLetterRep(E) (attribute)

Returns: A a new element of the equation group G in letter representation which is equal to E
In the standard representation of an equation the elements of the free group that are not devided

by a constant are collected. In the letter representation they are seperate letters.
Example

gap> F2 := FreeGroup(2);; SetName(F2,"F2");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
gap> G := EquationGroup(S4,F2);
S4*F2
gap> e := Equation(G,[F2.1,F2.2,(1,2),F2.1]);
Equation in [ f1, f2 ]
gap> Print(e);
FreeProductElm([ f1*f2, (1,2), f1 ])
gap> Print(EquationLetterRep(e));
FreeProductElm([ f1, f2, (1,2), f1 ])

4.1.11 EquationLetterRep (group,list)

. EquationLetterRep(G, L) (attribute)

Returns: Creates a new equation in letter representation

4.1.12 IsQuadraticEquation (equation)

. IsQuadraticEquation(E) (property)

Returns: true if E is an quadratic equation.

4.1.13 IsOrientedEquation (equation)

. IsOrientedEquation(E) (property)

Returns: true if E is an oriented quadratic equation.
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4.2 Homomorphisms

An evaluation is a G-homomorphism e:FX ∗G→ G. A solution of an equation E is an evaluation
s satisfying s(E) = 1. If a solution exists for E then the equation E is called solvable. The set of
elements X ∈X with s(X) 6= 1 is called the support of the solution.

4.2.1 EquationHomomorphism (group,list,list)

. EquationHomomorphism(G, vars, imgs) (operation)

Returns: A a new homomorphism from G to G
If G is the group H ∗FX the result of this command is a H-homomorphism that maps the i-th

variable of the list vars to the i-th member of imgs . Therefore vars can be a list without duplicates
of variables. The list imgs can contain elements of the following type:

• Element of the group FX

• Elements of the group H

• Lists of elements from the groups FX and H. The list is then regarded as the corresponding
word in G

• Elements of the group G
Example

gap> F3 := FreeGroup(3);; SetName(F3,"F3");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
gap> G := EquationGroup(S4,F3);
S4*F3
gap> e := Equation(G,[Comm(F3.2,F3.1)*F3.3^2,(1,2)]);
Equation in [ f1, f2, f3 ]
gap> h := EquationHomomorphism(G,[F3.1,F3.2,F3.3],
> [F3.1*F3.2*F3.3,(F3.2*F3.3)^(F3.1*F3.2*F3.3),(F3.2^-1*F3.1^-1)^F3.3]);
[ f1, f2, f3 ]"->"[ f1*f2*f3, f3^-1*f2^-1*f1^-1*f2*f3*f1*f2*f3, f3^-1*f2^-1*f1^-1*f3 ]
gap> Print(e^h);
FreeProductElm([ f1^2*f2^2*f3^2, (1,2) ])

4.2.2 EquationEvaluation (group,list,list)

. EquationEvaluation(G, vars, imgs) (operation)

Returns: A a new evaluation from G
Works the same as EquationHomomorphism but the target of the homomorphism is the group of

constants and all variables which are not specified in in vars are maped to the identity. Hence the
only allowed input for imgs are elements of the group of constants.

Example
gap> F3 := FreeGroup(3);; SetName(F3,"F3");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
gap> G := EquationGroup(S4,F3);
S4*F3
gap> e := Equation(G,[Comm(F3.2,F3.1)*F3.3^2,(1,2,3)]);
Equation in [ f1, f2, f3 ]
gap> h := EquationHomomorphism(G,[F3.1,F3.2,F3.3],[(),(),(1,2,3)]);
[ f1, f2, f3 ]"->"[ (), (), (1,3,2) ]
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gap> he := EquationEvaluation(G,[F3.1,F3.2,F3.3],[(),(),(1,2,3)]);
MappingByFunction( S4*F3, S4, function( q ) ... end )
gap> e^he;
()
gap> IsSolution(he,e);
true

4.3 Normal Form

For m,n≥ 0, Xi,Yi,Zi ∈X and ci ∈G the following two kinds of equations are called in normal form:

On,m : [X1,Y1][X2,Y2] · · · [Xn,Yn]c
Z1
1 · · ·c

Zm−1
m−1 cm

Un,m : X2
1 X2

2 · · ·X2
n cZ1

1 · · ·c
Zm−1
m−1 cm .

The form On,m is called the oriented case and Un,m for n > 0 the unoriented case. The parameter n
is referred to as genus of the normal form of an equation. The pair (n,m) will be called the signature
of the quadratic equation. It was proven by Commerford and Edmunds ([CJE81]) that every quadratic
equation is isomorphic to one of the form On,m or Un,m by an G-isomorphism.

4.3.1 NormalFormOfEquation (equation)

. NormalFormOfEquation(E) (attribute)

Returns: The normal form of the equation E
The argument E needs to be a quadratic equation. For each such equation there exists an equivalent

equation in normal form.
The result is an equation in one of the forms On,m,Un,m equivalent to the equation E . The resulting

equation has the attributes NormalizingHomomorphism and NormalizingInverseHomomorphism stor-
ing in the first case the homomorphism that maps E to the result and in the second case the inverse of
this homomorphism.

4.3.2 NormalizingHomomorphism (equation)

. NormalizingHomomorphism(E) (attribute)

Returns: The EquationHomomorphism that maps to E
Only available if E was obtained via NormalFormOfEquation.

4.3.3 NormalizingInverseHomomorphism (equation)

. NormalizingInverseHomomorphism(E) (attribute)

Returns: The EquationHomomorphism that maps from E
Only available if E was obtained via NormalFormOfEquation. This is the inverse homomorphism

to NormalizingInverseHomomorphism(E) #
Example

gap> F3 := FreeGroup("x","y","z");; SetName(F3,"F3");
gap> S4 := SymmetricGroup(4);; SetName(S4,"S4");
gap> G := EquationGroup(S4,F3);
S4*F3
gap> e := Equation(G,[Comm(F3.2,F3.1)*F3.3^2,(1,2)]);
Equation in [ x, y, z ]
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gap> nf := NormalFormOfEquation(e);;
gap> Print(nf);
FreeProductElm([ x^2*y^2*z^2, (1,2) ])
gap> e^NormalizingHomomorphism(nf)=nf;
true
gap> nf^NormalizingInverseHomomorphism(nf)=e;
true

4.3.4 Genus (equation)

. Genus(E) (operation)

Returns: The integer that is the genus of the equation

4.3.5 EquationSignature (equation)

. EquationSignature(E) (operation)

Returns: The list [n,m] of integers that is the signature of the equation
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Chapter 5

FR-Equations

5.1 Decomposable equations

For self-similar groups one strategy to solve equations is to consider the inherit equations by passing
to states. To use this methods the package FR ([Bar16]) from Laurent Bartholdi is needed.

Let G be a group which lies in the filter IsFRGroup and which admitts an embedding ψ:G→ G̃ oSn

where G̃ is the group generated by the states of the group G. Note that if G is a self-similar group
then G' G̃. Further let FX be the free group on the generating set X . Given an equation group G∗FX

we will the fix n natural embeddings ϕi:F → FXn and call the group (G̃∗FXn) oSn) the decomposition
equation group of G ∗FX . The decomposition of an equation e with variables x1, . . . ,xk with respect
to a choice of activities σ(xi) ∈ Sn for each variable xi is the image of e under the homomorphism

Φσ :G∗FX → (G̃∗ (FXn) oSn

xi 7→ ϕi(xi) ·σ(xi)
g 7→ ψi(xi)

5.1.1 DecomposedEquationGroup (group)

. DecomposedEquationGroup(G) (attribute)

Returns: A new EquationGroup .
This method needs G to be an equation group where the group of constants is an fr-group. For G

a group with free constant group see DecomposedEquationGroup (5.1.1). If F is the free group on
the generating set X then the free group on the gerating set Xn is isomorphic to F∗n the n-fold free
product of F .

This method returns the EquationGroup G∗F∗n.
. DecomposedEquationGroup(G, deg, acts) (operation)

Returns: A new EquationGroup .
This method needs G to be an equation group where the group of constants is a free group on

n < ∞ generators. The integer deg is the number of states each element will have. The list acts
should be of length n and all elements should be permutation of deg elements. These will represent
the activity of the generators of the free group.

5.1.2 DecompositionEquation (equation,group homorphism)

. DecompositionEquation(E, sigma) (operation)

Returns: A new equation in G which is the decomposed of the equation E .
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The equation E needs to be a member of a EquationGroup H = K ∗F where K is an FRGroup.
The argument sigma needs to be a group homomorphism σ :F→ Sn. Alternatively it can be a list

of elements of Sn it is then regarded as the group homomorphism that maps the i-th variable of eq to
the i-th element of the list.

The representation of the returned equation stores a list of words such that the i-th word represents
an element in G∗φi(F).

Example
gap> F := FreeGroup(1);; SetName(F,"F");
gap> G := EquationGroup(GrigorchukGroup,F);
GrigorchukGroup*F
gap> sigma := GroupHomomorphismByImages(F,SymmetricGroup(2),[(1,2)]);
[ f1 ] -> [ (1,2) ]
gap> e := Equation(G,[F.1^2,GrigorchukGroup.2]);
Equation in [ f1 ]
gap> de := DecompositionEquation(e,sigma);
DecomposedEquation in [ f11, f12 ]
gap> Print(de);
Equation([ FreeProductElm([ f11*f12,a ]), FreeProductElm([ f12*f11,c ]) ])

5.1.3 DecompositionEquation (EquationGroup,equation,group homomorphism)

. DecompositionEquation(G, E, sigma) (operation)

Returns: A new equation in G which is the decomposed of the equation E .
The group G needs to be a DecompositionEqationGroup(H) , the equation E needs to be a

member of the EquationGroup H = K ∗F .
The argument sigma needs to be a group homomorphism σ :F→ Sn. Alternatively it can be a list

of elements of Sn it is then regarded as the group homomorphism that maps the i-th variable of eq to
the i-th element of the list.

The representation of the returned equation stores a list of words such that the i-th word represents
an element in G∗φi(F).

Example
gap> F := FreeGroup("x1","x2");; SetName(F,"F");
gap> G := FreeGroup("g");; SetName(G,"G");
gap> eG := EquationGroup(G,F);
G*F
gap> DeG := DecompositionEquationGroup(eG,2,[(1,2)]);
G*G*F*F
gap> e := Equation(eG,[Comm(F.1,F.2),G.1^2]);
Equation in [ x1, x2 ]
gap> Print(DecompositionEquation(DeG,e,[(),()]));
Equation([ FreeProductElm([ x11^-1*x21^-1*x11*x21, g1*g2 ]),
FreeProductElm([ x12^-1*x22^-1*x12*x22, g2*g1 ]) ])

5.1.4 EquationComponent (equation,int)

. EquationComponent(E, i) (operation)

Returns: The i -th component of the decomposed equation E .
Denote by pi the natural projection (G ∗FXn)n o Sn → G ∗FXn to the i-th factor of the product.

Given a decomposed Equation E and an integer 0 <i≤ n this method returns pi(E).
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. EquationComponents(E) (operation)

Returns: The list of all components of the decomposed equation E .
Denote by pi the natural projection pi:(G∗FXn)n oSn→ G∗FXn to the i-th factor of the product.

Given a decomposed Equation E this method returns the list [p1(E), p2(E), . . . , pn(E)].
. EquationActivity(E) (operation)

Returns: The activity of the decomposed equation E .
Denote by act the natural projection (G ∗FXn) o Sn → Sn. Given a decomposed Equation E this

method returns act(E).

5.1.5 DecomposedEquationDisjointForm (equation)

. DecomposedEquationDisjointForm(E) (attribute)

Returns: A decomposed equation that is a disjoint system.
If E is a decomposed equation there may be an overlap of the set of variables of some components.

If E is a quadratic equation there is an equation homomorphism ϕ that maps each component to a new
quadratic equation. Hence all maped components have pairwise disjoint sets of variables. This method
computes such an homomorphism ϕ such that the solvability of the system of components remains
unchanged. If s is a solution for the new system of components, then s ◦ϕ is a solution for the old
system.

5.1.6 DisjointFormOfDecomposedEquation (equation)

. DisjointFormOfDecomposedEquation(E) (attribute)

Returns: A decomposed Equation with disjoint components.
If E is a decomposed equation there may be an overlap of the set of variables of some components.

If E is a quadratic equation there is an equation homomorphism ϕ that maps each component to a new
quadratic equation. Hence all maped components have pairwise disjoint sets of variables. This method
computes such an homomorphism ϕ such that the solvability of the system of components remains
unchanged. If s is a solution for the new system of components, then s ◦ϕ is a solution for the old
system.

The method returns a the neq decomposed equation, that has the attribute
DisjointFormHomomorphism that is the the homomorphism ϕ .

5.1.7 DisjointFormHomomorphism (equation)

. DisjointFormHomomorphism(E) (attribute)

Returns: The homomorphism that maps to E .
Only available if E was obtained via the method DisjointFormOfDecomposedEquation.

5.1.8 LiftSolution (equation,equation,equationhom,equationhom)

. LiftSolution(DE, E, sigma, sol) (operation)

Returns: An evaluation for E eq .
Given an equation E and a solution sol for its decomposed equation DE under the decomposition

with activity sigma this method computes a solution for the equation E .
Note that the solution not neccecarily maps to the group of constants of E but can map to the group

where all elements of the group of constants can appear as states. If the group of constants is layered,
this two groups will coincide.

128 B. DOCUMENTATION OF THE EQUATION PACKAGE



Example
gap> F := FreeGroup(2);; SetName(F,"F");
gap> Gr := GrigorchukGroup;; a:=Gr.1;; d:=Gr.4;;
gap> G := EquationGroup(Gr,F);;
gap> DG := DecompositionEquationGroup(G);;
gap> sigma := GroupHomomorphismByImages(F,SymmetricGroup(2),[(1,2),()]);
[ f1, f2 ] -> [ (1,2), () ]
gap> e := Equation(G,[Comm(F.1,F.2),Comm(d,a)]);
Equation in [ f1, f2 ]
gap> de := DecompositionEquation(DG,e,sigma);
DecomposedEquation in [ f11, f21, f12, f22 ]
gap> dedj := DecomposedEquationDisjointForm(de);
rec( eq := DecomposedEquation in [ f11, f12, f22 ],

hom := [ f21 ]->[ FreeProductElm of length 3 ] )
gap> EquationComponents(dedj.eq);
[ Equation in [ f11, f12, f22 ], Equation in [ ] ]
gap> s := EquationEvaluation(DG,EquationVariables(dedj.eq),[One(Gr),One(Gr),Gr.2]);
MappingByFunction( GrigorchukGroup*F*F, GrigorchukGroup, function( q ) ... end )
gap> IsSolution(s,EquationComponent(dedj.eq,1));
true
gap> ns := dedj.hom*s;; IsEvaluation(ns);
true
gap> ForAll(EquationComponents(de),F->IsSolution(ns,F));
true
gap> ls := LiftSolution(de,e,sigma,ns);;
gap> IsSolution(ls,e);
true
gap> ForAll(EquationVariables(e),x->Equation(G,[x])^ls in Gr); # only good luck
true
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of algebra, Vol. 3, Handb. Algebr., vol. 3, Elsevier/North-Holland, Amsterdam, 2003,
pp. 989–1112. MR 2035113

[BH16] Laurent Bartholdi and René Hartung, Gap package LPRES, Version 0.3.0,
https://laurentbartholdi.github.io/lpres, Mai 2016, GAP package.

[BKN10] Laurent Bartholdi, Vadim A. Kaimanovich, and Volodymyr V. Nekrashevych, On
amenability of automata groups, Duke Math. J. 154 (2010), no. 3, 575–598.

[BM17] L. Bartholdi and I. Mitrofanov, The word and order problems for self-similar and
automata groups, ArXiv e-prints (2017).

[BN03] E. Bondarenko and V. Nekrashevych, Post-critically finite self-similar groups, Algebra
Discrete Math. (2003), no. 4, 21–32. MR 2070400

[BS98] A. M. Brunner and Said Sidki, The generation of GL(n, Z) by finite state automata,
Internat. J. Algebra Comput. 8 (1998), no. 1, 127–139. MR 1492064

[Bur55] William Burnside, Theory of groups of finite order, Dover Publications, Inc., New York,
1955, 2d ed. MR 0069818

[Cal09] Danny Calegari, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo,
2009. MR 2527432

[CE81] Leo P. Comerford, Jr. and Charles C. Edmunds, Quadratic equations over free groups
and free products, J. Algebra 68 (1981), no. 2, 276–297. MR 608536

[Cul81] Marc Culler, Using surfaces to solve equations in free groups, Topology 20 (1981),
no. 2, 133 – 145.

[CWM+68] L. Carlitz, A. Wilansky, John Milnor, R. A. Struble, Neal Felsinger, J. M. S. Simoes,
E. A. Power, R. E. Shafer, and R. E. Maas, Advanced problems: 5600-5609, The
American Mathematical Monthly 75 (1968), no. 6, 685–687.

[Deh11] Max Dehn, über unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1911), no. 1,
116–144. MR 1511645

135



136 BIBLIOGRAPHY

[EHN81] David Eisenbud, Ulrich Hirsch, and Walter Neumann, Transverse foliations of Seifert
bundles and self-homeomorphism of the circle, Comment. Math. Helv. 56 (1981), no. 4,
638–660. MR 656217

[Fin14] Elisabeth Fink, Conjugacy growth and width of certain branch groups, Internat. J.
Algebra Comput. 24 (2014), no. 8, 1213–1231. MR 3296364

[FM11] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Univer-
sity Press, 2011.

[GAP14] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.5, 2014.
[GAP17] The GAP Group, Version 4.8.8, Gap - reference manual, 2017.
[Gil17] P. Gillibert, An automaton group with undecidable order and Engel problems, ArXiv

e-prints (2017).
[GK92] R. I. Grigorchuk and P. F. Kurchanov, On quadratic equations in free groups, Proceed-

ings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989), Contemp.
Math., vol. 131, Amer. Math. Soc., Providence, RI, 1992, pp. 159–171. MR 1175769

[GM05] Yair Glasner and Shahar Mozes, Automata and square complexes, Geom. Dedicata 111
(2005), 43–64. MR 2155175

[GOB13] Amir Gideon, Angel Omer, and Virág Bálint, Amenability of linear-activity automaton
groups, Journal of the european Mathematical society 15 (2013), no. 3, 705 – 730.

[Gri80] Rostislav I. Grigorchuk, On Burnside’s problem on periodic groups, Funktsional. Anal.
i Prilozhen. 14 (1980), no. 1, 53–54. MR 565099

[Gri83] , On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1983),
no. 1, 30–33. MR 712546

[Gri05] Rostislav Grigorchuk, Solved and unsolved problems around one group, Infinite groups:
geometric, combinatorial and dynamical aspects, Progr. Math., vol. 248, Birkhäuser,
Basel, 2005, pp. 117–218. MR 2195454

[Gs61] V. M. Gluˇ skov, Abstract theory of automata, Uspehi Mat. Nauk 16 (1961), no. 5
(101), 3–62. MR 0138529

[GS83] Narain Gupta and Saï d Sidki, On the Burnside problem for periodic groups, Math. Z.
182 (1983), no. 3, 385–388. MR 696534

[Gur80] Robert M. Guralnick, Expressing group elements as commutators, Rocky Mountain J.
Math. 10 (1980), no. 3, 651–654. MR 590227

[GW00] R. I. Grigorchuk and J. S. Wilson, The conjugacy problem for certain branch groups,
Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 215–230.
MR 1841756

[GW03] Rostislav I. Grigorchuk and John S. Wilson, A structural property concerning abstract
commensurability of subgroups, J. London Math. Soc. (2) 68 (2003), no. 3, 671–682.
MR 2009443

[GZ01] Rostislav I. Grigorchuk and Andrzej Żuk, The lamplighter group as a group generated
by a 2-state automaton, and its spectrum, Geom. Dedicata 87 (2001), no. 1-3, 209–244.
MR 1866850

[HU79] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages,
and computation, Addison-Wesley Publishing Co., Reading, Mass., 1979, Addison-
Wesley Series in Computer Science. MR 645539

[Leo98] Yu. G. Leonov, The conjugacy problem in a class of 2-groups, Mat. Zametki 64 (1998),
no. 4, 573–583. MR 1687212

[LMU16] Igor Lysenok, Alexei Miasnikov, and Alexander Ushakov, Quadratic equations in the
Grigorchuk group, Groups Geom. Dyn. 10 (2016), no. 1, 201–239. MR 3460336

[LOST10] Martin W. Liebeck, Eamonn A. O’Brien, Aner Shalev, and Pham Huu Tiep, The Ore
conjecture, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 939–1008. MR 2654085

[Lyn59] R. C. Lyndon, The equation a2b2 = c2 in free groups, Michigan Math. J 6 (1959),
89–95. MR 0103218

[Mil99] G. A. Miller, On the commutators of a given group, Bull. Amer. Math. Soc. 6 (1899),
no. 3, 105–109.

[Nek05] Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs,
vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164

[Neu86] Peter M. Neumann, Some questions of edjvet and pride about infinite groups, Illinois
J. Math. 30 (1986), no. 2, 301–316.



BIBLIOGRAPHY 137

[Ore51] Oystein Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307–
314. MR 0040298

[Rhe68] A. H. Rhemtulla, A problem of bounded expressibility in free products, Mathematical
Proceedings of the Cambridge Philosophical Society 64 (1968), no. 3, 573–584.

[Rhe69] , Commutators of certain finitely generated soluble groups, Can. J. Math. 21
(1969), no. 5, 1160–1164.

[Roz93] Alexander V. Rozhkov, Centralizers of elements in a group of tree automorphisms, Izv.
Ross. Akad. Nauk Ser. Mat. 57 (1993), no. no. 6, 82–105. MR 1256568

[Roz98] , The conjugacy problem in an automorphism group of an infinite tree, Mat.
Zametki 64 (1998), no. 4, 592–597. MR 1687204

[Seg00] Dan Segal, The finite images of finitely generated groups, Proceedings of the London
Mathematical Society 82 (2000), 597–613.

[Seg09] Dan Segal, Words. notes on verbal width in groups, London Mathematical Society
Lecture Note Series 361, Cambridge University Press, 2009.

[Sid87] Said Sidki, On a 2-generated infinite 3-group: subgroups and automorphisms, J. Alge-
bra 110 (1987), no. 1, 24–55. MR 904180

[Sid00] , Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity,
J. Math. Sci. (New York) 100 (2000), no. 1, 1925–1943, Algebra, 12. MR 1774362

[SS05] P. V. Silva and B. Steinberg, On a class of automata groups generalizing lamplighter
groups, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 1213–1234. MR 2197829

[vSV12] Zoran ˇ Sunić and Enric Ventura, The conjugacy problem in automaton groups is not
solvable, J. Algebra 364 (2012), 148–154. MR 2927052

[VV07] Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by
an automaton, Geom. Dedicata 124 (2007), 237–249. MR 2318547

[WZ97] J. S. Wilson and P. A. Zalesskii, Conjugacy separability of certain torsion groups, Arch.
Math. (Basel) 68 (1997), no. 6, 441–449. MR 1444655


	Chapter 1. Introduction
	1. Aspirations
	2. Notations
	3. Self-similar groups
	4. Equations
	5. Main method
	6. Results
	7. GAP

	Chapter 2. Groups of tree automorphisms
	1. Trees
	2. Bounded groups
	3. Contracting groups
	4. Branch groups
	5. Examples

	Chapter 3. Equations
	1. Basic Definitions
	2. Normal form of quadratic equations

	Chapter 4. Decidable Equations
	1. Commutator width
	2. The branching homomorphism
	3. Alternating group
	4. Neumann-Segal group
	5. Grigorchuk group
	6. Gupta-Sidki group
	7. Mothergroups

	Chapter 5. Computer algebra
	1. The system GAP
	2. Implementation of equations
	3. Examples of Computations

	Chapter 6. Conclusions
	1. Future work

	Appendices
	Chapter A. Commutator Width In The First Grigorchuk group
	1. Introduction
	2. Equations
	3. Self-similar groups
	4. The first Grigorchuk Group
	5. Proof of Theorem C
	6. Implementation in GAP

	Chapter B. Documentation of the equation package
	List of Figures
	List of Tables
	Bibliography

