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ABSTRACT 

 

Colorectal cancer (CRC) is the most frequent malignancy of the gastrointestinal tract and 

therefore reflects a global health issue. Despite improved detection and treatment options the 

high mortality and morbidity rates of this disease emphasize the urgent need to unravel 

underlying mechanisms.  

Over the last decade extensive investigation allowed the identification of numerous key players 

involved in the onset and progression of CRC. Importantly, epigenetics is an emerging research 

area which has already contributed significantly to understanding this disease. Generally, 

epigenetic mechanisms can affect the gene expression profile without altering the underlying 

DNA sequences. One mediator involved in these processes is the Ubiquitin-Specific Protease 

22 (USP22) which is able to deubiquitinate the core histones H2A and H2B as well as other 

target proteins. Interestingly, the overexpression of USP22 in CRC patients was revealed by 

several studies and it was identified as a member of the so-called 11-gene “death-from-cancer” 

signature. This signature was correlated with poor prognosis and distant metastasis. However, 

the physiological function of USP22 in organ maintenance as well as its role in intestinal 

tumorigenesis remain to be elucidated. 

In the current project we investigated the effect of a global reduction and intestinal deletion of 

Usp22 in vivo. By generating a global Usp22 hypomorphic mouse line we could overcome the 

embryonic lethal effect of a complete loss of this gene. Using a lacZ reporter gene expressed 

under the control of the endogenous Usp22 locus, we detected ubiquitous Usp22 expression 

during embryonic development. Accordingly, a global reduction of Usp22 expression resulted 

in systemic effects in adult mice, i.e. reduced body size and weight. Moreover, while the gross 

organ morphology was only marginally affected in these animals, cell differentiation and lineage 

specification were influenced in the brain and, as we have observed earlier, the small intestine. 
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The involvement of Usp22 in developmental and differentiation processes was confirmed in 

mouse embryonic fibroblasts by microarray-based gene expression analysis. 

Moreover, the function of Usp22 in tumorigenesis was explored in animals possessing an 

intestinal Usp22 loss and a truncation mutation in the tumor suppressor Adenomatous 

Polyposis Coli (APC). Surprisingly, Usp22 deletion combined with an APC mutation resulted in 

decreased survival rates, increased intestinal inflammation and tumor burden and importantly, 

led to the formation of invasive carcinomas with a mucinous phenotype. Our findings, that not 

only overexpression, as stated in the literature, but also downregulated USP22 expression can 

increase intestinal tumor burden were supported by in vitro and in silico analyses which 

revealed highly heterogeneous USP22 expression among CRC patients. Using global 

expression analyses we detected the involvement of USP22 in several cancer-related 

processes and identified the heat shock protein HSP90AB1 as an important USP22 target. 

Notably, we discovered that USP22 directly binds to the HSP90AB1 protein and prevents its 

proteasomal degradation. In addition, USP22 knockdown led to reduced HSP90AB1 

expression levels. As a consequence USP22 knockdown cells were more sensitive towards 

elevated temperatures. Intriguingly, we were able to induce synthetic lethality in CRC cells with 

low USP22 levels by treating them with an HSP90 inhibitor or the Bromo- and Extra-Terminal 

(BET) domain inhibitor JQ1. In summary, in this study we significantly contributed to the current 

knowledge about USP22 by demonstrating its relevance in organ maintenance and intestinal 

tumor formation in vivo as well as by describing how CRC cells with low USP22 levels can be 

therapeutically targeted in vitro.
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1. INTRODUCTION 

 

1.1 Epidemiology of colorectal cancer (CRC) 

Cancer is a disease characterized by abnormal cell growth and has emerged as a major public 

health problem worldwide. Generally, incidence and mortality rates have been reduced due to 

preventive vaccines, early diagnosis and improved treatments for some cancers (Tiwari and 

Roy, 2012, 2012). However, most recent studies indicate that in some countries cancer has 

replaced cardiovascular diseases as the leading cause of death (Townsend et al., 2015). 

Preventive and therapeutic measures generate an extensive economic load (Burns et al., 2016) 

and, more importantly, cancer diagnosis means a significant burden for affected individuals 

and their families. This emphasizes the urgent need to further improve our understanding 

regarding the progression, suitable detection methods and treatment options for this group of 

diseases.  

One example of successful research towards this goal is colorectal cancer (CRC) which is 

characterized by oncogenic growth inside the colon and rectum. Due to early diagnosis by 

colonoscopy and subsequent removal of pre-cancerous adenomas the mortality rate of CRC 

has decreased over the last decades (Bosetti et al., 2011; Vleugels et al., 2016). However, 

colorectal cancer remains a global health issue, being the third most commonly occurring 

cancer and the fourth most common cause of cancer-related deaths worldwide. In addition, the 

incidence is rising in developing countries (Favoriti et al., 2016). In a study from 2005, the 

development of incidence and mortality rates of CRC was compared among several countries 

over the last decades. While the mortality rate stagnated or slightly decreased in most 

countries, it has at least doubled in Japan, Hungary and Italy between 1955 and 2000. 

Concurrently, the authors described that the 5-year survival rates have improved since the mid 

70’s. The average 5-year survival rose from 30-40% to 45-50% in rectal cancer and from 
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approximately 40% to 50% in colon cancer (Boyle and Ferlay, 2005). The variation between 

CRC frequencies among countries can partially be explained by variations in the exposure to 

risk factors of this disease in different regions. 

 

1.2 Risk factors associated with CRC 

By studying dietary and lifestyle habits, family history, molecular backgrounds, comorbidities 

and further CRC patient details, several CRC-related risk factors were defined. For instance, 

the demographic change observed in our society reflects an established CRC risk factor since 

it has been be shown that increasing age is correlated with the development of malignancies 

(Hoyert and Xu, 2012; White et al., 2014). In fact, 50% of all diagnosed malignancies and 70% 

of cancer-related deaths can be observed in patients ≥65 years of age (Mazzola et al., 2012). 

However, there are several further aspects, preventable and unpreventable, associated with 

increased colorectal cancer risk. 

 

1.2.1 Diet and lifestyle 

According to the American Institute for Cancer Research, approximately 47% of colorectal 

cancer cases could have been prevented if individuals would adapt their diet, activity and 

weight management (Baena and Salinas, 2015; Bailie et al., 2016; Ferlay, 2016; Godos et al., 

2016). There are numerous reports on how this disease can be either promoted or prevented 

by the consumption of certain dietary factors; however, many study outcomes were 

inconclusive (Baena and Salinas, 2015). For instance, individuals consuming high rates of 

processed or red meat and alcohol have an increased colorectal cancer risk (Chan et al., 2011; 

Wang et al., 2015). Moreover, victuals containing high amounts of sugar were suggested to 

have negative effects (Galeone et al., 2012). In contrast, a fiber-rich diet, consumption of fruits, 

fish and milk were shown to confer a protective effect (Aune et al., 2012; Ben et al., 2014; Block 

et al., 1992; Yu et al., 2014). Furthermore, the composition of the bacterial community within 
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the intestine can be altered by dietary changes (David et al., 2014; Turnbaugh et al., 2009). 

Notably, dysbiosis, i.e. dysregulation of the gut microbiota is a phenomenon frequently 

observed in colorectal cancer patients (Wu et al., 2013).  

Importantly, regular physical activity decreased CRC risk by 24% while obesity increased it by 

19% (Baena and Salinas, 2015). Obesity is a risk factor gaining significance due to its 

increasing frequency, especially, since it is accompanied by numerous comorbidities. In fact, 

the incidence of obesity has increased by 28% in adults and 47% in children since 1980 (Ng 

et al., 2014). Moreover, it was shown that obese individuals frequently develop type 2 diabetes 

(Kearns et al., 2014) which in turn is also associated with CRC as demonstrated in a recent 

meta-analysis (Guraya, 2015). Consistently, treating diabetic patients with the anti-diabetic 

drug Metformin reduced colorectal cancer risk (Zhang et al., 2011). These findings reveal how 

not only our diet and its effect on the microbiota can directly modulate CRC risk but also 

morbidities possibly resulting from inadequate nutrition or deficiency in physical activity.  

 

1.2.2 Inflammatory bowel diseases (IBDs) 

Currently, approximately 0.4% of Europeans and North-Americans have a high risk of 

developing CRC due to inflammatory bowel diseases (IBDs) and incidence rates are expected 

to rise (Molodecky et al., 2012). Generally, these conditions are characterized by a chronic 

inflammation of the gastrointestinal tract mediated by genetic susceptibility, environmental 

factors and a deregulated immune response (Mesquita et al., 2008; Renz et al., 2011; Xavier 

and Podolsky, 2007). Two well-described IBD types are Crohn’s disease (CD) and ulcerative 

colitis (UC). However, besides these two major forms, there are further, rare disorders such as 

intestinal tuberculosis (ITB) and Behçet’s disease (BD) (Lee and Lee, 2016). The so-called 

hygiene hypothesis was proposed to be one of the explanations for the increasing prevalence 

of IBDs. The rationale of this assumption is that a low exposure towards microbes during early 

life leads to an augmented sensitivity of the immune system towards microorganisms and 
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therefore IBD (Saidel-Odes and Odes, 2014). Another hypothesis proposes the relevance of 

diet for the development of IBDs for instance due to a low fiber uptake (Shen and Wong, 2016). 

Moreover, in 2015 Liu and co-workers identified 38 loci which are associated with the 

susceptibility towards IBDs (Liu et al., 2015b). Symptoms of inflammatory bowel diseases can 

include (bloody) diarrhea, abdominal pain, passage of mucus and/or pus (Baumgart and 

Sandborn, 2007) and are often accompanied by psychological symptoms as anxiety or 

depression (Marrie et al., 2016). Upon indication, IBDs can be diagnosed via blood- and stool-

based tests, physical examination and imaging, as well as biopsy and endoscopy (Bernstein 

et al., 2010). Generally, IBDs have an early disease onset, i.e. 20-25% of cases are detected 

during childhood. Interestingly, pediatric IBDs were described to have particularly severe 

symptoms (Guariso et al., 2010; Ruemmele, 2010). During the course of the disease, patients 

frequently develop comorbidities such as anemia (Oldenburg et al., 2001), ocular 

manifestations (Felekis et al., 2009) as well as osteopenia and osteoporosis resulting in 

decreased bone mineral density (BMD) and therefore a highly increased fracture risk (Ali et al., 

2009; Bernstein et al., 2000). In a meta-analysis it was determined that the overall CRC 

prevalence in IBD patients is 1.7%. Accordingly, since disease duration correlates with the 

probability of CRC formation, for instance, the risk after >20 years of IBD was 5% (Lutgens, 

Maurice W M D et al., 2013). To reduce cancer risk, patients can be treated with anti-

inflammatory or immunosuppressive drugs and antibiotics. In addition, surgery may be required 

to remove damaged intestinal compartments (in CD patients) or even the entire colon and 

rectum (in UC patients), a proctocolectomy, resulting in the attachment of a pouch (Baumgart 

and Sandborn, 2007). 

 

1.2.3 Genetic susceptibility  

Nonetheless, not all CRCs can be attributed to a preexisting medical condition. In fact, it was 

reported that up to 30% of CRC cases develop due to genetic susceptibility. Approximately 5% 
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of patients are affected by an inherited mutation promoting tumorigenesis (Patel and Ahnen, 

2012). In the era of next generation sequencing (NGS) it would therefore be desirable to detect 

these genetic predispositions in order to identify individuals with a high CRC-risk to start 

treatment in time. It was already demonstrated that surveillance of individuals at high risk can 

decrease mortality rates (Jong et al., 2006). 

A well-known example for a genetic alteration is familial adenomatous polyposis (FAP), an 

autosomal dominant disorder, affecting 1-2:10,000 newborns. This condition is characterized 

by a heterozygous mutation of the tumor suppressor Adenomatous Polyposis Coli (APC) 

resulting in a truncated and therefore non-functional protein (Rozen et al., 2001; Rozen and 

Macrae, 2006). Under normal conditions, APC is a negative regulator of the Wnt signaling 

pathway, where it is a member of the destruction complex (Figure 1A). This complex consisting 

of APC, the kinase GSK-3β and AXIN phosphorylates β‐catenin to target it for ubiquitination 

and subsequent degradation. In the scenario of a non-functional APC protein or binding of a 

Wnt ligand to a Frizzled/LRP5/6 receptor, the destruction complex is destabilized (Figure 1B). 

Therefore, β‐catenin is no longer degraded and can translocate to the nucleus where it interacts 

with the transcription factors Lymphoid Enhancer Factor (LEF)/T-Cell Factor (TCF). By serving 

as a transcriptional coactivator, accumulated β‐catenin causes highly amplified cell proliferation 

rates (Giles et al., 2003; Reya and Clevers, 2005; Taipale and Beachy, 2001). As a 

consequence, hundreds to thousands of adenomas, including microadenomas, grow 

throughout the intestine of FAP patients (Eccles et al., 1997). In contrast, individuals affected 

by the attenuated form of FAP (AFAP) develop less than 100 tumors (Ibrahim et al., 2014). 

Notably, FAP is characterized by an early colorectal cancer onset, i.e. maximum 39 years in 

FAP and 55 years in AFAP (Novelli, 2015). 
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Figure 1: The canonical Wnt signaling pathway. (A) In the absence of a Wnt ligand, the 
destruction complex consisting of GSK-3β, AXIN and APC phosphorylates β-catenin. Thereby, 
β-catenin is targeted for ubiquitination and subsequent degradation by the proteasome. (B) 
Upon binding of a Wnt ligand to the Frizzled/LRP5/6 receptor, the destruction complex is 
destabilized. This destabilization is also observed if the tumor suppressor APC is non-
functional due to a truncation mutation. Consequently, β-catenin is no longer degraded and 
can accumulate and translocate to the nucleus. There it can interact with the transcription 
factors LEF/TCF to promote transcription of Wnt target genes. 
 

Another example for CRC in a familial context is the so-called Lynch syndrome which was 

described fifty years ago (Lynch, 1967) and accounts for approximately 3% of all CRC cases 

(Hampel et al., 2008). It is an autosomal dominant disease majorly caused by germline 

mutations in the mismatch repair genes MutL Homologue 1 (MLH1), MutS Homologue 2 

(MSH2) and 6 (MSH6) and Postmeiotic Segregation Increased 2 (PMS2) (Lynch et al., 2009).  
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It should be noted that Lynch syndrome is frequently referred to as hereditary non-polyposis 

colorectal cancer (HNPCC). However, to be diagnosed with Lynch syndrome one must 

possess mutations in mismatch repair (MMR) genes while HNPCC patients/families must fulfill 

Amsterdam criteria (AC) I or II. AC I reflects at least three CRC cases per family while AC II 

also takes the occurrence of extracolonic tumors into account, e.g. endometrial cancer (Novelli, 

2015; Vasen et al., 1999). In Lynch patients a relatively small number (<10) of polyps can be 

found, however, they frequently develop further malignancies such as brain, skin, ovarian and 

endometrial cancers (Novelli, 2015; Vasen et al., 1999). Further, but more rare examples for 

autosomal dominant conditions associated with an increased CRC risk are the Peutz-Jeghers 

syndrome (1:200,000) and Juvenile polyposis syndrome (1:100,000) (Shenoy, 2016).  

 

1.2.4 Genetic mutations 

Besides the presence of genetic predispositions, spontaneous mutations display a frequent 

phenomenon in the development and progression of colorectal cancer. In 1990 several genetic 

driver alterations were proposed by Eric Fearon and Bert Vogelstein to be involved in the 

adenoma to carcinoma sequence (Fearon and Vogelstein, 1990).  

The so-called Vogelgram revealed the significance of the Wnt/β-catenin pathway in the 

transition from normal epithelium to hyperproliferation and an early adenoma (Fearon and 

Vogelstein, 1990). In addition to the relevance of a functional APC protein in the case of FAP, 

APC mutations are the most frequent genetic alterations observed in sporadic colorectal cancer 

(Rozen et al., 2001; Rozen and Macrae, 2006). As mentioned before, the subsequent nuclear 

translocation of β-catenin results in increased cellular proliferation (Giles et al., 2003).  

According to the Vogelgram, the following transition from an early to intermediate and late 

adenoma is mediated by disturbed RAS signaling (Fearon and Vogelstein, 1990). There are 

three RAS (H, K and N) and three RAF (A, B and C) members. RAS is a small GTP-binding 

protein which is regulated by binding to GTP in exchange for GDP. When GTP is hydrolyzed, 
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RAS is no longer active. A RAS mutation at the position G12 prevents the activity of a GTPase 

to act on RAS-GTP to deactivate it and, therefore, it remains constitutively active, leading to 

sustained activation of RAF signaling (Chang et al., 2003; Hallberg et al., 1994). RAF members 

are responsible for phosphorylating and activating Mitogen-Activated Protein Kinase Kinases 

1 and 2 (MEK1/2) and Extracellular-Signal-Regulated Kinases 1 and 2 (ERK1/2) signal 

transduction to regulate among others MYC transcription. As a consequence, Mitogen-

Activated Protein Kinase (MAPK) signaling is induced in which serine/threonine kinases 

mediate signal transduction from the plasma membrane to the nucleus (Hallberg et al., 1994; 

Liebmann, 2001). Notably, RAS activating mutations or amplifications resulting in constitutively 

active RAS proteins occur frequently in CRC, i.e. approximately 40% for KRAS and 5% for 

NRAS (Fearon, 2011). Interestingly, RAS can activate Nuclear Factor Kappa B (NF-κB) 

signaling via its downstream factor RAC or PKB/AKT (Sulciner et al., 1996). NF-κB is a 

transcription factor exerting anti-apoptotic effects and promoting transformation (Mayo et al., 

1997). Moreover, NF-κB is associated with inflammatory processes, in general, as well as 

inflammation-induced gastrointestinal cancers (Merga et al., 2016). In addition to the 

stimulation of the MAPK and NF-κB pathways, RAS was shown to activate Phosphatidylinositol 

3-Kinase (PI3K) by directly interacting with the PI3K p110 catalytic subunit (Courtney et al., 

2010). Disturbed PI3K signaling was shown to be correlated with cell growth, metabolism and 

cancer progression (Engelman et al., 2006).  

The last transition in the Vogelgram, from late adenoma to carcinoma, is characterized by the 

loss of the tumor suppressor TP53. TP53 stabilization is regulated via ubiquitination by the E3 

ligase MDM2 resulting in its subsequent degradation. In turn, upon TP53 activation, it 

upregulates MDM2. Moreover, active TP53 induces mitochondrial (intrinsic) and death-

receptor-induced (extrinsic) apoptosis (Ryan et al., 2001). The corresponding gene, TP53, is 

mutated in approximately 50% of colorectal cancers and leads to a deregulation of the cell 

cycle and the prevention of apoptosis and therefore, tumor cell survival (Munteanu and 
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Mastalier, 2014). Though it was shown that only 6.6% of colorectal cancer lesions possess 

mutations in all three components, APC, KRAS and TP53 (Smith et al., 2002), the Vogelgram 

has largely contributed to our knowledge and was extended by numerous studies. For instance, 

in 2008 Issa suggested a new model in which tumor progression does not occur in a linear 

progress but rather in diverse distinct pathways. He divided them based on their pathological 

presentation, prognosis, localization of tumors and molecular markers (Issa, 2008). 

 

1.2.5 Epigenetic deregulation  

Epigenetic mechanisms represent an emerging research area with significant relevance in the 

field of tumorigenesis (Feinberg and Tycko, 2004). Generally, epigenetic mechanisms can 

affect gene expression without altering underlying DNA sequences, but rather by chromatin 

modifications. Eukaryotic chromatin is a highly compacted structure containing repeating 

structural subunits, the so-called nucleosomes. Each nucleosome is assembled of a histone 

octamer consisting of two copies of each histone (i.e. H2A, H2B, H3, and H4) wrapped around 

by 147 base pairs of DNA (Luger et al., 1997; Richmond and Davey, 2003). Each core histone 

possesses histone-fold domains and N-terminal histone-tails. While the fold domains serve for 

the interaction of the histones, the tails can be subjected to post-translational modifications 

(PTMs), potentially affecting gene expression. These modifications include for instance histone 

methylation (me), acetylation (ac), phosphorylation (P) and ubiquitination (ub). Histone PTMs 

can be carried out by enzymes called “writers”, recognized by “readers” and removed by 

“erasers” (Strahl and Allis, 2000; Torres and Fujimori, 2015). 

In 1983 Feinberg and Vogelstein described a global hypomethylation in human cancers 

(Feinberg and Vogelstein, 1983). Moreover, regions rich in CpG dinucleotides, namely the CpG 

islands, which are abundant in promoter regions, were found to be hypermethylated resulting 

in decreased transcriptional activity (Herman and Baylin, 2003). CpG hypermethylation 
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frequently affects and therefore represses tumor suppressor genes in various cancer types 

including CRC (Costello et al., 2000). 

A further relevant, yet poorly understood, epigenetic modification is the monoubiquitination of 

histone H2B at lysine 120 (H2Bub1). The process of H2B monoubiquitination can be initiated 

after the recognition of acetylated histone marks and/or transcription factors by BRD4 (Figure 

2) (Itzen et al., 2014). As a consequence, BRD4, a central member of the Bromo- and Extra-

Terminal (BET) domain protein family, recruits the Positive Transcriptional Elongation Factor b 

(P-TEFb) complex. P-TEFb consists of the Cyclin-Dependent Kinase 9 (CDK9) and Cyclin T1. 

P-TEF-b complex formation was shown to be facilitated by the Heat Shock Protein 90 (HSP90) 

(O'Keeffe et al., 2000). Subsequently, CDK9 phosphorylates the RNA Polymerase II (RNA Pol 

II) at serine 2 of its carboxyl-terminal heptapeptide repeat domain, thereby releasing promoter 

proximal pausing of several genes “poised” or “paused”  by RNA Pol II (Nechaev and Adelman, 

2011).  

The process of promoter proximal pausing was studied in detail in Drosophila melanogaster 

where it was demonstrated that in 15% of tissue-specific genes RNA Pol II is bound 

downstream of the promoter. Moreover, nearly half of the genes in human embryonic stem 

cells were occupied by an initiating form of RNA Pol II (Guenther et al., 2007). In an inducible 

manner, this paused state can be released to proceed transcription. As reviewed by Boettiger 

and colleagues, it was postulated that RNA Pol II pausing allows for rapid induction upon a 

stimulus and was referred to as a “loaded gun”. The possibility to regulate this mechanism in a 

tissue-specific manner implies its relevance during developmental processes (Boettiger et al., 

2011). Upon phosphorylation RNA Pol II interacts with WW Domain-Containing Adaptor with 

Coiled-Coil (WAC) protein which recruits the RNF20/RNF40 heterodimer (Zhang and Yu, 

2011). By exerting their E3 ligase activity the RING finger proteins RNF20/RNF40 

monoubiquitinate H2B at lysine 120 and thereby promote transcription (Zhu et al., 2005). It was 

proposed that monoubiquitinated H2B facilitates transcript elongation by interacting with the 
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Facilitates Chromatin Transcription (FACT) complex which promotes RNA Pol II activity 

(Orphanides et al., 1998; Pavri et al., 2006). Notably, the ubiquitin hydrolase Ubiquitin-Specific 

Protease 22 (USP22) is able to deubiquitinate H2B by functioning as a deubiquitinating enzyme 

(DUB) within the SAGA complex (Zhang et al., 2008b) as explained in detail in section 1.13.  

 

Figure 2: The interplay of H2Bub1 and epigenetic regulators. HSP90 facilitates the 
assembly of the P-TEFb complex consisting of CDK9 and Cyclin T1. Upon recognition of 
acetylated marks, BRD4 recruits the P-TEFb complex, enabling CDK9 to phosphorylate RNA 
Pol II at serine 2, thereby releasing promoter proximal pausing. RNA Pol II interacts with WAC 
which binds to the RNF20/RNF40 heterodimer monoubiquitinating the histone H2B. This 
ubiquitin molecule can be removed by the deubiquitinating enzyme USP22 which is part of the 
DUB module within the SAGA complex.    
 

Over the last years it has been demonstrated that the levels of several components involved 

in the monoubiquitination of H2B are perturbed in cancer. For instance, increased abundance 

of BRD4 (Jung et al., 2015) and CDK9 (Morales and Giordano, 2016) have been positively 

correlated with tumorigenesis. Interestingly, our group previously showed that H2Bub1 levels 
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are inversely correlated with malignancy during mammary tumor progression (Bedi et al., 2015; 

Prenzel et al., 2011) therefore potentially reflecting a tumor suppressive mark. In a recent 

study, 1,800 CRC samples were assessed for their H2Bub1 levels in a tissue microarray-based 

approach. Indeed, decreased H2Bub1 levels correlated with advanced tumor grade and stage 

(Qi et al., 2004). In addition, reduced Rnf20 expression in mice, and therefore decreased 

H2Bub1 levels, were associated with UC and CRC (Tarcic et al., 2016). Concerning the E3 

ligases RNF20/RNF40, further implications in cancer were described. For instance, RNF20 

appears to be required for mixed-lineage leukemia (MLL)-rearranged leukemia (Wang et al., 

2013), while deletion of both RNF20 and RNF40 suppresses breast cancer progression in vivo 

(Duan et al., 2016). Notably, USP22 was reported to be a member of the 11-gene “death-from-

cancer” gene expression signature which is strongly associated with distant metastasis, poor 

survival and high recurrence rates of human malignancies (Glinsky, 2005; Glinsky et al., 2005). 

The correlation of the overexpression of USP22 in several cancer types has been recently 

reviewed (Melo-Cardenas et al., 2016) and is described in more detail in section 1.13. In 

summary, besides well-known aspects such as lifestyle, IBDs and genetic mutations, 

epigenetic deregulations display substantial CRC risk factors. 

 

1.3 The composition of the intestinal system 

To understand how these risk factors can contribute to the transition of healthy intestinal 

epithelium to cancer lesions, it is of great importance to comprehend the intestinal anatomy 

and its cellular composition. During the last decade numerous studies have revealed the 

significance of the intestinal system to the human body. Its probably most well-known and best 

described functions are the digestion of food and the absorption of nutrients. After the uptake 

of food it is processed from the oral cavity and the pharynx into the upper gastrointestinal tract 

(GIT) consisting of esophagus and stomach (Figure 3A). From there the food reaches the lower 

GIT which is composed of the small and large intestine and extends to the anus (Ellis, 2006). 
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Figure 3: The human gastrointestinal tract and composition of the gastrointestinal wall. 
(A) After uptake, food migrates through the GIT consisting of the oral cavity, esophagus and 
the stomach. Afterwards, the food is further digested in the small intestine (duodenum, jejunum, 
ileum) and transferred to the large intestine via the ileocecal valve. The large intestine consists 
of the cecum, appendix, colon (ascending, transverse, descending, sigmoid) and the rectum. 
Finally, digestion is completed by defecation via the anus. (B) The intestinal lumen is 
surrounded by epithelial cells with the subjacent lamina propria mucosae. Below, the smooth 
muscle layer lamina muscularis mucosae and the tela submucosa can be found. Underlying 
the tunica muscularis, tela subserosa, and the outermost connective tissue layer, tunica 
serosa, are present. 
 

Generally, after receiving food from the stomach, the main function of the small intestine (SI) 

is to digest the food and absorb substances such as lipids, carbohydrates and vitamins into the 

bloodstream or lymphatic system. The SI is structurally subdivided into the duodenum which is 

continuous with the stomach, the jejunum, and the ileum. The uppermost 25 cm of the SI 

represent the duodenum which performs the major part of digestion with the help of chyme, 

digestive enzymes and bile contributed by stomach, pancreas and gall bladder, respectively. 

In the jejunum mainly fatty acids, sugars and amino acids are absorbed while in the ileum 

mainly absorption of bile acids, vitamins and further nutrients takes place. To increase the 

surface area, there are circular folds within the intestinal system. The large intestine is divided 
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into further structural subunits, namely the cecum, colon, rectum and the anal canal. The 

cecum is connected to the small intestine and is separated from the ileum by the ileocecal 

valve. The appendix is a blind, tube-formed structure attached to the cecum and plays a crucial 

role in mucosal immunity due to its high density of lymphocytes (Berry, 1900). The following 

structure is the colon which is divided into the ascending, transverse, descending and sigmoid 

colon. The main function of the colon is to absorb water from the food residues. The rectum is 

the final straight segment which is followed by the anal canal and the anus where the process 

of digestion is completed by defecation (Despopoulos and Silbernagl, 2003; Ellis, 2006; 

Rhoades and Tanner, 2003). Typically, the intestinal tissue possesses finger-like projections 

to further increase its surface. In the small intestine these evaginations are designated as villi 

with crypts at their bottom while the colon contains only invaginations (crypts). Generally, the 

lumen is surrounded by a monolayer of epithelial cells with an underlying layer of collagenous 

connective tissue, the lamina propria mucosae (Figure 3B). Below the smooth muscle layer 

lamina muscularis mucosae is present as well as the tela submucosa which contains nerves, 

blood and lymphatic vessels. The tunica muscularis is composed of longitudinal and circular 

muscle layers responsible for peristaltic movements of the intestine. Underlying, a layer of 

connective tissue, tela subserosa, and the outermost connective tissue layer, tunica serosa, 

can be found (Gartner and Hiatt, 2014; Young and Wheater, 2007).  

Interestingly, the intestinal epithelium is characterized by a rapid cell turnover with a renewal 

every 4-5 days and is therefore the most frequently self-renewing tissue in adults (van der Flier, 

Laurens G and Clevers, 2009). It consists of a monolayer of cells interconnected by tight 

junctions. Importantly, these tight junctions regulate the epithelial barrier function, i.e. 

permeability for solutes, ions, cells, etc. through intercellular space (Ichikawa-Tomikawa et al., 

2011). Epithelial cells are subdivided into four differentiated cell types (Figure 4). The majority 

of cells are enterocytes which are responsible for absorption. Goblet cells secrete mucins which 

are required to form a mucus layer in the intestine which confers a protective role to the organ.  



Introduction 

15 

 

 

Figure 4: Structure and cell types of the intestinal epithelium. The small intestine is 
subdivided into finger-like projections, villi, and crypts which are found at the bottom of villi. A 
monolayer of epithelial cells faces the luminal area of the intestinal tube. The epithelium mainly 
consists of enterocytes while Goblet and enteroendocrine cells are sporadically present. At the 
bottom of the crypts, Paneth and stem cells are located. In contrast, the colon consists only of 
crypts and no Paneth cells are present.  
 

Enteroendocrine cells secrete hormones which are amongst other functions relevant for 

digestion. In contrast to the other cell types, Paneth cells are exclusively present at the bottom 

of the crypts and secrete antimicrobial substances in addition to the fact that they are 

exclusively found in the small intestine but not the colon (Johansson et al., 2011; Roda et al., 

2010). Most importantly, the crypt bottoms harbor stem cells which give rise to the so-called 

transit-amplifying cells which migrate upwards into the villi to differentiate into the previously 

mentioned cell types (Barker et al., 2007; Barker et al., 2012; van der Flier, Laurens G et al., 

2009). The differentiation process is strongly regulated by active Wnt and Notch signaling 
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pathways which are also responsible for keeping the crypt compartment in an undifferentiated 

and proliferative state. Consistent with our knowledge about tumorigenesis, Barker and co-

workers demonstrated that loss of APC in intestinal stem cells causes uncontrolled proliferation 

and therefore development of adenomas (Barker et al., 2009). Interestingly, epigenetic 

mechanisms appear to be crucial for the maintenance of the intestinal epithelium. For instance, 

the loss of the maintenance DNA methyltransferase 1 (DNMT1) resulted in an almost twofold 

expansion of the crypt compartment in mice. This phenomenon was accompanied by increased 

expression of the stem cell markers Lgr5 and Olfm4 (Sheaffer et al., 2014). The fact that 

enhancer regions of these genes were strongly demethylated suggested a role of epigenetic 

regulation in differentiation and crypt maintenance in vivo (Lister et al., 2009).  

 

1.4 The intestinal microbiota 

To understand the complexity of physiological and pathological processes in the colon, it is 

relevant to know that the intestinal system should not be seen as an empty tube through which 

food is processed and in which tumors can develop. In fact, it displays a highly complex 

ecosystem with its own microenvironment, immune response and if malfunctioning, it can affect 

the entire body. In the process of digestion our body relies on numerous microorganisms, the 

so-called microbiota. Not only does the microbiota mainly comprise bacteria, but also fungi, 

viruses and protozoans can be found (Savage, 1977). One gram of dry ileal contents contains 

approximately 108 bacteria while the colon contains up to 1012 bacteria per gram (Smith, 1977). 

Notably, each human being possesses at least 160 species while in the entire experimental 

cohort analyzed by Qin and co-workers more than 1,000 different species were found (Qin et 

al., 2010). 

The most abundant phyla in the intestines gut are Firmicutes and Bacteriodetes (Human 

Microbiome Project Consortium, 2012), however, the composition of the gut microbiota is highly 

variable. For instance, the microbiota can vary among human populations, across age 
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(Yatsunenko et al., 2012), after antibiotic treatment (Panda et al., 2014) or due to dietary factors 

(David et al., 2014; Turnbaugh et al., 2009). As explained in detail in section 1.5, the microbiota 

can be seen as a component of the natural defense barrier of the intestine, however, at the 

same time it represents a potential danger in the case of dysbiosis. In dysbiosis, the microbial 

homeostasis is no longer maintained resulting in an increase of pathogenic and a decrease in 

beneficial microorganisms (Comito et al., 2014) and was described in colorectal cancer (Wu et 

al., 2013) and IBD patients. For instance, in IBD a high frequency of Bacteroides sp. was found 

(Rehman et al., 2010; Swidsinski et al., 2002) which produce sulfatases degrading the 

protective mucin layer resulting in impaired barrier function of the epithelium (Lucke et al., 

2006). Interestingly, the presence of microorganisms is indispensable for the development of 

factors of the immune response and even the gut morphology (Round and Mazmanian, 2009; 

Zeissig and Blumberg, 2013). 

 

1.5 The intestinal immune defense and ulcerative colitis 

In addition to the intestinal microbiota, our intestinal system is constantly confronted with 

potentially pathogenic food- and water-born agents. Hence, it must possess multiple defensive 

mechanisms which can involve physical, chemical, cellular or signaling processes. Inside the 

intestinal lumen the microbially-colonized mucus layer (Figure 5) protects the underlying 

epithelium in a dual way. First, the presence of microorganisms protects its host from bacterial 

overgrowth and infection with enteropathogenic bacteria via competition for nutrients and 

space (Frick and Autenrieth, 2013). Most of these bacteria possess a beneficial role in the 

organ function, for instance by their metabolic contributions (Hooper et al., 2002) but also by 

producing anti-microbial compounds in the presence of pathogens (Frick and Autenrieth, 

2013). Second, also the mucus layer prevents bacterial overgrowth and protects the epithelium 

from inflammation at the same time  (Petersson et al., 2011). Notably, mice deficient in Muc2, 

a main component for mucin formation, were prone to the development of colitis (van der Sluis 
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et al., 2006). A physical defense component is represented by the monolayer of intestinal 

epithelial cells (IECs) including tight junctions and microvilli to increase the surface area.  

 

Figure 5: The protective structures of the intestinal system. The mucus layer represents 
the first defensive component facing the intestinal lumen. Apart from its protective and lubricant 
function, it also harbors numerous microorganisms protecting the host from bacterial 
overgrowth. The epithelial monolayer represents a physical barrier which contains microvilli to 
increase surface area and tight junctions to regulate permeability. Below, free immune cells 
and mucosa-associated lymphoid tissues (MALTs) are responsible for the host’s immune 
response. 
 

As mentioned before, tight junctions regulate the paracellular barrier function via several 

transmembrane proteins (Ichikawa-Tomikawa et al., 2011). Another crucial feature of this cell 

layer is the presence of granule-containing Paneth cells which secrete anti-microbial 

substances such as defensins (Clevers and Bevins, 2013). Importantly, a certain degree of 

permeability is maintained in order to transport nutrients and fluids across this barrier. Below 

the physical barrier, mucosal immunity is regulated by free lymphocytes, dendritic cells, Natural 

killer T cells and macrophages which are in close proximity to IECs. Similar to the microbiota, 

Natural killer T cells can play a beneficial role by protecting the host from infections, however, 

deregulated activation can contribute to the pathogenesis of IBDs (Zeissig et al., 2007). 

Moreover, mucosal structures harbor mucosa-associated lymphoid tissues (MALTs) which in 
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the case of the intestine are known as gut-associated lymphoid tissue (GALT) such as Peyer’s 

patches (Mora and Andrian, 2008). Interestingly, in 1900 the significance of the appendix in 

our immune defense was recognized since lymphoid tissue is highly concentrated in this 

structure (Berry, 1900). In these lymphocyte accumulations, B cells can differentiate into 

Immunoglobulin A (IgA)-secreting cells (Mora and Andrian, 2008), an antibody of the innate 

immune system interfering with the invasion of bacteria into the IECs (Canny and McCormick, 

2008). In fact, IgA is the most abundant immunoglobulin isotype in the human body and 

approximately 80% of IgA-secreting cells are localized in the intestinal mucosa (Mora and 

Andrian, 2008). Moreover, a subset of immune cells is able to promote expression of pro-

inflammatory cytokines such as interleukin 6 (IL-6) and IL-8 but also of anti-inflammatory 

factors, e.g. IL-10 (Sommer and Backhed, 2013). As reviewed by Klampfer, cytokines and 

chemokines promote the proliferation and survival of tumor cells (Klampfer, 2011). 

In inflammatory bowel disease the intestinal barrier function was shown to be perturbed (Arslan 

et al., 2001; Hollander et al., 1986). Intestinal permeability can be affected by several factors 

such as misbalanced abundance of tight junction proteins (Barmeyer et al., 2015), damaged 

epithelium (Clayburgh et al., 2004) and increased abundance of inflammatory cytokines 

(Neurath, 2014). As recently discussed, it is challenging to determine the causal factor. Does 

barrier dysfunction cause inflammation? Or is it the other way around, or both, resulting in a 

vicious circle (Landy et al., 2016)? Once the permeability of the epithelial monolayer is 

disturbed luminal antigens and potentially pathogenic microorganisms can invade the mucosa 

triggering the innate and adaptive immune response (Rakoff-Nahoum and Bousvaros, 2010). 

Interestingly, while in ulcerative colitis only the mucosa is affected, inflammation in Crohn’s 

patients appears to be transmural, i.e. affecting all layers (Xavier and Podolsky, 2007).  

How inflammatory processes ultimately promote intestinal tumorigenesis, is a highly complex 

process and was explored several studies. For instance, the proinflammatory cytokine IL-1β 

produced by macrophages, was reported to be associated with the phosphorylation and 
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therefore inactivation of GSK-3β. Thereby, the Wnt signaling pathway was promoted by a NF-

κB-mediated activation of Phosphoinositide-Dependent Kinase-1 (PDK1) and the protein 

kinase PKB/AKT (Kaler et al., 2009). Notably, AKT can promote the nuclear translocation of β-

catenin and β-catenin/TCF transcriptional activity (Fang et al., 2007) which was associated 

with colorectal tumorigenesis (Taipale and Beachy, 2001). Similarly, it was demonstrated in 

vivo that PI3K activity is required for AKT-mediated activation of Wnt signaling (Lee et al., 

2010). Interestingly, it was observed that intestinal inflammation can cause mutations. For 

instance, macrophages and neutrophils, which are recruited during inflammatory processes, 

were shown to produce reactive oxygen and nitrogen species (RONS). In a mouse model for 

colitis, RONS were associated with the induction of DNA damage and mutations and an 

increased CRC risk (Meira et al., 2008). Notably, when analyzing non-cancerous colon regions 

isolated from UC patients, high TP53 mutation rates were identified (Hussain et al., 2000). 

Consistently, as reviewed by Rogler, TP53 mutations occur during the early phase in colitis-

associated colorectal cancer while this phenomenon can usually be observed in the late stages 

of sporadic CRC. Afterwards, dysplastic lesions accumulate further mutations, e.g. in KRAS or 

APC, which consequently lead to the formation of a carcinoma (Rogler, 2014). Notably, it was 

observed that the prognosis of ulcerative colitis-associated colorectal cancer is worse than in 

sporadic CRC (Jensen et al., 2006).  

 

1.6 Colorectal tumor progression 

Generally, the formation of colorectal cancer is a multistep process characterized by its slow 

progression. In the majority of patients, tumors develop after a minimum of ten years allowing 

for early detection if screenings are performed regularly (Smith et al., 2001). Usually, CRC is 

initiated by a hyperproliferation of the intestinal epithelium (Figure 6).  
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Figure 6: Tumor progression in colorectal cancer. Once mutated cells started 
hyperproliferating, they can form polyps. After accumulating mutations and proliferative 
properties pre-cancerous polyps followed by adenomas and adenocarcinomas occur. Finally, 
an invasive carcinoma can be formed which migrates through lamina propria and muscularis 
mucosae and can finally form metastases. 
 

Notably, tumors can have different cells of origin, e.g. stem-like, transient-amplifying, Goblet-

like and enterocytes (Sadanandam et al., 2013). If these hyperplastic properties are 

maintained, benign polyps of different sizes can be formed. Pre-cancerous polyps 

characterized by severe dysplasia can be developed as well as adenomas or 

adenocarcinomas. Finally, the cancer cells can gain migratory properties resulting in the 

formation of invasive adenocarcinoma (Janne and Mayer, 2000; Subramaniam et al., 2016). 

Tumors can invade through the lamina propria and muscularis mucosae into the proximity of 

the lymphatic system blood vessels (Fleming et al., 2012). Once cancer cells have reached the 

circulation, they can form lymphatic metastases or be transported to other organs. Liver 

metastases were detected in 10-25% of CRC patients who underwent surgery (Sheth and 

Clary, 2005). Importantly, the location of the primary tumor can be a determinant for the disease 

outcome. If the cancerous lesion is located in the rectal region, metastases form frequently in 

thorax, bone and nervous system. In contrast, in tumors located on the right side of the 

colorectum, metastases are more likely to form in the peritoneum and liver (Riihimaki et al., 
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2016). Generally, the right sided tumors were reported to be more aggressive and therefore 

correlated to poor prognosis (Hemminki et al., 2010). 

 

1.7 Colorectal cancer detection 

In order to improve prognosis and to prevent further tumor progression, early detection remains 

a critical aspect. Besides the previously mentioned colonoscopy there are further less invasive 

CRC screening approaches. Generally, two major types of screening methods, namely stool-

based and endoscopic/radiologic tests are available. The former include the guaiac-based 

fecal occult blood test (gFOBT), fecal immunochemical test (FIT), and fecal DNA testing. The 

latter include among others optical colonoscopy, capsule endoscopy and computed 

tomographic colonography (CTC) and magnetic resonance colonography (MRC) (El Zoghbi 

and Cummings, 2016; Kolligs, 2016). In gFOBT, the presence of occult blood can be detected 

after applying feces on a guaiac-coated test paper. After the addition of hydrogen peroxide, an 

oxidation reaction takes place resulting in the development of blue color in the presence of 

occult blood (Mandel et al., 1993; Young et al., 2015). In contrast, the FIT makes use of 

antibodies specifically recognizing the globin moiety of human hemoglobin (Mandel et al., 1993; 

Young et al., 2015). A recent meta-analysis describes a higher sensitivity of immunochemical 

approaches compared to gFOBT (Launois et al., 2014). The stool DNA test (Cologuard) is a 

relatively new technique which combines a FIT-based detection of human hemoglobin with a 

molecular screen for CRC-associated biomarkers (The Medical Letter, 2014).   

Colonoscopy is a standard endoscopic approach to directly visualize the intestinal structures 

and remove potential pre-cancerous polyps using a flexible endoscope. In case of colonoscopy 

contraindications or failure, capsule endoscopy can be performed (e.g. PillCam 2; Given 

Imaging Ltd., Israel). After capsule ingestion, a series of images is generated via two cameras 

which is subsequently evaluated by a gastroenterologist to detect diverticulosis, colitis, polyps 

or cancer lesions (Choi et al., 2016; Friedel et al., 2016). CTC is a radiographic method in 
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which a contrast medium is applied to patients in order to obtain images. Detection rates are 

similar to colonoscopy while CTC resulted in considerably less complications (Kim et al., 2007). 

Though MRC was shown to be less sensitive than conventional colonoscopy (Graser et al., 

2013) and CTC as recently reviewed (Kolligs, 2016), its advantage is the absence of radiation 

risk compared to CTC (Brenner, 2004).  

 

1.8 Classification of CRC subtypes 

Upon detection of colorectal cancer and the analysis of biopsies, the tumors can be classified 

based on, for instance, their histopathological and molecular features.  

 

1.8.1 Histopathological classification  

Due to the heterogeneity of colorectal cancer, e.g. the different stages and distinct pathological 

features, there are several histopathological classification criteria. For instance, based on their 

architecture, conventional adenomas can be classified as tubular, villous and tubulovillous 

lesions. Tubular adenomas are characterized by crypt-like dysplastic glands and a low (<25%) 

presence of finger-like projections, i.e. villus-like structures. In contrast, the rate of villous 

component is at least 75% in villous adenomas. Accordingly, tubulovillous adenomas show 

intermediate rates of villous components. Furthermore, serrated lesions are characterized by 

a serrated or sawtooth-like presentation of the epithelium (Fleming et al., 2012).  

The World Health Organization (WHO) has classified colorectal carcinomas into several 

subgroups such as adenocarcinomas, mucinous adenocarcinomas (MACs) and Signet ring 

cell adenocarcinomas. Conventional adenocarcinomas are characterized by the presence of 

glandular structures based on which the tumor can be graded. A high rate of glands (>95%) 

represents a well differentiated adenocarcinoma while a low rate (<50%) indicates a poorly 

differentiated adenocarcinoma. In contrast, cancer lesions are designated as mucinous 

adenocarcinomas when at least 50% of the tumor volume consists of extracellular mucin. When 
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the mucus content is less between 10% and 50%, tumors are described as adenocarcinomas 

with mucinous features/differentiation (Hamilton S.R., 2000). A meta-analysis revealed that 

MACs are majorly found in the right colon and are less frequent in male patients. Moreover, 

the authors described a poor prognosis for CRC patients with MACs (Verhulst et al., 2012). 

Mucinous adenocarcinomas are associated with microsatellite instability (MSI) and therefore 

often present in HNPCC or Lynch syndrome patients. Interestingly, MSI-MACs were described 

to be less aggressive than microsatellite stable (MSS) lesions (Leopoldo et al., 2008; Verhulst 

et al., 2012).  

Excessive mucus is also present in another type of adenocarcinoma, i.e. Signet ring cell 

adenocarcinoma. In affected cells large intracytoplasmic mucin vacuoles push the nuclei aside. 

At least 50% of tumor cells should possess Signet ring features to classify a cancer lesion as 

a Signet ring cell adenocarcinoma (Hamilton S.R., 2000). The presence of these tumors result 

in a worse overall outcome compared to conventional adenocarcinomas (Kang et al., 2005). 

There are further classifications such as medullary carcinomas which are extremely rare 

(Thirunavukarasu et al., 2010) with 5-8:10,000 CRC patients and associated with MSI (Hinoi 

et al., 2001). Finally, the staging according to the TNM classification of colorectal cancer does 

not only depend on the nature of the primary tumor (T), but also on the degree of invasion of 

regional lymph nodes (N) and distant metastasis (M). Each category has several subclasses, 

for instance, the size/spread of the primary tumor (T1-4), the number of affected lymph nodes 

(N0-2) and the presence of distant metastases (M0/1) (Akkoca et al., 2014). 

 

1.8.2 Molecular classification  

Besides the histopathological analysis, the molecular profile of the tumor biopsy is usually 

determined. Based on mutations in (proto-)oncogenes, tumor suppressors and further 

molecular alterations, a classification of the molecular basis of colorectal cancer into three 

pathways was proposed (Ahnen, 2011). In lesions characterized by the chromosomal instability 



Introduction 

25 

 

(CIN) pathway, large chromosome regions or entire chromosomes are depleted or 

translocated. This phenomenon results in the dysfunction of relevant tumor suppressor genes 

or proto-oncogenes (Coppede et al., 2014). The CIN pathway is among others associated with 

deregulated protein levels of APC, KRAS, and TP53 (Pancione et al., 2012). In contrast to CIN-

positive cancer lesions, tumors displaying microsatellite instability are characterized by 

changes in short base pair sequences. These deletions, insertions or substitutions of 

nucleotides lead to a significant genetic instability and frequently affect DNA mismatch repair 

genes. MSI can be detected in approximatively 15% of all colorectal tumors which commonly 

show a mucinous phenotype (Ahnen, 2011; Vilar and Gruber, 2010). Finally, the epigenetic 

pathway involves gene expression alterations not resulting from changes in the DNA sequence. 

Over the last years, major advances have been made in this rapidly evolving field helping 

researchers to unravel the role of epigenetic regulatory proteins in cancer (Ahnen, 2011; Mishra 

and Johnsen, 2014; Okugawa et al., 2015). For instance, the CpG island methylator phenotype 

(CIMP) subtype of CRC displays high rates of hypermethylated tumor suppressor genes which 

correlates with poor prognosis (Juo et al., 2014; Toyota et al., 1999). 

This molecular classification has been further refined in several studies. In 2015 an 

international consortium defined four consensus molecular subtypes (CMS) in which of MSI, 

CIN and CIMP can be accompanied by specific genetic mutations or processes such as 

immune or stromal infiltration. CMS1 combines MSI and CIMP with immune infiltration, while 

CMS2 includes copy number alterations and activation of MYC and Wnt signaling pathways. 

In contrast, CMS3 is associated with mixed MSI status, KRAS mutations and the deregulation 

of metabolic processes. Finally, in CMS4, copy number alterations, active Transforming growth 

factor-β (TGF-β) signaling, stromal infiltration and angiogenesis can be observed (Guinney et 

al., 2015).  
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1.9 Colorectal cancer treatment  

The diversity of CRC underlines the importance of tumor characterization to find the most 

suitable therapy option upon diagnosis. The major treatment options include surgery, radiation 

therapy, chemotherapy and targeted therapy (Cunningham et al., 2010). Generally, if the 

cancerous lesions are limited to only one location, total resection of the tumor including margins 

of at least 5 cm is performed. Additionally, at least 12 lymph nodes are typically removed for 

nodal staging. Total mesorectal excision (TME) for rectal and complete mesocolic excision 

(CME) for colon cancer describe the complete removal of the respective organ including the 

mesentery. Via additional excision of the mesentery, a membranous fold attaching 

colon/rectum to the abdominal wall, surgeons can ensure that cancerous mesentery-

associated lymph nodes will be removed as well. This procedure potentially reduces tumor 

recurrence after curative resection (Dimitriou and Griniatsos, 2015). 

If oncogenic growth is not restricted to one area due to venous or lymphatic invasion, 

radiotherapy combined with chemotherapy, i.e. chemoradiation, is the option of choice 

(Cunningham et al., 2010; Hafner and Debus, 2016). Notably, preoperative chemoradiation 

was associated with low recurrence rates and toxicity compared to postoperative treatment 

(Sauer et al., 2004). Notably, numerous studies revealed that CRC patients benefit more from 

combination therapies than from treatment with a single chemotherapeutic agent in terms of 

overall survival and tumor progression. For instance, the combinations of folinic acid and 

Oxaliplatin (FOLFOX) or folinic acid and Irinotecan (FOLFIRI) emerged as standard therapies 

(Aschele et al., 2011; Gramont et al., 1997; Landre et al., 2015; Mohiuddin et al., 2006). 

Notably, combining all three mentioned agents, folinic acid, Oxaliplatin and Irinotecan 

(FOLFOXIRI) resulted in better response as well as higher progression-free and overall survival 

compared to FOLFIRI (Falcone et al., 2007). 

Interestingly, targeted therapy, i.e. monoclonal antibodies, was shown to improve treatment 

efficacy when combined with standard regimens in metastatic colorectal cancer. Bevacizumab, 
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selectively targets the Vascular Endothelial Growth Factor (VEGF) and therefore impairs 

angiogenesis (Ohhara et al., 2016). For example, when administering Bevacizumab to patients 

receiving FOLFIRI, beneficial effects on the progression-free survival were noted (Fuchs et al., 

2007). Similar observations were made when combining Cetuximab targeting the Epidermal 

Growth Factor Receptor (EGFR) with standard therapies (Ohhara et al., 2016).  

Another promising approach is the induction of synthetic lethality. Synthetic lethality is based 

on the concept that the presence of a ‘first hit’ (e.g. genetic mutation) does not affect cell 

survival. In fact, certain mutation can rather result in a growth advantage for cancer cells. 

However, introduction of a ‘second hit’ (e.g. drug treatment or a second mutation) causes 

lethality in the mutated but not in normal, wild type cells (Kaelin, JR, 2005). One well-known 

example is the application of Poly(ADP-Ribose) Polymerase (PARP) inhibitors in patients with 

a mutation in BReast CAncer 1 or 2 (BRCA1 or BRCA2). BRCA1/2 contribute to DNA double-

strand break (DSB) repair (Yoshida and Miki, 2004) while PARP is necessary for the repair of 

single-strand breaks (SSBs) (Dantzer et al., 2000).The rationale behind this treatment is that 

once PARP is absent, SSBs develop to DSBs and since BRCA1/2 are not functional, these 

DSBs cannot be repaired. In other words, BRCA1/2 mutated cancer cells solely depend on 

PARP-mediated repair and once this mechanism is inhibited, lethality is induced. In contrast, 

healthy, BRCA1/2 wild type cells are not significantly affected by PARP inhibition since their 

DSB repair mechanism is still effective (Murata et al., 2016). 

In addition to conventional therapies and the induction of synthetic lethality, several epigenetic 

approaches are currently being tested in clinical trials or have already been FDA-approved. 

For instance, alterations in the methylation equilibrium can be targeted via DNA 

methyltransferase inhibitors, e.g. 5-aza-2′-deoxycytidine (Ghoshal et al., 2005). Histone 

methyltransferase inhibitors such as EPZ-6438 targeting Enhancer of Zeste Homolog 2 (EZH2) 

as well as histone demethylase inhibitors are also currently tested in clinical trials (Mair et al., 

2014). Furthermore, suberoylanilidehydroxamic acid (SAHA/Vorinostat), an inhibitor of histone 
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deacetylases (HDACs) was shown to be effective in T cell lymphomas by maintaining the levels 

of acetylated lysines and therefore normalizing gene expression patterns (Bose et al., 2014). 

Interestingly, in non-small cell lung cancer this epigenetic inhibitor improved the efficacy of the 

chemotherapeutic agents carboplatin and paclitaxel (Ramalingam et al., 2010). Another 

example is the combination of the HDAC inhibitor panobinostat with the proteasome inhibitor 

bortezomib in multiple myeloma patients (San-Miguel et al., 2014). Notably, the progression-

free survival was increased by additional treatment with dexamethasone (Richardson et al., 

2016). A further promising group of epigenetic drugs is represented by Bromo- and Extra-

Terminal domain inhibitors, e.g. JQ1 and I-BET151. As recently summarized by Ferri et al., 

there are several BET inhibitors being tested in clinical studies for malignant, inflammatory and 

cardiovascular diseases. Moreover, synergistic effects were observed when combining these 

inhibitors with HDAC or kinase inhibitors as well as conventional chemotherapeutic agents in 

vivo and in vitro (Ferri et al., 2016). A BET-associated candidate, CDK9 which is recruited by 

BRD4 in order to release promoter proximal pausing, is currently also under investigation as a 

suitable drug target (Bose et al., 2013). However, despite a successful tumor removal or 

chemo- and radiotherapy, disease recurrence and metastasis remain major challenges.  

 

1.10 Heterogeneity of colorectal cancer 

One of the challenges in investigating colorectal cancer and generating adequate therapy 

options is reflected by the heterogenic nature of this disease. In this section all aforementioned 

details about CRC are summarized. Generally, there are several risk factors associated with 

CRC formation (Figure 7). For instance, several morbidities were described such as type 2 

diabetes, obesity and, importantly, inflammatory bowel diseases. In addition, dietary and life 

style factors, e.g. alcohol consumption, smoking and the degree of physical activity were 

identified as risk factors. Individual parameters such as age and familial predisposition are 

correlated with colorectal cancer as well.  
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Once the cancer has formed from a certain cell of origin (e.g. stem-like, transient amplifying, 

Goblet-like, enterocyte) there are various parameters by which this disease can be 

characterized. Initially, it is relevant to determine whether the CRC is of sporadic, hereditary or 

inflammation-induced nature. The developing tumors can be affected by genetic or epigenetic 

alterations and based on these, the molecular subtype (CIN, MSI, CIMP) can be determined. 

These underlying molecular features can influence the tumor architecture which can be of 

serrated, tubular, villous or tubulovillous nature and either differentiated or undifferentiated.  

 

Figure 7: The heterogeneity of colorectal cancer. Several risk factors are associated with 
colorectal cancer. Once an individual is affected, there are distinct CRC subclasses and 
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categories defining the heterogeneity of this disease. These factors can determine therapy 
choice, prognosis, recurrence rate, and metastasis risk. 
 

Adenocarcinoma subclasses include among others conventional, mucinous or Signet cell 

adenocarcinomas. However, the pathological CRC staging does not only depend on the 

primary tumor but also on the presence of nodal and distant metastases. Besides the TNM 

staging, the tumor site can be a crucial determinant of the characteristics of the cancer lesion. 

All these factors contribute to the diversity of colorectal cancers and can potentially determine 

the outcome for the patient, especially recurrence and metastasis. Moreover, the type of 

therapy is determined based on tumor characteristics and spread. 

 

1.11 Murine models for ulcerative colitis and colorectal cancer  

Due to its clinical significance, the diverse underlying mechanisms of (inflammation-induced) 

colorectal cancer need to be elucidated. For research purposes a number of experimental 

animal models have been generated which closely resemble the human situation of 

inflammatory bowel disease and intestinal tumorigenesis. For instance, there are xenograft and 

allograft transplantations, genetic and chemically induced murine models (Robertis et al., 

2011). 

One commonly selected approach is xenograft in which human cancer cells are injected 

subcutaneously into immunodeficient mice which allows easy monitoring of tumor growth in 

vivo (Garofalo et al., 1993). In contrast, in allograft transplantations, also known as syngeneic 

models, murine cells are injected into mice. Thus, the same species is used in this approach 

(Voskoglou-Nomikos et al., 2003). Orthotopic transplantation, e.g. injection of human cancer 

cells into the cecum or rectum of mice, allows the interaction between the tumor and the 

microenvironment (Hoffman, 1999). 

One frequently applied genetic approach is to drive tumorigenesis in the intestine by inducing 

an APC mutation. Two commonly used models are APC multiple intestinal neoplasia (APCmin) 
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and APC1638N mice. Both models possess an APC truncation mutation resulting in a non-

functional APC protein which closely resembles the human situation, e.g. FAP (Fodde and 

Smits, 2001). In contrast to APCmin, where animals primarily display adenomas in the small 

intestine, the APC1638N mutant mouse model develops fewer tumors in the small intestine and 

more colorectal tumors. In addition, tumors in APC1638N mice are characterized by frequent 

progression to carcinomas and occasional metastasis (Fodde et al., 1994; Robanus-Maandag 

et al., 2010; Taketo and Edelmann, 2009).  

To investigate the function of a distinct gene in CRC formation, it can be conditionally deleted 

by making use of the Cre/loxP system. CreERT2 mice specifically express a Cre-recombinase 

as a fusion protein with a mutated Tamoxifen-inducible estrogen receptor ligand binding 

domain (ERT2). Upon the application of Tamoxifen the Cre-recombinase gets activated and 

can mediate the excision of a gene segment flanked by loxP-sites frequently resulting in a 

frameshift and therefore a non-functional gene (Feil et al., 2009). To ensure tissue specificity, 

the Cre-recombinase is usually expressed under the control of a tissue-specific promoter. For 

instance, the Villin promoter is mainly expressed in the small intestine and to a lesser extent in 

the large intestine (el Marjou et al., 2004) while the Caudal-Type Homeobox-2 (CDX2) 

promoter activity is restricted to the distal ileal, cecal, colonic and rectal epithelium (Feng et al., 

2013). In addition to genetic modifications, colorectal tumor formation can be triggered by the 

induction of colitis. Dextran sulfate sodium (DSS) is a chemical agent administered via the 

drinking water to induce colitis (Okayasu et al., 1990). Even though the exact underlying 

mechanisms remain unknown, it is widely accepted that DSS interferes with the epithelial 

barrier function and has a direct toxic effect on the epithelium. As a result, the mucosal 

permeability is increased allowing the entry of DSS, luminal antigens and intestinal 

microorganisms into the mucosa. Consistently, expression levels of proinflammatory cytokines 

are increased, tight junction protein levels perturbed, apoptosis rates elevated (Perse and 

Cerar, 2012), finally resulting in intestinal inflammation.  
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1.12 Ubiquitination and cancer 

Taken together, colorectal cancer reflects a highly complex and heterogeneous disorder with 

numerous associated risk factors and underlying (epi-)genetic alterations. Intensive 

investigations, especially using suitable animal models, are required to obtain further insights 

into CRC and its key players and, most importantly, to investigate new therapeutic strategies. 

As explained before, the ubiquitination status of the histone H2B was described as a predictive 

marker for tumor grade and stage (Qi et al., 2004). In addition, overexpression of USP22, a 

factor responsible for H2B deubiquitination, correlates with increased tumor burden. These 

examples indicate the relevance of maintaining the homeostasis of ubiquitin levels. In contrast 

to other PTMs, ubiquitination is characterized by conjugating its substrate with a relatively large 

(8.5 kDa) polypeptide molecule as a result of a three-step process (Figure 8). Generally, 

ubiquitin is activated in an ATP-dependent manner by the enzyme E1 and conjugated by E2. 

Subsequently it is covalently linked to a lysine residue of a substrate by an E3 ligase. 

Ubiquitination can predispose a substrate for proteasomal degradation, however, it is also 

involved in the regulation of enzyme activity, protein trafficking and the assembly of signaling 

complexes (Pickart, 2001). 

Importantly, this post-translational modification can be reversed by deubiquitinating enzymes 

which are therefore, together with E3 ligases, responsible for maintaining the homeostasis of 

cellular ubiquitin levels (Sowa et al., 2009). In humans, approximately 95 DUBs divided into 

five classes were discovered: JAB1/MPN/MOV34-Metalloprotease (JAMM) domain proteins, 

Machado-Joseph Domain (Josephin domain)-containing proteins (MJD), Ubiquitin C-Terminal 

Hydrolases (UCHs), Ubiquitin-Specific Proteases (USPs), and Otubain/Ovarian Tumor 

Domain-Containing Proteins (OTUs) (Nijman et al., 2005). Interestingly, various DUBs were 

described to influence gene expression by deubiquitinating histones, transcription factors or 

their interaction partners. In general, the removal of ubiquitin molecules stabilizes the substrate 
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by potentially preventing its degradation. Consequently, if tumor suppressors or oncogenes are 

affected by DUBs, the risk of developing malignancies can be modulated (McClurg and 

Robson, 2015).  

 

Figure 8: The E1-E2-E3 process of ubiquitination and its consequences. Ubiquitin is 
conjugated to a substrate in an E1-E2-E3 cascade in which ubiquitin is initially activated by the 
enzyme E1 in an ATP-dependent manner. Subsequently, ubiquitin is conjugated by E2 and 
attached to a substrate by an E3 ligase. This mark can result in the proteasomal degradation 
of the substrate, however, it can also play a role in regulating enzyme activity, protein trafficking 
and the assembly of signaling complexes. Deubiquitinating enzymes can remove the ubiquitin 
molecules and thereby stabilize the substrate by potentially preventing its degradation. 
 

To interfere with these mechanisms, it is either possible to prevent the degradation of 

ubiquitinated molecules, e.g. tumor suppressors, by targeting the proteasome activity or to 

inhibit the stabilization of oncoproteins by directly inhibiting DUBs. For instance, bortezomib 

was a FDA-approved drug to target the proteasome multiple myeloma and mantle cell 

lymphoma patients. However, similar to further proteasome inhibitors, bortezomib was 

associated with severe side effects since not only cancer cells were targeted by this drug (Liu 

et al., 2015a; Richardson et al., 2003). In contrast, inhibiting specific DUBs to prevent the 

stabilization of an oncogenic factor is a promising approach with less off-target effects to be 
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expected (Liu et al., 2015a). For instance, the Ubiquitin-Specific Protease 7 was reported to be 

overexpressed in several cancer types and to interfere with the activity of tumor suppressors 

such as TP53 by stabilizing MDM2 (Cummins et al., 2004; Li et al., 2004). It was successfully 

shown cancer cells in vitro that selective USP7 inhibitors were able to exert anti-tumor effects 

by activating TP53 levels (Colland et al., 2009; Fan et al., 2013; Reverdy et al., 2012). Similarly, 

inhibiting USP1 and USP14 which are frequently overexpressed in cancer as well, showed 

promising effects in in vitro approaches and in xenograft models (Dexheimer et al., 2010; Tian 

et al., 2014). In summary, deregulation of the ubiquitination/deubiquitination axis is associated 

with various human malignancies by frequently destabilizing tumor suppressors or stabilizing 

oncogenic factors. The inhibition of the proteasome or DUBs, such as USP1, 7 and 14, reflect 

promising therapeutic strategies. 

  

1.13 USP22 as a crucial player of CRC  

Due to its overexpression in cancer and its function as a DUB, the ubiquitin hydrolase Ubiquitin-

Specific Protease 22 represents a promising research subject. USP22 was described to be a 

member of the SAGA (Spt-Ada-Gcn5 Acetyltransferase) transcriptional cofactor complex 

(Zhang et al., 2008b). Generally, the 1.8-MDa SAGA complex was implicated in various 

mechanisms including chromatin remodeling and transcriptional regulation. These functions 

are exerted by its structural modules which are, for instance, involved in histone acetylation 

and deubiquitination (Baker and Grant, 2007; Gurskii et al., 2013). The relevance of SAGA in 

developmental processes was demonstrated when mutating or depleting Gcn5, Ada2 and 

Ada3, components of the histone deacetylase (HAT) module within the SAGA complex, 

induced lethality in Drosophila larvae (Carre et al., 2005; Qi et al., 2004). The ubiquitin 

hydrolase USP22 is, together with Ataxin 7 Like 3 (ATXN7L3) and Enhancer of Yellow 2 

Homolog (ENY2), a component of the deubiquitinating module (DUBm) within this complex. 
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Within this complex USP22 removes ubiquitin from the core histones H2B and H2A. While H2B 

monoubiquitination correlates to active gene expression, the monoubiquitination of H2A was 

associated to gene silencing (Zhang et al., 2008b; Zhang et al., 2008a). Like its yeast 

orthologue Ubp8, USP22 deubiquitination activity requires its USP domain (Samara et al., 

2010). Recently, it has been demonstrated that several functions of USP22 can be taken over 

by its homologs USP27X and USP51. For instance, USP22, USP27X and USP51 compete for 

interaction with ATXN7L3 and ENY2 in order to regulate H2Bub1 levels (Atanassov et al., 

2016). In addition, USP22 deubiquitinates several non-histone substrates and thereby 

stabilizes them by preventing their proteasomal degradation. For instance, a protein stabilized 

by USP22 is Telomeric Repeat Factor 1 (TRF1) which binds to telomere ends and thereby 

regulates telomere length. When USP22 was depleted in vitro, TRF1 levels were reduced and 

the number of telomere damage-associated foci increased (Atanassov et al., 2009). Moreover, 

the fact that complete loss of Usp22 resulted in early embryonic lethality in mice suggested the 

significance of Usp22 in developmental processes (Lin et al., 2012). In addition, Usp22 

expression was shown to be essential for pluripotent stem cells to differentiate into all three 

germ layers (Sussman et al., 2013). 

Glinsky (2005) defined USP22 as a member of the so-called 11-gene “death-from-cancer” gene 

expression signature which is characterized by a “stem cell-like” expression profile and was 

shown to be correlated with high recurrence rates, metastatic dissemination and poor survival 

rates (Glinsky, 2005; Wicha et al., 2006). After this finding, many further studies confirmed its 

relevance in cancer as recently reviewed (Melo-Cardenas et al., 2016). These reports were 

based on microarray data or immunohistochemical analyses using patient material and could 

reveal that increased USP22 abundance was correlated with poor prognosis (Ao et al., 2014; 

Ding et al., 2014; Hu et al., 2012; Lin et al., 2012; Liu et al., 2010; Liu et al., 2012; Xiao et al., 

2015). Moreover, it has been reported that increased USP22 expression was, among others, 

correlated with gastric carcinoma (Yang et al., 2011), pancreatic (Ning et al., 2014b; Ning et 
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al., 2014a) and colorectal cancer (Ao et al., 2015; Liu et al., 2010; Liu et al., 2011). Consistently, 

reduced levels of USP22 resulted in the accumulation of cancer cells in the G1 phase in vitro 

(Lin et al., 2015; Lv et al., 2011; Zhang et al., 2008a). Importantly, various key players involved 

in the development and progression of human malignancies are affected directly or indirectly 

by USP22. It was demonstrated that USP22 stabilizes Sirtuin 1 (SIRT1) which results in 

reduced transcription levels of the tumor suppressor TP53 (Li et al., 2014a; Lin et al., 2012). 

Moreover, in non-small cell lung cancer, USP22 interacts with MDM4, a protein highly similar 

to MDM2, leading to decreased TP53 activity and, therefore, elevated tumorigenesis (Ding et 

al., 2014). Besides destabilizing tumor suppressors, USP22 activity was shown to be essential 

for the transcription of target genes of the oncoprotein c-MYC. Accordingly, USP22 is required 

for c-MYC-mediated cell transformation (Zhang et al., 2008b). Furthermore, USP22 

deubiquitinates and stabilizes Nuclear Factor of Activated T cells 2 (NFATc2) which regulates 

transcription of interleukin 2, a mediator of T effector cell activation (Gao et al., 2014). This 

finding implicated a role of USP22 in controlling the immune response and therefore potentially 

in inflammatory processes. In addition, deubiquitinating H2B, and thus decreasing levels of the 

potential tumor suppressive mark H2Bub1, is a further mechanism implying the relevance of 

USP22 during tumorigenesis. Based on these studies and as discussed by Melo-Cardenas 

and colleagues USP22 represents an attractive therapeutic target (Melo-Cardenas et al., 

2016). Similar to USP7, an inhibitor could be generated interfering with USP22 activity and 

therefore preventing the stabilization of several oncoproteins.  

While the involvement of USP22 in cancer has been demonstrated several times, the function 

of USP22 in tumorigenesis in vivo using genetic mouse tumor models with a tissue-specific 

knockout of Usp22 has not been investigated so far. Thus, the exact mechanisms by which 

USP22 promotes tumorigenesis remain to be elucidated.  
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1.14 Implications of USP22 in intestinal cell differentiation (preliminary data) 

Prior to the current project, we investigated the role of USP22 in organ maintenance using 

Usp22 hypomorphic mice (Kosinsky, 2013). In this M.Sc. thesis a preliminary characterization 

of mice with heterozygous (Usp22lacZ/wt) and homozygous (Usp22lacZ/lacZ) reduction of Usp22 

compared to wild type (Usp22wt/wt) animals was performed. Embryonic stem cells 

(Usp22tm1a(KOMP)Wtsi C57Bl6) were obtained from the University of California-Davis Knockout 

Mouse Project Repository and mice were generated in cooperation with Prof. Dr. Ahmed 

Mansouri (Department of Molecular Cell Biology, Max-Planck Institute for Biophysical 

Chemistry, Göttingen, Germany). Based on the “knockout first” strategy these mice had a LacZ 

cassette and a neomycin resistance cassette inserted into the first intron of the Usp22 gene 

(Figure 9A). Due to the presence of an Engrailed2 splice acceptor site (EN2-SA-IRES) the 

LacZ reporter gene was expressed under the control of the endogenous Usp22 promoter and 

enabled the visualization of Usp22 gene activity. A reduction of Usp22 expression was 

achieved by stop codons and polyadenylation sequences downstream of the LacZ and 

neomycin resistance genes, while leaving the Usp22 gene intact. 

Notably, Usp22lacZ/lacZ animals were characterized by reduced body size and weight. Analyses 

were restricted to the small intestine in which we could not detect differences regarding 

proliferation and senescence rates. However, slightly increased apoptosis levels were shown. 

Moreover, the cellular composition of the small intestine was evaluated. In situ hybridization 

and immunohistochemical stainings were performed in order to visualize the different cell 

populations of the SI, i.e. Olfm4-positive stem cells, Goblet, enteroendocrine and Paneth cells. 

Interestingly, the number of stem cells was slightly increased in the small intestines of 

Usp22lacZ/lacZ animals. Consequently, we aimed to determine whether this alteration had an 

effect on the respective differentiated cell populations. Immunohistochemistry was performed 

using specific markers for Goblet (Mucin 2; MUC2), enteroendocrine (Chromogranin A; CGA) 

and Paneth (Lysozyme; LYZ) cells. Interestingly, reduced levels of Usp22 resulted in a nearly 
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twofold elevated abundance of MUC2-positive Goblet cells in villi (Figure 9B). Moreover, 

approximately 45-50% more enteroendocrine cells were counted in the crypts and villi in these 

mice. We also found an increased frequency of Paneth cells in Usp22lacZ/lacZ mice. Together, 

these findings suggested that USP22 is required for epithelial cell differentiation in villi and 

crypts. In addition, mouse embryonic fibroblasts (MEFs) were isolated and partially 

characterized. While apoptosis levels were slightly increased upon Usp22 loss, the cell cycle 

profile was not affected upon Usp22 loss (Kosinsky, 2013).  

For the current project we have generated bigger cohorts of Usp22-hypomorphic mice in order 

to analyze the effect of hypomorphic expression of Usp22 in more detail. In addition, for a 

higher validity and significance of data, not only the number of experimental animals was 

increased, but also some approaches presented in the M.Sc. thesis were repeated. Several 

results of this Ph.D. thesis supplemented by data from the M.Sc. thesis have recently been 

published (Kosinsky et al., 2015). 
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Figure 9: Reduced Usp22 levels lead to a differentiation shift in the small intestine. (A) 
The LacZ reporter gene is expressed downstream of the Usp22 promoter. Selection of 
embryonic stem cells was based on a neomycin-resistance cassette. Stop codons and poly-A 
sites mediated the reduced Usp22 expression. (B) In situ hybridization for the stem cell marker 
Olfm4 revealed an increased presence of stem cells in the small intestines of Usp22-
hypomorphic Usp22lacZ/lacZ mice. These mice were characterized by an increased abundancy 
of differentiated cells as shown by immunohistochemistry using specific markers, i.e. Goblet 
(MUC2), enteroendocrine (CGA) and Paneth (LYZ) cells (Kosinsky et al., 2015). Scale bar:  
100 µm.  
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1.15 Objectives of this study 

To contribute to the understanding of the molecular features underlying the complex and 

heterogeneous nature of CRC we aimed to elucidate the function of USP22 in tumor formation 

and progression. USP22, an ubiquitin hydrolase epigenetically modifying the histone H2B, is 

of particular interest since it appears to be involved in colorectal tumorigenesis. Notably, 

cancerous diseases characterized by a USP22 overexpression were correlated with poor 

prognosis and metastatic dissemination. Even though some USP22 targets were identified so 

far and several studies with USP22-related in vitro approaches have been published, the 

physiological significance and the role of USP22 in colorectal cancer remain largely unclear. 

This clearly demonstrates the need to investigate the role of USP22 under physiological 

conditions and during colorectal tumorigenesis including the underlying alterations in more 

detail both in vitro and in vivo with the help of a genetic animal model.  

For this purpose, we aimed to follow a dual approach by analyzing the consequences of a 

global reduction and an intestine-specific Usp22 deletion. In the Usp22-hypomorphic mouse 

model which was partially described in the aforementioned Master’s thesis, a global Usp22 

reduction was achieved. Here, we intended to focus on the expression patterns of Usp22 during 

different developmental stages of mouse embryos. Furthermore, by isolating mouse embryonic 

fibroblasts, we planned to investigate signaling pathways Usp22 is involved in via microarray 

analysis. In addition to the animals with the global reduction of Usp22 expression levels, we 

generated mice with an intestine-specific deletion of Usp22 combined with an APC mutation. 

Using these mice we sought to investigate the function of USP22 in intestinal cancer formation 

and progression in models for sporadic and inflammation-induced colorectal cancer. Based on 

the literature, we hypothesized that Usp22 loss would result in decreased tumor burden. To 

investigate the molecular structures underlying the phenotype observed in our mice, we 

planned to investigate human colorectal cell lines characteristics upon the loss of USP22. 

Besides analyses of proliferation patterns, morphology and migration potential, we sought to 
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identify the consequence of USP22 loss in human CRC cells on the global gene expression 

profile. Finally, it was our aim to identify therapeutic mechanisms to target colorectal cancer 

cells characterized by altered USP22 expression in vivo. Together, in the current project we 

sought to investigate the function of USP22 under physiological conditions and during CRC as 

well as to determine the potential of USP22 as a diagnostic marker and therapeutic target. 
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2. MATERIALS AND METHODS 

 

2.1 Materials 

2.1.1 Technical devices 

Table 1: Technical devices. 

Equipment Company 

2100 Bioanalyzer Agilent Technology, Santa Clara, USA 

Balance 440-35N Kern & Sohn GmbH, Balingen, Germany 

Biological Safety Cabinet “Safe 2020” Thermo Fisher Scientific, Waltham, USA 

Bioruptor® Plus sonication device  Diagenode, Liège, Belgium 

BioView UV-transilluminator UXDT-20SM-8R BioStep, Jahnsdorf, Germany 

Celigo® S Cell Imaging Cytometer Nexcelom Bioscience LLC, Lawrence, USA 

Centrifuge Heraeus Fresco21 Thermo Fisher Scientific, Waltham, USA 

Centrifuge 5417C Eppendorf AG, Hamburg, Germany 

Centrifuge 5417R Eppendorf AG, Hamburg, Germany 

Centrifuge HeraeusTM MegafugeTM 8R Thermo Fisher Scientific, Waltham, USA 

Centrifuge Mini Star silverline VWR, Radnor, USA 

CFX Connect Real-Time System Bio-Rad Laboratories, Hercules, USA 

CFX96™ Optical Reaction Module for Real-
Time PCR 

Bio-Rad Laboratories, Hercules, USA 

ChemiDocTM MP System Bio-Rad Laboratories, Hercules, USA 

CoolLED pE100 CoolLED Ldt., Andover, UK  

Cryotome CM1850 
Leica Mikrosysteme Vertrieb GmbH, 
Wetzlar, Germany 

Digital Caliper (0-150 mm) Zisaline GmbH, Bärnau, Germany 
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DLReadyTM Centro LB 960 Luminometer 
Berthold Technologies GmbH + Co. KG, 
Stadthagen, Germany 

DS-11+ spectrophotometer DeNovix, Inc., Wilmington, USA 

Freezer (-150°C) MDF-C2156VAN-PE 
Ewald Innovationstechnik GmbH, Bad 
Nenndorf, Germany 

Freezer (-20°C) Liebherr GmbH, Biberach, Germany 

Freezer (-80°C)  “New Brunswick™ Innova®” 
Eppendorf GmbH, Wesseling-Berzdorf, 
Germany 

Glass Hellendahl cuvettes for histology 
Omnilab-Laborzentrum GmbH & Co. KG, 
Bremen, Germany 

Glass slide racks with handle for histology 
Omnilab-Laborzentrum GmbH & Co. KG, 
Bremen, Germany 

Glass staining dish with cover for histology 
Omnilab-Laborzentrum GmbH & Co. KG, 
Bremen, Germany 

Heating block Thermo Mixer C Eppendorf AG, Hamburg, Germany 

Heating plate for slides Thermo Fisher Scientific, Waltham, USA 

Horizon® 58 Agarose Gel Electrophoresis 
Chamber     

Life TechnologiesTM, Gaithersburg, USA 

Humidified chamber for histology Weckert Labortechnik, Kitzingen, Germany 

Ice-machine B100 Ziegra, Isernhagen, Germany 

Incubator (CO2) for cell culture, Hera Cell 150i Thermo Fisher Scientific, Waltham, USA 

Incubator for histology 
Memmert GmbH & Co. KG, Schwabach, 
Germany 

Inverted Routine Microscope “Eclipse TS100”  Nikon Corporation, Tokyo, Japan 

Isotemp® water bath Thermo Fisher Scientific, Waltham, USA 

Liquid nitrogen tank LS4800 Worthington Industries, Theodore, USA 

Magnetic stirrer “IKA® RCT-basic” 
IKA®-Werke GmbH & Co. KG, Staufen im 
Breisgau, Germany 

Microcentrifuge C1413-VWR230 VWR, Radnor, USA 
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Microm EC350 embedding station Thermo Fisher Scientific, Waltham, USA 

Microscope Axio Scope.A1 with AxioCam MRc 
Carl Zeiss MicroImaging GmbH, Göttingen, 
Germany 

Microscope Axiovert 100    
Carl Zeiss MicroImaging GmbH, Göttingen, 
Germany 

Microscope camera UI-1240ML iDS, Obersulm, Germany 

Microtome Leica RM2235 Leica Biosystems, Nussloch, Germany 

Microwave R937 
Sharp Electronics Europe GmbH, Hamburg, 
Germany 

Mini Trans-Blot® Cell Bio-Rad Laboratories, Hercules, USA 

Mini-PROTEAN Tetra Cell Bio-Rad Laboratories, Hercules, USA 

Mr. Frosty® Cryo Freezing Container Thermo Fisher Scientific, Waltham, USA 

NanoDrop® ND-100 spectrophotometer PeqLab, Erlangen, Germany 

Neubauer counting chamber, Improved Brand GmbH & Co. KG, Wertheim, Germany 

Paraffin oven  Thermo Fisher Scientific, Waltham, USA 

PCR machine T100TM Thermal cycler  Bio-Rad Laboratories, Hercules, USA 

Personal Computer OPTIPLEX 7020 Dell, Round Rock, USA 

pH-meter “WTW-720” InoLab® Series WTW GmbH, Weilheim, Germany 

Pipette Aid® Portable XP Drummond Scientific Co., Broomall, USA 

Pipettes “Research” Series Eppendorf AG, Hamburg, Germany 

PowerLyzerTM 24 Homogenizer 
MO BIO Laboratories/QIAGEN, Carlsbad, 
USA 

PowerPacTM Basic Power Supply Bio-Rad Laboratories, Hercules, USA 

PowerPacTM HC Power Supply Bio-Rad Laboratories, Hercules, USA 

Precision balance TE124S Sartorius AG, Göttingen, Germany 

Protein electrophoresis Mini-PROTEAN® Tetra 
Handcast Systems 

Bio-Rad Laboratories, Hercules, USA 
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Qubit® 2.0 Fluorometer Invitrogen GmbH, Karlsruhe, Germany 

Refrigerator (4°C) Liebherr GmbH, Biberach, Germany 

Roller mixer  A. Hartenstein GmbH,Würzburg, Germany 

Scanner Epson V700 Photo Seiko Epson, Suwa, Japan 

Shaker “Rocky” 
Schütt Labortechnik GmbH, Göttingen, 
Germany 

Stainless feeding tubes (12 ga, 76 mm) 
Instech Laboratories, Inc., Plymouth 
Meeting, USA 

Test tube rotator 
Schütt Labortechnik GmbH, Göttingen, 
Germany 

Ultra pure water system “Aquintus” MembraPure GmbH, Hennigsdorf, Germany 

Vacuum pump BVC control 
Vacuubrand GmbH + Co KG, Wertheim, 
Germany 

Vortex Genie 2 
Electro Scientific Industries, Inc., Portland, 
USA 

Zwick device (145 660 Z020/TND) Zwick GmbH & Co. KG, Ulm, Germany 

 

2.1.2 Consumables 

Table 2: Consumables. 

Equipment Company 

8.0-µm track-etched membrane cell culture 
inserts 

BD Bioscience, Franklin Lakes, USA 

96-well Assay plate black Corning Life sciences, Tewksbury, USA 

96-well Multiplate® PCR plate, white Bio-Rad Laboratories, Hercules, USA 

AmershamTM ProtranTM 0.45 µM 
nitrocellulose transfer membrane  

GE Healthcare Europe GmbH, München, 
Germany 

CA-Membrane sterile filters (0.2 µm, 0.45 
µm) 

Sarstedt AG & Co., Nümbrecht, Germany 
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Cell culture dishes (10 cm, 14.5 cm) Greiner Bio-One GmbH, Frickenhausen, 
Germany 

Cell culture plates (6-well, 12-well, 24-well) Greiner Bio-One GmbH, Frickenhausen, 
Germany 

Cell scraper (16 cm, 25 cm) Sarstedt AG & Co., Nümbrecht, Germany 

Cellstar PP-tubes (15, 50 ml) Greiner Bio-One GmbH, Frickenhausen, 
Germany 

Cover slips (24x40, 24x60 mm) Carl Roth GmbH & Co. KG, Karlsruhe, 
Germany 

Cryo TubeTM vials (1.8 ml)  Thermo Fisher Scientific, Waltham, USA 

Disposable Safety Scalpel FEATHER Safety Razor Co., Osaka, Japan 

EDTA 40n flat bottom test tubes KABE Labortechnik GmbH, Nümbrecht-
Elsenroth, Germany 

Embedding cassettes, for biopsies Carl Roth GmbH & Co. KG, Karlsruhe, 
Germany 

Gel blotting paper (Whatman) Sartorius AG, Göttingen, Germany 

Injekt-F Syringes (1 ml) B. Braun, Melsungen, Germany 

Low-profile disposable blades 819 Leica Biosystems, Nussloch, Germany 

Lysing Matrix Tubes with beads MP Biomedicals, Eschwege 

Microscope slides (75x26 mm) Thermo Scientific, Braunschweig, Germany 

Multiply PCR Microtube strip (8 x 0.2 ml) Sarstedt AG & Co., Nümbrecht, Germany 

OptiPlateTM-96 PerkinElmer, Waltham, USA 

Parafilm® “M” Pechiney Plastic Packaging, Chicago, USA 

PCR Single Cap SoftStrips 0.2 ml Biozym, Oldendorf, Germany 

Peel away cryo embedding molds (12x12 
mm) 

Electron Microscopy Sciences, Hatfield, USA 

Pipet tips (0.5-10 µl, 2-200 µl, 1000 µl) Greiner Bio-One GmbH, Frickenhausen, 
Germany 

Pipets, serological (5 ml, 10 ml, 25 ml) Sarstedt AG & Co., Nümbrecht, Germany 
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Pipette filter tips Sarstedt AG & Co., Nümbrecht, Germany 

Reaction tubes (1.5 ml, 2 ml) Sarstedt AG & Co., Nümbrecht, Germany 

Sealing tape for qPCR plates Bio-Rad Laboratories, Hercules, USA 

Soft-Ject® Syringes (10 ml, 20 ml, 50 ml) Henke Sass Wolf GmbH, Tuttlingen 

SuperFrost® Plus slides (75x25 mm) Thermo Scientific, Braunschweig, Germany 

Syringe canula (0.6x25 mm, 0.3x12 mm) Dispomed Witt oHG, Gelnhausen, Germany 

Transfer pipettes (6 ml) Sarstedt AG & Co., Nümbrecht, Germany 

UV-Cuvette micro (8.5 mm) Brand GmbH, Wertheim, Germany 

 

2.1.3 Chemicals and reagents 

Table 3: Chemicals and reagents. 

Chemical Company 

0.9% NaCl solution B. Braun, Melsungen, Germany 

10x reaction buffer for M-MulV 
New England BioLabs GmbH, Frankfurt am Main, 
Germany 

3,3‘-Diaminobenzidin-
tetrahydrochloride (DAB) 

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Acetic acid  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Adenosine 5‘-triphosphate (ATP) 
disodium salt hydrate 

Sigma-Aldrich Co., St. Louis, USA  

Agarose  GeneOn GmbH, Ludwigshafen am Rhein, Germany 

Albumin Fraction V (BSA)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ammonium persulfate (APS)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ammonium sulfate (NH4)2SO4  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Aprotinin Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Boric acid Carl Roth GmbH & Co. KG, Karlsruhe, Germany 
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Bromophenol blue  Sigma-Aldrich Co., St. Louis, USA  

Butella Sunflower Oil 
Brökelmann + Co, Oelmühle GmbH + Co, Hamm, 
Germany 

Chloroform  Merck Millipore, Darmstadt, Germany 

Citric acid monohydrate Merck Millipore, Darmstadt, Germany 

Coelenterazine Promega, Madison, USA 

Coenzyme A (CoA) Sigma-Aldrich Co., St. Louis, USA  

Crystal violet  Merck Millipore, Darmstadt, Germany 

Deoxycholic acid (DOC) AppliChem GmbH, Darmstadt , Germany 

Deoxynucleotides (dNTPs) Jena Bioscience GmbH, Jena, Germany 

Dextrane Sulfate Sodium Salt, reagent 
grade 

MO Biomedicals, LLC, Illkirch, France 

Diethylpyrocarbonate (DEPC)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Dimethyl sulfoxide (DMSO)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Dimethylformamide Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Dipotassium phosphate (K2HPO4) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

DL-Dithiothreitol (DTT), BioUltra, 
≥99.0% 

Sigma-Aldrich Co., St. Louis, USA  

Eosin Y solution, 1% in water Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethanol Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethylene diamine tetraacetic acid 
(EDTA)  

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethylene diamine tetraacetic acid 
disodium salt dihydrate (Na2EDTA) 

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

ExtrAvidin-Peroxidase Sigma-Aldrich Co., St. Louis, USA  

Ethylene glycol tetraacetic acid (EGTA) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Formaldehyde solution 35%, DAB, for 
histology 

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 
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Gene RulerTM DNA-Ladder  Fermentas GmbH, St. Leon-Rot, Germany  

Glutaraldehyde, 25% EM Grade 
Aqueous 

Sigma-Aldrich Co., St. Louis, USA 

Glycerol  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Glycine  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

GlycylGlycine Sigma-Aldrich Co., St. Louis, USA  

Guaiac resin Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

HD Green® DNA stain Intas Science Imaging GmbH, Göttingen, Germany 

HEPES  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Hydrochloric acid (HCl)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Hydrogen peroxide solution (H2O2), 
30% 

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Iodoacetamide  Sigma-Aldrich Co., St. Louis, USA  

Isopropanol  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Leupeptin Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Lipofectamine® 2000 Invitrogen GmbH, Karlsruhe , Germany 

Lipofectamine® RNAiMAX Invitrogen GmbH, Karlsruhe , Germany 

Magnesium chloride (MgCl2)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Magnesium sulfate (MgSO4) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Mayer‘s haematoxylin solution Merck Millipore, Darmstadt, Germany 

Methanol  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

N-ethylmaleimide (NEM)  Sigma-Aldrich Co., St. Louis, USA  

Nonidet® P 40 Substitute (NP-40) Sigma-Aldrich Co., St. Louis, USA  

Nuclear fast red-aluminum sulfate 
solution 0.1% 

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

PageRulerTM Plus Prestained Protein 
Ladder 

Fermentas GmbH, St. Leon-Rot, Germany  
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Paraffin Rotiplast Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Paraformaldehyde (PFA) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Passive lysis buffer (5x) Promega, Madison, USA 

PBS tablets  GIBCO®, Invitrogen GmbH, Darmstadt, Germany 

Pefabloc SC Protease Inhibitor  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

pH solutions (pH 4.01, 7.01, 10.01) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ponceau S solution Sigma-Aldrich Co., St. Louis, USA  

Potassium chloride (KCl) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Potassium ferricyanide (III) 
(K2Fe(CN)6) 

Sigma-Aldrich Co., St. Louis, USA  

Potassium hexacyanoferrate (II) 
trihydrate (K4Fe(CN)6.3H2O) 

Sigma-Aldrich Co., St. Louis, USA  

Protein G sepharose beads 4 Fast 
Flow 

Amersham Biosciences, Uppsala, Sweden 

Roti-Mount Permanent mounting 
medium 

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Rotiphorese® Gel 30  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Salmon sperm DNA  Stratagene, La Jolla, USA 

Powdered milk  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Sodium azide  Sigma-Aldrich Co., St. Louis, USA  

Sodium chloride (NaCl)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Sodium deoxycholate AppliChem GmbH, Darmstadt, Germany 

Sodium dodecyl sulfate (SDS)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Sodium hydroxide (NaOH)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

SYBR Green I  Roche Diagnostics GmbH, Mannheim , Germany 

Tamoxifen (>99%) Sigma-Aldrich Co., St. Louis, USA  

Temgesic® RB Pharmaceuticals Limited, Berkshire, UK 
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Tetramethylethylenediamine (TEMED) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Tissue-Tek O.C.TTM Compound Sakura Finetek USA, Inc., Torrance, USA 

Tris(hydroxymethyl)aminomethane Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Triton X-100  AppliChem GmbH, Darmstadt , Germany 

Tri-sodium citrate Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

TRIzol® Reagent  Invitrogen GmbH, Karlsruhe , Germany 

Tween-20  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Xylol (Isomere) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

X-β-Gal Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

α,α-Trehalose dihydrate  AppliChem GmbH, Darmstadt , Germany 

β-Glycerolphosphate (BGP)  Sigma-Aldrich Co., St. Louis, USA  

 

Table 4: Enzymes. 

Enzyme Company 

M-MuLV Reverse Transcriptase (25 U) 
New England BioLabs GmbH, Frankfurt am Main, 
Germany 

Proteinase K LifeTechnology, Carlsbad, USA 

RNase inhibitor 
New England BioLabs GmbH, Frankfurt am Main, 
Germany 

Taq-Polymerase (5 U/µl) Primetech, Minsk, Belarus 

 

Table 5: Inhibitors. 

Inhibitor Cat. no. Source 

JQ1 (C23H25ClN4O2S)  
Stefan Knapp, Goethe-University Frankfurt am Main, 
Germany 

Ganetespib S1159 Selleckchem 
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MG-132 S2619 Selleckchem 

 

 

2.1.4 Cell culture 

Table 6: Cell culture components. 

Component Company 

DMEM, high glucose, HEPES, no 
phenol red  

GIBCO®, Invitrogen GmbH, Darmstadt, Germany  

DMEM/F-12, HEPES, no phenol red GIBCO®, Invitrogen GmbH, Darmstadt, Germany  

Fetal Bovine Serum (FBS)  Thermo Scientific HyClone, Logan, USA  

Gibco® 0.05% Trypsin-EDTA GIBCO®, Invitrogen GmbH, Darmstadt, Germany  

McCoy's 5A (Modified) Medium GIBCO®, Invitrogen GmbH, Darmstadt, Germany  

Opti-MEM LifeTechnology, Carlsbad, USA 

Penicillin-Streptomycin Sigma-Aldrich Co., St. Louis, USA  

RPMI 1640 Medium, GlutaMAX™ 
Supplement 

GIBCO®, Invitrogen GmbH, Darmstadt, Germany  

Sodium pyruvate Sigma-Aldrich Co., St. Louis, USA  
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Table 7: Cell lines. 

Cell line Tumor type Medium Source 

COLO201 
Colorectal 
adenocarcinoma 

RPMI 
GlutaMAXTM 

Clinic for General, Visceral and 
Pediatric Surgery, UMG 

COLO320DM 
Colorectal 
adenocarcinoma 

RPMI 
GlutaMAXTM 

Clinic for General, Visceral and 
Pediatric Surgery, UMG 

DLD1 
Colorectal 
adenocarcinoma 

RPMI 
GlutaMAXTM 

Institute of Molecular Oncology, UMG 

HCT116 Colorectal carcinoma McCoy’s 5A Institute of Molecular Oncology, UMG 

HT-29 
Colorectal 
adenocarcinoma 

McCoy’s 5A 
Clinic for General, Visceral and 
Pediatric Surgery, UMG 

LS174T 
Colorectal 
adenocarcinoma 

DMEM/F-12 Institute of Molecular Oncology, UMG 

NCI-H508 
Colorectal 
adenocarcinoma 

RPMI 
GlutaMAXTM 

Clinic for General, Visceral and 
Pediatric Surgery, UMG 

RKO Colorectal carcinoma DMEM/F-12 Institute of Molecular Oncology, UMG 

SW48 
Colorectal 
adenocarcinoma 

DMEM/F-12 
Clinic for General, Visceral and 
Pediatric Surgery, UMG 

SW480 
Colorectal 
adenocarcinoma 

RPMI 
GlutaMAXTM 

Institute of Molecular Oncology, UMG 

SW837 
Rectal 
adenocarcinoma 

DMEM/F-12 
Clinic for General, Visceral and 
Pediatric Surgery, UMG 

T84 Colorectal carcinoma DMEM/F-12 
Clinic for General, Visceral and 
Pediatric Surgery, UMG 

 

 

2.1.5 Kits  

Table 8: Kits. 

Kit Company 

Agilent High Sensitivity DNA Kit Agilent Technology, Santa Clara, USA 
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Bioanalyzer DNA High sensitivity kit  Agilent Technologies, Santa Clara, USA  

Immobilon Western Blot HRP Substrate 
Luminol Reagent 

Merck Millipore, Darmstadt, Germany 

NEXTflex™ Rapid Illumina Directional 
RNA-Seq Library Prep Kit 

Bioo Scientific Corporation, Austin, USA 

PierceTM BCA Protein Assay Kit ThermoFisher Scientific, Rockford, USA 

Qubit dsDNA HS assay  Invitrogen GmbH, Karlsruhe , Germany 

SuperSignal® West Femto Maximum Thermo Fisher Scientific, Waltham, USA 

 

2.1.6 Oligonucleotides 

Table 9: Primers used to genotype experimental mice. 

Mouse 
line 

Gene 
Primer 
name 

Sequence (5'-3') Source 

Usp22lacZ Usp22 

LoxP F CCCAGCTTTCTTGTACAAAGTGGTT 

(Kosinsky et 
al., 2015) 

Wt F GTGCCCTGGTTGCCCAGTGAG 

LoxP/wt R CGGTTCAGGTGGATGCCGCA 

APC1638N Apc 

Apc-A3 CTAGCCCAGACTGCTTCAAAAT 

(Cremers et al., 
2016)  

Apc-C2 GGAAAAGTTTATAGGTGTCCCTTCT 

PN3 GCCAGCTCATTCCTCCACTC 

Usp22loxP Usp22 

Usp22 
6720F 

TGTGCCCTGGTTGCCCAGTGA 

This study 
Usp22 
14079R 

GCACCACCACAGCCGTCCTT 

Villin-
CreERT2 

Villin-
CreERT2 

Villin-
2kbseqS 

CAAGCCTGGCTCGACGGCC 
(Donovan et 
al., 2005) 

Villin-Cre198 CGCGAACATCTTCAGGTTCT 
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Table 10: qRT-PCR primers for gene expression studies. 

Gene 
Primer 
name 

Sequence (5'-3') Organism Source 

18S rRNA 

h1SrRNA 
903F 

AACTGAGGCCATGATTAAGA Human 
(Upasana Bedi, 
2013) 

h18SrRNA 
1075R 

GGAACTACGACGGTATCTGA Human 

36B4 

m36B4F GATTGGCTACCCAACTGTTG Mouse 
(Mesange et al., 
2014) 

m36B4R CAGGGGCAGCAGCCACAAA Mouse 

HSP90AB1 

hHSP90AB1 
469F 

TTGACATCATCCCCAACCCTC Human 

This study 
hHSP90AB1 
641R 

ACCAAACTGCCCAATCATGGA Human 

USP22 

hUsp22 
2792F 

AGCCAAGGGTGTTGGTCGCG Human 
(Theresa Gorsler, 
2013) 

hUsp22 
2897R 

ACTGCCACCACGCCCGAAAG Human 

Usp22 

mUsp22 
189F 

GGAGCCTGAGGTCGAGGCCA Mouse 

This study 
mUsp22 
359R 

ACACAGGACTTTGCCTTGCGC Mouse 

 

Table 11: siRNAs used for transient gene silencing in vitro. 

Gene Sequence (5´- 3´) Cat. No. Company 

NT5 - D-001210-05 Dharmacon 

USP22 

GGAAGAAAGAUCACCUCGAA 

MU-006072-01-0010 Dharmacon 

CAAAGCAGCUCACUAUGAA 

GGAAGAUCACCAACGUAUGU 

CCUUUAGUCUCAAGAGCGA 
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2.1.7 Antibodies 

Table 12: Primary antibodies used for western blot, Co-IP and IHC. 

Antibody Host Cat. no. Source 
Western 
blot 

Co-IP IHC 

CTIP2 Rat ab18465 Abcam   1:100 

GAPDH Mouse ab8245 Abcam 1:1,000   

H2B Mouse ab52484 Abcam 1:20,000   

H2B Rabbit ab1790 Abcam   1:1,000 

H2Bub1 Mouse (Prenzel et al., 2011) 01:10  01:20 

HSP90AB1 (clone 4C10) Mouse TA500494 OriGene 1:5,000 2 µg  

IgG Mouse 
015-000-
003 

Dianova  2 µg  

SATB2 Rabbit 2819-1 Epitomics   1:100 

TBR2 Rabbit ab2283 Millipore   1:100 

USP22  Mouse sc 390585 Santa Cruz 1:1,000 4 µg  

 

 

Table 13: Secondary antibodies. 

Antibody Host Cat. no. Source 
Western 
blot 

IHC 

Anti-mouse IgG, biotinylated Sheep RPN1001 
GE 
Healthcare 

 1:1,000 

Anti-rabbit IgG, biotinylated Donkey RPN1004 
GE 
Healthcare 

 1:1,000 

goat-anti-mouse IgG-HRP goat sc-2005 Santa Cruz 1:10,000  

goat-anti-rabbit IgG-HRP goat sc-2004 Santa Cruz 1:10,000  
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2.1.8 Buffers 

2x qPCR mix  

75 mM Tris/HCl, 20 mM (NH4)2SO4, 0.01% Tween 20, 3 mM MgCl2, 0.2 mM dNTPs, 0.25% 
Triton X-100, 20 U/ml Taq polymerase, 1:80,000 SYBR Green I, 300 mM Trehalose, pH 8.8 

Citric acid buffer 

12 mM citric acid, 100 mM tri-sodium citrate, pH 6.0 

Crystal violet solution 

0.1% (w/v) crystal violet in 20% EtOH 

DNA extraction buffer 

10 mM Tris/HCl, 400 mM NaCl, 2 mM EDTA, 2% SDS, 10 µg/ml proteinase K 

DNA loading dye (6x)  

40% (w/v) sucrose, 10% (v/v) glycerol, 0.25% (w/v) bromophenol blue 

E1A buffer 

50 mM HEPES, 150 mM NaCl, 0.1% NP-40, pH 7.3 

Embryo fixation solution 

6.75 ml 37% formaldehyde, 2 ml 25% glutaraldehyde, 5 ml NP-40, 25 ml 10x PBS, filled up to 
250 ml with H2O, 110 mg DOC 

Firefly buffer 

25 mM glycylglycine, 15 mM K2HPO4, 4 mM EGTA, 15 mM MgSO4, 4 mM ATP, 1.25 mM 
DTT, 0.1 mM CoA, 80 µM luciferin, pH 8.0 

Laemmli buffer (6x) 

9.3% (w/v) DTT, 0.02% (w/v) bromophenol blue, 30% (v/v) glycerol, 10% (w/v) SDS, 0.35 M 
Tris, pH 6.8 

PBS 

137 mM NaCl, 4.29 mM Na2HPO4.2H2O, 2.68 mM KCl, 1.47 mM KH2PO4, pH 7.4  

Renilla buffer 

1.1 M NaCl, 2.2 mM Na2EDTA, 0.22 M K2HPO4, 1.5 mM NaN3, 0.5 mg/ml BSA, 1.5 µM 
Coelenterazine, pH 5.1  
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RIPA buffer 

1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate in PBS 

RNA loading dye 

0.1% (w/v) bromophenol blue, 49.9% DEPC water, 50% glycerol (w/v) 

SDS running buffer 

25 mM Tris, 86 mM glycine, 3.5 mM SDS 

SDS separating gel (10%) 

33%(v/v) acrylamide, 0.1% (w/v) APS, 0.1% (w/v) SDS, 375mM Tris/HCl, 0.04% (v/v) 
TEMED, pH 8.8 

SDS stacking gel 

5% (v/v) acrylamide, 0.1% (w/v) APS, 0.1% (w/v) SDS, 125.5 mM Tris/HCl, 0.1% (v/v) 
TEMED, pH 6.8 

TBE buffer 

45 mM Tris, 1 mM Na2EDTA, 45 mM boric acid 

Western blot transfer buffer 

10% (v/v) 10x western salts, 20% (v/v) methanol 

Western salts (10x) 

1.92 M glycine, 0.02% (w/v) SDS, 250 mM Tris/HCl, pH 8.3 

X-gal staining solution 

2.5% 250 mM K3Fe(CN)6, 2.5% 250 mM K4Fe(CN)6, 2% 100 mM MgCl2 in PBS  
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2.1.9 Software and tools 

Table 14: Software and tools. 

Software/Tool Source 

AxioCam MRc and AxioVision 4.8 Software Carl Zeiss  

Bio-Rad CFX Manager 3.1 Bio-Rad Laboratories, Hercules, USA 

cBioPortal 
http://www.cbioportal.org/  
(Cerami et al., 2012; Gao et al., 2013),  

CFX Manager Software 3.1 for qPCR cycler Bio-Rad 

FIJI (Schindelin et al., 2012) 

Galaxy http://usegalaxy.org/ 

GOTermFinder  
Princeton University, Lewis-Sigler Institute, 
http://go.princeton.edu/cgi-bin/GOTermFinder 

GraphPad Prism 
GraphPad Prism version 5 for Windows, 
GraphPad Software, Inc., San Diego, USA 

Image Lab Version 5.2 build 14 Bio-Rad Laboratories, Hercules, USA 

IST Online® MediSapiens Ltd., http://ist.medisapiens.com/ 

Microsoft Excel, Word, PowerPoint Microsoft, Redmond, USA 

Morpheus https://software.broadinstitute.org/morpheus/ 

OncomineTM 
https://www.oncomine.org/resource/login.html 
(Rhodes et al., 2004)  

Primer designing tool NCBI/Primer-BLAST  (Ye et al., 2012) 

REViGO http://revigo.irb.hr/ (Supek et al., 2011) 

Statistical software R 
R: A language and environment for statistical 
computing. R Foundation for Statistical 
Computing, 2013, https://www.r-project.org/ 

TestXpert software  Zwick GmbH & Co. KG, Ulm, Germany 

uEYE Cockpit 
IDS Imaging Development Systems GmbH, 
Obersulm, Germany 
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2.2 Methods 

2.2.1 Animal studies 

2.2.1.1 Generation of mice and genotyping 

C57BL/6 embryonic stem cells (ESCs) expressing the LacZ gene under the control of the 

endogenous Usp22 promoter were obtained from the University-Davis Knockout Mouse 

Project Repository (clone Usp22_D11). In Usp22lacZ mice stop codons and poly-A sites result 

in a reduced Usp22 expression as previously described (Kosinsky et al., 2015). By FLP-

mediated excision the lacZ and neomycin resistance locus were removed from the construct 

in order to generate Usp22loxP animals in which a conditional knockout of Usp22 was possible. 

Usp22loxP mice were crossed with Villin-CreERT2 and APC1638N animals to achieve an intestinal 

knockout and to promote tumorigenesis, respectively. Mice in this study were on the C57BL/6J 

background. 

 

2.2.1.2 Tamoxifen injection  

5% Tamoxifen (w/v) was dissolved in 100% EtOH. Right before intraperitoneal injection into 

mice, this solution was mixed 1:10 with sunflower oil. Mice were injected at an age of 4 weeks 

for five consecutive days with a total dose of 1 mg Tamoxifen per day.  Mice injected at an age 

of 14 weeks received 1.5 mg per day. 

 

2.2.1.3 DSS administration 

10 week-old mice were treated with the chemical agent dextran sulfate sodium (DSS) in order 

to trigger colitis and the subsequent formation of colorectal tumors. 2% DSS (w/v) was 

dissolved in drinking water and the solution was refreshed every two to three days. Since the 

treatment can be accompanied by diarrhea, intestinal bleedings and weight loss, the 

administration of DSS was segmented into two cycles. After four days of being treated with 

DSS, mice were put on a special diet using soft food and glucose for one week. During this 
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week the animals recovered and were treated with DSS for three days afterwards. At the end 

of the treatment the mice received soft food again for three weeks. Animals were injected with 

Temgesic® (buprenorphine) up to three times per day for a total duration of approximately 7 

days to prevent/treat abdominal pain starting on the last day of DSS treatment. The body weight 

of the mice and intestinal bleeding intensities were checked daily using the stool guaiac test.  

 

2.2.1.4 Stool guaiac test 

To assess the presence and intensity of intestinal bleedings caused by DSS treatment, the 

stool guaiac test was carried out. Guaiac resin was dissolved in 70% EtOH until the solution 

was saturated. A few drops were applied to a Whatman filter paper and left for drying at room 

temperature for at least 30 minutes. Feces were applied and distributed on the dried Guaiac 

solution. Upon H2O2 addition, blue staining was observed in the presence of blood which was 

scored according to its intensity from 3 to 0 with decreasing intensity or absence, respectively. 

 

2.2.1.5 Determination of disease activity index (DAI) 

To determine the severity of colitis the disease activity index (DAI) was calculated by scoring 

three aspects, i.e. weight loss, stool consistency and intestinal bleeding intensity. Weight loss: 

0-1% (0), 1-5% (1), 5-10% (2), 10-15% (3), >15% (4). Stool consistency: normal (0), soft (1), 

very soft (2), diarrhea (3). To evaluate intestinal bleeding intensity the stool guaiac test was 

performed. Scoring of the stool guaiac test was: no blue staining (0), weak, sporadic staining 

(1), medium (2) and strong blue staining (3), bloody anus (4). After adding the scores per aspect 

maximum score of 11 can be reached per day. Animals which had to be sacrificed due to 

severe symptoms received a score of 12.  
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2.2.1.6 Tissue isolation 

Mice were euthanized by CO2 and cervical dislocation. They were checked for the presence of 

metastases and further abnormalities such as intussusceptions. Intestines were flushed with 

PBS and cut open longitudinally. Tumors were counted and their location and size was 

measured. Some tumors were isolated and frozen. Subsequently intestines were rolled 

upwards resulting in their wrapping around themselves to form “Swiss rolls”. The distal third of 

the SI and the complete colon were fixed in 4% formaldehyde in PBS overnight for subsequent 

paraffin embedding. The proximal third of the SI was frozen at -20°C in Tissue-Tek O.C.TTM 

cryo embedding medium and the remaining third was snap-frozen in liquid nitrogen and stored 

at -80°C for subsequent protein or RNA isolation.  

 

2.2.1.7 Serum isolation 

After sacrificing animals, the heart was punctured and blood was isolated. It was stored at room 

temperature for 1 h and spun down at 1,000 rpm for 10 min. The serum was transferred to a 

new tube and if blood color varied among animals, the hematocrit/serum fractions were 

weighed and the ratio was calculated. Subsequently, the serum was stored at -20°C.  

 

2.2.1.8 Isolation of intestinal epithelial cells 

Intestines were flushed with PBS and cut longitudinally. 1-2 cm long fragments were prepared 

and vortexed in ice-cold PBS for 1 min. If the intestines were still dirty or covered by mucus, 

PBS was decanted, 4.5 mM DTT in PBS was added and after shaking at room temperature for 

10 min, tissues were transferred to fresh PBS. To separate the epithelium from the muscle 

layers, intestinal fragments were shaken in 20 ml 5 mM EDTA in PBS for 15 min. After vortexing 

for 2 min, the supernatant containing the epithelial cells was transferred into a clean 50 ml tube 

containing 20 ml 5 mM EDTA in PBS. These steps were repeated until the solution was clear 

and no villi were visible under the microscope. Supernatants were combined and spun down 
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at 1,000 rpm for 10 min. Pellets were washed with PBS and stored at -80°C for subsequent 

RNA and protein isolation. 

 

2.2.1.9 X-gal staining of embryos 

After heterozygous mating, Usp22lacZ embryos at E10.5 and E15.5 were collected and fixed in 

fixation solution on ice for 60 min. X-gal staining solution was pre-warmed to 37°C and X-gal 

solution (40 mg X-β-Gal/ml dimethylformamide) was added. After washing in PBS, embryos 

were incubated in staining solution protected from light for 24 h. Subsequently, they were 

embedded in Tissue-Tek O.C.TTM and cut on the sagittal plane. The frozen embryos were 

thawed in 0.1% PFA in PBS for approximately 10 min. Afterwards they were washed, 

dehydrated and prepared for paraffin embedding. 20 μm sections were counterstained using 

nuclear fast red-aluminum sulfate solution. 

 

2.2.1.10 Preparation of mouse embryonic fibroblasts (MEFs) 

After heterozygous mating the uterus of pregnant Usp22lacZ mice was removed at E13.5 and 

transferred into ice-cold PBS. Under sterile conditions the uterus and amnion were removed 

and embryos were washed in PBS. Liver, tail and limbs were removed and the head was lysed 

for genotyping. Tissues were homogenized in 5 ml 0.05% Trypsin-EDTA with a sterile scalpel. 

After incubating at 37°C for 5-10 min, the tissue was resuspended and incubated for further 5 

min. 5 ml DMEM was added and following inverting, tubes were centrifuged at 1,000 rpm for 7 

min. The pellet was resuspended in 5 ml warm DMEM supplemented with 10% FBS, 1% 

sodium pyruvate, 100 units/ml penicillin, and 100 µg/ml streptomycin and transferred into a 15 

cm dish containing 10 ml DMEM. Cells were incubated at 37°C, 5% CO2 until plates were 

confluent (24-72h).  
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2.2.1.11 Preparation of paraffin-embedded tissue 

After formaldehyde fixation, organs were washed using tap water and PBS and dehydrated in 

70% EtOH overnight. Dehydration proceeded using 80%, 90% and 100% EtOH with 1 h 

shaking for each. EtOH was exchanged with isopropanol and tissues were shaken overnight. 

Isopropanol was slowly exchanged with xylol by decreasing the isopropanol and increasing the 

xylol ratio. After shaking the organs in pure xylol, tissues were transferred to paraffin at 62°C 

for three days. Finally tissues were embedded in paraffin blocks which were used to prepare 5 

µm sections. 

 

2.2.1.12 H&E and Nissl staining 

Organ sections were de-paraffinized in xylol for 20 min and rehydrated by storing them in 

decreasing EtOH solutions (100%, 90%, 70%) each for 5 min. Slides were washed with water 

and nuclei were stained in Mayer’s hematoxylin solution for 1 min. Excess dye was removed 

by rinsing slides under running tap water for 5 min. Counterstaining was performed using Eosin 

for 5-10 min. Slides were washed and dehydrated in increasing concentrations of EtOH 

solutions. After incubation in xylol for 10 min, mounting medium and cover slips were added to 

slides. For morphological analyses 100-200 crypts/villi were assessed. For Nissl staining of 

brain material, sections were de-paraffinized, rehydrated and stained in 0.5% cresyl violet for 

10 min. For rehydration and mounting, the aforementioned steps were followed. Nissl staining 

was performed in cooperation with Dr. Nicole Hellbach and Prof. Dr. Tanja Vogel (Department 

of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University 

of Freiburg, Germany).  
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2.2.1.13 Immunohistochemistry (IHC) 

Similar to H&E staining, sections were de-paraffinized and rehydrated. Antigen retrieval was 

performed by boiling slides in 10 mM citric acid buffer or 1 mM EDTA for 15 min. Sections were 

quenched for endogenous peroxidases with 5% H2O2 in PBS and blocked with 10% fetal bovine 

serum (FBS) in PBS. Primary antibodies were diluted in 10% FBS/PBS and incubated 

overnight at 4°C. Biotinylated secondary antibodies (1:200) and ExtrAvidin-Peroxidase 

(1:1,000) were added each for 1 h. Staining was developed using DAB and counterstaining 

was carried out using hematoxylin.  

 

2.2.1.14 Histo-score (H-score) 

The Histo-score (H-score) is based on the intactness of the intestinal epithelium and the rate 

of lymphocyte infiltration to determine inflammation intensity. The H-score is assigned in a 

range from 0 to 3 with an increasing disruption of crypt structure. In contrast to the normal and 

healthy intestinal epithelium (score 0), mild inflammation and therefore lymphocyte infiltration 

can cause crypts to be pushed apart from each other (1). While the presence of MALTs below 

the crypts are part of the normal immune defense, during colitis lymphocyte accumulations can 

destroy crypt structure (2). The highest score is assigned when the epithelial lining on top of 

the lymphocyte accumulation has been destroyed (3). The percentage of damaged tissue was 

multiplied by the respective score (0-3) and the sum was divided by the maximum H-score, 

which was 30. This method is based on a colitis-scoring technique established by Dr. med. 

Hanibal Bohnenberger (Institute for Pathology, UMG) and Garrit Meers (Institute for Cellular 

and Molecular Immunology, University of Göttingen Medical School) and has been modified 

accordingly for (colitis-induced) colorectal cancer sections. 
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2.2.1.15 Mechanical bone testing 

To determine bone biomechanical properties, femora were located on a Zwick device while a 

stamper moved towards the bone with 50 mm/min. Initially, a primary force of 1N was applied 

to fix the bone on the plate. Afterwards, measurements were performed with an accuracy of 

0.2-0.4% using 2-500 N. Data were recorded while the applied strength was linear and was 

aborted once the curve declined by 10 N. By means of the testXpert software the applied 

strength when the deformation was induced (yield load), during fracture (Fmax), before 

breaking the bone (failure load) and the bone stiffness were determined (Komrakova et al., 

2010). Analyses were performed in cooperation with Dr. med. Dominik Saul (Department of 

Trauma, Orthopedics and Reconstructive Surgery, UMG). 

 

2.2.2 Cell culture 

2.2.2.1 Cell culture and inhibitor treatment 

Human colorectal cancer cell lines were grown in phenol-red free Dulbecco's Modified Eagle's 

Medium (DMEM/F-12), RPMI or McCoy’s 5A medium supplemented with 10% fetal bovine 

serum, 100 units/ml penicillin and 100 μg/ml streptomycin at 37°C and 5% CO2. Inhibitors were 

dissolved in DMSO. Increasing concentrations of Ganetespib and JQ1 were added to the cells 

for 48 h. Cells were incubated with 20 µM of the proteasome inhibitor MG-132 for 4 h. As a 

negative control DMSO was added to the cells.  

 

2.2.2.2 siRNA transfection 

siRNA transfections were performed using Lipofectamine® RNAiMAX according to the 

manufacturer’s instructions. Briefly, 30 pmol siRNA was mixed with 500 μl of Opti-MEM and 5 

μl of Lipofectamine® RNAiMAX. After incubating the transfection mix at room temperature for 

20 min, it was added to a well of a 6-well plate containing 400,000 cells in 1.5 ml medium 

without antibiotics. For the determination of cells’ characteristics, cells were trypsinized 24 h 
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post transfection and subjected to a variety of assays. When isolating protein or RNA of siRNA-

treated cells, 24 h after transfection medium containing antibiotics was added and 48 h later 

cells were harvested. 

 

2.2.2.3 Proliferation assessment  

To assess proliferation rates, 2,000-5,000 cells were seeded per well of a 96-well plate after 

siRNA transfection. Proliferation during inhibitor treatment was assessed in 24-well plates. 

Confluence was measured every 24 h using a Celigo® Adherent Cell Cytometer for one week. 

Alternatively, 30,000-75,000 cells were seeded per well of a 12-well plate. After 48 h cells were 

washed with PBS and fixed with 4% PFA in PBS for 20 min. Upon a further washing step, cells 

were visualized by crystal violet staining for 20 minutes. Excess dye was removed by rinsing 

wells several times with water and plates were scanned. 

 

2.2.2.4 Migration assay 

Migration potential of cells was assessed using a trans-well migration assay as previously 

described (Prenzel et al., 2011). Briefly, 48 hours after transfection with siRNAs, 50,000 

HCT116 or 75,000 SW48 cells, respectively, were seeded into 8.0-μm PET track-etched 

membrane cell culture inserts. Cells were grown for another 48 hours 37°C and 5% CO2 before 

fixation with methanol for 10 minutes. Migrated cells were visualized by crystal violet staining 

for 20 minutes. Finally, inserts were rinsed with water, allowed to dry and scanned.  

 

2.2.2.5 Colony formation assay 

After trypsinization, 500 cells were transferred per well of a 6-well plate. Approximately 4-7 

days later when colonies were detected macroscopically, colonies were stained using crystal 

violet as explained before.   
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2.2.2.6 Soft agar colony formation assay 

This experiment was performed to assess the ability of cells to grow in an anchorage-

independent manner. Initially, a sterile stock agarose solution (3.2% in water) was prepared 

and autoclaved. It was then mixed with the respective growth medium and 1 ml was transferred 

per well of a 6-well plate to prepare a 0.8% base agarose layer. Subsequently, 150 µl of the 

3.2% pre-warmed (37-40°C) agarose solution was added to 11,500 cells in 1 ml of growth 

medium. 750 µl of this mixture was transferred immediately on top of the base agarose layer. 

Upon solidification, 1-2 ml of normal growth medium was added and cells were incubated at 

37°C for 10-20 days until colonies were visible macroscopically. Cells were fixed with 4% PFA 

in PBS for 20 min and subsequently stained with 0.005% crystal violet for 1 h. After carefully 

rinsing the wells with water, plates were scanned. 

 

2.2.2.7 CRISPR/Cas9-mediated knockout of USP22 

In order to achieve a permanent knockout of USP22 in HCT116 cells, 400,000 cells were 

seeded per well of a 6-well plate. Single guide RNAs (sgRNAs) targeting USP22 were designed 

by Dr. rer. nat. Florian Wegwitz (Department of General, Visceral and Pediatric Surgery, UMG) 

with the help of the E-CRISP algorithm from the German Cancer Research Center 

(http://www.e-crisp.org). The selected guide RNA sequences were then cloned into the 

pSpCas9(BB)-2A-GFP (PX458, Addgene) vector. 2.5 µg plasmid containing Cas9 and GFP 

sequences as well as a sgRNA were complexed with Lipofectamine® 2000 for 25 min at room 

temperature and added to the wells containing medium without antibiotics. After 24 h cells were 

washed with PBS and medium supplemented with antibiotics was added. 48 h after transfection 

the cells were sorted based on their fluorescence intensity via fluorescence activated cell 

sorting (FACS). FACS was performed by Sabrina Becker (Cell-sorting technology platform, 

Department of Haematology and Medical Oncology, UMG). Single highly fluorescent cells were 



Materials and Methods 

69 

 

sorted into the wells of a 96 well plate. Cell clones were cultivated and propagated. The loss 

of USP22 was confirmed at the protein level by western blot.  

 

2.2.3 Molecular biology techniques 

2.2.3.1 DNA extraction from tail biopsies or cells 

Tail biopsies or cell pellets were lysed at 56°C in DNA extraction buffer overnight. To separate 

nucleic acids from other cellular contaminants, 100 µl 5M NaCl was added. Tubes were 

inverted and centrifuged at room temperature and maximum speed for 10 min. An equal 

volume of isopropanol was added to the supernatant in a new tube and after mixing samples 

they were spun down at 4°C to precipitate the DNA. The pellet was washed with 100 µl ice-

cold 70% EtOH and spun down. Following EtOH removal, DNA pellets were air-dried and 

dissolved in 50 µl H2O.  

 

2.2.3.2 Genotyping of experimental mice 

Genotyping of Usp22lacZ mice was performed by pre-heating PCR samples to 95°C for 3 min. 

The respective DNA fragments were amplified in 35 polymerization cycles with 95°C for 30 s, 

60°C for 30 s, 72°C for 1 min. Final elongation took place at 72°C for 10 min. For Usp22loxP 

mice, three separate PCR reactions were run in order to determine their Usp22, Apc and Villin-

CreERT2 status. For genotyping PCR samples were pre-heated to 95°C for 3 min. The respective 

DNA fragments were amplified in repeated polymerization cycles and it was allowed for a final 

elongation at 72°C for 10 min. The respective polymerization cycles for Usp22 were: 95°C for 

30 s, 67°C for 30 s, 72°C for 1 min (35 cycles); for APC1638N: 95°C for 30 s, 58°C for 30 s, 72°C 

for 1 min (40 cycles); and for Villin-CreERT2: 95°C for 15 s, 56°C for 15 s, 72°C for 30 s (35 

cycles).  
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2.2.3.3 RNA isolation 

Tissue or cell material was homogenized in TRIzol® and RNA was extracted according to the 

manufacturer’s manual. Briefly, mouse tissues were homogenized in 750 µl TRIzol® or cell 

pellets were resuspended in 500 µl TRIzol® and stored at -20°C overnight. 100 µl chloroform 

was added and samples were vortexed for 15 sec. Samples were spun down at 10,000 rpm 

and 4°C for 20 min and the aqueous phase was mixed with an equal volume of isopropanol. 

After storing samples at -20°C overnight, samples were spun down and the RNA pellet was 

washed in 80% EtOH in DEPC water. After a centrifugation step, the pellets were air-dried at 

room temperature and resuspended in 30 µl DEPC water. 

 

2.2.3.4 RNA gel electrophoresis 

To assess RNA integrity, RNA samples (250-500 ng) were mixed with RNA loading dye 1:10 

in a total volume of 10 µl. Samples were applied onto a 1% agarose gel prepared with TBE 

buffer and run at 100 V for 15 min. RNA integrity was assessed based on the intensity of 18S 

rRNA (approximately 2 kb) and 28S rRNA (approximately 5 kb; should be more intense than 

18S rRNA).  

 

2.2.3.5 cDNA synthesis 

In a total volume of 16 µl 1 μg of total RNA was mixed with DEPC water, 2 μl of 15 μM random 

primers, 4 μl dNTPs (each 2.5 mM) and incubated at 70°C for 5 min. After cooling the samples 

on ice 4 μl transcription master mix (2 μl 10x reaction buffer, 0.25 µl [10 U] RNase inhibitor, 

0.125 µl M-MuLV reverse transcriptase and 1.625 μl DEPC water) was added. cDNA synthesis 

was performed at 42°C for 1 h and terminated at 95°C for 5 min. Finally, samples were diluted 

with DEPC water to a total volume of 200 µl. 
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2.2.3.6 Quantitative Real-Time PCR (qPCR) 

To quantify gene expression levels 3 µl cDNA was added to a master mix containing 14 µl 2x 

qPCR mix, 6.5 µl H2O, and 1.5 µl primers. Samples were quantified based on a standard curve 

prepared from cDNA pools. Initially, cDNA was denatured at 95°C for 2 min. Afterwards, 

amplification took place in 40 polymerization cycles (95°C for 15 s, 60°C for 1 min) and SYBR 

Green I detection took place during a melting curve analysis from 60°C to 95°C with one read 

every 0.5°C. Human samples were normalized to the housekeeping gene 18S rRNA and 

murine samples to 36B4. 

 

2.2.3.7 Luciferase reporter assay 

In order to determine whether the knockdown of USP22 has an effect on Wnt signaling in vitro, 

a luciferase reporter assay was performed as previously described (Hossan et al., 2016). For 

this purpose, 45,000 SW480 and HCT116 cells were seeded per well in triplicates into 24-well 

plates. siRNA-transfections were carried out using Lipofectamine® RNAiMAX according to the 

manufacturer’s protocol. Two days after the knockdown, cells were transfected with Super-

TOP/FOP-FLASH (Veeman et al., 2003) plasmids encoding mutated or wild type TCF/LEF 

binding sites and a firefly- (Photinus pyralis) luciferase reporter construct. In addition, a Renilla-

reporter (Renilla reniformis) was used as a control. Plasmids were complexed with 

Lipofectamine® 2000 for 25 min at room temperature and added to the wells containing 

antibiotics-free medium. 24 h after transfection, cells were washed twice with ice-cold PBS and 

250 µl Passive Lysis Buffer was added per well. After shaking at room temperature for 15 min, 

plates were spun down at maximum speed for 1 min and 50 µl of the supernatant was 

transferred into 96-well Optiplates. All samples were pipetted in triplicates. The luminometer 

was equilibrated with firefly and Renilla buffer. First, chemiluminescence was measured after 

adding 100 µl firefly luciferase solution to the cell, afterwards the same volume of Renilla 
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reagent was measured. For analysis, the average value per triplicate was determined and the 

ratio of the firefly and Renilla signals was calculated to normalize all samples. 

 

2.2.4 Protein biochemistry 

2.2.4.1 Protein isolation 

To isolate proteins, cell pellets or snap-frozen intestines were lysed in ice-cold RIPA buffer 

containing 10 mM N-ethylmaleimide, 10 mM Pefabloc, 1 mM Aprotinin/Leupeptin, 0.1 mM 

Iodoacetamide and 10 mM β-Glycerolphosphate disodium salt hydrate on ice. Afterwards 

samples were sonicated for 10 min to shear genomic DNA.  

 

2.2.4.2 Bicinchoninic acid (BCA) assay 

To determine protein concentrations BCA assay was performed using the PierceTM BCA 

Protein Assay Kit. Solution A and B were mixed in a ratio of 50:1. Subsequently, 5 µl protein 

sample or BSA standard were added and incubated at 37°C for 30 min. Protein concentrations 

were determined spectrophotometrically based on a standard curve.  

 

2.2.4.3 SDS-PAGE and western blot 

To prepare the samples for SDS-PAGE, Laemmli buffer was diluted with the protein lysates in 

a ratio of 1:5 and boiled at 95°C for 5 min. Proteins were separated by SDS-PAGE at 100-200 

V and transferred onto a nitrocellulose membrane at 100 V for 90 min. In order to prevent 

unspecific binding of antibodies, membranes were blocked in 5% milk powder in TBS-T for 30-

60 min. Proteins were detected using specific primary antibodies and horseradish peroxidase-

conjugated secondary antibodies and subsequently visualized using the ChemiDocTM MP 

System. 
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2.2.4.4 Co-Immunoprecipitation (Co-IP) 

Co-IP was performed to detect the direct interaction between USP22 and HSP90. Protein G 

Sepharose (PGS) beads were equilibrated by washing them three times with H2O (spun down 

at 300 rpm, 1 min), and three times with E1A buffer containing protease inhibitors (10 mM N-

ethylmaleimide, 10 mM Pefabloc, 1 mM Aprotinin/Leupeptin, 0.1 mM Iodoacetamide and 10 

mM β-Glycerophosphate disodium salt hydrate). To prevent unspecific DNA binding, beads 

were resuspended in buffer containing salmon sperm DNA in a dilution of 1:10. Beads were 

incubated on a rotator at 4°C for 1 h. To isolate protein 500 µl E1A buffer was added per 10 

cm plate and HCT116 cells were scraped off. Samples were sonicated for 10 min. Next, beads 

were washed 5 times in E1A containing inhibitors and 1:5 of the beads was added to the protein 

sample to clear the lysate at 4°C overnight. The residual beads in E1A were divided into four 

portions to conjugate them with 2 µg of the respective antibodies: (1) USP22 antibody, (2) 

HSP90AB1 antibody, (3) non-specific IgG antibody as a background control and (4) only E1A 

buffer as a negative control. Lysate clearing and antibody binding was performed at 4°C 

overnight. Samples were spun down and the antibody-conjugated beads and the control were 

washed 5 times with E1A. The protein lysate was added in equal portions to the beads and 

one part was boiled in 6x Laemmli buffer as an input control. For protein binding to the 

antibodies samples were incubated further on a rotating device at 4°C overnight. Beads were 

washed 5x with E1A and an equal volume of 2x Laemmli buffer was added. Samples were 

boiled at 95°C for 5 min and stored at -20°C or directly used for western blot analysis. 

 

2.2.5 Next generation sequencing 

2.2.5.1 Microarray using mouse embryonic fibroblasts 

To generate global gene expression data RNA was isolated from MEFs obtained from four wild 

type and four Usp22lacZ/lacZ animals. Quality control of RNA samples as well as microarray 

analyses were performed by the Transcriptome Analysis Laboratory (TAL) Göttingen, 



Materials and Methods 

74 

 

Germany. Briefly, the integrity of the input RNA was analyzed using an Agilent BioAnalyzer. 

200 ng of total RNA was reverse transcribed into cDNA which was labelled by a T7 RNA 

Polymerase incorporating cyanine 3-CTP, fluorescent nucleotide analogs. These Cy3-CTP-

labelled cRNA samples were fragmentized and hybridized to 4x44K microarray slides at 65°C 

for approximately 17 hours according to the manufacturer’s protocol. Arrays were washed with 

a 0.005% Triton X-102-containing buffer to reduce the presence of artifacts. Cy3-fluorescence 

of complementary bound probes on the microarray slides was detected and fluorescence 

intensities were quantified and compared amongst samples.  

 

2.2.5.2 mRNA Library Preparation 

Prior to preparing libraries for subsequent mRNA-seq analysis, integrity was confirmed using 

the Bioanalyzer system comparing the ratio of 18S and 28S rRNA fragments. Afterwards, 1 µg 

RNA was processed with the NEXTflex™ Rapid Illumina Directional RNA-Seq Library Prep Kit. 

Briefly, mRNA was purified by Poly(A) magnetic beads and fragmented. First and second 

strand cDNA synthesis was performed and single base overhangs were prepared and adapters 

were ligated to the cDNA. This product was amplified using specific barcode-containing primers 

allowing the subsequent identification of samples. Finally, DNA concentration was determined 

by Qubit® Fluorometer measurement. 16 samples were pooled to a final concentration of 2 nM. 

Sequencing was performed by the TAL using Illumina® HiSeq 2000 sequencers. 

 

2.2.5.3 mRNA-seq data processing 

FASTQ files obtained from the TAL were mapped to the human reference genome (assembly 

hg19) by Bowtie2 using default parameters. The number of reads per sample was determined 

using HTSeq. Subsequently, data were normalized and processed via DESeq2 on the 

statistical software R. Similarities between replicates have been determined using hierarchical 

clustering and PCA plots. For analysis of differentially expressed genes among siControl and 
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siUsp22 samples, following thresholds were defined: BaseMean ≥10, log2fold change ± 0.8, 

padj ≤ 0.05. Heatmaps were generated using R or Morpheus. Gene Ontology analysis was 

performed with the aforementioned threshold values using GOTermFinder and were 

subsequently visualized using REViGO. 

 

2.2.6 Statistical analyses 

All graphs in this study have been designed with GraphPad Prism version 5.04 (GraphPad 

Software, Inc.). P-values were determined using Student’s t-test (***p ≤ 0.001, **p ≤ 0.01, *p ≤ 

0.05.). 
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3. RESULTS 

 

3.1 USP22 is required for proper murine development and lineage specification 

While previous studies defined several deubiquitination and interaction partners of USP22, its 

general role in in vivo remained unclear. Initially, to unravel the general function of USP22 in 

mice, we aimed to determine its sites of expression and to investigate its relevance during 

organ maintenance. Consequently, to investigate both the expression pattern and function of 

Usp22 in vivo, we generated the so-called Usp22lacZ mice. This mouse line has been previously 

characterized in the aforementioned M.Sc. thesis (Kosinsky, 2013) and has recently been 

described by our group (Kosinsky et al., 2015). In the current project we increased the size of 

the experimental mouse cohort in order to confirm previous observations and to identify further 

Usp22-related cellular processes. To determine the expression levels of Usp22 and therefore 

determine the knockout efficiency, brain and small intestines (SIs) were isolated from 4 month-

old mice. Quantitative RT-PCR (qRT-PCR) analysis revealed a significant reduction of Usp22 

expression in both organs; however, approximately 3% of residual correctly spliced mRNA was 

still detectable in mutant animals compared to their wild type littermates (Figure 10A). 

Moreover, an incomplete reduction of USP22 protein levels was observed in western blot 

(Figure 10B). Interestingly, the homozygous expression of this hypomorphic Usp22lacZ allele 

led to a clear growth defect in adult animals at an age of four months; a phenotype which could 

be maintained even after several generations of breedings (Figure 10C). Accordingly, the body 

weight of Usp22lacZ/lacZ mice was significantly reduced as revealed after recording the weight of 

adult animals, as here indicated for males (Figure 10D). In contrast, in heterozygous animals 

the body size and weight were only marginally affected. These findings support our previous 

observations that Usp22-hypomorphic mice are viable but are affected by growth retardation. 
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Figure 10: Generation and phenotype of Usp22-hypomorphic mice. (A) The reduction of 
Usp22 on mRNA and (B) protein level was shown using small intestine and brain material. 
Mean ± SEM, Student's t-test, Usp22wt/wt: n=4; Usp22lacZ/wt: n=5; Usp22lacZ/lacZ: n=4. (C) 
Decreased Usp22 expression results in growth retardation and (D) lower body weight as shown 
for 4-month old male mice. Mean ± SEM, Student's t-test, Usp22wt/wt: n=5; Usp22lacZ/wt: n=9; 
Usp22lacZ/lacZ: n=6 (Kosinsky et al., 2015). 
  

In order to understand the function and the mechanism underlying the phenotype of Usp22-

hypomorphic mice, it is crucial to identify tissues and cell types in which Usp22 is expressed. 

For this purpose, we took advantage of the LacZ reporter gene under control of the 

endogenous Usp22 promoter to determine its spatio-temporal expression pattern during early 

and late stages of embryonic development. So far, the presence of Usp22 expression has only 
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been analyzed in whole tissue lysates or during very early stages of embryonic development, 

i.e. E10.5 and E12.5 (Lee et al., 2006). Beta-galactosidase enzymatic activity and therefore 

endogenous Usp22-promoter activity was visualized in whole mount stainings when the 

substrate X-gal was cleaved and thereby a blue staining was produced. At E10.5 Usp22lacZ/lacZ 

embryos showed strong color development in the skin and also blue staining was detected in 

the brain, spinal cord and intestines (Figure 11A). In order to obtain a better overview of the 

inner organs, we investigated Usp22 expression sites in later stages of development using 

E15.5 embryos. We detected strong staining of the skin in Usp22lacZ/wt and Usp22lacZ/lacZ 

animals, however, inner organs were not visible through the skin (Figure 11B). To overcome 

this problem embryos were cut sagittally and stained a second time for β-galactosidase activity 

(Figure 11C). Afterwards, paraffin sections were prepared and counterstained. Besides in the 

skin, strong staining was detected in connective and muscle tissue (Figure 11D, Table 15). In 

addition, the facial region including tongue, lips and nasal cavity as well as the brain (i.e. frontal 

lobe, cerebral cortex, subventricular zone and ganglionic eminences) were stained. Moreover, 

Usp22 promoter activity was visualized in the heart, lung, kidneys, penis, thymus, bladder, 

pancreas, thyroid and intestinal system. In summary, X-gal staining revealed ubiquitous Usp22 

expression suggesting its relevance during the development of embryonic tissues. 
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Figure 11: Ubiquitous expression of Usp22 in murine embryos. Using X-Gal staining β-
galactosidase activity, and therefore Usp22 expression, was detected in Usp22lacZ embryos at 
(A) E10.5 and (B) E15.5. At E10.5 strong staining of the skin, the spinal cord and inner organs 
was detected. (C) To observe staining intensity in the inner body regions at E15.5, embryos 
were cut sagittally and stained again. (D) Sections were prepared and ubiquitous Usp22 
expression was detected. Scale bar: 2,000 μm (Kosinsky et al., 2015). 
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Table 15: Usp22 levels visualized by X-gal staining in embryonic tissues at E15.5  
(Kosinsky et al., 2015).  
 

Organ Staining intensity Organ Staining intensity 

Front lobe +++ Thyroid ++ 

Cerebellum + Heart ++ 

Cerebral cortex ++ Thymus ++ 

Subventricular zone + Lung +++ 

Midbrain + Liver - 

Hindbrain + Intestinal system +++ 

Ganglionic eminences ++ Pancreas ++ 

Spinal cord + Kidneys +++ 

Nasal cavity +++ Bladder +++ 

Lips +++ Penis +++ 

Tongue +++   

 

As the previous results pointed at an involvement of Usp22 in embryo and tissue development, 

we next investigated the effect of Usp22 expression on organ maintenance in adult mice. For 

this purpose, the gross morphology of small intestines isolated from 4-month old animals was 

evaluated. Swiss rolls were prepared, fixed in formaldehyde and embedded in paraffin. After 

staining sections with H&E, we assessed proximal, intermediate and distal organ segments 

(Figure 12A). Generally, the number of crypts and villi was not affected by the reduction of 

Usp22 levels (data not shown). Moreover, we counted 22 to 24 cells per crypt in all mice by 

analyzing at least 50 crypts per animal (Figure 12B). In addition, we have measured villus 

length which is representative for the approximate cell numbers. In all genotypes, the average 

length per villus was between 264 μm and 266 μm (Figure 12C). In summary, low Usp22 

expression levels do not change the gross morphology of the small intestine. 
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Figure 12: Reduced Usp22 levels do not alter small intestine morphology. (A) Small 
intestine sections were stained with H&E to evaluate the gross organ morphology. Scale bar: 
100 µm. (B) The number of cells per crypt and the (C) villi length were not changed in Usp22-
hypomorphic mice. Mean ± SEM, Student's t-test, Usp22wt/wt: n=3; Usp22lacZ/wt: n=3; 
Usp22lacZ/lacZ: n=3 (Kosinsky et al., 2015).  
 

As described above, we have previously observed that the differentiation pattern in the small 

intestine is affected in Usp22lacZ/lacZ mice (Kosinsky, 2013; Kosinsky et al., 2015). We identified 

a slight increase in the Olfm4-positive stem cells and accordingly more differentiated cells, i.e. 

Goblet, Paneth and enteroendocrine cells. To test the effect of Usp22 loss in another organ 
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system, analyses of the brain were performed in cooperation with Dr. Nicole Hellbach and Prof. 

Dr. Tanja Vogel (Department of Molecular Embryology, Institute of Anatomy and Cell Biology, 

Faculty of Medicine, University of Freiburg, Germany).  

 

Figure 13: Usp22 affects cortical differentiation in the adult mouse brain. (A) Nissl and 
(B) H&E staining on sagittal brain sections revealed a less densely packed cortex in adult 
Usp22lacZ/lacZ mice. Scale bar: 500 µm. (C-E) By IHC progenitor and differentiation markers 
were visualized on coronal cortex sections. While the distribution of TBR2-positive intermediate 
precursor cells in the subventricular zone was unchanged, the density of deep-layer (CTIP2) 
and upper-layer (SATB2) neurons was decreased (Kosinsky et al., 2015). Scale bar: 100 μm. 
CP: cortical plate; SVZ: subventricular zone; V: ventricle.  
 

To evaluate the general brain morphology, H&E and Nissl stainings were performed. While the 

gross brain morphology was unaffected, the total organ size was reduced in Usp22lacZ/lacZ mice 

(Figure 13A, B). Moreover, the cell density in the cerebral cortex was lower in these animals. 

To investigate potential differentiation shifts, the number of progenitors and differentiated cells 

was observed in the subventricular zone as well as deep-layer and upper-layer neurons using 
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immunohistochemistry. Intermediate precursor cells (IPCs) were visualized by staining for T-

Box Transcription Factor 2 (TBR2) in the subventricular zone. We observed that the localization 

and number of IPCs was not significantly affected after the reduction of Usp22 levels (Figure 

13C). Next, differentiated early born deep-layer neurons and later born upper-layer neurons 

were detected by staining for C2H2-Type Zinc Finger Protein (CTIP2) and AT-Rich Sequence-

Binding Protein 2 (SATB2), respectively (Figure 13D, E). Interestingly, in Usp22lacZ/lacZ mice the 

density of CTIP2- and SATB2-positive cells was decreased. These results support our 

observations in the small intestine indicating that Usp22 affects lineage specification and 

differentiation in diverse organ systems. 

  

As reported previously, USP22 is able to deubiquitinate the histone H2B and thereby affect 

transcription (Zhang et al., 2008b). In addition, our group revealed the significance of H2Bub1 

in differentiation processes (Karpiuk et al., 2012). Thus we aimed to investigate whether 

H2Bub1 levels correlated with the differentiation shifts observed in adult mouse organs. For 

this purpose we stained small intestine sections for H2B and H2Bub1 using 

immunohistochemistry. Surprisingly, no difference in the number of positively stained cells, 

their staining intensity or localization was detected (Figure 14) suggesting that the effects of 

USP22 on differentiation are independent of its ability to deubiquitinate H2B. 
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Figure 14: H2B and H2Bub1 levels are not affected by reduced USP22 amounts in the 
small intestine. H2B and H2Bub1 levels have been visualized by immunohistochemistry on 
small intestine sections. Reduced USP22 levels did not result in altered staining intensities, 
numbers of positively stained cells or in changed localization of H2B/H2Bub1-positive cells 
(Kosinsky et al., 2015). Scale bar: 100 μm.  
 

To investigate the function of Usp22 in detail, we isolated mouse embryonic fibroblasts (MEFs) 

from eight individual embryos to perform subsequent gene expression analyses. RNA was 

isolated from four Usp22wt/wt and four Usp22lacZ/lacZ MEF samples and microarray-based 

profiling was carried out at the Transcriptome and Genome Analysis Laboratory (TAL), 

Göttingen, Germany. The variance between the four animals per genotype was assessed by 

hierarchical clustering and replicates were compared in a heatmap. As expected, the variance 

between the individual animals was rather high (Figure 15A). While Usp22lacZ/lacZ samples 

clustered together, there was a relatively high variation among wild type samples. Furthermore, 

we compared the variance in differentially regulated genes with high fold changes (log2fold 

change ± 0.8, padj <0.05) using the Morpheus tool. Despite the evident heterogeneity among 

the replicates, several differentially expressed genes were identified as depicted in the 

heatmap (Figure 15B). 
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Figure 15: Quality control of MEFs used for microarray analysis. (A) Hierarchical clustering 
of replicates reveals the heterogeneity of murine material. (B) Heatmap generating with the 
Morpheus tool displaying all replicates and their expression for genes with a high fold change 
(log2fold change ± 0.8, padj <0.05). Each row represents a single gene. Expression varies 
between replicates but the overall tendency was similar. The color code indicates the relative 
minimum (min) and maximum (max) expression value per gene. 
 

To investigate biological processes affected by the loss of Usp22 in MEFs, microarray data 

were subjected to gene ontology (GO) analysis, i.e. by GOTermFinder (Princeton University, 

Lewis-Sigler Institute) and the GO visualization tool REViGO (Supek et al., 2011). As expected, 

there was a significant enrichment in GO terms involved in developmental processes, 

proliferation and differentiation (Figure 16, Table 16). These findings support our in vivo data 

which revealed growth retardation in adult Usp22lacZ/lacZ mice and differentiation shifts in organs.  
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Figure 16: Gene Ontology analysis of genes affected by reduced Usp22 expression in 
MEFs. Summary of enriched GO terms after analyzing differential regulated genes (log2fold 
change ± 0.8, p-value <0.05) in Usp22lacZ/lacZ MEFs using the GO visualization tool REViGO. 
Analysis revealed association with development-, proliferation- and differentiation-associated 
processes.  
 

In summary, the Usp22lacZ mouse line enabled us to investigate the function of Usp22 in murine 

development and organ maintenance. Staining for β-galactosidase activity revealed ubiquitous 

Usp22 expression in the majority of murine embryonic tissues. As a consequence, reduced 

Usp22 levels result in systemic repercussions in adult mice, i.e. growth retardation and 

consistently reduced body weight. While the morphology of the small intestine and brain were 

only marginally changed, the cell differentiation pattern was altered in these organs. 

Interestingly, these phenomena seem to be independent of H2B monoubiquitination. Using 
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microarray-based gene expression and GO analyses in MEFs, we were able to confirm the 

involvement of Usp22 in developmental and differentiation processes. 

 

Table 16: GO terms enriched in Usp22lacZ/lacZ MEFs as revealed by GOTermFinder. 

Term ID Gene Ontology term 
Cluster 
frequency 

Corrected  

p-value 
FDR 

GO:0032502 Developmental process 36.9% 0.00000846 0 

GO:0044767 Single-organism developmental process 36.9% 0.0000038 0 

GO:0048856 Anatomical structure development 35.9% 0.000000982 0 

GO:0007275 Multicellular organism development 33.4% 0.000000453 0 

GO:0048731 System development 29.7% 0.00000471 0 

GO:0048869 Cellular developmental process 27.8% 0.00018 0 

GO:0030154 Cell differentiation 26.5% 0.0000724 0 

GO:0051239 
Regulation of multicellular organismal 
process 

20.4% 0.00011 0 

GO:0009653 Anatomical structure morphogenesis 20.1% 0.0000509 0 

GO:0048468 Cell development 16.0% 0.00361 0 

GO:0008283 Cell proliferation 14.3% 0.00699 0 

GO:0009888 Tissue development 13.8% 0.00905 0 

GO:0042127 Regulation of cell proliferation 12.5% 0.00334 0 

GO:0030182 Neuron differentiation 11.3% 0.00665 0 

GO:0060429 Epithelium development 11.1% 0.0001 0 
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3.2 The role of USP22 in colorectal tumorigenesis in vivo 

After investigating the function of USP22 in organ maintenance and differentiation, we aimed 

to elucidate the effect of USP22 loss on colorectal cancer formation and progression in vivo. 

This project was based on the hypothesis that an Usp22 loss lowers tumor burden since it was 

described that USP22 is overexpressed in CRC and further malignancies. For this purpose, 

we generated a mouse line which is based on the aforementioned Usp22lacZ animals. The 

‘knockout first’ allele contains FLP recombinase target (FRT) sequences which are recognized 

by flippase (FLP) recombinase. After crossing Usp22lacZ animals to transgenic FLP mice the 

lacZ sequence and neomycin-resistance cassette were excised leaving loxP-sites flanking 

exon 2 of the Usp22 gene (Figure 17A). Thereby the allele was converted to a conditional 

knockout allele based on the Cre/loxP system restoring Usp22 gene activity. These mice were 

crossed with Villin-CreERT2 mice in which the Cre-recombinase is fused to a mutated Tamoxifen-

inducible estrogen receptor ligand binding domain (ERT2) (el Marjou et al., 2004). By 

intraperitoneal Tamoxifen injections an Usp22 loss can be induced in the small intestine and 

to a lesser extent in the colon. In order to promote colorectal tumorigenesis mice were crossed 

with APC1638N mice. This mutation in the tumor suppressor results in a globally truncated APC 

protein as frequently observed in human colorectal cancers. Thus, for this project we analyzed 

six genotypes; APC+/+ or APC1638N/+ each with Usp22 wild type, heterozygous or knockout 

status (hereafter referred to as Usp22+/+, Usp22+/- or Usp22-/-; Table 17). To determine the 

genotypes, genomic DNA was isolated from tail biopsies. Finally, after using specific primers 

for conventional PCR, DNA fragment sizes were evaluated (Figure 17B; Usp22 wt: 322 bp, 

loxP: 470 bp; APC wt: 178 bp, 1638N: 347 bp; Villin positive: 220 bp). Initially, to determine the 

knockout efficiency, APC+/+ mice were injected with Tamoxifen at an age of 4 weeks for 5 

consecutive days and Usp22 mRNA levels were determined 4 weeks later. Using qRT-PCR 

we detected a decrease of Usp22 levels by approximately 96% in intestinal epithelial cells 
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(Figure 17C). A corresponding decrease on protein level was confirmed by western blot 

analysis (Figure 17D).  

 

Figure 17: Generation of mice with a conditional intestinal Usp22 knockout. (A) In Villin-
CreERT2 positive, APC1638N/+ mice the second exon of the Usp22 gene was flanked by loxP-
sequences. This allowed an intestine-specific and Tamoxifen-inducible deletion of Usp22. (B) 
By conventional PCR, genotypes were determined based on DNA fragment sizes (Usp22 wt: 
322 bp, loxP: 470 bp; APC wt: 178 bp, 1638N: 347 bp; Villin-CreERT2 positive: 220 bp). (C) 
Usp22 mRNA levels were reduced by 96% in Usp22-/- mice. Mean ± SEM, Student's t-test, 
n=5. (D) Accordingly USP22 protein levels were decreased after Tamoxifen treatment. (E) DSS 
treatment time points to cause inflammation-induced CRC. Colitis was induced either after 
(group 1; Tam-DSS) or prior to Usp22 knockout (group 2; DSS-Tam). Additionally, a group for 
sporadic CRC (group 3; Tam) without DSS treatment has been studied.   
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After demonstrating that the knockout efficiency was sufficient, we divided the mice into three 

experimental cohorts (Figure 17E). The first cohort (Tam-DSS) reflected the situation of colitis-

induced colorectal cancer. For this purpose, the knockout of Usp22 was induced and mice 

were treated with DSS to induce colitis afterwards. In the second experimental group (DSS-

Tam) colitis was induced as well, however, in contrast to the first group, DSS-treatment was 

performed prior to the loss of Usp22. The last cohort (Tam) was only treated with Tamoxifen 

and therefore represented a model for sporadic CRC formation. In the following sections these 

mouse cohorts and the corresponding experimental outcomes will be explained in detail.  

 

Table 17: Mouse numbers per experimental cohort used throughout the study to 
determine the function of USP22 in colorectal tumorigenesis. 
 

  APC+/+   APC1638N/+  

 Usp22+/+ Usp22+/- Usp22-/- Usp22+/+ Usp22+/- Usp22-/- 

Tam-DSS 8 10 13 16 13 9 

DSS-Tam 10 6 5 7 6 4 

Tam 15 14 8 9 8 7 
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3.2.1 Inflammation-induced CRC: Intestinal Usp22 deletion prior to colitis (Tam-DSS) 

3.2.1.1 Intestinal Usp22 loss shortens survival and increases intestinal tumor burden 

When starting this project we aimed to utilize a mouse model in which tumorigenesis was not 

promoted by an APC mutation alone, but also by colitis. For this purpose, experimental mice 

used to observe inflammation-induced CRC (treatment group 1: Tam-DSS) were injected with 

Tamoxifen at an age of 4 weeks to induce the intestine-specific Usp22 knockout. When the 

animals were 10 weeks old and could physically withstand the burden of colitis we started the 

DSS treatment. We initially administered 2% of the chemical agent DSS dissolved in drinking 

water for 7 days. However, we observed strong intestinal bleedings, severe diarrhea and 

subsequent death in several mice. Therefore, we decided to reduce the load by treating the 

animals with 2% DSS for 4 days, feed them with mush food supplemented with glucose for 7 

days and continue the DSS treatment for 3 further days. Thus, DSS treatment was terminated 

when the animals were 12 weeks old. The animal weight, stool consistency and the presence 

of occult blood was recorded daily from the first day of DSS supplementation until 1 week after 

terminating the treatment. Despite the reduced burden we observed increased weight loss 

(Figure 18A), intestinal bleedings (Figure 18B) and severe diarrhea (data not shown) in 

APC1638N/+, Usp22-/- animals. These parameters were scored to determine the disease activity 

index (DAI). In both groups, APC wild type and heterozygous, mice with Usp22 loss were 

characterized by the highest DAI (Figure 18C). Surprisingly, shortly after the DSS treatment 

APC1638N/+, Usp22-/- mice died at the age of approximately 12-20 weeks (Figure 18D). Their 

APC1638N/+, Usp22+/+ and Usp22+/- littermates were characterized by longer survival (Usp22+/+: 

25-54 weeks, Usp22+/-: 28-39 weeks). In contrast, life expectancy of APC+/+ animals was only 

marginally affected. We found blocked intestines due to intussusceptions or prolapses to be 

the primary causes of death in APC1638N/+, Usp22-/- mice. For further analyses the intestinal 

system was isolated. Notably, the colon length was significantly decreased in APC1638N/+, 

Usp22-/- mice (Figure 18E) indicating strong inflammatory processes (Nordgren et al., 1997). 
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Figure 18: Simultaneous loss of Usp22 and APC mutation lowers life expectancy and 
increases the DAI in Tam-DSS mice. After starting the DSS treatment health parameters 
were recorded daily. APC1638N/+, Usp22-/- mice showed (A) increased weight loss, (B) intestinal 
bleedings and (C) a high average DAI. (D) An APC truncation mutation lead to decreased 
survival. In comparison to Usp22 wild type and heterozygous animals, upon deletion of Usp22, 
life expectancy was significantly shortened animals. (E) After sacrifice these mice were 
characterized by significantly shorter colons. Mean ± SEM, Student's t-test, n-numbers 
indicated in Table 17. 
After sacrificing the mice we checked for metastases and physical abnormalities. While no 

metastases were detected, increased spleen size was observed in APC1638N/+ animals but did 
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not correlate with the Usp22 status (data not shown). The intestines were washed and 

measured. Moreover, tumor locations as well as tumor sizes were recorded. Due to the 

induction of colitis via DSS treatment, intestinal tumors were found in nearly all animals (Figure 

19A, B). In addition, as expected, the truncated APC protein correlated with promoted 

tumorigenesis. While APC+/+ mice had on average 0-7 tumors in the colon and 0-16 in the SI, 

APC1638N/+ mice showed the presence of approximately 0-33 tumors in the colon and 2-129 in 

the SI, respectively. To our surprise, the total number of intestinal tumors was especially 

elevated upon the loss of Usp22. In APC+/+ animals with Usp22 wild type or heterozygous 

status, the tumor number was slightly lower in the colon compared to Usp22-/- animals. In the 

SI the difference among the APC+/+ mice was not significant. In contrast, in the APC1638N/+ 

cohort Usp22-/- animals developed significantly more tumors in the colon and SI compared to 

their Usp22 wild type and heterozygous littermates. In fact, tumors were not only more frequent 

in APC1638N/+, Usp22-/- mice but also characterized by their increased size (Figure 19C, D). The 

ratio of tumors with a greater surface area than 2 mm2 was significantly increased in APC1638N/+, 

Usp22-/- animals. To summarize, in contrast to previously published reports which our 

hypothesis was based on, we observed that Usp22 loss did not only reduce survival but it also 

significantly increased tumor burden in inflammation-induced CRC. 
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Figure 19: Reduced Usp22 levels significantly elevate intestinal tumor burden. In (A) 
colon and (B) small intestine loss of Usp22 leads to increased tumor numbers in both, APC+/+ 
and APC1638N/+ mice. (C, D) Apart from tumor frequency, tumor size was elevated in Usp22-/- 
mice. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 
 

Generally, the intestinal system is divided into several segments with distinct properties and 

structural features. Moreover, the activity of the Villin promoter decreases from the proximal to 

the distal intestinal region which can affect the sites of tumor formation as well. Thus, the 

relative tumor location within the intestinal system was determined. For this purpose, the small 

intestine and colon were always dissected in the same manner and the tumor distance from 

the left side and the bottom of the organ was determined. Per genotype the tumor locations of 

five animals with representative tumor numbers were depicted. As mentioned before, in APC+/+ 
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mice the tumor number is slightly elevated after the loss of Usp22, however, their distribution 

is similar to Usp22+/+ littermates (Figure 20). In contrast, in the presence of an APC mutation 

the deletion of Usp22 leads to an accumulation of tumors in the proximal region of the small 

intestine.  

 

Figure 20: Usp22 loss results in the accumulation of tumors in the proximal SI region. 
Relative tumor locations from five mice per genotype with representative tumor numbers were 
depicted. APC1638N/+, Usp22-/- mice were characterized by an accumulation of tumors in the 
proximal region of the small intestine. 
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After measuring tumor size and location, intestines were fixed in formaldehyde and embedded 

in paraffin. Swiss rolls were prepared to obtain an overview of all regions of the SI and colon. 

Afterwards, sections were stained with H&E to visualize organ structures. For morphological 

studies, we selected the distal third of the small intestine. Generally, the gross morphology of 

the SI did not vary among genotypes (Figure 21). In APC+/+ colons the organ structure was 

mainly unaffected. Conversely, due to a heterozygous APC mutation, the number of tumors 

was strongly increased and therefore the organ integrity destroyed.  

 

Figure 21: Morphological overview of small intestines and colons. Small intestine and 
colon sections were stained with H&E and images were prepared to get a morphological 
overview. Only marginal differences were detected in small intestines among genotypes. In 
colons of APC1638N/+ mice tumors disturb organ integrity. Scale bar: 1,000 µm.  
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3.2.1.2 Usp22 ablation is associated with inflammation and invasive carcinomas 

Based on these H&E sections we decided to analyze the morphology of the small intestine in 

more detail. For this purpose we selected healthy SI segments without the presence of MALTs, 

tumors, etc. (Figure 22A). First, we counted the number of crypts per 100 µm. In all mice 1-2 

crypts per 100 µm were detected, however, crypts of Usp22-/- mice were slightly narrower 

(Figure 22B). The number of cells per crypt (approximately 20 to 25) did not differ significantly 

among genotypes (Figure 22C). Similar to the number of crypts, the amount of villi present per 

100 µm was comparable but slightly decreased in Usp22-/- animals (Figure 22D). In contrast, 

the villi length, representative for the approximate number of cells per villus, did not vary 

significantly (Figure 22E).  
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Figure 22: Conditional intestinal loss of Usp22 does not affect small intestine 
morphology. (A) To evaluate small intestine morphology more in detail, H&E-stained sections 
were assessed. Scale bar: 100 µm. (B) There was no difference among genotypes when 
comparing the number of crypts per 100 µm and (C) cells per crypt. (D) The number of villi per 
100 µm as well as the (E) villi length was not changed. Mean ± SEM, Student's t-test, n-
numbers indicated in Table 17. 
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In addition, we observed the morphology of the colon in these mice (Figure 23A). It must be 

mentioned that the rate of intact colon segments was reduced in APC1638N/+ mice due to the 

high tumor frequency. However, at least 50 crypts from different organ regions were evaluated. 

On average two crypts were detected per 100 µm in all mice (Figure 23B). Moreover, the crypts 

were characterized by a depth of approximately 150 to 200 µm (Figure 23C). Taken together, 

the morphology and integrity of the small intestine as well as the colon was only marginally 

affected by the loss of Usp22. 

 

Figure 23: The morphology of healthy colon segments is not affected by reduced Usp22 
expression. (A) Colon morphology was evaluated on H&E-stained sections in intact organ 
regions. Scale bar: 100 µm. (B) In intact colon segments the number of crypts per 100 µm and 
(C) crypt length did not differ among genotypes. Mean ± SEM, Student's t-test, n-numbers 
indicated in Table 17. 
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Besides determining the tumor number/location and the morphology of healthy intestinal 

structures, tumors were also evaluated based on their aggressiveness. Generally, during 

progression tumors can accumulate mutations influencing their growth characteristics (Fearon 

and Vogelstein, 1990). Once a tumor spreads beyond the inner muscular lining of the colon, 

the muscularis mucosae, it becomes invasive. We assessed H&E-stained colon sections for 

this phenomenon and could indeed detect several occurrences (Figure 24A).  

 

Figure 24: Invasive carcinomas are exclusively present in Usp22-/- mice. (A) H&E-stained 
colon sections were assessed for the presence of invasive carcinomas which migrate though 
the muscularis mucosae as shown for Usp22-/- mice. (B) Invasive carcinomas were only found 
in Usp22-/- animals, in both APC+/+ and APC1638N/+ background. (C) Compared to the total tumor 
number in the colon the average abundance of invasive carcinomas was approximately 20% 
higher in Usp22-/- mice. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 
 

Interestingly, invasive tumors were exclusively found in Usp22-/- animals (Figure 24B), 

independent of the APC status. In total, the number of invasive tumors was higher in the APC 
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mutated mice, however, when taking the total tumor number into account, the percentage of 

invasive tumors was similar in Usp22-/- animals with APC+/+ and APC1638N/+ status (Figure 24C). 

This finding clearly demonstrates that not only the tumor number is elevated after Usp22 loss 

but also their tumor aggressiveness is higher leading to a higher probability of metastasis. 

 

While analyzing H&E-stained colon sections we detected mucus accumulations in several 

animals. Generally, these mucus cysts were present below the lamina muscularis mucosae as 

encapsulated structures within the muscle layer (Figure 25A). Even extremely large cysts were 

always surrounded by muscle tissue (black arrowhead). Interestingly, besides these mucus 

cysts, in Usp22-/- mice carcinomas with a mucinous appearance were detected sporadically. In 

these lesions not only encapsulated cysts (yellow arrowhead) as shown in the first two images 

were present but also mucus accumulations surrounded by epithelial cells (red arrowhead). 

Notably, these mucus accumulations and tumors with a mucinous appearance were 

predominantly detected in Usp22 knockout animals (Figure 25B). Moreover, we noticed that 

Usp22-/- animals were characterized by a high frequency of MALTs (Figure 25C). As a crucial 

component of the mucosal immunity, mucosa-associated lymphoid tissues are routinely found 

in the intestine; however, their high abundance could result from an increased anti-

inflammatory response due to colitis. Colon sections were evaluated and an increased MALT 

frequency was detected in Usp22-/- mice while it could only be found sporadically in Usp22 wild 

type and heterozygous animals. This finding was independent from the APC status. These 

results reveal increased lymphocyte accumulation rates after the loss of Usp22 and 

interestingly, also a mucinous phenotype. 
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Figure 25: Mucinous presentation and elevated frequency of MALTs in Usp22-/- colons. 
(A) Mucus cysts of different sizes were found in several animals and were frequently 
surrounded by muscle tissue (black arrow). In Usp22-/- colons carcinomas with a mucinous 
appearance were present which contain cysts surrounded by muscle tissue (yellow arrow) or 
by epithelial cells (red arrow). Scale bar: 200 µm. (B) These mucus cysts were predominantly 
found in Usp22-/- mice. (C) To assess the presence of immune defense-associated lymphoid 
aggregates, MALTs have been counted in H&E-stained colon sections. An elevated 
abundance of MALTs was detected after the loss of Usp22. Mean ± SEM, Student's t-test, n-
numbers indicated in Table 17. 
 

Based on these findings, the inflammatory response upon DSS treatment was investigated in 

more detail. A well-accepted method to evaluate the inflammation based on H&E staining is 

the determination of the Histo-score (H-score). The scoring system is based on the intactness 

of the colonic epithelium and lymphocyte infiltration. It ranges from 0 to 3 (Figure 26A) 

considering normal epithelium (score 0), mild inflammation in which lymphocyte infiltration 

pushed crypts apart (1), lymphocytes accumulations interfering with crypt structure (2) and 

crypt integrity which is destroyed by lymphocytes and where the epithelial lining (black  
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Figure 26: High occurrence of inflammation-associated epithelial damage in Usp22-/- 
animals. (A) Inflammation-associated alterations of the epithelium were assessed on H&E-
stained colon sections. Analyses were based on the H-score ranging from 0 to 3 reflecting 
increasing degrees of epithelial damage. During severe inflammation the epithelial lining (black 
arrowhead) is destroyed. Scale bar: 100 µm. (B) The loss of Usp22 was associated with 
severely inflamed intestinal epithelium. Scale bar: 200 µm. (C) Usp22-/- animals were 
characterized by higher H-scores (D) caused by many segments with mild (1), medium (2) or 
severe (3) damage. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 



Results 

104 

 

arrowhead) on top is absent (3). We calculated the H-score and found inflammation in the 

majority of mice due to the DSS treatment. In both groups, APC+/+ and APC1638N/+, there were 

only marginal differences between Usp22 wild type and heterozygous animals. Notably, in both 

these groups, Usp22-/- mice were characterized by a high proportion of epithelium showing 

medium to severe signs of inflammation (Figure 26B). Accordingly, we detected significantly 

elevated H-scores (Figure 26C) due to an increased rate of severely damaged tissue (Figure 

26D). In summary, even several weeks after ending the DSS treatment colons of Usp22 

knockout mice were partially inflamed in contrast to the Usp22 wildtype and heterozygous 

animals which showed overall less inflammation.  

 

Finally, we aimed to evaluate H2Bub1 levels in healthy colon epithelium and tumors. For this 

purpose, Tam-DSS colon sections were stained for H2Bub1 by immunohistochemistry. As 

expected, the finding was similar to our observations made in Usp22lacZ small intestine 

sections. We did not see any differences in H2Bub1 levels in normal colon crypts (Figure 27A). 

In contrast, H2Bub1 levels in colorectal tumors were highly heterogeneous. While cells were 

positively stained in some tumor regions, especially poorly differentiated areas were 

characterized by the absence of H2Bub1 (Figure 27B). Thus, our previous findings obtained 

from this cohort seem to be independent of H2Bub1 levels. 

To sum up, in the first cohort of experimental mice (Tam-DSS) we assessed the effect of Usp22 

on colitis and subsequent formation of intestinal tumors. Interestingly, shortly after finishing the 

DSS treatment, APC1638N/+, Usp22-/- animals died. To our surprise, wild type Usp22 expression 

attenuated tumor growth while tumor burden and the presence of invasive tumors were 

exacerbated by Usp22 knockout. Notably, in Usp22-/- mice severe inflammation was detected 

even several weeks after DSS treatment and the colon as well as some tumors were 

characterized by a mucinous phenotype. 
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Figure 27: H2Bub1 levels are independent of the Usp22 status but show intratumoral 
variations. (A) Immunohistochemistry was performed for H2Bub1 on healthy colon segments 
and the number of positive cells, their localization and staining intensity was independent of 
the Usp22 status. Scale bar: 100 µm. (B) The intratumoral H2Bub1 distribution was highly 
diverse. While in the healthy epithelium H2Bub1 was detected, its levels decreased in poorly 
differentiated tumor regions. Representative photo of an APC1638N/+; Usp22-/- colon tumor. Scale 
bar: 200 µm. 
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3.2.2 Inflammation-induced CRC: Colitis prior to intestinal Usp22 deletion (DSS-Tam) 

3.2.2.1 Inducing colitis prior to Usp22 loss reduces tumor and inflammation burden 

In the first mouse cohort (Tam-DSS) we induced the Usp22 knockout prior to DSS treatment 

to observe how inflammation and subsequent tumor formation were affected by the absence 

of Usp22. In a second cohort for inflammation-associated CRC (treatment group 2: DSS-Tam), 

colitis was induced at an age of 10 weeks followed by an Usp22 knockout after a short recovery 

period. In this group we avoided the possibility that mice react differently to DSS treatment due 

to their genetic background which in turn could have affected tumorigenesis. Health-related 

parameters were recorded weekly at the onset of DSS administration until three weeks after 

Tamoxifen injection. Surprisingly, body weight was only marginally affected by induction of 

colitis (Figure 28A) while mild intestinal bleedings were observed in all animals (Figure 28B). 

Diarrhea was rarely observed (data not shown) and the disease activity index was comparable 

among all genotypes (Figure 28C). Similar to our previous findings, APC1638N/+, Usp22-/- mice 

were characterized by decreased survival rates (Figure 28D). However, compared to 

APC1638N/+ mice with Usp22 wild type or heterozygous status, this finding was not statistically 

significant. After sacrificing the experimental animals, we could not detect any differences in 

the colon length (Figure 28E). 
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Figure 28: Usp22 loss after DSS treatment does not affect the DAI but decreases survival 
rates. (A) Body weight and (B) bleeding intensity were recorded regularly and did not differ 
among genotypes. (C) The average DAI was similar for all animals. (D) Survival rates were 
decreased for Usp22-/- mice independent of the APC status. (E) Colon length was similar in all 
mice. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 
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Similar to our aforementioned approach in Tam-DSS mice, we counted and measured all 

intestinal cancer lesions. Consistent with our previous observations, we could detect elevated 

tumor burden in Usp22-/- animals (Figure 29A, B). While the effect was only minimal in the 

APC+/+ cohort, the tumor burden was obviously increased in APC1638N/+ mice with an Usp22 

loss. Furthermore, tumors found in APC1638N/+, Usp22-/- mice were bigger than the cancer 

lesions present in their littermates (Figure 29C, D). 

 

Figure 29: Elevated tumor frequency and size in DSS-Tam APC1638N/+, Usp22-/- mice. 
Tumors were counted in the (A) colon and (B) small intestine. There were only marginal effects 
among APC+/+ mice while the frequency of cancer lesions was increased in APC1638N/+, Usp22-

/- mice compared to the other APC1638N/+ animals. (C, D) The loss of Usp22 in an APC1638N/+ 
background resulted in the formation of intestinal tumors with enlarged sizes. Mean ± SEM, 
Student's t-test, n-numbers indicated in Table 17. 
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Finally, we compared the tumor location within the intestinal system. In the Tam-DSS mouse 

cohorts we could observe an accumulation of cancer lesions in the proximal and medial 

segment of the small intestine. In this cohort, even though the total tumor number was lower, 

a similar tendency was demonstrated (Figure 30). 

 

Figure 30: Tumors tend to accumulate in the proximal/medial SI segment of DSS-Tam 
animals. Relative tumor locations from five mice per genotype with representative tumor 
burden were visualized. There is a tendency that tumors accumulate in the proximal/medial 
region of the small intestine.  
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Furthermore, we assessed whether the inflammation burden of the DSS-Tam cohort is 

comparable to the Tam-DSS group. Colon sections were stained with H&E and a slight 

increase in lymphocyte infiltration was observed (Figure 31A). The corresponding H-scores 

were found to be increased in animals with an intestinal Usp22 deletion (Figure 31B) because 

of more damaged epithelial regions (Figure 31C).  

 

Figure 31: Usp22 ablation increases inflammation in DSS-Tam mice. (A) H&E-stained 

colon sections obtained from DSS-Tam mice were assessed for signs of inflammation. Usp22 

knockout mice showed increased epithelial damage and lymphocyte infiltration. Scale bar: 100 

µm. (B) Usp22-/- animals were characterized by increased H-scores because of (C) more 

severe inflammation. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 



Results 

111 

 

Summing up, induction of colitis with DSS prior to Usp22 deletion led to a similar phenotype 

regarding survival, tumor number and location as in Tam-DSS mice. However, tumor and 

inflammation burden were less severe in DSS-Tam animals compared to Tam-DSS mice. 

These findings suggest that Usp22 loss prior to DSS treatment exacerbates symptoms of colitis 

and resulting tumor burden. 
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3.2.3 Intestinal Usp22 deletion in a model of sporadic CRC (Tam) 

3.2.3.1 Intestinal Usp22 deficiency promotes sporadic colorectal tumorigenesis 

Since we could observe extreme consequences in our murine models for inflammation-induced 

colorectal cancer, we aimed to observe the effects of Usp22 on sporadic CRC formation 

(treatment group 3: Tam). Animals were injected with Tamoxifen at an age of 4 weeks and no 

DSS was administered. Parameters to determine the disease activity index were recorded 

weekly. The maximum weight loss was determined from the time point of Tamoxifen injection 

till sacrificing the animals and was similar in all mice. Generally, the body weight fluctuated 

minimally (Figure 32A). Sporadic presence of occult blood was detected in all animals and did 

not differ among genotypes (Figure 32B). Consistently, the disease activity index was 

comparable among all groups (Figure 32C). In APC1638N/+, Usp22-/- only a slight increase in 

intestinal bleeding intensity and DAI was observed. Approximately 14-33 weeks after 

Tamoxifen injection APC1638N/+, Usp22-/- mice died. APC1638N/+ mice with Usp22 wild type (aged 

22-64 weeks) or heterozygous state (27-71 weeks) survived significantly longer (Figure 30D). 

In contrast, compared to the truncated APC protein, APC wild type status clearly prolonged 

overall survival. In the APC+/+ animals we observed that mice with depleted Usp22 had the 

shortest life expectancy. This observation seemed to be independent from the induction of 

colitis, though DSS treatment resulted in earlier lethality (Figures 18D and 28D). Similar to the 

DSS-treated cohort APC1638N/+, Usp22-/- mice were characterized by decreased colon lengths 

(Figure 32E). 
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Figure 32: Usp22 loss alone results in decreased survival. (A) Weight loss, (B) bleeding 
intensity or (C) average DAI were barely influenced by Usp22 loss alone. (D) Upon Tamoxifen 
injection accelerated lethality was observed in Usp22-/- mice. (E) Colon length appeared to be 
decreased in APC1638N/+, Usp22-/- animals. Mean ± SEM, Student's t-test, n-numbers indicated 
in Table 17. 
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After sacrificing the mice, we followed the same procedure as described before. Again no 

metastases were detected and APC1638N/+ mice were characterized by increased spleen sizes 

(data not shown). As expected, the absence of colitis resulted in decreased tumor burden while 

the truncated APC protein in APC1638N/+ animals correlated with promoted intestinal 

tumorigenesis (Figure 33A, B). On average APC+/+ animals had 0-1 tumors in the colon and 5-

8 in the SI, while 1-5 tumors were found in the colon and 15-85 in the SI of APC1638N/+ mice. 

The majority of APC+/+ animals with Usp22 wild type or heterozygous status was characterized 

by the absence of tumors in the colon while Usp22-/- animals possessed 0-2 cancer lesions. In 

the small intestine of APC wild types the loss of Usp22 did not show any effects regarding the 

tumor number. In APC1638N/+ background Usp22-/- animals were characterized by significantly 

more oncogenic growth in the colon and SI than Usp22+/+ mice. Remarkably, in APC1638N/+, 

Usp22-/- mice the tumor frequency in the small intestine was surprisingly high and comparable 

to the DSS-treated cohort. In the SIs of these animals 40-112 tumors were detected. Similar to 

the DSS-treated groups, the rate of tumors with a surface area higher than 2 mm2 was 

significantly increased in APC1638N/+, Usp22-/- animals (Figure 33C, D). Altogether these results 

demonstrate that the loss of Usp22 significantly increases sporadic CRC formation even 

without preceding colitis. 
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Figure 33: Usp22 loss leads to increased sporadic intestinal tumor formation. Reduced 
Usp22 expression, especially when combined with an APC mutation, results in increased tumor 
growth in (A) colon and (B) small intestine. (C, D) Partial or complete Usp22 ablation in 
APC1638N/+ background results in the growth of bigger tumor lesions compared to Usp22 wild 
type animals. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 

 

Tumor location was documented and similar to the DSS-treated animals there was an 

accumulation of tumors in the proximal region of the small intestine in APC1638N/+, Usp22-/- mice. 

However, while tumors were mainly detected in the proximal section in the DSS-cohort, tumor 

growth was extended to the medial segment in case of the Tam cohort (Figure 34). In Usp22 

heterozygous mice, the tumor distribution was comparable to Usp22-/- littermates. 
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Figure 34: Sporadic CRC lesions accumulate in the proximal and medial SI region in 
APC1638N/+, Usp22-/- mice. Relative tumor sites from five mice per genotype with representable 
tumor burden were depicted. Tumors were clustered in the proximal and medial segments of 
the small intestine of APC1638N/+, Usp22+/- and Usp22-/- animals. 
 

Finally, we assessed on H&E-stained colon section whether Usp22 ablation alone resulted in 

inflammation. Indeed, we observed several areas displaying lymphocyte infiltration and 

damaged epithelial sections in Usp22-/- mice (Figure 35A). Accordingly, the H-score was 

elevated in these animals (Figure 35B) due to a higher percentage of inflammation-associated 

epithelial damage (Figure 35C). 
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Figure 35: Usp22 loss causes mild spontaneous inflammation. (A) Intestinal Usp22 
knockout without additional DSS treatment results in mild intestinal inflammation as revealed 
by H&E staining on colon sections. Scale bar: 100 µm. (B) H-scores of Usp22-/- animals were 
slightly increased due to (C) more epithelial regions affected by inflammation-associated 
damage. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 
 

Altogether, we could demonstrate that in APC1638N/+, Usp22-/- mice, the survival is significantly 

decreased and tumor burden increased in a sporadic model for CRC. Moreover, Usp22 loss 

alone was sufficient to induce mild spontaneous inflammation.  
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3.2.4 Intestinal Usp22 deletion prior to colitis results in the worse prognosis 

After these insightful in vivo approaches, the effect of Usp22 loss in the three different treatment 

set-ups was to be determined in order to investigate the different aspects of the role of Usp22 

in tumorigenesis. First, we investigated how a loss of Usp22 affects colitis and intestinal 

tumorigenesis (Tam-DSS). In the second cohort we avoided the possibility that mice with 

different genotypes exert differential inflammatory responses to DSS treatment, which may 

affect the tumor formation rate (DSS-Tam). In addition the effects of Usp22 loss alone were 

tested (Tam) in a model for sporadic CRC. Survival rates of Usp22 wild type, heterozygous 

and knockout animals were analyzed separately to emphasize the consequences of treatment 

options and APC status. 

In mice with USP22 and APC wild type status, the survival remained mainly unaffected 

independent of the treatment (Figure 36A). In contrast, the truncated APC1638N/+ protein resulted 

in early lethality in all mice. While life expectancies between the Tam and DSS-Tam cohorts 

did not differ from each other, Tamoxifen injections prior to colitis (Tam-DSS) resulted in 

significantly shorter survival in APC1638N/+, Usp22+/+ mice compared to the other APC1638N 

animals. 

In Usp22 heterozygous animals, outcomes were similar, i.e. decreased life span due to APC 

mutation (Figure 36B). However, there was no significant difference when comparing treatment 

options in APC1638N mice.  

In general, Usp22 knockout mice showed increased lethality compared to the other genotypes, 

irrespective of the treatment (Figure 36C). Interestingly, in APC1638N mice, there was hardly any 

difference between the Tam and DSS-Tam groups. However, compared to these two cohorts, 

the survival was significantly decreased in Tam-DSS mice.  

In summary, in Usp22 wild type, heterozygous and knockout animals with an APC1638N 

background the Tam-DSS treatment resulted in the shortest life expectancy. The other two 

treatment types (Tam and DSS-Tam) led to outcomes similar to each other. 
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Figure 36: Survival curve analysis among treatment groups. Life expectancy of Usp22+/+, 
Usp22+/- and Usp22-/- animals was compared among the different treatment cohorts. (A) In all 
three groups (Tam-DSS, DSS-Tam, Tam) survival of Usp22 and APC wild type was hardly 
impaired. In Usp22+/+, APC1638N/+ mice the Tam-DSS group was characterized by the shortest 
life span. (B) In Usp22+/- animals the results were similar to the outcome of Usp22 wild type 
mice and no significant difference was detected among treatment groups. (C) In APC1638N/+, 
Usp22-/- mice with Tam-DSS treatment the survival was significantly shorter than in the other 
cohorts.  
 

In addition to the survival analyses the tumor numbers among the three treatment groups were 

compared.  As expected, due to the induction of colitis the oncogenic growth in the colon was 
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elevated in the two DSS-treated cohorts compared to the Tam group (Figure 37A, B). Notably, 

the Tam-DSS group possessed most tumors and their burden was on average 2 to 3-fold 

higher than in DSS-Tam mice. In contrast, oncogenic growth in colons of Tam animals was 

lowest; however, tumor numbers did not differ significantly from the DSS-Tam cohort (Figure 

37C, D). Surprisingly, when observing tumor growth in the small intestine, we observed that 

the majority of Tam animals possessed even more tumors than the Tam-DSS animals. In this 

comparison several key observations were made. Firstly, when deleting Usp22 prior to inducing 

colitis (Tam-DSS), the tumor burden was significantly higher than when performing the 

knockout after DSS treatment (DSS-Tam). Second, in the Tam group the loss of Usp22 alone 

was sufficient to result in tumor formation, especially in the background of an APC mutation. 

Finally, as expected (Adams and Bornemann, 2013), DSS treatment promoted tumor formation 

exclusively in the colon while the small intestine was not or only marginally affected by colitis. 

Together, our in vivo experiments to investigate the role of Usp22 loss in intestinal 

tumorigenesis revealed that surprisingly, Usp22 loss decreased survival and increased tumor 

number. Moreover, oncogenic burden was highest in the Tam-DSS cohort suggesting the 

interplay of Usp22 ablation and inflammatory processes within the intestine. 
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Figure 37: Comparison of tumor burden among treatment groups. Tumor numbers in 
colon and small intestine were compared in Usp22+/+, Usp22+/- and Usp22-/- among the different 
treatment cohorts. (A, B) In the colon the Tam-DSS group was, irrespective of the genotype, 
characterized by a significantly higher tumor burden than the other two cohorts. Differences 
between Tam and DSS-Tam groups were only marginal in the colon. (C, D) In the small 
intestine, Tam mice possessed most tumors; only APC+/+, Usp22-/- mice were affected more 
severely by Tam-DSS. Mean ± SEM, Student's t-test, n-numbers indicated in Table 17. 
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3.3 Intestinal Usp22 loss elevates acute colitis burden resulting in bone fragility 

In our previous DSS experiments we could observe severe inflammatory reactions in Usp22-/- 

animals even several weeks after the end of the treatment. Moreover, our results indicated a 

potential interplay between ablated Usp22 levels, increased inflammation and therefore 

elevated intestinal tumorigenesis. Since there were still inflammatory reactions long time after 

terminating DSS treatment, we assumed that these symptoms are even stronger when the 

colitis is highly acute. Thus, we aimed to observe the consequences of Usp22 during the acute 

phase of intestinal inflammation. For this purpose, we induced colitis in small mouse cohorts 

(Table 18) and sacrificed these animals two days after terminating the DSS treatment. To 

determine the disease activity index, stool consistency, Guaiac score and body weight were 

recorded daily. We could observe diarrhea and the presence of occult blood more frequently 

after the loss of Usp22 than in wild type animals (Figure 38A, B). Moreover, these parameters 

were also worsened in APC mutant compared to APC+/+ mice. While the weight loss was not 

significantly changed among the groups (data not shown), clear differences were detected in 

the DAI (Figure 38C, D). The disease activity index increased in a similar rate in all groups, 

however, the burden was highest in APC1638N/+, Usp22-/- animals.  

 

Table 18: Sizes of the experimental mouse cohorts in which the effects of Usp22 ablation 
was observed during acute colitis. 
 

 APC+/+ APC1638N/+ 

 Usp22+/+ Usp22-/- Usp22+/+ Usp22-/- 

Acute colitis 6 4 3 3 
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Figure 38: Acute colitis is correlated with increased DAI in Usp22-/- mice. During DSS 
administration (A) stool consistency and (B) bleeding intensity were recorded to determine the 
disease activity index. Stool was softer and bloodier in Usp22-/- mice. (C) The daily calculated 
disease activity index rose similarly in all mice (D) but the average values of the entire time 
period was highest in APC1638N/+, Usp22-/- animals. Mean ± SEM, Student's t-test, n-numbers 
indicated in Table 18. 
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After sacrificing animals, blood was extracted and inner organs were isolated. A striking 

difference was observed while comparing APC wild type and mutant mice to each other. When 

extracting blood we noticed that it was paler in APC1638N/+ mice. Thus, we determined the ratio 

between hematocrit and serum. In APC wild types we could measure between 55-60% 

hematocrit in a total blood sample while the ratio was approximately 48% in APC1638N/+, 

Usp22+/+ and 38% in APC1638N/+, Usp22-/- mice (Figure 39A). Accordingly, kidneys (Figure 39B) 

and livers (Figure 39C) were extremely pale in these animals.  

 

Figure 39: The anemic effect of an APC mutation is slightly aggravated by Usp22 loss. 
The relative amount of hematocrit was lower in blood samples of APC1638N/+ mice, especially 
after Usp22 loss. (B) Livers and (C) kidneys were pale in APC mutated animals while (D, E) 
their spleen was enlarged and heavier. Mean ± SEM, Student's t-test, n-numbers indicated in 
Table 18. 
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In accordance with Qadri and colleagues (Qadri et al., 2012) spleens were enlarged in mice 

carrying a heterozygous mutation in the APC gene (Figure 39D, E). Interestingly, spleens of 

APC1638N/+ animals were, although not significant, even bigger after the loss of Usp22. 

As expected, the acute inflammatory reaction had an effect on the length of the intestinal 

organs. While the colon length was similar for the majority of animals, APC1638N/+, Usp22-/- mice 

were characterized by shorter colons (Figure 40A, B). In the small intestine only mild effects 

were observed. On average, SIs of APC1638N/+, Usp22-/- were slightly shorter; however, this 

difference was not significant (Figure 40C). 

 

Figure 40: Acute colitis results in decreased colon lengths in APC1638N/+, Usp22-/- animals. 
(A, B) Colons and (C) small intestines were measured after sacrificing animals. Colons were 
slightly shorter in APC1638N/+, Usp22-/- mice while the small intestines were largely unaffected. 
Mean ± SEM, Student's t-test, n-numbers indicated in Table 18. 
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Colons were stained with H&E to assess the overall organ morphology and the inflammation 

burden. As expected, acute colitis led to inflammation-associated epithelial damage in all 

animals (Figure 41A).  

 

Figure 41: Intestinal loss of Usp22 increases burden during acute colitis. (A) Two days 
after terminating the DSS administration, mice were dissected and colons were stained with 
H&E. While in all animals epithelial integrity was disturbed, in Usp22-/- mice more colon 
segments were characterized by a complete absence of crypt structures. Scale bar: 100 µm. 
(B) The average H-score was elevated upon the loss of Usp22 and accordingly (C) more colon 
segments were affected by severe inflammation-induced epithelial damage in these mice. 
Mean ± SEM, Student's t-test, n-numbers indicated in Table 18. 
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In Usp22+/+ mice several organ regions were detected in which the integrity of the epithelium 

was disturbed. However, in the majority of colon regions only mild signs of inflammation were 

observed. In contrast, Usp22-/- animals were characterized by severe epithelial damage and in 

large segments of the organ no crypt structures were detected at all. In the minority of tissue, 

normal crypts could be found. Accordingly, the average H-score (Figure 41B) and the 

percentage of severely damaged tissue was elevated upon the loss of Usp22 (Figure 41C). 

These findings were independent from the APC status of experimental animals. 

 

Figure 42: Acute colitis results in increased bone fragility in APC+/+, Usp22-/- mice. (A, B) 
To determine bone fragility, femora were placed into a Zwick device which applied pressure 
onto the bone leading to fracture. The loss of Usp22 did not show any effect in APC1638N/+ mice 
with regards to (C) yield load, (D) Fmax, (E) failure load and (F) stiffness. However, these 
parameters revealed that bones of APC+/+, Usp22-/- mice are significantly more fragile than 
femora of Usp22 wild types. Mean ± SEM, Student's t-test, n-numbers indicated in Table 18. 
 

Generally, it was observed in IBD patients that intestinal inflammation correlated with 

decreased bone mineral density and increased fracture risk (Ali et al., 2009; Bernstein et al., 

2000). To determine whether the loss of Usp22 and acute colitis have an impact on bones, we 

observed the bone fragility. Using a Zwick device (Figure 42A, B), the biomechanical properties 
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of femora were measured in cooperation with Dr. med. Dominik Saul (Department of Trauma, 

Orthopedics and Reconstructive Surgery, UMG). With these analyses the applied strength 

during bone deformation (Figure 42C; yield load) and bone fracture (Figure 42D; Fmax) was 

determined. Moreover, the maximum forces applied before breaking the femora (Figure 42E; 

failure load) and the bone stiffness (Figure 42F) were quantified. In APC1638N/+ mice, no 

significant difference was detected between Usp22+/+ and Usp22-/- animals. Interestingly, the 

bone stiffness was significantly decreased in APC+/+, Usp22-/- mice compared to their Usp22 

wild type littermates. Interestingly, inflammatory reactions were sufficient to show an effect on 

bone fragility in APC+/+ but not APC1638N/+ animals with a homozygous Usp22 deletion. In 

summary, these data reveal that effects of acute colitis are aggravated in Usp22-/- mice.  
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3.4 Heterogeneous USP22 expression levels in CRC patients and cell lines 

Previous studies on human material described that high USP22 expression correlates with 

increased oncogenic growth, distant metastasis and poor prognosis (Melo-Cardenas et al., 

2016). Unexpectedly, we showed that abolishing Usp22 expression in the context of 

inflammation-induced and sporadic colorectal cancer in vivo resulted in highly increased tumor 

numbers with an aggressive phenotype. In order to obtain insights into the mechanisms 

responsible for these phenomena, we performed several in vitro and in silico experimental 

approaches. We started our investigations with the analysis of publically available cancer 

databases. Using the IST Online® database possessing expression data from cancer patients 

we observed that a high fraction of CRC patients has low USP22 levels (Figure 43A). Moreover, 

there was no clear correlation between survival rates of patients with low or high USP22 

expression, respectively. This finding was surprising since it contradicted most published 

reports. However, these data reflected the situation for colorectal cancer in general, thus, more 

detailed records were obtained from the OncomineTM platform (TCGA Colorectal Statistics, 

reporter AB028986_1_4358). These data enabled us to identify USP22 mRNA levels in 

different types of cancer in cecum, colon or rectum as well as in normal control samples. 

Notably, mean expression values of all depicted cancer types were lower than in the control 

(Figure 43B).  

To investigate the molecular aspects underlying the effects of USP22 in tumorigenesis we 

planned to perform experiments in vitro. For this purpose protein lysates were isolated from 

several human colorectal cancer cell lines. Afterwards, global USP22 protein levels were 

determined in these rectal adenocarcinoma, colorectal adenocarcinoma and carcinoma cells 

by western blot. As expected, USP22 levels were as diverse as seen in CRC patient data 

obtained from the databases (Figure 43C). While USP22 was detected in all cell lines, only 

faint protein bands were detected in NCI-H508 and T84 cells. Protein amounts were highest in 

COLO320DM, RKO, SW48 and SW480 cells.  
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Figure 43: USP22 expression is heterogeneous in CRC patient samples. (A) USP22 
expression is not only upregulated as reported in literature but was found to be downregulated 
in approximately 50% of CRC patients (obtained from the IST Online® database). (B) 
OncomineTM data (TCGA Colorectal Statistics, reporter AB028986_1_4358) reveal reduced 
USP22 mRNA levels in cecal and several colon- and rectum-associated cancers. (C) USP22 
protein levels are highly diverse in the twelve tested colorectal cancer cell lines.  
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In summary, in CRC patients USP22 mRNA expression levels were not as “black and white” 

as described in the literature. In fact, a high fraction of colorectal cancer patients is 

characterized by low USP22 levels resembling our in vivo results well. This heterogeneity could 

also be confirmed on protein levels in diverse human CRC cell lines we tested by western blot. 

Since to our surprise USP22 expression was seen to be highly diverse in human CRC samples, 

we aimed to further analyze the incidence of patients with low USP22 levels. For this purpose 

patients with heterozygous deletions of the USP22 gene were identified using the cBioPortal 

for Cancer Genomics. Astonishingly, in some cancer types, the majority of patients are 

affected. In fact, approximately 45-50% of colorectal cancer patients have heterozygous 

USP22 deletions (Figure 44A). This finding underlines the relevance of elucidating the 

consequences of USP22 loss in colorectal cancer. Therefore, we decided to perform in vitro 

analyses with a siRNA-mediated loss of USP22. SW480 CRC cells were transfected with four 

individual siRNAs targeting USP22 (siUsp22) and with a smart pool (SP) containing a 

combination of these siRNAs. A non-targeting siRNA (siControl) was used as a control. All 

transfections resulted in a significant decrease of USP22 mRNA levels (Figure 44B). After 

verifying its efficiency on protein level (Figure 44C) we decided to use the smart pool (SP) for 

all subsequent in vitro experiments.  



Results 

132 

 

 

Figure 44: Heterozygous USP22 deletions occur frequently in CRC patients and can be 
simulated by siRNA treatment in vitro. (A) Data obtained from the cBioPortal for Cancer 
Genomics website reveal that a big percentage of cancer patients is characterized by a 
heterozygous deletion of USP22 (red: CRC data sets; HETLOSS function). (B) To simulate the 
loss of USP22 in vitro, different individual siRNAs targeting USP22 (siUsp22) and a smart pool 
(SP) were tested for their knockdown efficiency on mRNA level in SW480 cells. Expression 
values were normalized to a non-targeting control siRNA (siControl). Mean ± SD, Student's t-
test, n=3. (C) The smart pool results in a strong reduction of USP22 on protein level in SW480 
cells. 
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Since altered USP22 expression levels were described to affect tumorigenesis, we expected 

that USP22 would have an effect on the morphology or growth rate of human colorectal cancer 

cells. We knocked down USP22 in nine CRC cell lines and observed their morphology after 72 

hours. No striking differences were detected when comparing USP22 knockdown and control 

cells with regards to cell size, shape, number of nuclei etc. (Figure 45). 

 

Figure 45: Knockdown of USP22 marginally affects the morphology of human CRC cell 
lines. 72 hours after the siRNA-mediated loss of USP22, the morphology was assessed in nine 
cell lines. No or only marginal effects were observed. Scale bar: 1,000 µm. 
 

Next, we compared the proliferation rates of these cell lines upon siRNA-mediated USP22 

knockdown over a time period of one week using the Celigo® device. We could observe that 

the loss of USP22, depending on the cell line, can have varying effects on cell growth (Figure 

46). While no difference was detected in NCI-H508, SW480 and SW837 cells, proliferation 
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levels were reduced upon USP22 knockdown in the majority of cells, i.e. COLO201, 

COLO320DM, DLD1, RKO and SW48. Interestingly, cell growth was significantly increased in 

HCT116 cells.  

 

Figure 46: USP22 loss can have differential effects on proliferation of CRC cell lines. 
Two days after knockdown, the proliferation of nine CRC cell lines was measured every 24 h 
using a Celigo® device. The growth rates of some cell lines was not or only marginally affected 
by USP22 knockdown (NCI-H508, SW480, SW837), while in most cell lines a growth 
advantage was observed in siControl cells (COLO201, COLO320DM, DLD1, RKO, SW48). 
HCT116 siUsp22 cells showed increased proliferation.  Mean ± SD, Student's t-test, n=3. 
Proliferation effects could neither be correlated with cell line characteristics such as MSI, CIMP 

and CIN status nor with certain genetic mutations (Table 19). We decided to mainly use 

HCT116 cells for our future experiments since they resemble the in vivo situation best, i.e. 

increased growth of colorectal cancer cells upon USP22 loss. 
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Table 19: Growth characteristics upon USP22 loss do not correlate with MSI, CIN or 
CIMP status of CRC cell lines.  
 

 MSI CIN CIMP Usp22 protein levels 
Growth after USP22 

loss 

COLO201 MSS + + +++ Down 

COLO320DM MSS + - ++++ Down 

DLD1 MSI - + +++ Down 

HCT116 MSI - + ++ Up 

NCI-H508 MSS + - + Unaffected 

RKO MSI - + ++++ Down 

SW48 MSI - + +++ Down 

SW480 MSS + - +++ Unaffected 

SW837 MSS + + ++ Unaffected 

 

It was reported that USP22 and its homolog USP27X can have similar functions (Atanassov et 

al., 2016). To test their effect on CRC cell morphology and proliferation, both peptidases were 

knocked down. Moreover, when performing siRNA-mediated knockdowns, the specificity of the 

siRNA should be confirmed. In this case we aimed to verify whether the effects on proliferation 

are mediated by the loss of USP22 alone or whether the highly homologous USP27X was also 

targeted by the USP22-siRNA. For this purpose, two cell lines with opposing consequences of 

USP22 loss were selected, i.e. SW48 in which USP22 knockdown decreased cell growth and 

HCT116 where proliferation was increased. Cells were transfected with siRNAs targeting 

USP22 and USP27X for single and double knockdowns. The cell morphology was not affected 

by silencing USP22, USP27X or both genes simultaneously (Figure 47A). 
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Figure 47: USP22 and USP27X can have opposing effects on CRC cell proliferation. 
Effects of the loss of USP22, USP27X and both peptidases on morphology and proliferation 
were evaluated. (A) No morphological effect was observed upon siRNA-mediated knockdown. 
Scale bar: 500 µm. (B) While in SW48 cells the loss of USP22 and USP27X had similar 
consequences, in (C) HCT116 opposing effects of these two peptidases was observed by 
Celigo® measurement. After the dual knockdown in HCT116 cells, the anti-proliferative effect 
of USP27X loss was rescued by the additional depletion of USP22. Mean ± SD, Student's t-
test, n=3. 
 

Cell proliferation was assessed by Celigo® measurement and as expected, loss of USP22 

decreased proliferation levels in SW48 (Figure 47B) and increased them in HCT116 cells 

(Figure 47C). Notably, also the knockdown of USP27X had opposing effects in the two tested 

cell lines. SW48 cells grew slightly faster than after loss USP2. In contrast, USP27X reduction 

significantly decreased proliferation in HCT116 cells. Interestingly, in HCT116 cells the 

simultaneous knockdown of USP22 and USP27X could rescue the severe deceleration in 
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growth after siUSP27X treatment. Thus, the possibility that the growth rates after USP22 

knockdown were affected by USP27X-related off-target effects was ruled out. Moreover, 

despite their high homology, USP22 and USP27X can have opposing effects on the 

proliferation of CRC cells. 

For further characterizations we selected four cell lines which reacted differently to the loss of 

USP22 expression. In SW480 and SW837 cells we could not observe any effects upon the 

siRNA-mediated knockdown. In contrast, reduced USP22 levels resulted in a proliferation 

advantage in HCT116 and disadvantage in SW48 cells. The effects on growth behavior 

obtained by Celigo® measurement (Figure 46) were confirmed in a crystal violet-based 

proliferation assay (Figure 48A). We postulated that these proliferative effects were 

translatable to the migratory properties of the cells upon USP22 loss. Indeed, upon knocking 

down USP22, HCT116 cells were characterized by increased migration potential while the 

opposite was observed in SW48 cells (Figure 48B). Interestingly, USP22-depleted HCT116 

cells formed more colonies (Figure 48C) and grew better in an anchorage-independent manner 

(Figure 48D) compared to cells treated with the control siRNA as visualized by crystal violet 

staining. To translate these findings to the observations we made in our in vivo experiments in 

which the APC protein was mutated in some mouse cohorts, we aimed to observe the Wnt 

signaling pathway activity in CRC cells. In addition, increased Wnt activity is a common 

occurrence in human CRCs. For this purpose we have performed a luciferase assay. Briefly, 

reporter plasmids containing a luciferase reporter gene under the control of TCF/LEF response 

elements were introduced into cells. Once, the canonical Wnt signaling is active and luciferase 

substrates are added, fluorescent signal can be measured. A knockdown of β-catenin (siβ-

catenin) was used as a negative control. Characterization of HCT116 cells revealed slightly 

decreased Wnt signaling activity after the loss of USP22 (Figure 48E). In SW480 cells which 

were used as a control, the same outcome was obtained. In summary, HCT116 cells were 

characterized by increased proliferation and migration rates upon USP22 ablation. Moreover, 
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they were able to grow better in anchorage-independent manner. Using a luciferase assay, we 

demonstrated that these properties were not driven by increased Wnt pathway activity. 

 

Figure 48: USP22 is involved in regulation of migration potential, anchorage-
independent growth and Wnt signaling pathway activity. (A) As observed in the Celigo® 
measurements, USP22 depletion can have differential effects on proliferation as shown by this 
crystal violet-based proliferation assay 48 h after knockdown. (B) 24 h after siRNA transfection, 
cells were seeded into trans-well migration inserts. After 48 h cells were stained with crystal 
violet. USP22 loss resulted in increased migration potential in HCT116 cells while the opposite 
was observed in SW48 cells. Scale bar: 500 µm (C) Knockdown enhanced colony formation 
after 4-5 days (D) and cell growth in anchorage-independent manner after 2 weeks. (E) A 
luciferase reporter assay demonstrated decreased Wnt pathway activity in siUsp22 cells, in 
both HCT116 and SW480 cells. Mean ± SD, Student's t-test, n=3. 
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3.5 USP22 regulates proliferation and differentiation processes in CRC cells 

To determine the effect of USP22 loss on global gene expression and to potentially identify the 

mechanism underlying the previous results, we pursued our investigations with transcriptome‐

wide gene expression analyses using mRNA‐sequencing. For this purpose, we selected 

SW837 and SW480 cells and treated them with control- and USP22-siRNA. We decided to use 

SW480 and SW837 for this approach since their gross phenotype was not or only minimally 

affected by USP22 loss and therefore of secondary effects, e.g. due to dramatic changes in 

cell phenotype, were expected to be low. After RNA isolation and quality control using RNA gel 

electrophoresis, libraries were generated and sequencing reactions were performed at the 

TAL. 

Per cell line and condition (siControl and siUsp22) we have analyzed four replicates. The 

sample variance and data quality was assessed by hierarchical clustering and principal 

component analysis. There was a clustering of replicates verifying minimal deviations between 

these samples (Figure 49A). As expected, the difference between the two cell lines was 

immense. In addition, a variation between siControl and siUsp22 was detected as revealed by 

PCA plot (Figure 49B). However, the loss of USP22 seemed to have a higher impact on gene 

expression in SW837 than in SW480 cells. In addition, we compared the replicate variance in 

genes with high fold changes (log2fold change value ± 1, padj ≤0.05). As visualized in these 

heatmaps using the Morpheus tool, replicates show a high similarity (Figure 49C). 
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Figure 49: Quality control of SW480 and SW837 replicates used for mRNA-seq analysis. 
(A) Hierarchical clustering and (B) PCA plot indicate a high similarity between replicates (n=4). 
There is a significant difference between the two cell lines, SW480 and SW837. (C) Highly 
regulated genes (log2fold change value ± 1, padj ≤0.05) and their expression in all replicates 
are shown in SW837 and SW480 cells using the Morpheus tool. Variations among the 
replicates are marginal. The color code indicates the relative minimum (min) and maximum 
(max) expression value per gene. 
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Initially, we decided to examine genes which are differentially expressed in SW837, SW480 

cells and MEFs (see section 3.1). Since these cells are highly different from each other, we 

expected that we would find only few overlapping genes but that these would be of high 

significance since they were affected by USP22 loss in different biological systems. For this 

purpose, genes with a log2 fold change of at least 0.8 in all three cell types were selected. 

These genes were divided into down- (Figure 50A) and upregulated (Figure 50B) genes. 

Outcomes obtained from SW837 cells were shown in the left, from SW480 in the middle and 

from MEFs in the right column. Moreover, the heatmaps were subdivided into four segments 

in which genes strongly regulated in all three cell types (segment on the top), in SW837 (second 

segment), SW480 cells (third segment) and MEFs (bottom) were depicted. Each line 

represents one gene and expression changes can be compared among SW837, SW480 cells 

and MEFs by comparing the three columns. Genes which were not expressed in all cell types 

were excluded from the analyses. While SW837 and SW480 showed similar tendencies, the 

results obtained from MEFs were highly heterogeneous. Approximately half of the genes 

upregulated in the human cell lines were also upregulated in MEFs. In the downregulated 

genes, the overlap between human and murine samples was on average 60%. When focusing 

on genes differentially regulated in Usp22lacZ/lacZ MEFs, there is only low accordance with the 

human cells. In addition, many genes which were differentially regulated in the human cell lines 

were not detected in MEFs and were therefore excluded from the analyses. Due to the low 

accordance between human and murine samples, we decided to no longer take the MEFs into 

account but instead focus on the human cell lines. 
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Figure 50: Moderate consistency of differentially expressed genes after USP22 depletion 
in SW480, SW837 cells and MEFs. mRNA-seq and microarray outcomes were compared by 
displaying differentially regulated genes (log2fold change value ± 0.8, padj ≤0.05) in SW837, 
SW480 and MEFs in a heatmap. Highly (A) down- or (B) upregulated genes of each cell type 
were indicated with the corresponding expression values of the other conditions. The four 
segments indicate genes strongly regulated in all three cell types (top segment), in SW837 
(second segment), SW480 cells (third segment) and MEFs (bottom). Due to low agreement 
with human CRC cells, MEFs were excluded from subsequent analyses.  
 

To obtain an overview on the genes differentially regulated upon USP22 knockdown in SW837 

and SW480 cells, new heat maps were generated. Similar to the previous heatmap, genes with 

a log2 fold change of at least 0.8 in both cell lines were depicted and divided into down- (Figure 

51A) and upregulated (Figure 51B) genes. Results obtained from SW837 cells were visualized 



Results 

143 

 

in the left column while outcomes from SW480 were shown in the right column. The three 

segments indicate genes differentially regulated in both cell lines (segment on the top), in 

SW837 (middle) and SW480 cells (bottom). Despite the heterogeneity expected when 

comparing two cell lines, several differentially regulated genes could be identified showing the 

same tendency in both, SW480 and SW837.  

 

Figure 51: Comparison of differentially expressed genes after USP22 depletion in SW837 
and SW480 cells. Significantly (A) down- or (B) upregulated genes (log2fold change value ± 
0.8, padj ≤0.05) revealed by mRNA-seq using SW837 and SW480 cells have been depicted in 
a heatmap. Highly affected genes per cell line are shown with the corresponding expression 
values (color key). The three segments indicate genes differentially regulated in both cell lines 
(first segment), in SW837 (second segment), SW480 cells (third segment). 
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By means of the Gene Ontology visualization tool REViGO (Supek et al., 2011), biological and 

cellular processes associated with USP22 loss in SW837 and SW480 cells were depicted. 

Previously, using Usp22lacZ/lacZ MEFs, we detected the enrichment of several proliferation and 

development-related pathways. Indeed, GO analysis of SW837 (Figure 52A, Table 20) and 

SW480 cells (Figure 52B, Table 21) revealed similar outcomes. Mainly, terms associated with 

development and proliferation, as well as cell communication were enriched in both cell types. 

In addition, GO terms revealed that USP22 is associated with the regulation of signaling 

processes and cell communication which could be associated with extracellular stimuli. 

Together, analysis of our mRNA-seq analysis revealed that there is only a low agreement 

between MEFs we have analyzed earlier and CRC cells. The expression of numerous genes 

was affected by USP22 depletion and besides an involvement in proliferation- and 

differentiation-related processes, GO analysis indicated a potential role of USP22 in the 

response to extracellular stimuli. 
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Figure 52: Gene Ontology terms enriched after USP22 loss in SW837 and SW480 cells. 
REViGO analysis revealed enriched cellular processes upon USP22 knockdown in (A) SW837 
and (B) SW480 cells. In both cell lines mainly GO terms associated with development, 
proliferation and cell communication were affected.  
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Table 20: GO terms enriched in siUsp22 SW837 cells as revealed by GOTermFinder. 

Term ID Gene Ontology term 
Cluster 
frequency 

Corrected 
p-value 

FDR 

GO:0032502 Developmental process 24.3% 0.00336 0 

GO:0048583 Regulation of response to stimulus 18.1% 0.00432 0 

GO:0010646 Regulation of cell communication 16.0% 0.00098 0 

GO:0023051 Regulation of signaling 16.0% 0.00174 0 

GO:0009893 Positive regulation of metabolic process 14.9% 0.00121 0 

GO:0009966 Regulation of signal transduction 14.2% 0.0054 0 

GO:0032879 Regulation of localization 12.8% 0.00736 0 

GO:0042127 Regulation of cell proliferation 9.7% 0.00243 0 

GO:0072359 Circulatory system development 8.0% 0.00025 0 

GO:0009725 Response to hormone 7.3% 0.00104 0 

GO:0051270 
Regulation of cellular component 
movement 

6.6% 0.00219 0 

GO:0072358 Cardiovascular system development 6.2% 0.00055 0 

GO:0001568 Blood vessel development 5.9% 0.00142 0 

GO:0001944 Vasculature development 5.9% 0.00223 0 

GO:0045765 Regulation of angiogenesis 3.5% 0.00731 0 
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Table 21: GO terms enriched in siUsp22 SW480 cells as revealed by GOTermFinder. 

Term ID Gene Ontology term 
Cluster 
frequency 

Corrected 
p-value 

FDR 

GO:0019222 Regulation of metabolic process 35.4% 0.00121 0 

GO:0016043 Cellular component organization 31.7% 0.00381 0 

GO:0032502 Developmental process 30.5% 0.0000551 0 

GO:0030154 Cell differentiation 20.7% 0.0009 0 

GO:0048513 Animal organ development 20.1% 0.0000467 0 

GO:0009653 Anatomical structure morphogenesis 19.5% 0.00000422 0 

GO:0010646 Regulation of cell communication 19.5% 0.00046 0 

GO:0023051 Regulation of signaling 19.5% 0.00073 0 

GO:0009888 Tissue development 18.9% 3.04E-10 0 

GO:0010647 Positive regulation of cell communication 12.2% 0.0014 0 

GO:0048729 Tissue morphogenesis 8.5% 0.0000702 0 

GO:0001568 Blood vessel development 7.9% 0.00083 0 

GO:0072358 Cardiovascular system development 7.9% 0.00135 0 

GO:0030198 Extracellular matrix organization 6.7% 0.0000584 0 

GO:0045861 Negative regulation of proteolysis 6.1% 0.00212 0 
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3.6 USP22 regulates the stability of heat shock proteins 

GO analysis revealed that USP22-regulated genes are involved in the response to stimuli. As 

reviewed by Shim and Karin, mRNA expression can be affected by stimuli such as 

developmental, nutritional and pharmacological alterations, however, also by environmental 

factors such as temperature changes (Shim and Karin, 2002). Interestingly, mRNA-seq data 

indicated that levels of heat shock proteins were decreased by reduced USP22 expression in 

both, SW837 and SW480 cells. Generally, there are two HSP90 isoforms present in the 

cytoplasm: the stress-inducible HSP90α and the constitutively expressed HSP90β (Mimnaugh 

et al., 1996; Whitesell and Lindquist, 2005). Notably, our mRNA-seq results only indicated 

altered expression of constitutively active family members. 

To verify this outcome we performed siRNA-mediated knockdown of USP22 in SW837, 

SW480, HCT116 and SW48 cells and determined Heat Shock Protein 90 Alpha Family Class 

B Member 1 (HSP90AB1) mRNA levels. Indeed, we confirmed in all four cell lines that 

HSP90AB1 expression levels were decreased by approximately 50% in siUsp22 cells (Figure 

53A). This phenomenon was observed on protein level as well as shown for HCT116 cells 

(Figure 53B). Since heat shock proteins play a crucial role in the cells’ adaptation to 

environmental changes, we speculated that reduced HSP90AB1 levels can sensitize siUsp22 

cells to high temperatures. For this purpose, we subjected HCT116 cells to heat shocks 48 h 

after USP22 knockdown. As incubation at 42°C only yielded minimal differences (data not 

shown), cells were incubated at 50°C for 1h. As expected, siUsp22 HCT116 control cells grown 

at 37°C grew faster than the wild types (Figure 53C). Comparing this growth rate to the cell 

number after incubation at 50°C, the cell number was reduced by 17% in siControl and by 24% 

in siUsp22 cells. In summary, we could not only detect a decrease of HSP90AB1 on mRNA 

and protein level in siUsp22 cells, but also observed high temperature sensitivity in these cells. 
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Figure 53: The expression of the heat shock protein HSP90AB1 is reduced following 
USP22 depletion leading to increased cell sensitivity. (A) A reduction of HSP90AB1 mRNA 
levels was detected by qRT-PCR upon USP22 knockdown in four cell lines (SW837, SW480, 
HCT116, SW48). Mean ± SD, Student's t-test, n=3. (B) In HCT116 cells this decrease was 
confirmed on protein level. (C) 48 h after siRNA transfection, HCT116 USP22 wild type and 
knockdown cells were incubated either at 37°C or 50°C for 1 h. Compared to the normal growth 
rates at 37°C, incubation at 50°C decreased cell numbers in siControl cells by 17% and in 
siUsp22 cells by 24%. Mean ± SD, Student's t-test, n=4. 
 

To obtain insights into the mechanisms responsible for USP22-mediated regulation of HSP90 

levels, we decided to investigate the functional interaction between USP22 and HSP90AB1 by 

Co-IP. For this purpose, we conjugated protein G sepharose (PGS) beads with antibodies 

targeting either USP22 or HSP90. These beads have been incubated with HCT116 protein 

lysate to precipitate potential USP22-HSP90AB1 protein complexes. As expected, in the 

control conditions (PGS and IgG) neither USP22 nor HSP90AB1 were present while all IgG-
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bands were visible, confirming absence of unspecific USP22- and HSP90-binding to the beads 

or IgG. By using antibodies directed against either USP22 or HSP90, we were able to 

precipitate USP22-HSP90AB1 complexes (Figure 54A) implying direct interaction of these two 

proteins. Furthermore, we investigated whether the ability of USP22 to deubiquitinate proteins 

is associated with the regulation of HSP90 levels. We aimed to determine whether the 

reduction of HSP90AB1 is due to ubiquitination and whether this loss can be prevented by 

inhibiting the proteasome. Moreover, we tested whether this phenomenon is USP22-

dependent. For this purpose, we have added the proteasome inhibitor MG-132 to siControl and 

siUsp22 cells. As expected, loss of USP22 resulted in decreased HSP90AB1 levels (Figure 

54B). However, when the proteasome inhibitor was added, HSP90AB1 amounts remained 

nearly unchanged. This outcome suggested that the reduced HSP90AB1 levels were caused 

by proteasomal degradation due to ubiquitination. 

 

Figure 54: HSP90AB1 interacts with USP22 and is targeted by proteasomal degradation 

in the absence of USP22. (A) Co-IP was performed to investigate the direct interaction 

between USP22 and HSP90AB1. USP22-HSP90AB1 complexes were precipitated with both, 

anti-USP22- and anti-HSP90AB1-conjugated beads. (B) Under normal conditions HSP90 

levels decreased in siUsp22 cells. When the proteasome is inhibited by MG-132 this 

degradation was prevented. 
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3.7 Induction of synthetic lethality in USP22-deficient CRC cells 

Based on these findings we assumed that the residual HSP90 levels are essential for the 

survival and stress-resistance of siUsp22 cells. We therefore hypothesized that diminishing 

HSP90 completely would result in decreased cell survival. Moreover, since targeting USP22 

directly could have tumor-promoting outcomes, our proposed strategy would reflect an 

attractive targeting approach based on the concept of synthetic lethality. Thus, HCT116 cells 

were treated with the HSP90 inhibitor Ganetespib under wild type and USP22 knockdown 

conditions 48 h after siRNA transfection. To determine the general sensitivity towards this 

inhibitor, cells were treated with increasing Ganetespib concentrations for 48 h.  

 

Figure 55: USP22-depleted cells are more sensitive to the HSP90 inhibitor Ganetespib. 

48 h after siRNA transfection, siControl and siUsp22 HCT116 cells were treated with increasing 

concentrations of the HSP90 inhibitor Ganetespib for 48 h. Surviving cells were visualized by 

crystal violet staining. USP22-depleted cells showed increased sensitivity towards this drug. 
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Subsequently, surviving cells were stained with crystal violet. Indeed, we observed that USP22-

depleted cells were more sensitive towards this inhibitor (Figure 55). While only few siUsp22 

cells could withstand treatment with 333 nM Ganetespib, siControl cells could tolerate 10-fold 

higher concentrations. 

Consequently, we aimed to confirm our findings by testing for apoptosis markers on protein 

levels upon USP22 loss and/or HSP90 inhibition. USP22 wild type and -depleted cells were 

treated with 100 nM Ganetespib or DMSO for 48 h. Protein lysates were subjected to western 

blot analysis. In conformity with our hypothesis, in siUsp22 cells treated with Ganetespib 

increased levels of the apoptosis markers cleaved PARP and BIM were observed (Figure 56). 

In summary, these findings strongly support the potential of USP22-deficient cells to be 

targeted by HSP90 inhibitors based on the concept of synthetic lethality. 

 

Figure 56: Ganetespib treatment increases apoptosis levels in USP22-depleted cells. 48 

h after knockdown, HCT116 cells (siControl and siUsp22) have been treated either with DMSO 

or 100 nM Ganetespib for 48 h. Protein lysates were evaluated by western blot in triplicates. 

USP22-depleted cells show an increased abundance of the apoptosis markers cleaved PARP 

(lower PARP band) and BIM upon treatment with the HSP90 inhibitor Ganetespib. 

 

We further assumed that HSP90 inhibition interferes with its function in facilitating P-TEFb 

complex formation which therefore cannot be recruited by BRD4 to phosphorylate the RNA Pol 
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II. To target another player in this process we treated cells with the BET inhibitor JQ1 which 

targets among others BRD4. Similar to the previous approach, 48 h after siRNA transfection, 

we treated siControl and siUsp22 HCT116 cells with increasing concentrations of the inhibitor 

for 48 h. Indeed, control cells could tolerate 250 nM JQ1 while most of the USP22-depleted 

cells could maximally survive a dose of 100 nM (Figure 57A).  

 

Figure 57: Loss of USP22 elevates sensitivity of CRC cells towards JQ1. 48 h after 
HCT116 cells were transfected with control or anti-USP22 siRNAs, cells were treated with 
increasing concentrations of JQ1 for 48 h. (A) A crystal violet-based assay revealed increased 
sensitivity towards JQ1 upon knockdown of USP22. (B) Using the Celigo® device the IC50 was 
determined in these cells. USP22-depleted cells were characterized by a lower IC50 (47 nM) 
than the controls (224 nM). 

To obtain further insights into the sensitivity of siUsp22 cells towards JQ1 treatment, we 

calculated the IC50 based on Celigo® proliferation measurements. This experiment revealed 



Results 

154 

 

that the IC50 of cells with USP22 wild type levels was 224 nM and of USP22-depleted cells only 

47 nM (Figure 57B). Taken together, CRC cells with low USP22 levels can be specifically 

targeted by treatment with Ganetespib or the BET inhibitor JQ1. 

 

In our aforementioned approaches, we tested the effects of transient USP22 loss in vitro in 

several human CRC cell lines by siRNA-mediated knockdown. However, this silencing is only 

transient and therefore only insufficiently reflects the in vivo situation of USP22 depletion. Thus, 

we decided to take advantage of the CRISPR/Cas9 gene editing technology to permanently 

delete the USP22 gene in HTC116 cells. The use of this construct allowed expression of a 

sgRNA sequence by the U6-promoter and at the same time expression of the Cas9 enzyme 

necessary for gene editing. For rapid selection of positively transfected cells, the plasmid 

contained a coding sequence for the Green Fluorescent Protein (GFP).We simultaneously 

transfected HCT116 cells with two constructs targeting intronic sequences flanking exon 3 to 

exon 5 of USP22, thereby allowing the excision of this segment. This generated a frameshift 

with as consequence deletion of functional USP22 gene (Figure 58).  
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Figure 58: CRISPR/Cas9 
approach to 
permanently deplete 
USP22 in HCT116 cells. 
HCT116 cells were 
transfected with two 
sgRNAs targeting USP22 
(sgRNA “C” and “G”) in a 
Cas9- and GFP-
containing vector. To allow 
selection, this construct 
contains a GFP-reporter. 
These sgRNAs target 
intronic regions upstream 
of exon 3 and downstream 
of exon 5 of the USP22 
gene and generate a 
frameshift.  

 

After 48 h, we evaluated the transfection efficiency by detecting GFP-mediated fluorescence 

emitted by positively transfected cells (Figure 59A). We selected GFP-positive cells by 

fluorescence activated cell sorting (FACS) with the help of Sabrina Becker (Cell-sorting 

technology platform, Department of Haematology and Medical Oncology, UMG). Remarkably, 

with 32% fluorescent and 3% highly fluorescent cells, the transfection efficiency of HTC116 

cells was relatively high (Figure 59B). We decided to culture only highly GFP-positive cells 

(channel P4) as single cells in 96-well plates.  
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Figure 59: Fluorescent cells indicate the presence of the GFP-containing CRISPR/Cas9 
constructs targeting USP22. (A) 48 hours after transfection GFP-positive cells were detected. 
Scale bar: 1,000 µm. (B) Highly fluorescent cells (gate P4) were sorted as single cells by FACS. 
 

After approximately four weeks of culturing and propagating single cells, several clones were 

tested for their USP22 levels. Two cell clones (#1, #2) did not show any residual USP22 protein 

(Figure 60A). As observed after siRNA-mediated knockdown, the loss of USP22 did not result 

in morphological alterations in HCT116 cells (Figure 60B). In addition, proliferation rates were 

assessed and again we could confirm previously obtained results in which reduced USP22 

expression leads to accelerated cell growth in HCT116 cells (Figure 60C). Finally, we 
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confirmed the sensitivity of USP22-depleted cells towards the HSP90 inhibitor Ganetespib 

(Figure 60D). Together, the effects of USP22 loss were reproduced in another cell system 

which represents a powerful tool to further investigate the consequences of a permanent 

USP22 depletion in human CRC cells. 

 

Figure 60: CRISPR/Cas9-mediated USP22 knockout leads to increased proliferation in 
HCT116 cells. (A) The loss of USP22 on protein level was confirmed in CRISPR/Cas9 clones 
#1 and #2. (B) As observed after siRNA-mediated knockdown the loss of USP22 does not 
affect the morphology of HCT116 cells. Scale bar: 100 µm. (C) Reduced USP22 expression 
results in increased proliferation compared to USP22 wild type levels (parental and 
CRISPR/Cas9 clone #3 cells). Mean ± SD, Student's t-test, n=3. (D) The sensitivity towards 
Ganetespib was confirmed in these USP22-depleted cells.  
 

Together, in this project we demonstrated higher inflammation and tumor burden in mice with 

an intestinal deletion of Usp22. These findings were supported by data available in public 

databases in which a heterogeneous expression of USP22 was revealed in CRC patients. 
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Accordingly, human CRC cell lines showed heterogeneous USP22 levels and reacted 

differently after USP22 knockdown with regards to proliferation and migration properties. 

mRNA-seq analyses indicated an involvement of USP22-regulated genes in proliferation- and 

differentiation-related processes as well as response to extracellular stimuli. Accordingly, we 

detected the downregulation of the heat shock protein HSP90AB1 upon USP22 depletion in 

vitro. Interestingly, these cells showed increased sensitivity towards temperature changes and 

could be targeted by HSP90 and BET inhibitors based in the concept of synthetic lethality. 

Moreover, CRISPR/Cas9 cells with a USP22 knockout were generated which displayed high 

sensitivity towards HSP90 inhibition as well. These findings suggest a tumor suppressive 

function of USP22 and that low USP22 levels in CRC cells could be exploited by targeting 

these cells with specific inhibitors. 
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4. DISCUSSION 

 

4.1 USP22 is involved in differentiation and developmental processes in vivo 

Colorectal cancer is a global issue due to its high incidence and mortality rates. Thus, 

researchers worldwide aim to unravel underlying molecular signatures of this disease in order 

to generate and uncover more effective therapies. Despite USP22 overexpression was 

described in a number of human malignancies, its exact functions under physiological and 

pathological conditions remain unclear. In the current project we sought to investigate how 

USP22 functions in organ maintenance and colorectal tumorigenesis. To date, several studies 

on USP22 have been performed in vitro; however, in vivo data are limited. Interestingly, it was 

described by Lin et al. that the complete ablation of Usp22 expression results in early 

embryonic lethality at E10.5 of the post-implantation stage in mice (Lin et al., 2012). The mouse 

line Usp22lacZ utilized in our studies displayed expression of approximately 3% of the correctly 

spliced Usp22 mRNA and can thereby be considered as a hypomorph. Due to the poor quality 

of commercially available antibodies, we were not able to establish immunohistochemical or 

immunofluorescent stainings to visualize reduced USP22 abundance on tissue sections. In 

addition, we repeatedly attempted to stain for Usp22 by in situ hybridization; however, no 

positive result was obtained. In future experiments utilization of the RNAscope® Technology, 

an in situ hybridization-based commercial assay, could help to confirm the reduction of Usp22 

on tissue sections. 

Using Usp22lacZ animals we were able to visualize sites of Usp22 expression by making use of 

the LacZ reporter cassette. Notably, we could detect ubiquitous expression in the majority of 

tissues in embryos at E15.5. Its presence in the majority of tissues and its high abundance 

during embryonic development could explain why a complete loss of Usp22 has systemic 

consequences. In fact, we observed global growth retardation in adult Usp22lacZ/lacZ mice which 
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weighed approximately 40% less than their wild type littermates. Previously, we were able to 

show that Usp22lacZ/lacZ mice were characterized by a differentiation shift in the small intestine, 

i.e. the number of Oflm4-positive stem cells and therefore the rate of differentiated Goblet, 

enteroendocrine and Paneth cells was increased (Kosinsky, 2013; Kosinsky et al., 2015). 

Accordingly, we detected similar differentiation shifts in the brain in which the number of 

precursor cells was decreased. These results suggest that differentiation processes in the 

intestinal epithelium and the cerebral cortex are partially regulated by USP22. Notably, while 

the gross morphology of the small intestine was not affected, the neuronal density within the 

cortex was decreased in Usp22lacZ/lacZ animals. Therefore, we hypothesize that global 

differentiation and lineage specification, at least in some organs, are USP22-dependent. 

However, depending on tissue-specific cofactors, the consequences of Usp22 loss could vary. 

In order to investigate the alterations underlying the effects upon Usp22 reduction, we analyzed 

gene expression changes in mouse embryonic fibroblasts. Subsequent gene ontology analysis 

revealed an association of USP22 and differentiation-/proliferation-associated processes. 

Previously published data in murine embryonic stem cells (ESCs) support our findings since 

Usp22 expression was shown to be induced during ESC differentiation and to be required for 

proper differentiation into all three germ layers. The authors postulated that this function was 

mediated by USP22-associated H2B deubiquitination which controls transcription of the 

repressing factor Sex-Determining Region Y-Box 2 (SOX2) (Sussman et al., 2013). 

Consistently, our group demonstrated an increase of H2Bub1 levels during the differentiation 

of human mesenchymal stem cells (Karpiuk et al., 2012). However, in the present study, 

immunohistochemical stainings for H2Bub1 in the small intestine suggest that the effects of 

USP22 on differentiation are independent from its ability to deubiquitinate histone H2B since 

global H2Bub1 levels were unaffected by USP22 loss. Notably, a recent report from Atanassov 

and co-workers also revealed that global H2Bub1 levels were not elevated upon USP22 

depletion but rather remain unchanged (Atanassov et al., 2016). Therefore, it would be possible 
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that, depending on tissue-specific cofactors, USP22 exerts its function via H2B deubiquitination 

or that USP22 and H2Bub1 affect differentiation independent from one another. To address 

this question, studies in several tissues and cellular differentiation systems would be 

necessary. Taken together, the Usp22lacZ mouse line enabled us to uncover a role of USP22 

in cell differentiation and lineage specification in diverse organ systems. This observation was 

confirmed by microarray studies using MEFs from the same mouse line. Interestingly, these 

findings on differentiation may also be relevant in cancer since so-called cancer stem cells 

represent a subpopulation within a tumor and have been proposed to be able to self-renew and 

give rise to cells with divergent phenotypes. Thereby they can contribute to intratumoral cell 

heterogeneity and can be responsible for cancer initiation, progression and/or recurrence 

(Dawood et al., 2014; Zhang et al., 2015). Notably, in previous studies Glinsky described 

USP22 as a component of the 11-gene signature and speculated that this expression profile 

identifies lesions with cancer stem cell properties (Glinsky, 2005; Glinsky, 2006). Therefore, 

USP22 has been designated as a “putative cancer stem cell marker” in previous reports (Li et 

al., 2014b; Zhang et al., 2008b; Zhang et al., 2008a). Indeed, our data imply that USP22 could 

influence tumorigenesis by affecting differentiation properties of cells, possibly also affecting 

cancer stem cells. This hypothesis was supported by the mRNA-seq approach and subsequent 

GO analyses in human CRC cells which supported a function of USP22 in controlling 

differentiation-related genes in SW837 and SW480 cells.  

 

4.2 Intestinal Usp22 deletion causes mild spontaneous intestinal inflammation 

To evaluate the role of USP22 in intestinal tumorigenesis, we generated mice with a conditional 

intestine-specific ablation of Usp22. An additional APC truncation (APC1638N) and/or DSS-

mediated colitis were utilized to promote tumorigenesis in these animals. To investigate the 

role of Usp22 in intestinal cancer formation in more detail, we made use of three different 

treatment options. There were two models for inflammation-induced CRC in which mice were 
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treated with the chemical agent DSS to induce colitis. Experimental mice in the first cohort 

(Tam-DSS) were injected with Tamoxifen to induce the intestinal ablation of Usp22 and 

afterwards DSS was administered. This cohort allowed us to observe the consequences of 

Usp22 loss on colitis burden and subsequently on the formation of inflammation-induced 

tumors. In contrast, the DSS-Tam animals were treated with DSS first, and four weeks later, 

Usp22 was deleted. In this cohort we could ensure that the colitis burden is comparable in all 

animals and that inflammation intensity was not affected by an intestinal-specific Usp22 loss. 

Finally, we determined the effect of Usp22 ablation in a model for sporadic colorectal cancer 

formation. For this purpose, mice were injected with Tamoxifen, but were not treated with DSS 

(Tam cohort). 

Health parameters were checked on a regular basis, including body weight, stool consistency 

and intestinal bleedings. In the majority of mice, DSS treatment resulted in weight loss, diarrhea 

and bleedings. Especially in the Tam-DSS cohort, APC1638N/+, Usp22-/- mice displayed an 

increased burden. It should be mentioned that also in wild type mice not treated with DSS (Tam 

cohort) intestinal bleedings were detected according to the Guaiac test results. It has been 

reported that the risk of false-positive outcomes is high using this method (Roslani et al., 2012). 

However, even when considering this false-positive “background”, APC1638N/+, Usp22-/- animals 

showed increased bleeding intensities, including bloody anuses. Mice with this genotype were 

frequently affected by increased loss of body weight. Moreover, we detected that the colons in 

APC1638N/+, Usp22-/- animals were shorter than in wild type littermates. In a study on 

inflammatory bowel disease patients it was detected that individuals with ulcerative colitis had 

significantly shorter intestines compared to the healthy control group (Nordgren et al., 1997). 

Therefore, the decreased colon length in APC1638N/+, Usp22-/- mice is likely indicative of severe 

inflammatory burden. In previous studies it was reported that depending on the mouse strain, 

recovery and complete disappearance of symptoms was observed approximately 4-5 weeks 

after DSS administration (Chassaing et al., 2014). In both cohorts used for inflammation-
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induced CRC (Tam-DSS and DSS-Tam) the DSS treatment was terminated when animals 

were 12 weeks old. Interestingly, APC1638N/+, Usp22-/- animals mice had to be sacrificed at an 

age of 12-20 weeks in the Tam-DSS and 18-40 weeks in the DSS-Tam cohort. Therefore, we 

can postulate that several APC1638N/+, Usp22-/- mice in the Tam-DSS group may have still been 

affected by the acute inflammation when they died. However, some mice with this genotype 

died when the symptoms of colitis should have disappeared. Surprisingly, in the histological 

assessment of APC1638N/+, Usp22-/- colons, all mice were affected by similar rates of 

inflammation regardless of whether they died during the acute phase of colitis or when 

symptoms should have already disappeared. Morphological observations made in all these 

mice (i.e. shortening of colons) supported the conclusion that the inflammation was not 

resolved in these animals. In addition, we detected severe lymphocyte accumulation upon the 

loss of Usp22. In fact, large mucosal segments were infiltrated by immune cells resulting in 

increased H-scores. Remarkably, even mice not treated with DSS at all (Tam cohort) were 

characterized by mild inflammatory symptoms upon Usp22 knockout. These findings suggest 

that an intestinal knockout of Usp22 results in prolonged inflammatory reactions upon DSS 

treatment and/or a slowed recovery from inflammation.  Moreover, we assume that the loss of 

Usp22 maintains a latent inflammatory environment in general, even without DSS treatment. 

As a consequence, upon additional induction of colitis, an excessive immune response is 

triggered which is further maintained in Usp22-/- animals even after symptoms have 

disappeared in wild type mice. This may not only happen due to an excessive immune 

response but may also be the result of attenuated feedback mechanisms 

controlling/terminating the inflammatory reaction. Generally, delayed resolution of inflammation 

was associated with, for instance, increased immune cell infiltration, reduced stimulation of 

tissue repair or inefficient efferocytosis (Ortega-Gomez et al., 2013). However, whether one of 

these processes underlies the elevated inflammatory response in Usp22-/- mice is not yet clear 

and should be addressed in future studies. 
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As a consequence of intestinal inflammation, the crypt integrity is compromised which 

interferes with the normal colonic functions including nutrient absorption (Xavier and Podolsky, 

2007). Notably, it was demonstrated that children suffering from inflammatory bowel diseases 

commonly exhibit growth defects due to chronic inflammation and resultant malnutrition 

(Sanderson, 2014). This epiphenomenon of latent inflammation could, besides the role of 

USP22 in differentiation, explain the phenotype of Usp22lacZ/lacZ mice which were characterized 

by growth retardation. Whether Usp22lacZ/lacZ mice were affected by mild intestinal inflammation 

was not tested in those studies and remains to be elucidated. 

To obtain more insights into the impact of Usp22 loss in inflammation, we performed in vivo 

analyses using an acute colitis model. Two days after terminating the DSS treatment, thus 

during the acute phase of colitis, mice were sacrificed. As expected, the disease activity index 

(DAI) including weight loss, stool consistency and intestinal bleedings was elevated in Usp22-

/- animals. It was previously described that a heterozygous APC mutation leads to anemia and 

increased spleen size (Qadri et al., 2012). Consistently, the ratio of hematocrit in blood samples 

was decreased in APC1638N/+ animals. Moreover, these mice possessed pale livers, kidneys as 

well as bigger and heavier spleens. Notably, this phenomenon was slightly aggravated by the 

loss of Usp22. Importantly, strong inflammatory reactions were described to modulate bone 

mineral density and increase fracture risk (Ali et al., 2009; Bernstein et al., 2000). Thus, we 

measured biomechanical properties of bones and observed more fragile bones in APC+/+, 

Usp22-/- animals. Previously, it was shown that APC mutations increase bone mineral density 

(Miclea et al., 2010). However, we could not detect any differences in bone strength between 

APC wild type and APC1638N/+ animals with USP22 wild type status. In fact, the majority of mice 

had similar bone strengths except for APC+/+, Usp22-/- animals. It is not clear why the knockout 

of Usp22 alters bone characteristics only in APC+/+ but not APC1638N/+ mice. To verify these 

findings and to obtain further insights into the role of Usp22 in inflammation-induced bone 

fragility, mouse cohorts with increased n-numbers and a control group which is not treated with 
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DSS are necessary. In addition, computed tomography scans should be performed to obtain 

further insights into bone structure and properties. Together, our results reveal that intestinal 

Usp22 loss enhances inflammation burden in DSS-treated mice, and, remarkably, can even 

cause spontaneous inflammation. Notably, the colitis burden was sufficient to induce 

inflammation-associated bone fragility in Usp22-/- mice. The latent inflammatory environment 

in Usp22-/- animals could be involved in growth retardations in Usp22lacZ/lacZ animals and favor 

colorectal tumor formation.  

To reduce burden, IBD patients are frequently treated with anti-inflammatory drugs such as 

aminosalicylates and corticosteroids or immunosuppressant drugs including azathioprine, 

cyclosporine and TNFα inhibitors (e.g. Infliximab) (Baumgart and Sandborn, 2007). The 

efficacy of several of these drugs was also demonstrated in DSS-induced colitis in mice (Fukata 

et al., 2011; Kim et al., 2010; Myrelid et al., 2015; Sann et al., 2013). However, long-term usage 

of these drugs can have adverse effects, for instance on the intestinal microbiota (Rogers and 

Aronoff, 2016), an aspect of intestinal inflammation which has not been considered in this 

project. As mentioned before, dysbiosis is associated with colitis (Rehman et al., 2010). Initially, 

to test whether the microbiota is involved in the intestinal tumor development, it would be 

possible to treat the mice with antibiotics. As demonstrated by Peuker and colleagues, 

changing the composition of the microbiota by antibiotic treatment can inhibit the intestinal 

tumor growth in Apcmin/+ mice (Peuker et al., 2016). Moreover, identifying and comparing the 

composition of the microbiota in Usp22 wild type and knockout animals could be informative 

and could potentially be correlated to the inflammation intensity in these animals. This 

identification could, for instance, be implemented by 18S rRNA sequencing of the microbiome 

(Dollive et al., 2012). Moreover, Souza and co-workers demonstrated elegantly how the 

supplementation of certain microorganisms can alleviate the effect of colitis in mice (Souza et 

al., 2016). Initially, they induced colitis in animals and observed that upon administration of the 

Escherichia coli strain Nissle 1917 (EcN), the colitis burden was decreased. Afterwards, they 
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applied the fecal content of EcN-treated animals to germ-free mice which were subsequently 

subjected to colitis. Indeed, these mice were protected from colitis-induced symptoms 

indicating to what extent bacteria can influence susceptibility to IBDs. Studies like this suggest 

that fecal microbiota transplantations (FMTs) present promising treatments for IBD patients. In 

a recent meta-analysis, it was demonstrated that FMTs lead to clinical remission in 22% of UC 

and 60.5% of CD patients (Colman and Rubin, 2014). To what extent anti-inflammatory drugs 

or FMTs could ameliorate the effects of Usp22 loss-induced inflammation and therefore lead 

to a lower tumor burden would be an interesting research question remaining to be elucidated. 

 

4.4 Intestinal Usp22 loss promotes inflammation-induced and sporadic CRC 

After measuring the colon length, the number of intestinal tumors was counted and the location 

of cancer lesions was determined. To our surprise, Usp22-/- mice were characterized by an 

elevated tumor burden in both the small intestine and colon. Notably, the observation that 

Usp22 promotes intestinal tumor formation was made in all three experimental cohorts, i.e. 

Tam-DSS, DSS-Tam and Tam. This finding emphasizes the need to compare the three 

experimental cohorts in more detail to determine the impact of Usp22 in inflammation-induced 

(via DSS treatment) and sporadic CRC. When comparing the two groups for inflammation-

induced CRC, it is clear that the Tam-DSS treatment caused more tumors in all genotypes in 

both the small intestine and colon. In fact, the tumor incidence almost doubled in this group. 

As mentioned before, Usp22 loss alone (Tam cohort) resulted in mild latent inflammation, which 

could be the underlying reason for the exacerbated inflammatory processes in Tam-DSS mice. 

In contrast, DSS-Tam mice did not experience the early loss of Usp22. Instead, the burden of 

colitis was similar in all animals and Usp22 was inactivated during or shortly after the process 

of epithelial healing. In other words, after Usp22 knockout, inflammatory processes were 

initiated in Tam-DSS animals and exacerbated during colitis while DSS-Tam mice did not 
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develop this latent inflammation before DSS treatment. Consequently, Tam-DSS animals 

developed more intestinal tumors than DSS-Tam mice.  

As expected, mice only treated with Tamoxifen (Tam cohort) had the lowest tumor burden in 

the colon probably because they did not undergo colitis. Interestingly, Usp22-/- mice in the Tam 

group showed the highest abundance of tumors in the small intestine. Moreover, several 

tumors were detected in the colons of these animals. These findings were surprising since they 

indicate that the loss of Usp22 alone is sufficient to trigger sporadic tumor formation; mainly in 

the small intestine. This observation supports our hypothesis that the loss of Usp22 triggers a 

latent inflammation in the intestinal system which consequently promotes tumorigenesis. 

Therefore, one should keep in mind that, if Usp22 loss alone can maintain a mild latent 

inflammation, the tumor formation in our “sporadic” Tam cohort is most likely, at least to some 

extent, also inflammation-induced. 

Interestingly, the three experimental cohorts showed varying tendencies when evaluating the 

tumor burden in the different intestinal segments. As mentioned before, Tam-DSS was 

associated with the highest tumor number in the colon. In contrast, in the small intestine, Tam 

mice were characterized by the most severe tumor burden, especially in APC1638N/+ mice. 

Generally, colitis exerts strongest effects in the colon (Adams and Bornemann, 2013) which 

could explain why the Tam-DSS group shows most cancer lesions in the colon. However, it is 

challenging to clarify why the tumor burden in the small intestine is highest in the Tam cohort. 

One possible explanation is based on the assumption that Usp22 loss alone results in a latent 

inflammatory environment which finally leads to tumorigenesis. When we expect that the APC 

mutation is mainly correlated with tumor growth in the proximal region, it is likely that immune 

cells migrate to the sites of oncogenic growth in the proximal intestinal regions (Fodde et al., 

1994). This lymphocyte infiltration in turn can promote tumorigenesis in these segments. 

Indeed, it was reported that immune cells are recruited to cancer lesions where they produce 

cytokines and chemokines and thereby accelerate oncogenic growth (Klampfer, 2011). 
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Assuming that intestinal Usp22 loss promotes latent inflammation, it can be expected that the 

rate of infiltrating lymphocytes is increased in Usp22-/- animals, which causes an elevated tumor 

burden in the small intestine. In contrast, if APC1638N/+, Usp22-/- mice are subjected to DSS 

treatment there will be lymphocyte accumulations at the site of acute inflammation, i.e. the 

colon, but a portion of lymphocytes will still migrate to the site of APC1638N-associated 

tumorigenesis, i.e. the proximal SI. This hypothesis would explain the accumulation of tumors 

in the proximal/medial small intestine segments and the colon of APC1638N/+, Usp22-/- mice.  

The phenomenon that there was an accumulation of tumors in the proximal and medial 

segments of the small intestine could be explained by further scenarios. First, the 

aforementioned abundance of the APC mutated tumors in the proximal intestinal region (Fodde 

et al., 1994) could have been augmented by the additional loss of Usp22. Thus, the interplay 

between APC mutation and Usp22 ablation would be the driving factor here. Moreover, the 

Villin promoter is highly active in the upper intestine. Thus, it is possible that the cells in this 

region were strongly affected by the Usp22 loss and therefore, the rate of Usp22 loss-related 

tumorigenesis was increased independent of APC mutation. Here, it would be imaginable that 

this phenomenon is HSP90-dependent. In our in vitro studies we noticed increased 

temperature sensitivity of USP22 knockdown cells, possibly due to the USP22 loss-related 

degradation of the heat shock protein HSP90AB1. Assuming that HSP90AB1 levels are also 

decreased in intestinal epithelial cells in Usp22-/- animals, these cells would display a higher 

sensitivity towards inflammation-induced stress. Thus, these cells would be prone to stress-

related apoptosis or necrosis, which favors and exacerbates inflammation (Davidovich et al., 

2014) and therefore promotes tumorigenesis, for instance, by the production of reactive oxygen 

and nitrogen species (Meira et al., 2008) as mentioned in section 1.5. Since the activity of the 

Villin promoter is highest in the proximal SI region, cells located there are strongly affected by 

USP22 loss and HSP90AB1 reduction. This would potentially explain the increased tumor 

abundancy in the upper SI segment. 
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Importantly, the tumors in Usp22-deficient mice were shown to be more aggressive. Invasive 

tumors could exclusively be found in Usp22-/- animals, independent from the APC status. 

Notably, this increases the risk of metastasis and is therefore associated with a significantly 

poorer prognosis (O'Connell et al., 2004). However, we could not detect any metastases in our 

experimental mice which, nonetheless, could still mean that microinvasion has taken place. In 

addition to invasive adenocarcinomas, we made another interesting observation. The loss of 

Usp22 was correlated with the presence of intramural mucus accumulations and remarkably, 

tumors with a mucinous appearance. Interestingly, patients with colitis-associated CRC 

frequently display mucinous lesions (Higashi et al., 2011) regularly due to a high abundance of 

the mucin components MUC1, MUC2 and MUC5AC (Slotkin and Seidler, 1975). Notably, 

Usp22lacZ/lacZ mice were characterized by an increased abundance of MUC2-positive Goblet 

cells. Therefore, it is likely that APC1638N/+, Usp22-/- mice show a similar increase in Goblet cells; 

however, this still needs to be verified by IHC. As mentioned before, mucinous presentation is 

generally correlated with a poor prognosis compared to normal adenocarcinomas (Verhulst et 

al., 2012). Since mucinous carcinomas are frequently microsatellite instable, a PCR-based MSI 

analysis would have been interesting to obtain further insight into the pathology of tumors 

formed upon the loss of Usp22. The detection of MSI in murine samples based on PCR and 

capillary electrophoresis has already been described (Bacher et al., 2005; Kabbarah et al., 

2003) and would be an appropriate approach to detect the rate of mono- or dinucleotide repeats 

upon Usp22 loss. Together, we could demonstrate that the loss of Usp22 promotes sporadic 

and inflammation-induced colorectal tumorigenesis; however, further analyses are needed to 

reveal tumor characteristics. 
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4.5 Intestinal Usp22 deletion in APC1638N/+ animals decreases life span 

One of the key observations made in this project was the short life span of Usp22-deleted mice. 

Already during the first DSS treatments which we performed (Tam-DSS cohort), we could 

measure severe weight loss and intestinal bleedings in APC1638N/+, Usp22-/- mice. This 

observation was confirmed in DSS-Tam animals. In particular, shortly before the mice needed 

to be sacrificed we noticed worsening of the health status, i.e. swollen abdomen, high weight 

loss, pale extremities, rough fur and limited movements. When APC1638N/+, Usp22-/- mice were 

sacrificed due to their physical condition we regularly detected intussusceptions and rectal 

prolapses. Generally, an intussusception reflects a condition in which a proximal intestinal part 

invaginates into a distal segment. This phenomenon can be observed when the peristaltic 

movement is disturbed, for instance, due to a large tumor (Honjo et al., 2015), and can result 

in an acute intestinal obstruction (Tan et al., 2003). Similarly, a rectal prolapse describes an 

intussusception of the rectal segment through the anus (Hatch and Steele, 2013). In patients, 

late diagnosis can lead to intestinal perforation with consequent peritonitis and eventually 

sepsis, which results in an increased mortality risk (Udo et al., 2016).  

In our study, the detection of intussusceptions and prolapses already indicated the presence 

of tumors in Usp22-/- animals. After sacrificing mice, intussusceptions were predominantly 

found in the proximal region of APC1638N/+ animals, where the frequency of tumors in proximal 

intestinal segments has been described before (Fodde et al., 1994). Indeed, within SI regions 

affected by intussusceptions, large tumors were found.  

Regarding survival and tumor burden in the SI, similar observations were made in mice which 

were not treated with DSS (Tam group), however, lethality was clearly accelerated by colitis. 

In general, the survival rates of APC+/+ animals were nearly unaffected and animal mortality 

was infrequent. Moreover, outcomes of Usp22 wild type and heterozygous animals were similar 

in all three treatment cohorts and no statistically significant variations between these two 

genotypes were observed. Notably, the Tam-DSS group was associated with the shortest 
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survival of APC1638N/+, Usp22-/- mice while only marginal differences were detected between the 

DSS-Tam and Tam mice.  

Our data imply that an intestinal loss of Usp22 causes a latent inflammation in the small 

intestine and colon. This inflammatory state likely accelerates tumorigenesis, which 

subsequently induces early lethality in APC1638N/+, Usp22-/- mice, frequently due to 

intussusceptions or prolapses. Therefore, we hypothesize that treating these animals with anti-

inflammatory drugs or antibiotics could lower inflammation and tumor burden. Even though 

CRC-related death could not be prevented completely due to the APC mutation, this measure 

would be likely to extend survival rates. 

 

4.6 The heterogeneity of USP22 expression in colorectal cancer  

In recent years a significant amount of gene expression and mutation data has become 

publically available. Analyses of these data provide an excellent source of information on gene 

expression profiles, mutation occurrences and patient survival in the field of cancer research. 

In this study, we took advantage of several databases, i.e. OncomineTM, cBioPortal, and the 

IST Online® database, to evaluate USP22 expression levels in colorectal cancer patient 

samples. Based on previously published studies in which USP22 overexpression was detected 

in several cancer types (Melo-Cardenas et al., 2016), we expected to detect elevated USP22 

levels in CRC patients using these online tools. Remarkably, analyses of all databases led to 

the conclusion that USP22 expression is not as ‘black and white’ as described in previous 

studies. In fact, approximately half of listed CRC patients displayed decreased expression of 

USP22. Consistently, USP22 mRNA levels were found to be decreased in several subgroups 

of cecal, colonic or rectal cancer in another database. Interestingly, some CRC datasets 

available on cBioPortal revealed a heterozygous deletion of the USP22 gene in 44-49% of all 

colorectal cancer patients. In comparison, the well-known tumor suppressor TP53 was 

heterozygously deleted in 51-57% and APC in 19-25% of the patients. This underlines the 
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possibility that USP22 may serve as a tumor suppressor depending on the biological context. 

Accordingly, USP22 protein levels were highly variable in a panel of colorectal cancer cell lines. 

These cells were subsequently transfected with siRNAs targeting USP22 in order to test the 

effect on morphology and proliferation after depletion. While some cell lines were not affected 

by the loss of USP22, in most cells the knockdown resulted in decreased proliferation. 

Interestingly, growth was enhanced in HCT116 cells, which may therefore more closely reflect 

the condition observed in our in vivo approaches, i.e. aggressive growth of colorectal cancer 

cells upon USP22 depletion. In contrast, Xu and co-workers reported decreased cell 

proliferation following USP22 knockdown in HCT116 cells (Xu et al., 2012). Since we could 

reproduce our findings numerous times, we considered our findings as being reliable. After 

these Celigo® measurements, cell line characteristics such as MSI/CIN/CIMP status, were 

evaluated in order to elucidate whether they could be correlated with the proliferation pattern 

of siUsp22 cells. Since we did not detect any correlations, we also considered mutation profiles 

of the cell lines, however, no connection could be made. This heterogeneity was further 

confirmed when testing the migration potential upon USP22 knockdown. While the migration 

potential was inhibited in SW48 cells, we observed the opposite effect in HCT116 cells. 

Meanwhile we aimed to verify that the effects we observed were mediated by a reduction of 

USP22 alone and not by siRNA-associated off-target effects in which the homolog USP27X is 

targeted. For this purpose, we performed individual knockdowns of USP22, USP27X as well 

as both USPs simultaneously in HCT116 and SW48 cells. While none of the conditions showed 

an effect on cell morphology, as expected, USP22 reduction resulted in decreased cell growth 

in SW48 cells. Moreover, in this cell line USP27X loss and the dual knockdown showed similar 

effects to USP22 ablation. In contrast, in HCT116 cells USP22 loss enhances proliferation 

while siUsp27x cells displayed severely impaired proliferation. Notably, the dual knockdown 

could rescue the devastating effect of USP27X on cell growth. Since the siRNAs targeting 

USP22 and USP27X, respectively, had highly different effects on proliferation, we could rule 
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out the possibility that the USP22-siRNAs show off-target effects by modulating USP27X 

levels. Interestingly, our proliferation measurements suggest that if loss of USP27X 

decelerates the growth of CRC cells, it functions as an oncogene. In contrast, the additional 

loss of USP22 rescues this effect, implying that it serves as a tumor suppressor in this context. 

This assumption is supported by a recent report in which the shRNA-mediated loss of USP27X 

resulted in decreased growth of breast cancer cells in a xenograft approach (Atanassov et al., 

2016). In contrast, in non‐small cell lung cancer cells, USP27X was described to act as a tumor 

suppressor in vitro (Weber et al., 2016). Thus, the effects which we have observed in HCT116 

may be cell line-specific and possibly, the role of USP27X is just as context-specific as the 

function of USP22 in tumorigenesis. 

 

4.7 The interaction between USP22 and HSP90AB1  

To obtain further insights into the mechanisms underlying the effect of USP22 in CRC cells, 

we performed mRNA-seq in SW837 and SW480 cells. These cell lines were selected since 

they underwent only marginal changes upon USP22 knockdown. Therefore, we expected that 

the secondary effects caused, for instance, by dramatic changes in cell phenotype, would be 

minimal and negatively influence results. We were able to confirm that HSP90AB1 is 

downregulated in siUsp22 cells. Generally, HSP90 family members are involved in cellular 

adaptation to stress (Whitesell and Lindquist, 2005). While the stress-inducible HSP90α 

isoforms were not affected by USP22 depletion, the constitutively expressed HSP90β member 

HSP90AB1 was downregulated. Consistently, when we performed heat shock assays, we 

demonstrated that siUsp22 cells possessing decreased HSP90AB1 levels are characterized 

by elevated temperature sensitivity. Generally, increased expression of HSP90 family 

members correlated with human malignancies (McDowell et al., 2009) and a variety of HSP90 

inhibitors has been tested in clinical trials (Solarova et al., 2015). Surprisingly, when analyzing 

the frequency of heterozygous deletions using cBioPortal it was determined that HSP90AB1 is 
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affected in 3-8% of CRC patients and in up to 30% of individuals suffering from other cancers. 

Thus, similar to USP22, the levels of HSP90AB1 in CRC can be heterogeneous. When 

correlating these findings to our in vivo results indicating that Usp22 deletion contributes to 

intestinal tumorigenesis, there are three possible scenarios. First, it would be imaginable that 

the tumor-promoting effect of USP22 ablation is in part mediated by the resultant HSP90AB1 

reduction. Second, it is imaginable that the reduction of HSP90AB1 via USP22 ablation does 

not only sensitize cells to elevated temperatures but also to inflammatory signaling which can 

also be considered as stress. This scenario would support our hypothesis based on our in vivo 

approaches in which Usp22 loss was associated with increased inflammation. If USP22 has a 

general role in protecting the cell from stress-induced factors, Usp22 knockout mice could be 

affected by increased inflammation burden. Consequently, the risk of developing tumors would 

increase in these animals. While several studies published so far show that the inhibition of 

HSP90 suppresses inflammation-associated processes (Lilja et al., 2015; Zhao et al., 2013), a 

dual role of HSP90, protective and cytotoxic, was observed as well (Paepe et al., 2009). In 

order to confirm this assumption the HSP90AB1 levels should be determined in mouse tissue, 

i.e. by western blot, qRT-PCR and IHC. A third possibility is that the reduction of HSP90AB1 

in our in vitro experiments is a bystander effect and is not responsible for the effects we observe 

following USP22 loss. Instead, another unknown factor may be associated with the tumor 

suppressor activity of USP22. 

Subsequent analysis of the functional interaction by Co-IP revealed that USP22 and 

HSP90AB1 form a complex. Our finding was supported by a proteomics-based study in which 

several heat shock protein 70 members were identified as USP22 interaction partners (Sowa 

et al., 2009). Afterwards, by evaluating HSP90AB1 levels upon treatment with the proteasome 

inhibitor MG-132, we could demonstrate that decreased HSP90 amounts in siUsp22 cells are 

dependent upon proteasomal degradation of this protein. Due to the physical interaction and 

the temperature sensitivity of siUsp22 cells we speculated that cancer cells with low USP22 
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levels are highly dependent on the residual HSP90 expression. Consequently, we aimed to 

take advantage of low HSP90 levels created by USP22 loss to induce synthetic lethality with 

the help of the HSP90 inhibitor Ganetespib. Indeed, we could observe that cells with a siRNA- 

and CRISPR/Cas9-mediated depletion of USP22 are more sensitive to Ganetespib. Based on 

this finding we hypothesize that under physiological conditions, USP22 deubiquitinates HSP90 

family members and thereby stabilizes them (Figure 61). Subsequently, HSP90 can facilitate 

the formation of the P-TEFb complex which will be recruited by BRD4 to phosphorylate the 

RNA Pol II. In contrast, the loss of USP22 leads to the poly-ubiquitination of its substrate 

HSP90, resulting in its proteasomal degradation. Consequently, formation rates of the P-TEFb 

complex would be decreased. Thus, P-TEFb binding rates to BRD4 and therefore RNA Pol II 

phosphorylation-associated transcriptional elongation would be reduced. In turn, transcription 

levels of HSP90 and further genes potentially preventing tumorigenesis would be reduced. 
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Figure 61: Proposed model of the effect of USP22 loss on HSP90 levels. (A) Under normal 
conditions, HSP90 facilitates the formation of the P-TEFb complex. Upon recognition of 
acetylated marks, BRD4 recruits P-TEFb and CDK9 phosphorylates the RNA Pol II. Thereby 
promoter proximal pausing is released and transcription, e.g. of HSP90AB1, is promoted. (B) 
In the absence of USP22, polyubiquitination rates of HSP90 increase, resulting in its 
proteasomal degradation. As a consequence, the P-TEFb complex formation is diminished, 
leading to lower RNA Pol II phosphorylation and decreased transcriptional elongation. 
Reduced HSP90 levels elevate the cells’ sensitivity towards stress stimuli and therefore, cells 
are highly dependent on the residual HSP90 rates. 
 

Based on this potential model, we tested the effect of the BET inhibitor JQ1. Normally, HSP90 

facilitates the assembly of the P-TEFb complex which is subsequently recruited by the BET 

protein BRD4. We proposed that after the Ganetespib-mediated inhibition of HSP90, the PTEF-

b stability and therefore its binding to BRD4 is reduced. Consequently, by inhibiting BRD4 using 

JQ1 and thus preventing the recruitment of PTEF-b to chromatin, we expected to observe 
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similar effects in siUsp22 cells as after Ganetespib treatment. Interestingly, BRD4 has also 

been identified as a HSP90 client which is stabilized by this heat shock protein (Zhou et al., 

2015). Indeed, following JQ1 treatment we could detect increased sensitivity of siUsp22 cells 

towards this small molecule inhibitor. While it is not completely clear why synthetic lethality was 

induced using JQ1, there are two possible scenarios. First, it is imaginable that, similar to 

HSP90, BRD4 is normally deubiquitinated by USP22 and that siUsp22 cells are dependent on 

the residual BRD4 levels. Moreover, this stabilization could be mediated by HSP90 as 

previously described (Zhou et al., 2015) and therefore indirectly by USP22. Indeed, we could 

detect sporadic BRD4 reduction upon depletion of USP22. However, this effect was highly 

variable. Another possibility could be that by the inhibition of BRD4, the transcription patterns 

of several genes are affected and that, among others, HSP90 expression is further decreased. 

The reduction of HSP90 can then result in decreased P-TEFb complex assembly which leads 

to reduced phosphorylation of RNA Pol II. Thus, the release of promoter proximal pausing was 

decreased which can affect a variety of genes. Taken together, we speculate that siUsp22 cells 

are dependent on their low HSP90 and possibly BRD4 levels and a further decrease by 

Ganetespib or JQ1 is lethal for the cells. In future experiments this could be verified by testing 

BRD4 protein levels upon Ganetespib treatment. Alternatively, gene expression profiles after 

JQ1 and Ganetespib treatment as well as USP22 knockdown could be identified by mRNA-

seq and subsequently compared to evaluate the overlap of affected genes between these 

conditions. In summary, even if the reduction of HSP90AB1 is only a bystander effect after 

USP22 ablation, these outcomes demonstrate that it is possible to exploit USP22/HSP90AB1 

reduction in CRC cells and to target them based on this characteristic making use of the 

concept of synthetic lethality.  
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4.8 USP22: oncogene or tumor suppressor? 

One striking outcome of this project is the discrepancy when comparing our data to previously 

published reports. To date, several studies described that USP22 overexpression promotes 

tumor development or progression suggesting an oncogenic role of USP22. Most studies 

demonstrating elevated USP22 levels in cancer patient samples were based either on 

microarray data or immunohistochemical stainings. However, some of the antibodies used for 

the IHC approaches showed two or more bands when we tested them in western blot analyses. 

Thus, the specificity for USP22 of these antibodies is questionable and it would be possible 

that USP51 and/or USP27X which have a structure highly similar to USP22, were detected by 

these antibodies as well. As mentioned before, we could not find a commercially available 

antibody which specifically stains USP22 on tissue sections. Intriguingly, in the current study 

we could demonstrate in vivo and in vitro that USP22 loss can elevate tumor burden. Therefore, 

our results imply a rather tumor suppressive function of USP22. This is a novel finding which 

questions the universality of most previous studies focusing on the role of USP22 in cancer. 

Thus, we do not hypothesize that only one aspect can be true: that USP22 expression is either 

elevated or reduced in malignancies. Instead, it is well accepted that cancer reflects a highly 

heterogeneous group of diseases and the molecular signatures can be vastly diverse 

(Budinska et al., 2013). In our study, the heterogeneity of USP22 expression could be 

demonstrated in a number of experiments. First, when investigating USP22 expression levels 

in databases we observed that a high fraction of CRC patients were characterized by 

decreased USP22 expression levels. Second, heterozygous USP22 deletions were verified in 

approximately half of CRC patients. Accordingly, USP22 protein levels were shown to be highly 

heterogeneous in a panel of CRC cell lines and the knockdown of USP22 had diverse effects 

on the proliferation of these cells. Indeed, in most tested cell lines, USP22 ablation slowed the 

growth of CRC cells. However, some cell lines were not affected at all, while in HCT116 cells, 

proliferation was elevated upon the loss of USP22. It is challenging to find out which factors 
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determine whether high or low USP22 levels promote tumorigenesis. In general, tumor biology 

is an extremely complex field since it can be influenced by several factors such as the site of 

the tumor, and therefore tissue-specific determinants, tumor subtype and genetic signature. 

Therefore, it is possible that USP22 loss only favors growth and progression of certain CRC 

subtypes. As mentioned in our results, Usp22-/- animals were characterized by the presence of 

mucus accumulations as well as tumors with a mucinous presentation. Moreover, we 

demonstrated that oncogenic growth was accelerated in an inflammatory environment when 

Usp22 levels were low. Therefore, this could mean that USP22 only acts as a tumor suppressor 

in cancer lesions with a mucinous appearance or under inflammatory circumstances while it 

otherwise functions as an oncogenic factor. 

Moreover, it would be imaginable that the function of USP22 in tumorigenesis is indeed 

dependent on H2Bub1 levels. As mentioned before, H2Bub1 was described as a tumor 

suppressive mark (Cole et al., 2015; Melling et al., 2016) and under normal conditions, USP22 

deubiquitinates the core histone H2B, thus, it mediates the decrease of H2Bub1 levels (Zhang 

et al., 2008b). Even though we could not observe any changes in H2Bub1 levels upon USP22 

loss in our studies, depending on the tissue and tumor subtypes, USP22 could exert its cancer-

related effects via H2B deubiquitination. Thus, it would be possible that in some tissue types, 

overexpression of USP22 and the resultant decrease in H2Bub1 can be directly correlated to 

increased tumorigenesis. This could be the case in the previously published studies in which 

authors have described that increased USP22 expression leads to high oncogenic growth.  

However, counterintuitively, tumorigenesis could also be mediated by decreased H2Bub1 

levels due to decreased HSP90 expression caused by USP22 ablation. This could occur if 

USP22 loss decreases HSP90 levels, PTEF-b complex assembly efficiency decreases and 

therefore the phosphorylation rates of the RNA Pol II are reduced. The same is true for BRD4 

inhibition due to which PTEF-b can no longer be recruited by BRD4 and therefore RNA Pol II 

phosphorylation is impaired. Both scenarios can result in the condition that the adapter protein 
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WAC is no longer recruited by RNA Pol II, the RNF20/RNF40 complex is not bound and 

therefore H2B is not ubiquitinated. Consequently, the loss of H2Bub1 could be correlated to 

increased tumor formation rates. In order to test these hypotheses, tissue microarrays 

generated from several cancer types could be tested for their H2Bub1 levels by IHC and for 

USP22 levels using an in situ hybridization-based approach. It would be of great value to 

determine whether H2Bub1 loss is specific to certain cancer subtypes and whether these 

findings correlate with USP22 levels. 

Moreover, in future projects it would be interesting to elucidate whether USP22 can also act 

independently from the SAGA complex as has been demonstrated for USP51 and USP27X 

(Atanassov et al., 2016). To precipitate USP22 present in the SAGA complex, one could tag 

one SAGA-member and purify this protein including the USP22 bound to it. Using the same 

protein lysate the total USP22 amount can then be detected which allows the estimation of the 

abundance of “free”, unbound USP22. Moreover, USP22 targets and interaction partners could 

be identified in a mass spectrometry-based approach. Whether USP22 functions via these 

targets could subsequently be determined by assessing the consequences after depleting 

these proteins. Together, while USP22 was described as an oncogene in literature, it displayed 

tumor suppressive properties in our experimental setup. However, further research is 

necessary to determine whether USP22 functions within or independent of the SAGA complex 

in tumorigenesis and whether this function is associated with H2B monoubiquitination.  

 

4.9 USP22 as a target in colorectal cancer therapy? 

As recently discussed in a review by Melo-Cardenas et al., based on the literature USP22 

would represent an attractive target in cancer therapy. In fact, they reported that there is 

ongoing research to generate and optimize USP22 inhibitors (Melo-Cardenas et al., 2016). 

However, as shown in the current project, inhibiting USP22 could have devastating effects on 
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colorectal cancer patients since it could even accelerate tumor growth and lead to the formation 

of invasive carcinomas. Therefore, it is essential to further elucidate the mechanisms 

underlying the aggressive oncogenic growth due to reduced USP22 levels. It would be 

important to know, for instance, if a certain tumor subtype such as mucinous carcinomas is 

linked to low USP22 levels. Using tumor biopsies, USP22 levels and tumor characteristics 

could be determined and, according to the outcome of these analyses, therapy options can be 

defined. With this approach it could be prevented that a protein is inhibited which, in fact, acts 

as a tumor suppressor in several patients. However, it would be challenging to unravel all 

aspects underlying the heterogeneity of USP22 expression in CRC and, therefore, even after 

patient stratification, there remains a risk of selecting a suboptimal therapy option. With this 

consideration in mind, it would be a safer option to exploit the fact that some CRC patients are 

characterized by low USP22 expression and treat them with drugs that are already approved 

due to their high tolerance and anti-tumor efficacy. In our project, we were able to successfully 

induce synthetic lethality by treating CRC cells with USP22 reduction either with Ganetespib 

or JQ1. Ganetespib, a small molecule inhibitor of HSP90, is a promising agent tested in a 

variety of cancer types (Proia and Bates, 2014). Moreover, its advantage is its low toxicity as, 

among others, shown in colorectal cancer patients (Cercek et al., 2014). Comparatively, BET 

inhibitors are well-tolerable and currently used in several clinical studies testing its efficacy in 

various types of malignancies and further diseases (Ferri et al., 2016). Therefore, after 

determining the genetic profile of CRC patients, treatment with Ganetespib or BET inhibitors 

could be promising in individuals with low USP22 expression levels. Moreover, as described 

before, the potency of a number of (epigenetic) inhibitors could be further improved by 

combining them with other therapeutics. For instance, combinations with BRAF and MEK 

inhibitors were shown to overcome drug resistance and enhance the efficacy of Ganetespib 

(Acquaviva et al., 2014). Similarly, in previous studies, synergistic effects could be observed 

after combining JQ1 with the mTOR inhibitor rapamycin (Lee et al., 2015) as well as histone 
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deacetylase inhibitors (Shahbazi et al., 2016) and CDK inhibitors (Baker et al., 2015). 

Afterwards, it would be desirable to transplant our USP22-deficient CRISPR/Cas9 cells into 

immunodeficient mice via xenograft and test the effect of inhibition. Finally, we could create a 

new cohort of Usp22loxP Tam-DSS mice and directly treat them with the respective inhibitors 

after the knockout of Usp22. It would be particularly interesting from a clinical perspective if, 

indeed, the tumor burden in Usp22-/- animals could be reduced or even eliminated by the 

inhibitor treatment. 

 

4.10 Concluding remarks 

To date, several studies identified a number of substrates deubiquitinated by USP22 and have 

reported USP22 overexpression in diverse cancer types. However, the exact physiological 

function of USP22 and the mechanisms underlying its involvement in oncogenic growth needed 

to be elucidated and were addressed in the current study. For this purpose, we performed in 

vivo, in vitro and in silico analyses. By analyzing genetic mouse models, consequences of a 

global reduction (Usp22lacZ mice) and intestine-specific deletion (Usp22loxP mice) of Usp22 were 

detected in vivo, while human CRC cell lines and public databases were used for our in vitro 

and in silico studies, respectively. 

By analyzing Usp22lacZ animals we discovered that Usp22 is ubiquitously expressed throughout 

the majority of tissues in the developing embryo. The involvement of USP22 in developmental 

processes in vivo was demonstrated by the growth retardation in Usp22-hypomorphic mice. 

Moreover, differentiation and lineage specification in murine tissues are dependent on the 

presence of USP22. Finally, microarray analysis using MEFs underlined the relevance of 

USP22 during development and proliferation and confirmed our in vivo results. The most 

striking finding of this study was that USP22, in contrast to previously published reports, can 

also act as a tumor suppressor. When analyzing expression profiles of CRC patients using 

publically available databases, we could demonstrate that USP22 expression during colorectal 
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carcinogenesis is not as ‘black and white’ as described in the literature. Indeed, almost half of 

CRC patients displayed decreased USP22 expression or even heterozygous deletions. 

Interestingly, our in vivo approaches suggest inflammation-promoting effects of Usp22 

ablation. In fact, inflammation intensity upon Usp22 ablation was severe enough to induce 

colitis-induced bone fragility. Intriguingly, simultaneous loss of APC and USP22 resulted in 

decreased survival and increased intestinal tumor burden in sporadic and inflammation-

induced CRC. Moreover, APC1638N/+, Usp22-/- mice even developed invasive carcinomas. 

Therefore, USP22 should not be exclusively considered as an oncogene since it can clearly 

function as a tumor suppressor, at least in some contexts. Importantly, the generation and 

application of USP22 inhibitors could display a high risk for CRC patients characterized by 

increased or normal USP22 expression since they could increase tumor burden by artificially 

causing decreased USP22 activity. In addition, these inhibitors could induce chronic 

inflammation. Instead, it would be a safe alternative to exploit USP22-deficiency in CRC cells 

by targeting HSP90AB1, a novel USP22 interaction partner identified in this project. The 

application of the HSP90 inhibitor Ganetespib as well as the epigenetic drug JQ1 induced 

synthetic lethality in CRC cells with low USP22 levels. In future experiments, the interaction of 

USP22 and HSP90AB1 should be studied in detail and the efficacy of Ganetespib and JQ1 

tested in vivo. Taken together, in the current study we were able to demonstrate that USP22 is 

crucial for cell differentiation processes and has an unexpected tumor suppressor function in 

colorectal cancer. 



References 

184 

 

5. REFERENCES 
 

Acquaviva, J., Smith, D.L., Jimenez, J.-P., Zhang, C., Sequeira, M., He, S., Sang, J., Bates, 
R.C., Proia, D.A., 2014. Overcoming acquired BRAF inhibitor resistance in melanoma via 
targeted inhibition of Hsp90 with ganetespib. Molecular cancer therapeutics 13 (2), 353–
363. 10.1158/1535-7163.MCT-13-0481. 

Adams, S.M., Bornemann, P.H., 2013. Ulcerative colitis. American family physician 87 (10), 
699–705. 

Ahnen, D.J., 2011. The American College of Gastroenterology Emily Couric Lecture--the 
adenoma-carcinoma sequence revisited: has the era of genetic tailoring finally arrived? 
The American journal of gastroenterology 106 (2), 190–198. 10.1038/ajg.2010.423. 

Akkoca, A.N., Yanik, S., Ozdemir, Z.T., Cihan, F.G., Sayar, S., Cincin, T.G., Cam, A., Ozer, 
C., 2014. TNM and Modified Dukes staging along with the demographic characteristics of 
patients with colorectal carcinoma. International journal of clinical and experimental 
medicine 7 (9), 2828–2835. 

Ali, T., Lam, D., Bronze, M.S., Humphrey, M.B., 2009. Osteoporosis in inflammatory bowel 
disease. The American journal of medicine 122 (7), 599–604. 
10.1016/j.amjmed.2009.01.022. 

Ao, N., Liu, Y., Bian, X., Feng, H., Liu, Y., 2015. Ubiquitin-specific peptidase 22 inhibits colon 
cancer cell invasion by suppressing the signal transducer and activator of transcription 
3/matrix metalloproteinase 9 pathway. Molecular medicine reports 12 (2), 2107–2113. 
10.3892/mmr.2015.3661. 

Ao, N., Liu, Y., Feng, H., Bian, X., Li, Z., Gu, B., Zhao, X., Liu, Y., 2014. Ubiquitin-specific 
peptidase USP22 negatively regulates the STAT signaling pathway by deubiquitinating 
SIRT1. Cellular physiology and biochemistry : international journal of experimental cellular 
physiology, biochemistry, and pharmacology 33 (6), 1863–1875. 10.1159/000362964. 

Arslan, G., Atasever, T., Cindoruk, M., Yildirim, I.S., 2001. (51)CrEDTA colonic permeability 
and therapy response in patients with ulcerative colitis. Nuclear medicine communications 
22 (9), 997–1001. 

Aschele, C., Cionini, L., Lonardi, S., Pinto, C., Cordio, S., Rosati, G., Artale, S., Tagliagambe, 
A., Ambrosini, G., Rosetti, P., Bonetti, A., Negru, M.E., Tronconi, M.C., Luppi, G., Silvano, 
G., Corsi, D.C., Bochicchio, A.M., Chiaulon, G., Gallo, M., Boni, L., 2011. Primary tumor 
response to preoperative chemoradiation with or without oxaliplatin in locally advanced 
rectal cancer: pathologic results of the STAR-01 randomized phase III trial. Journal of 
clinical oncology : official journal of the American Society of Clinical Oncology 29 (20), 
2773–2780. 10.1200/JCO.2010.34.4911. 

Atanassov, B.S., Evrard, Y.A., Multani, A.S., Zhang, Z., Tora, L., Devys, D., Chang, S., Dent, 
S.Y.R., 2009. Gcn5 and SAGA regulate shelterin protein turnover and telomere 
maintenance. Molecular cell 35 (3), 352–364. 10.1016/j.molcel.2009.06.015. 



References 

185 

 

Atanassov, B.S., Mohan, R.D., Lan, X., Kuang, X., Lu, Y., Lin, K., McIvor, E., Li, W., Zhang, 
Y., Florens, L., Byrum, S.D., Mackintosh, S.G., Calhoun-Davis, T., Koutelou, E., Wang, L., 
Tang, D.G., Tackett, A.J., Washburn, M.P., Workman, J.L., Dent, S.Y.R., 2016. ATXN7L3 
and ENY2 Coordinate Activity of Multiple H2B Deubiquitinases Important for Cellular 
Proliferation and Tumor Growth. Molecular cell 62 (4), 558–571. 
10.1016/j.molcel.2016.03.030. 

Aune, D., Lau, R., Chan, D.S.M., Vieira, R., Greenwood, D.C., Kampman, E., Norat, T., 2012. 
Dairy products and colorectal cancer risk: a systematic review and meta-analysis of 
cohort studies. Annals of oncology : official journal of the European Society for Medical 
Oncology 23 (1), 37–45. 10.1093/annonc/mdr269. 

Bacher, J.W., Abdel Megid, W.M., Kent-First, M.G., Halberg, R.B., 2005. Use of 
mononucleotide repeat markers for detection of microsatellite instability in mouse tumors. 
Molecular carcinogenesis 44 (4), 285–292. 10.1002/mc.20146. 

Baena, R., Salinas, P., 2015. Diet and colorectal cancer. Maturitas 80 (3), 258–264. 
10.1016/j.maturitas.2014.12.017. 

Bailie, L., Loughrey, M.B., Coleman, H.G., 2016. Lifestyle Risk Factors for Serrated 
Colorectal Polyps: A Systematic Review and Meta-Analysis. Gastroenterology. 
10.1053/j.gastro.2016.09.003. 

Baker, E.K., Taylor, S., Gupte, A., Sharp, P.P., Walia, M., Walsh, N.C., Zannettino, A.C.W., 
Chalk, A.M., Burns, C.J., Walkley, C.R., 2015. BET inhibitors induce apoptosis through a 
MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma 
cells. Scientific reports 5, 10120. 10.1038/srep10120. 

Baker, S.P., Grant, P.A., 2007. The SAGA continues: expanding the cellular role of a 
transcriptional co-activator complex. Oncogene 26 (37), 5329–5340. 
10.1038/sj.onc.1210603. 

Barker, N., Ridgway, R.A., van Es, J.H., van de Wetering, M., Begthel, H., van den Born, M., 
Danenberg, E., Clarke, A.R., Sansom, O.J., Clevers, H., 2009. Crypt stem cells as the 
cells-of-origin of intestinal cancer. Nature 457 (7229), 608–611. 10.1038/nature07602. 

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., 
Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., Clevers, H., 2007. Identification of 
stem cells in small intestine and colon by marker gene Lgr5. Nature 449 (7165), 1003–
1007. 10.1038/nature06196. 

Barker, N., van Oudenaarden, A., Clevers, H., 2012. Identifying the stem cell of the intestinal 
crypt: strategies and pitfalls. Cell stem cell 11 (4), 452–460. 10.1016/j.stem.2012.09.009. 

Barmeyer, C., Schulzke, J.D., Fromm, M., 2015. Claudin-related intestinal diseases. 
Seminars in cell & developmental biology 42, 30–38. 10.1016/j.semcdb.2015.05.006. 

Baumgart, D.C., Sandborn, W.J., 2007. Inflammatory bowel disease: clinical aspects and 
established and evolving therapies. Lancet (London, England) 369 (9573), 1641–1657. 
10.1016/S0140-6736(07)60751-X. 



References 

186 

 

Bedi, U., Scheel, A.H., Hennion, M., Begus-Nahrmann, Y., Ruschoff, J., Johnsen, S.A., 2015. 
SUPT6H controls estrogen receptor activity and cellular differentiation by multiple 
epigenomic mechanisms. Oncogene 34 (4), 465–473. 10.1038/onc.2013.558. 

Ben, Q., Sun, Y., Chai, R., Qian, A., Xu, B., Yuan, Y., 2014. Dietary fiber intake reduces risk 
for colorectal adenoma: a meta-analysis. Gastroenterology 146 (3), 689-699.e6. 
10.1053/j.gastro.2013.11.003. 

Bernstein, C.N., Blanchard, J.F., Leslie, W., Wajda, A., Yu, B.N., 2000. The incidence of 
fracture among patients with inflammatory bowel disease. A population-based cohort 
study. Annals of internal medicine 133 (10), 795–799. 

Bernstein, C.N., Fried, M., Krabshuis, J.H., Cohen, H., Eliakim, R., Fedail, S., Gearry, R., 
Goh, K.L., Hamid, S., Khan, A.G., LeMair, A.W., Malfertheiner, Ouyang, Q., Rey, J.F., 
Sood, A., Steinwurz, F., Thomsen, O.O., Thomson, A., Watermeyer, G., 2010. World 
Gastroenterology Organization Practice Guidelines for the diagnosis and management of 
IBD in 2010. Inflammatory bowel diseases 16 (1), 112–124. 10.1002/ibd.21048. 

Berry, R.J., 1900. The True Caecal Apex, or the Vermiform Appendix: Its Minute and 
Comparative Anatomy. Journal of anatomy and physiology 35 (Pt 1), 83-100.9. 

Block, G., Patterson, B., Subar, A., 1992. Fruit, vegetables, and cancer prevention: a review 
of the epidemiological evidence. Nutrition and cancer 18 (1), 1–29. 
10.1080/01635589209514201. 

Boettiger, A.N., Ralph, P.L., Evans, S.N., 2011. Transcriptional regulation: effects of promoter 
proximal pausing on speed, synchrony and reliability. PLoS computational biology 7 (5), 
e1001136. 10.1371/journal.pcbi.1001136. 

Bose, P., Dai, Y., Grant, S., 2014. Histone deacetylase inhibitor (HDACI) mechanisms of 
action: emerging insights. Pharmacology & therapeutics 143 (3), 323–336. 
10.1016/j.pharmthera.2014.04.004. 

Bose, P., Simmons, G.L., Grant, S., 2013. Cyclin-dependent kinase inhibitor therapy for 
hematologic malignancies. Expert opinion on investigational drugs 22 (6), 723–738. 
10.1517/13543784.2013.789859. 

Bosetti, C., Levi, F., Rosato, V., Bertuccio, P., Lucchini, F., Negri, E., La Vecchia, C., 2011. 
Recent trends in colorectal cancer mortality in Europe. International journal of cancer 129 
(1), 180–191. 10.1002/ijc.25653. 

Boyle, P., Ferlay, J., 2005. Mortality and survival in breast and colorectal cancer. Nature 
clinical practice. Oncology 2 (9), 424–425. 10.1038/ncponc0288. 

Brenner, D.J., 2004. Radiation risks potentially associated with low-dose CT screening of 
adult smokers for lung cancer. Radiology 231 (2), 440–445. 10.1148/radiol.2312030880. 

Budinska, E., Popovici, V., Tejpar, S., D'Ario, G., Lapique, N., Sikora, K.O., Di Narzo, A.F., 
Yan, P., Hodgson, J.G., Weinrich, S., Bosman, F., Roth, A., Delorenzi, M., 2013. Gene 
expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. 
The Journal of pathology 231 (1), 63–76. 10.1002/path.4212. 



References 

187 

 

Burns, R., Leal, J., Sullivan, R., Luengo-Fernandez, R., 2016. Economic burden of malignant 
blood disorders across Europe: a population-based cost analysis. The Lancet. 
Haematology 3 (8), e362-70. 10.1016/S2352-3026(16)30062-X. 

Canny, G.O., McCormick, B.A., 2008. Bacteria in the intestine, helpful residents or enemies 
from within? Infection and immunity 76 (8), 3360–3373. 10.1128/IAI.00187-08. 

Carre, C., Szymczak, D., Pidoux, J., Antoniewski, C., 2005. The histone H3 acetylase dGcn5 
is a key player in Drosophila melanogaster metamorphosis. Molecular and cellular biology 
25 (18), 8228–8238. 10.1128/MCB.25.18.8228-8238.2005. 

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., 
Byrne, C.J., Heuer, M.L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.P., Sander, C., 
Schultz, N., 2012. The cBio cancer genomics portal: an open platform for exploring 
multidimensional cancer genomics data. Cancer discovery 2 (5), 401–404. 10.1158/2159-
8290.CD-12-0095. 

Cercek, A., Shia, J., Gollub, M., Chou, J.F., Capanu, M., Raasch, P., Reidy-Lagunes, D., 
Proia, D.A., Vakiani, E., Solit, D.B., Saltz, L.B., 2014. Ganetespib, a novel Hsp90 inhibitor 
in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. 
Clinical colorectal cancer 13 (4), 207–212. 10.1016/j.clcc.2014.09.001. 

Chan, D.S.M., Lau, R., Aune, D., Vieira, R., Greenwood, D.C., Kampman, E., Norat, T., 2011. 
Red and processed meat and colorectal cancer incidence: meta-analysis of prospective 
studies. PloS one 6 (6), e20456. 10.1371/journal.pone.0020456. 

Chang, F., Steelman, L.S., Lee, J.T., Shelton, J.G., Navolanic, P.M., Blalock, W.L., Franklin, 
R.A., McCubrey, J.A., 2003. Signal transduction mediated by the Ras/Raf/MEK/ERK 
pathway from cytokine receptors to transcription factors: potential targeting for therapeutic 
intervention. Leukemia 17 (7), 1263–1293. 10.1038/sj.leu.2402945. 

Chassaing, B., Aitken, J.D., Malleshappa, M., Vijay-Kumar, M., 2014. Dextran sulfate sodium 
(DSS)-induced colitis in mice. Current protocols in immunology 104, Unit 15.25. 
10.1002/0471142735.im1525s104. 

Choi, M., Lim, S., Choi, M.-G., Shim, K.-N., Lee, S.H., 2016. Effectiveness of Capsule 
Endoscopy Compared with Other Diagnostic Modalities in Patients with Small Bowel 
Crohn's Disease: A Meta-Analysis. Gut and liver. 10.5009/gnl16015. 

Clayburgh, D.R., Le Shen, Turner, J.R., 2004. A porous defense: the leaky epithelial barrier 
in intestinal disease. Laboratory investigation; a journal of technical methods and 
pathology 84 (3), 282–291. 10.1038/labinvest.3700050. 

Clevers, H.C., Bevins, C.L., 2013. Paneth cells: maestros of the small intestinal crypts. 
Annual review of physiology 75, 289–311. 10.1146/annurev-physiol-030212-183744. 

Cole, A.J., Clifton-Bligh, R., Marsh, D.J., 2015. Histone H2B monoubiquitination: roles to play 
in human malignancy. Endocrine-related cancer 22 (1), T19-33. 10.1530/ERC-14-0185. 

Colland, F., Formstecher, E., Jacq, X., Reverdy, C., Planquette, C., Conrath, S., Trouplin, V., 
Bianchi, J., Aushev, V.N., Camonis, J., Calabrese, A., Borg-Capra, C., Sippl, W., Collura, 



References 

188 

 

V., Boissy, G., Rain, J.-C., Guedat, P., Delansorne, R., Daviet, L., 2009. Small-molecule 
inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. 
Molecular cancer therapeutics 8 (8), 2286–2295. 10.1158/1535-7163.MCT-09-0097. 

Colman, R.J., Rubin, D.T., 2014. Fecal microbiota transplantation as therapy for inflammatory 
bowel disease: a systematic review and meta-analysis. Journal of Crohn's & colitis 8 (12), 
1569–1581. 10.1016/j.crohns.2014.08.006. 

Comito, D., Cascio, A., Romano, C., 2014. Microbiota biodiversity in inflammatory bowel 
disease. Italian journal of pediatrics 40, 32. 10.1186/1824-7288-40-32. 

Coppede, F., Lopomo, A., Spisni, R., Migliore, L., 2014. Genetic and epigenetic biomarkers 
for diagnosis, prognosis and treatment of colorectal cancer. World journal of 
gastroenterology 20 (4), 943–956. 10.3748/wjg.v20.i4.943. 

Costello, J.F., Fruhwald, M.C., Smiraglia, D.J., Rush, L.J., Robertson, G.P., Gao, X., Wright, 
F.A., Feramisco, J.D., Peltomaki, P., Lang, J.C., Schuller, D.E., Yu, L., Bloomfield, C.D., 
Caligiuri, M.A., Yates, A., Nishikawa, R., Su Huang, H., Petrelli, N.J., Zhang, X., 
O'Dorisio, M.S., Held, W.A., Cavenee, W.K., Plass, C., 2000. Aberrant CpG-island 
methylation has non-random and tumour-type-specific patterns. Nature genetics 24 (2), 
132–138. 10.1038/72785. 

Courtney, K.D., Corcoran, R.B., Engelman, J.A., 2010. The PI3K pathway as drug target in 
human cancer. Journal of clinical oncology : official journal of the American Society of 
Clinical Oncology 28 (6), 1075–1083. 10.1200/JCO.2009.25.3641. 

Cremers, N., Neeb, A., Uhle, T., Dimmler, A., Rothley, M., Allgayer, H., Fodde, R., Sleeman, 
J.P., Thiele, W., 2016. CD24 Is Not Required for Tumor Initiation and Growth in Murine 
Breast and Prostate Cancer Models. PloS one 11 (3), e0151468. 
10.1371/journal.pone.0151468. 

Cummins, J.M., Rago, C., Kohli, M., Kinzler, K.W., Lengauer, C., Vogelstein, B., 2004. 
Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428 (6982), 1 p 
following 486. 10.1038/nature02501. 

Cunningham, D., Atkin, W., Lenz, H.-J., Lynch, H.T., Minsky, B., Nordlinger, B., Starling, N., 
2010. Colorectal cancer. Lancet (London, England) 375 (9719), 1030–1047. 
10.1016/S0140-6736(10)60353-4. 

Dantzer, F., La Rubia, G. de, Menissier-De Murcia, J., Hostomsky, Z., Murcia, G. de, 
Schreiber, V., 2000. Base excision repair is impaired in mammalian cells lacking 
Poly(ADP-ribose) polymerase-1. Biochemistry 39 (25), 7559–7569. 

David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, 
A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., Dutton, R.J., Turnbaugh, 
P.J., 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 
(7484), 559–563. 10.1038/nature12820. 

Davidovich, P., Kearney, C.J., Martin, S.J., 2014. Inflammatory outcomes of apoptosis, 
necrosis and necroptosis. Biological chemistry 395 (10), 1163–1171. 10.1515/hsz-2014-
0164. 



References 

189 

 

Dawood, S., Austin, L., Cristofanilli, M., 2014. Cancer stem cells: implications for cancer 
therapy. Oncology (Williston Park, N.Y.) 28 (12), 1101-7, 1110. 

Despopoulos, A., Silbernagl, S., 2003. Color atlas of physiology, 5th ed. Thieme, Stuttgart, 
436 pp. 

Dexheimer, T.S., Rosenthal, A.S., Liang, Q., Chen, J., Villamil, M.A., Kerns, E.H., Simeonov, 
A., Jadhav, A., Zhuang, Z., Maloney, D.J., 2010. Discovery of ML323 as a Novel Inhibitor 
of the USP1/UAF1 Deubiquitinase Complex, in: Probe Reports from the NIH Molecular 
Libraries Program, Bethesda (MD). 

Dimitriou, N., Griniatsos, J., 2015. Complete mesocolic excision: Techniques and outcomes. 
World journal of gastrointestinal oncology 7 (12), 383–388. 10.4251/wjgo.v7.i12.383. 

Ding, F., Bao, C., Tian, Y., Xiao, H., Wang, M., Xie, X., Hu, F., Mei, J., 2014. USP22 
promotes NSCLC tumorigenesis via MDMX up-regulation and subsequent p53 inhibition. 
International journal of molecular sciences 16 (1), 307–320. 10.3390/ijms16010307. 

Dollive, S., Peterfreund, G.L., Sherrill-Mix, S., Bittinger, K., Sinha, R., Hoffmann, C., Nabel, 
C.S., Hill, D.A., Artis, D., Bachman, M.A., Custers-Allen, R., Grunberg, S., Wu, G.D., 
Lewis, J.D., Bushman, F.D., 2012. A tool kit for quantifying eukaryotic rRNA gene 
sequences from human microbiome samples. Genome biology 13 (7), R60. 10.1186/gb-
2012-13-7-r60. 

Donovan, A., Lima, C.A., Pinkus, J.L., Pinkus, G.S., Zon, L.I., Robine, S., Andrews, N.C., 
2005. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell 
metabolism 1 (3), 191–200. 10.1016/j.cmet.2005.01.003. 

Duan, Y., Huo, D., Gao, J., Wu, H., Ye, Z., Liu, Z., Zhang, K., Shan, L., Zhou, X., Wang, Y., 
Su, D., Ding, X., Shi, L., Wang, Y., Shang, Y., Xuan, C., 2016. Ubiquitin ligase RNF20/40 
facilitates spindle assembly and promotes breast carcinogenesis through stabilizing motor 
protein Eg5. Nature communications 7, 12648. 10.1038/ncomms12648. 

Eccles, D.M., Lunt, P.W., Wallis, Y., Griffiths, M., Sandhu, B., McKay, S., Morton, D., Shea-
Simonds, J., Macdonald, F., 1997. An unusually severe phenotype for familial 
adenomatous polyposis. Archives of disease in childhood 77 (5), 431–435. 

el Marjou, F., Janssen, K.-P., Chang, B.H.-J., Li, M., Hindie, V., Chan, L., Louvard, D., 
Chambon, P., Metzger, D., Robine, S., 2004. Tissue-specific and inducible Cre-mediated 
recombination in the gut epithelium. Genesis (New York, N.Y. : 2000) 39 (3), 186–193. 
10.1002/gene.20042. 

El Zoghbi, M., Cummings, L.C., 2016. New era of colorectal cancer screening. World journal 
of gastrointestinal endoscopy 8 (5), 252–258. 10.4253/wjge.v8.i5.252. 

Ellis, H., 2006. Clinical anatomy: A revision and applied anatomy for clinical students, 11th 
ed. Blackwell Science, Oxford, xiv, 439. 

Engelman, J.A., Luo, J., Cantley, L.C., 2006. The evolution of phosphatidylinositol 3-kinases 
as regulators of growth and metabolism. Nature reviews. Genetics 7 (8), 606–619. 
10.1038/nrg1879. 



References 

190 

 

Falcone, A., Ricci, S., Brunetti, I., Pfanner, E., Allegrini, G., Barbara, C., Crino, L., Benedetti, 
G., Evangelista, W., Fanchini, L., Cortesi, E., Picone, V., Vitello, S., Chiara, S., Granetto, 
C., Porcile, G., Fioretto, L., Orlandini, C., Andreuccetti, M., Masi, G., 2007. Phase III trial 
of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared 
with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for 
metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 25 (13), 1670–
1676. 10.1200/JCO.2006.09.0928. 

Fan, Y.-H., Cheng, J., Vasudevan, S.A., Dou, J., Zhang, H., Patel, R.H., Ma, I.T., Rojas, Y., 
Zhao, Y., Yu, Y., Shohet, J.M., Nuchtern, J.G., Kim, E.S., Yang, J., 2013. USP7 inhibitor 
P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell death & 
disease 4, e867. 10.1038/cddis.2013.400. 

Fang, D., Hawke, D., Zheng, Y., Xia, Y., Meisenhelder, J., Nika, H., Mills, G.B., Kobayashi, 
R., Hunter, T., Lu, Z., 2007. Phosphorylation of beta-catenin by AKT promotes beta-
catenin transcriptional activity. The Journal of biological chemistry 282 (15), 11221–
11229. 10.1074/jbc.M611871200. 

Favoriti, P., Carbone, G., Greco, M., Pirozzi, F., Pirozzi, R.E.M., Corcione, F., 2016. 
Worldwide burden of colorectal cancer: a review. Updates in surgery 68 (1), 7–11. 
10.1007/s13304-016-0359-y. 

Fearon, E.R., 2011. Molecular genetics of colorectal cancer. Annual review of pathology 6, 
479–507. 10.1146/annurev-pathol-011110-130235. 

Fearon, E.R., Vogelstein, B., 1990. A genetic model for colorectal tumorigenesis. Cell 61 (5), 
759–767. 

Feil, S., Valtcheva, N., Feil, R., 2009. Inducible Cre mice. Methods in molecular biology 
(Clifton, N.J.) 530, 343–363. 10.1007/978-1-59745-471-1_18. 

Feinberg, A.P., Tycko, B., 2004. The history of cancer epigenetics. Nature reviews. Cancer 4 
(2), 143–153. 10.1038/nrc1279. 

Feinberg, A.P., Vogelstein, B., 1983. Hypomethylation distinguishes genes of some human 
cancers from their normal counterparts. Nature 301 (5895), 89–92. 

Felekis, T., Katsanos, K., Kitsanou, M., Trakos, N., Theopistos, V., Christodoulou, D., 
Asproudis, I., Tsianos, E.V., 2009. Spectrum and frequency of ophthalmologic 
manifestations in patients with inflammatory bowel disease: a prospective single-center 
study. Inflammatory bowel diseases 15 (1), 29–34. 10.1002/ibd.20584. 

Feng, Y., Sentani, K., Wiese, A., Sands, E., Green, M., Bommer, G.T., Cho, K.R., Fearon, 
E.R., 2013. Sox9 induction, ectopic Paneth cells, and mitotic spindle axis defects in 
mouse colon adenomatous epithelium arising from conditional biallelic Apc inactivation. 
The American journal of pathology 183 (2), 493–503. 10.1016/j.ajpath.2013.04.013. 

Ferlay, 2016. Cancer preventability estimates: ESTIMATED CASES OF US CANCERS 
PREVENTABLE PER YEAR BY DIET, ACTIVITY, AND WEIGHT MANAGEMENT. 



References 

191 

 

http://www.aicr.org/research/research_science_policy_report.html. Accessed 11 
December 2016. 

Ferri, E., Petosa, C., McKenna, C.E., 2016. Bromodomains: Structure, function and 
pharmacology of inhibition. Biochemical pharmacology 106, 1–18. 
10.1016/j.bcp.2015.12.005. 

Fleming, M., Ravula, S., Tatishchev, S.F., Wang, H.L., 2012. Colorectal carcinoma: 
Pathologic aspects. Journal of gastrointestinal oncology 3 (3), 153–173. 
10.3978/j.issn.2078-6891.2012.030. 

Fodde, R., Edelmann, W., Yang, K., van Leeuwen, C., Carlson, C., Renault, B., Breukel, C., 
Alt, E., Lipkin, M., Khan, P.M., 1994. A targeted chain-termination mutation in the mouse 
Apc gene results in multiple intestinal tumors. Proceedings of the National Academy of 
Sciences of the United States of America 91 (19), 8969–8973. 

Fodde, R., Smits, R., 2001. Disease model: familial adenomatous polyposis. Trends in 
molecular medicine 7 (8), 369–373. 

Frick, J.-S., Autenrieth, I.B., 2013. The gut microflora and its variety of roles in health and 
disease. Current topics in microbiology and immunology 358, 273–289. 
10.1007/82_2012_217. 

Friedel, D., Modayil, R., Stavropoulos, S., 2016. Colon Capsule Endoscopy: Review and 
Perspectives. Gastroenterology research and practice 2016, 9643162. 
10.1155/2016/9643162. 

Fuchs, C.S., Marshall, J., Mitchell, E., Wierzbicki, R., Ganju, V., Jeffery, M., Schulz, J., 
Richards, D., Soufi-Mahjoubi, R., Wang, B., Barrueco, J., 2007. Randomized, controlled 
trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of 
metastatic colorectal cancer: results from the BICC-C Study. Journal of clinical oncology : 
official journal of the American Society of Clinical Oncology 25 (30), 4779–4786. 
10.1200/JCO.2007.11.3357. 

Fukata, N., Uchida, K., Kusuda, T., Koyabu, M., Miyoshi, H., Fukui, T., Matsushita, M., 
Nishio, A., Tabata, Y., Okazaki, K., 2011. The effective therapy of cyclosporine A with 
drug delivery system in experimental colitis. Journal of drug targeting 19 (6), 458–467. 
10.3109/1061186X.2010.511224. 

Galeone, C., Pelucchi, C., La Vecchia, C., 2012. Added sugar, glycemic index and load in 
colon cancer risk. Current opinion in clinical nutrition and metabolic care 15 (4), 368–373. 
10.1097/MCO.0b013e3283539f81. 

Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, 
A., Sinha, R., Larsson, E., Cerami, E., Sander, C., Schultz, N., 2013. Integrative analysis 
of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling 6 
(269), pl1. 10.1126/scisignal.2004088. 

Gao, Y., Lin, F., Xu, P., Nie, J., Chen, Z., Su, J., Tang, J., Wu, Q., Li, Y., Guo, Z., Gao, Z., Li, 
D., Shen, J., Ge, S., Tsun, A., Li, B., 2014. USP22 is a positive regulator of NFATc2 on 
promoting IL2 expression. FEBS letters 588 (6), 878–883. 10.1016/j.febslet.2014.02.016. 



References 

192 

 

Garofalo, A., Chirivi, R.G., Scanziani, E., Mayo, J.G., Vecchi, A., Giavazzi, R., 1993. 
Comparative study on the metastatic behavior of human tumors in nude, beige/nude/xid 
and severe combined immunodeficient mice. Invasion & metastasis 13 (2), 82–91. 

Gartner, L.P., Hiatt, J.L., 2014. Color atlas and text of histology, 6th ed. Wolters Kluwer 
Health/Lippincott Williams & Wilkins, Philadelphia, 525 pp. 

Ghoshal, K., Datta, J., Majumder, S., Bai, S., Kutay, H., Motiwala, T., Jacob, S.T., 2005. 5-
Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a 
proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and 
nuclear localization signal. Molecular and cellular biology 25 (11), 4727–4741. 
10.1128/MCB.25.11.4727-4741.2005. 

Giles, R.H., van Es, J.H., Clevers, H., 2003. Caught up in a Wnt storm: Wnt signaling in 
cancer. Biochimica et biophysica acta 1653 (1), 1–24. 

Glinsky, G.V., 2005. Death-from-cancer signatures and stem cell contribution to metastatic 
cancer. Cell cycle (Georgetown, Tex.) 4 (9), 1171–1175. 10.4161/cc.4.9.2001. 

Glinsky, G.V., 2006. Genomic models of metastatic cancer: functional analysis of death-from-
cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling 
phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein 
chromatin silencing pathway. Cell cycle (Georgetown, Tex.) 5 (11), 1208–1216. 
10.4161/cc.5.11.2796. 

Glinsky, G.V., Berezovska, O., Glinskii, A.B., 2005. Microarray analysis identifies a death-
from-cancer signature predicting therapy failure in patients with multiple types of cancer. 
The Journal of clinical investigation 115 (6), 1503–1521. 10.1172/JCI23412. 

Godos, J., Bella, F., Torrisi, A., Sciacca, S., Galvano, F., Grosso, G., 2016. Dietary patterns 
and risk of colorectal adenoma: a systematic review and meta-analysis of observational 
studies. Journal of human nutrition and dietetics : the official journal of the British Dietetic 
Association 29 (6), 757–767. 10.1111/jhn.12395. 

Gramont, A. de, Bosset, J.F., Milan, C., Rougier, P., Bouche, O., Etienne, P.L., Morvan, F., 
Louvet, C., Guillot, T., Francois, E., Bedenne, L., 1997. Randomized trial comparing 
monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin 
and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French 
intergroup study. Journal of clinical oncology : official journal of the American Society of 
Clinical Oncology 15 (2), 808–815. 10.1200/jco.1997.15.2.808. 

Graser, A., Melzer, A., Lindner, E., Nagel, D., Herrmann, K., Stieber, P., Schirra, J., 
Mansmann, U., Reiser, M.F., Goke, B., Kolligs, F.T., 2013. Magnetic resonance 
colonography for the detection of colorectal neoplasia in asymptomatic adults. 
Gastroenterology 144 (4), 743-750.e2. 10.1053/j.gastro.2012.12.041. 

Guariso, G., Gasparetto, M., Visona Dalla Pozza, L., D'Inca, R., Zancan, L., Sturniolo, G., 
Brotto, F., Facchin, P., 2010. Inflammatory bowel disease developing in paediatric and 
adult age. Journal of pediatric gastroenterology and nutrition 51 (6), 698–707. 
10.1097/MPG.0b013e3181da1db8. 



References 

193 

 

Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., Young, R.A., 2007. A chromatin 
landmark and transcription initiation at most promoters in human cells. Cell 130 (1), 77–
88. 10.1016/j.cell.2007.05.042. 

Guinney, J., Dienstmann, R., Wang, X., Reynies, A. de, Schlicker, A., Soneson, C., Marisa, 
L., Roepman, P., Nyamundanda, G., Angelino, P., Bot, B.M., Morris, J.S., Simon, I.M., 
Gerster, S., Fessler, E., De Sousa E Melo, Felipe, Missiaglia, E., Ramay, H., Barras, D., 
Homicsko, K., Maru, D., Manyam, G.C., Broom, B., Boige, V., Perez-Villamil, B., Laderas, 
T., Salazar, R., Gray, J.W., Hanahan, D., Tabernero, J., Bernards, R., Friend, S.H., 
Laurent-Puig, P., Medema, J.P., Sadanandam, A., Wessels, L., Delorenzi, M., Kopetz, S., 
Vermeulen, L., Tejpar, S., 2015. The consensus molecular subtypes of colorectal cancer. 
Nature medicine 21 (11), 1350–1356. 10.1038/nm.3967. 

Guraya, S.Y., 2015. Association of type 2 diabetes mellitus and the risk of colorectal cancer: 
A meta-analysis and systematic review. World journal of gastroenterology 21 (19), 6026–
6031. 10.3748/wjg.v21.i19.6026. 

Gurskii, D.I., Kopytova, D.V., Georgieva, S.G., Nabirochkina, E.N., 2013. SAGA complex: the 
role in viability and development. Molekuliarnaia biologiia 47 (6), 922–926. 

Hafner, M.F., Debus, J., 2016. Radiotherapy for Colorectal Cancer: Current Standards and 
Future Perspectives. Visceral medicine 32 (3), 172–177. 10.1159/000446486. 

Hallberg, B., Rayter, S.I., Downward, J., 1994. Interaction of Ras and Raf in intact 
mammalian cells upon extracellular stimulation. The Journal of biological chemistry 269 
(6), 3913–3916. 

Hamilton S.R., A.L., 2000. World Health Organization Classification of Tumours.: Pathology 
and Genetics of Tumours of the Digestive System. 

Hampel, H., Frankel, W.L., Martin, E., Arnold, M., Khanduja, K., Kuebler, P., Clendenning, M., 
Sotamaa, K., Prior, T., Westman, J.A., Panescu, J., Fix, D., Lockman, J., LaJeunesse, J., 
Comeras, I., La Chapelle, A. de, 2008. Feasibility of screening for Lynch syndrome 
among patients with colorectal cancer. Journal of clinical oncology : official journal of the 
American Society of Clinical Oncology 26 (35), 5783–5788. 10.1200/JCO.2008.17.5950. 

Hatch, Q., Steele, S.R., 2013. Rectal prolapse and intussusception. Gastroenterology clinics 
of North America 42 (4), 837–861. 10.1016/j.gtc.2013.08.002. 

Hemminki, K., Santi, I., Weires, M., Thomsen, H., Sundquist, J., Bermejo, J.L., 2010. Tumor 
location and patient characteristics of colon and rectal adenocarcinomas in relation to 
survival and TNM classes. BMC cancer 10, 688. 10.1186/1471-2407-10-688. 

Herman, J.G., Baylin, S.B., 2003. Gene silencing in cancer in association with promoter 
hypermethylation. The New England journal of medicine 349 (21), 2042–2054. 
10.1056/NEJMra023075. 

Higashi, D., Futami, K., Ishibashi, Y., Egawa, Y., Maekawa, T., Matsui, T., Iwashita, A., 
Kuroki, M., 2011. Clinical course of colorectal cancer in patients with ulcerative colitis. 
Anticancer research 31 (7), 2499–2504. 



References 

194 

 

Hinoi, T., Tani, M., Lucas, P.C., Caca, K., Dunn, R.L., Macri, E., Loda, M., Appelman, H.D., 
Cho, K.R., Fearon, E.R., 2001. Loss of CDX2 expression and microsatellite instability are 
prominent features of large cell minimally differentiated carcinomas of the colon. The 
American journal of pathology 159 (6), 2239–2248. 10.1016/S0002-9440(10)63074-X. 

Hoffman, R.M., 1999. Orthotopic metastatic mouse models for anticancer drug discovery and 
evaluation: a bridge to the clinic. Investigational new drugs 17 (4), 343–359. 

Hollander, D., Vadheim, C.M., Brettholz, E., Petersen, G.M., Delahunty, T., Rotter, J.I., 1986. 
Increased intestinal permeability in patients with Crohn's disease and their relatives. A 
possible etiologic factor. Annals of internal medicine 105 (6), 883–885. 

Honjo, H., Mike, M., Kusanagi, H., Kano, N., 2015. Adult intussusception: a retrospective 
review. World journal of surgery 39 (1), 134–138. 10.1007/s00268-014-2759-9. 

Hooper, L.V., Midtvedt, T., Gordon, J.I., 2002. How host-microbial interactions shape the 
nutrient environment of the mammalian intestine. Annual review of nutrition 22, 283–307. 
10.1146/annurev.nutr.22.011602.092259. 

Hossan, T., Nagarajan, S., Baumgart, S.J., Xie, W., Magallanes, R.T., Hernandez, C., 
Chiaroni, P.-M., Indenbirken, D., Spitzner, M., Thomas-Chollier, M., Grade, M., Thieffry, 
D., Grundhoff, A., Wegwitz, F., Johnsen, S.A., 2016. Histone Chaperone SSRP1 is 
Essential for Wnt Signaling Pathway Activity During Osteoblast Differentiation. Stem cells 
(Dayton, Ohio) 34 (5), 1369–1376. 10.1002/stem.2287. 

Hoyert, D.L., Xu, J., 2012. Deaths: preliminary data for 2011. National vital statistics reports : 
from the Centers for Disease Control and Prevention, National Center for Health 
Statistics, National Vital Statistics System 61 (6), 1–51. 

Hu, J., Liu, Y.-L., Piao, S.-l., Yang, D.-d., Yang, Y.-M., Cai, L., 2012. Expression patterns of 
USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer. Lung 
cancer (Amsterdam, Netherlands) 77 (3), 593–599. 10.1016/j.lungcan.2012.05.112. 

Human Microbiome Project Consortium, 2012. Structure, function and diversity of the healthy 
human microbiome. Nature 486 (7402), 207–214. 10.1038/nature11234. 

Hussain, S.P., Amstad, P., Raja, K., Ambs, S., Nagashima, M., Bennett, W.P., Shields, P.G., 
Ham, A.J., Swenberg, J.A., Marrogi, A.J., Harris, C.C., 2000. Increased p53 mutation load 
in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory 
disease. Cancer research 60 (13), 3333–3337. 

Ibrahim, A., Barnes, D.R., Dunlop, J., Barrowdale, D., Antoniou, A.C., Berg, J.N., 2014. 
Attenuated familial adenomatous polyposis manifests as autosomal dominant late-onset 
colorectal cancer. European journal of human genetics : EJHG 22 (11), 1330–1333. 
10.1038/ejhg.2014.20. 

Ichikawa-Tomikawa, N., Sugimoto, K., Satohisa, S., Nishiura, K., Chiba, H., 2011. Possible 
involvement of tight junctions, extracellular matrix and nuclear receptors in epithelial 
differentiation. Journal of biomedicine & biotechnology 2011, 253048. 
10.1155/2011/253048. 



References 

195 

 

Issa, J.-P., 2008. Colon cancer: it's CIN or CIMP. Clinical cancer research : an official journal 
of the American Association for Cancer Research 14 (19), 5939–5940. 10.1158/1078-
0432.CCR-08-1596. 

Itzen, F., Greifenberg, A.K., Bosken, C.A., Geyer, M., 2014. Brd4 activates P-TEFb for RNA 
polymerase II CTD phosphorylation. Nucleic acids research 42 (12), 7577–7590. 
10.1093/nar/gku449. 

Janne, P.A., Mayer, R.J., 2000. Chemoprevention of colorectal cancer. The New England 
journal of medicine 342 (26), 1960–1968. 10.1056/NEJM200006293422606. 

Jensen, A.B., Larsen, M., Gislum, M., Skriver, M.V., Jepsen, P., Norgaard, B., Sorensen, 
H.T., 2006. Survival after colorectal cancer in patients with ulcerative colitis: a nationwide 
population-based Danish study. The American journal of gastroenterology 101 (6), 1283–
1287. 10.1111/j.1572-0241.2006.00520.x. 

Johansson, M.E.V., Ambort, D., Pelaseyed, T., Schutte, A., Gustafsson, J.K., Ermund, A., 
Subramani, D.B., Holmen-Larsson, J.M., Thomsson, K.A., Bergstrom, J.H., van der Post, 
S., Rodriguez-Pineiro, A.M., Sjovall, H., Backstrom, M., Hansson, G.C., 2011. 
Composition and functional role of the mucus layers in the intestine. Cellular and 
molecular life sciences : CMLS 68 (22), 3635–3641. 10.1007/s00018-011-0822-3. 

Jong, A.E. de, Hendriks, Y.M.C., Kleibeuker, J.H., Boer, S.Y. de, Cats, A., Griffioen, G., 
Nagengast, F.M., Nelis, F.G., Rookus, M.A., Vasen, H.F.A., 2006. Decrease in mortality in 
Lynch syndrome families because of surveillance. Gastroenterology 130 (3), 665–671. 
10.1053/j.gastro.2005.11.032. 

Jung, M., Gelato, K.A., Fernandez-Montalvan, A., Siegel, S., Haendler, B., 2015. Targeting 
BET bromodomains for cancer treatment. Epigenomics 7 (3), 487–501. 
10.2217/epi.14.91. 

Juo, Y.Y., Johnston, F.M., Zhang, D.Y., Juo, H.H., Wang, H., Pappou, E.P., Yu, T., 
Easwaran, H., Baylin, S., van Engeland, M., Ahuja, N., 2014. Prognostic value of CpG 
island methylator phenotype among colorectal cancer patients: a systematic review and 
meta-analysis. Annals of oncology : official journal of the European Society for Medical 
Oncology 25 (12), 2314–2327. 10.1093/annonc/mdu149. 

Kabbarah, O., Mallon, M.A., Pfeifer, J.D., Edelmann, W., Kucherlapati, R., Goodfellow, P.J., 
2003. A panel of repeat markers for detection of microsatellite instability in murine tumors. 
Molecular carcinogenesis 38 (4), 155–159. 10.1002/mc.10157. 

Kaelin, W.G., JR, 2005. The concept of synthetic lethality in the context of anticancer therapy. 
Nature reviews. Cancer 5 (9), 689–698. 10.1038/nrc1691. 

Kaler, P., Godasi, B.N., Augenlicht, L., Klampfer, L., 2009. The NF-kappaB/AKT-dependent 
Induction of Wnt Signaling in Colon Cancer Cells by Macrophages and IL-1beta. Cancer 
microenvironment : official journal of the International Cancer Microenvironment Society 2 
(1), 69–80. 10.1007/s12307-009-0030-y. 



References 

196 

 

Kang, H., O'Connell, J.B., Maggard, M.A., Sack, J., Ko, C.Y., 2005. A 10-year outcomes 
evaluation of mucinous and signet-ring cell carcinoma of the colon and rectum. Diseases 
of the colon and rectum 48 (6), 1161–1168. 10.1007/s10350-004-0932-1. 

Karpiuk, O., Najafova, Z., Kramer, F., Hennion, M., Galonska, C., Konig, A., Snaidero, N., 
Vogel, T., Shchebet, A., Begus-Nahrmann, Y., Kassem, M., Simons, M., Shcherbata, H., 
Beissbarth, T., Johnsen, S.A., 2012. The histone H2B monoubiquitination regulatory 
pathway is required for differentiation of multipotent stem cells. Molecular cell 46 (5), 705–
713. 10.1016/j.molcel.2012.05.022. 

Kearns, K., Dee, A., Fitzgerald, A.P., Doherty, E., Perry, I.J., 2014. Chronic disease burden 
associated with overweight and obesity in Ireland: the effects of a small BMI reduction at 
population level. BMC public health 14, 143. 10.1186/1471-2458-14-143. 

Kim, D.H., Pickhardt, P.J., Taylor, A.J., Leung, W.K., Winter, T.C., Hinshaw, J.L., Gopal, 
D.V., Reichelderfer, M., Hsu, R.H., Pfau, P.R., 2007. CT colonography versus 
colonoscopy for the detection of advanced neoplasia. The New England journal of 
medicine 357 (14), 1403–1412. 10.1056/NEJMoa070543. 

Kim, Y.J., Hong, K.S., Chung, J.W., Kim, J.H., Hahm, K.B., 2010. Prevention of colitis-
associated carcinogenesis with infliximab. Cancer prevention research (Philadelphia, Pa.) 
3 (10), 1314–1333. 10.1158/1940-6207.CAPR-09-0272. 

Klampfer, L., 2011. Cytokines, inflammation and colon cancer. Current cancer drug targets 
11 (4), 451–464. 

Kolligs, F.T., 2016. Diagnostics and Epidemiology of Colorectal Cancer. Visceral medicine 32 
(3), 158–164. 10.1159/000446488. 

Komrakova, M., Stuermer, E.K., Werner, C., Wicke, M., Kolios, L., Sehmisch, S., Tezval, M., 
Daub, F., Martens, T., Witzenhausen, P., Dullin, C., Stuermer, K.M., 2010. Effect of 
human parathyroid hormone hPTH (1-34) applied at different regimes on fracture healing 
and muscle in ovariectomized and healthy rats. Bone 47 (3), 480–492. 
10.1016/j.bone.2010.05.013. 

Kosinsky, R.L., 2013. USP22 and its role in organ maintenance and cellular function. M.Sc. 
thesis. 

Kosinsky, R.L., Wegwitz, F., Hellbach, N., Dobbelstein, M., Mansouri, A., Vogel, T., Begus-
Nahrmann, Y., Johnsen, S.A., 2015. Usp22 deficiency impairs intestinal epithelial lineage 
specification in vivo. Oncotarget 6 (35), 37906–37918. 10.18632/oncotarget.5412. 

Landre, T., Uzzan, B., Nicolas, P., Aparicio, T., Zelek, L., Mary, F., Taleb, C., Des Guetz, G., 
2015. Doublet chemotherapy vs. single-agent therapy with 5FU in elderly patients with 
metastatic colorectal cancer. a meta-analysis. International journal of colorectal disease 
30 (10), 1305–1310. 10.1007/s00384-015-2296-5. 

Landy, J., Ronde, E., English, N., Clark, S.K., Hart, A.L., Knight, S.C., Ciclitira, P.J., Al-Hassi, 
H.O., 2016. Tight junctions in inflammatory bowel diseases and inflammatory bowel 
disease associated colorectal cancer. World journal of gastroenterology 22 (11), 3117–
3126. 10.3748/wjg.v22.i11.3117. 



References 

197 

 

Launois, R., Le Moine, J.-G., Uzzan, B., Fiestas Navarrete, L.I., Benamouzig, R., 2014. 
Systematic review and bivariate/HSROC random-effect meta-analysis of immunochemical 
and guaiac-based fecal occult blood tests for colorectal cancer screening. European 
journal of gastroenterology & hepatology 26 (9), 978–989. 
10.1097/MEG.0000000000000160. 

Lee, D.H., Qi, J., Bradner, J.E., Said, J.W., Doan, N.B., Forscher, C., Yang, H., Koeffler, H.P., 
2015. Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. 
International journal of cancer 136 (9), 2055–2064. 10.1002/ijc.29269. 

Lee, G., Goretsky, T., Managlia, E., Dirisina, R., Singh, A.P., Brown, J.B., May, R., Yang, G.-
Y., Ragheb, J.W., Evers, B.M., Weber, C.R., Turner, J.R., He, X.C., Katzman, R.B., Li, L., 
Barrett, T.A., 2010. Phosphoinositide 3-kinase signaling mediates beta-catenin activation 
in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 139 (3), 869-
81, 881.e1-9. 10.1053/j.gastro.2010.05.037. 

Lee, H.-J., Kim, M.-S., Shin, J.-M., Park, T.-J., Chung, H.-M., Baek, K.-H., 2006. The 
expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene expression 
patterns : GEP 6 (3), 277–284. 10.1016/j.modgep.2005.07.007. 

Lee, J.M., Lee, K.-M., 2016. Endoscopic Diagnosis and Differentiation of Inflammatory Bowel 
Disease. Clinical endoscopy 49 (4), 370–375. 10.5946/ce.2016.090. 

Leopoldo, S., Lorena, B., Cinzia, A., Di Gabriella, C., Angela Luciana, B., Renato, C., 
Antonio, M., Carlo, S., Cristina, P., Stefano, C., Maurizio, T., Luigi, R., Cesare, B., 2008. 
Two subtypes of mucinous adenocarcinoma of the colorectum: clinicopathological and 
genetic features. Annals of surgical oncology 15 (5), 1429–1439. 10.1245/s10434-007-
9757-1. 

Li, L., Osdal, T., Ho, Y., Chun, S., McDonald, T., Agarwal, P., Lin, A., Chu, S., Qi, J., Li, L., 
Hsieh, Y.-T., Dos Santos, C., Yuan, H., Ha, T.-Q., Popa, M., Hovland, R., Bruserud, O., 
Gjertsen, B.T., Kuo, Y.-H., Chen, W., Lain, S., McCormack, E., Bhatia, R., 2014a. SIRT1 
activation by a c-MYC oncogenic network promotes the maintenance and drug resistance 
of human FLT3-ITD acute myeloid leukemia stem cells. Cell stem cell 15 (4), 431–446. 
10.1016/j.stem.2014.08.001. 

Li, L., Wen, S., Wang, B., Gao, W., Zhang, W., Meng, X., Yang, L., Kong, L., 2014b. 
Expression of cancer stem cell marker USP22 in laryngeal squamous cell carcinoma. 
Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology 
head and neck surgery 49 (6), 479–482. 

Li, M., Brooks, C.L., Kon, N., Gu, W., 2004. A dynamic role of HAUSP in the p53-Mdm2 
pathway. Molecular cell 13 (6), 879–886. 

Liebmann, C., 2001. Regulation of MAP kinase activity by peptide receptor signalling 
pathway: paradigms of multiplicity. Cellular signalling 13 (11), 777–785. 

Lilja, A., Weeden, C.E., McArthur, K., Nguyen, T., Donald, A., Wong, Z.X., Dousha, L., 
Bozinovski, S., Vlahos, R., Burns, C.J., Asselin-Labat, M.-L., Anderson, G.P., 2015. 
HSP90 inhibition suppresses lipopolysaccharide-induced lung inflammation in vivo. PloS 
one 10 (1), e0114975. 10.1371/journal.pone.0114975. 



References 

198 

 

Lin, Z., Tan, C., Qiu, Q., Kong, S., Yang, H., Zhao, F., Liu, Z., Li, J., Kong, Q., Gao, B., 
Barrett, T., Yang, G.-Y., Zhang, J., Fang, D., 2015. Ubiquitin-specific protease 22 is a 
deubiquitinase of CCNB1. Cell discovery 1. 10.1038/celldisc.2015.28. 

Lin, Z., Yang, H., Kong, Q., Li, J., Lee, S.-M., Gao, B., Dong, H., Wei, J., Song, J., Zhang, 
D.D., Fang, D., 2012. USP22 antagonizes p53 transcriptional activation by 
deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic 
development. Molecular cell 46 (4), 484–494. 10.1016/j.molcel.2012.03.024. 

Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., 
Lee, L., Ye, Z., Ngo, Q.-M., Edsall, L., Antosiewicz-Bourget, J., Stewart, R., Ruotti, V., 
Millar, A.H., Thomson, J.A., Ren, B., Ecker, J.R., 2009. Human DNA methylomes at base 
resolution show widespread epigenomic differences. Nature 462 (7271), 315–322. 
10.1038/nature08514. 

Liu, J., Shaik, S., Dai, X., Wu, Q., Zhou, X., Wang, Z., Wei, W., 2015a. Targeting the ubiquitin 
pathway for cancer treatment. Biochimica et biophysica acta 1855 (1), 50–60. 
10.1016/j.bbcan.2014.11.005. 

Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., Ripke, S., Lee, 
J.C., Jostins, L., Shah, T., Abedian, S., Cheon, J.H., Cho, J., Daryani, N.E., Franke, L., 
Fuyuno, Y., Hart, A., Juyal, R.C., Juyal, G., Kim, W.H., Morris, A.P., Poustchi, H., 
Newman, W.G., Midha, V., Orchard, T.R., Vahedi, H., Sood, A., Sung, J.J.Y., 
Malekzadeh, R., Westra, H.-J., Yamazaki, K., Yang, S.-K., Barrett, J.C., Franke, A., 
Alizadeh, B.Z., Parkes, M., B K, T., Daly, M.J., Kubo, M., Anderson, C.A., Weersma, R.K., 
2015b. Association analyses identify 38 susceptibility loci for inflammatory bowel disease 
and highlight shared genetic risk across populations. Nature genetics 47 (9), 979–986. 
10.1038/ng.3359. 

Liu, Y., Yang, Y., Xu, H., Dong, X., 2010. Implication of USP22 in the regulation of BMI-1, c-
Myc, p16INK4a, p14ARF, and cyclin D2 expression in primary colorectal carcinomas. 
Diagnostic molecular pathology : the American journal of surgical pathology, part B 19 (4), 
194–200. 10.1097/PDM.0b013e3181e202f2. 

Liu, Y.-L., Jiang, S.-X., Yang, Y.-M., Xu, H., Liu, J.-L., Wang, X.-S., 2012. USP22 acts as an 
oncogene by the activation of BMI-1-mediated INK4a/ARF pathway and Akt pathway. Cell 
biochemistry and biophysics 62 (1), 229–235. 10.1007/s12013-011-9287-0. 

Liu, Y.-L., Yang, Y.-M., Xu, H., Dong, X.-S., 2011. Aberrant expression of USP22 is 
associated with liver metastasis and poor prognosis of colorectal cancer. Journal of 
surgical oncology 103 (3), 283–289. 10.1002/jso.21802. 

Lucke, K., Miehlke, S., Jacobs, E., Schuppler, M., 2006. Prevalence of Bacteroides and 
Prevotella spp. in ulcerative colitis. Journal of medical microbiology 55 (Pt 5), 617–624. 
10.1099/jmm.0.46198-0. 

Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J., 1997. Crystal 
structure of the nucleosome core particle at 2.8 A resolution. Nature 389 (6648), 251–260. 
10.1038/38444. 



References 

199 

 

Lutgens, Maurice W M D, van Oijen, Martijn G H, van der Heijden, Geert J M G, Vleggaar, 
F.P., Siersema, P.D., Oldenburg, B., 2013. Declining risk of colorectal cancer in 
inflammatory bowel disease: an updated meta-analysis of population-based cohort 
studies. Inflammatory bowel diseases 19 (4), 789–799. 10.1097/MIB.0b013e31828029c0. 

Lv, L., Xiao, X.-Y., Gu, Z.-H., Zeng, F.-Q., Huang, L.-Q., Jiang, G.-S., 2011. Silencing USP22 
by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle 
arrest in bladder cancer cells. Molecular and cellular biochemistry 346 (1-2), 11–21. 
10.1007/s11010-010-0585-4. 

Lynch, H.T., 1967. Hereditary Factors in Carcinoma. Springer Berlin Heidelberg, Berlin, 
Heidelberg, 1 online resource (volumes). 

Lynch, H.T., Lynch, P.M., Lanspa, S.J., Snyder, C.L., Lynch, J.F., Boland, C.R., 2009. 
Review of the Lynch syndrome: history, molecular genetics, screening, differential 
diagnosis, and medicolegal ramifications. Clinical genetics 76 (1), 1–18. 10.1111/j.1399-
0004.2009.01230.x. 

Mair, B., Kubicek, S., Nijman, S.M.B., 2014. Exploiting epigenetic vulnerabilities for cancer 
therapeutics. Trends in pharmacological sciences 35 (3), 136–145. 
10.1016/j.tips.2014.01.001. 

Mandel, J.S., Bond, J.H., Church, T.R., Snover, D.C., Bradley, G.M., Schuman, L.M., Ederer, 
F., 1993. Reducing mortality from colorectal cancer by screening for fecal occult blood. 
Minnesota Colon Cancer Control Study. The New England journal of medicine 328 (19), 
1365–1371. 10.1056/NEJM199305133281901. 

Marrie, R.A., Walker, J.R., Graff, L.A., Lix, L.M., Bolton, J.M., Nugent, Z., Targownik, L.E., 
Bernstein, C.N., 2016. Performance of administrative case definitions for depression and 
anxiety in inflammatory bowel disease. Journal of psychosomatic research 89, 107–113. 
10.1016/j.jpsychores.2016.08.014. 

Mayo, M.W., Wang, C.Y., Cogswell, P.C., Rogers-Graham, K.S., Lowe, S.W., Der, C.J., 
Baldwin, A.S., JR, 1997. Requirement of NF-kappaB activation to suppress p53-
independent apoptosis induced by oncogenic Ras. Science (New York, N.Y.) 278 (5344), 
1812–1815. 

Mazzola, P., Radhi, S., Mirandola, L., Annoni, G., Jenkins, M., Cobos, E., Chiriva-Internati, 
M., 2012. Aging, cancer, and cancer vaccines. Immunity & ageing : I & A 9 (1), 4. 
10.1186/1742-4933-9-4. 

McClurg, U.L., Robson, C.N., 2015. Deubiquitinating enzymes as oncotargets. Oncotarget 6 
(12), 9657–9668. 10.18632/oncotarget.3922. 

McDowell, C.L., Bryan Sutton, R., Obermann, W.M.J., 2009. Expression of Hsp90 chaperone 
corrected proteins in human tumor tissue. International journal of biological 
macromolecules 45 (3), 310–314. 10.1016/j.ijbiomac.2009.06.012. 

Meira, L.B., Bugni, J.M., Green, S.L., Lee, C.-W., Pang, B., Borenshtein, D., Rickman, B.H., 
Rogers, A.B., Moroski-Erkul, C.A., McFaline, J.L., Schauer, D.B., Dedon, P.C., Fox, J.G., 
Samson, L.D., 2008. DNA damage induced by chronic inflammation contributes to colon 



References 

200 

 

carcinogenesis in mice. The Journal of clinical investigation 118 (7), 2516–2525. 
10.1172/JCI35073. 

Melling, N., Grimm, N., Simon, R., Stahl, P., Bokemeyer, C., Terracciano, L., Sauter, G., 
Izbicki, J.R., Marx, A.H., 2016. Loss of H2Bub1 Expression is Linked to Poor Prognosis in 
Nodal Negative Colorectal Cancers. Pathology oncology research : POR 22 (1), 95–102. 
10.1007/s12253-015-9977-9. 

Melo-Cardenas, J., Zhang, Y., Zhang, D.D., Fang, D., 2016. Ubiquitin-specific peptidase 22 
functions and its involvement in disease. Oncotarget 7 (28), 44848–44856. 
10.18632/oncotarget.8602. 

Merga, Y.J., O'Hara, A., Burkitt, M.D., Duckworth, C.A., Probert, C.S., Campbell, B.J., 
Pritchard, D.M., 2016. Importance of the alternative NF-kappaB activation pathway in 
inflammation-associated gastrointestinal carcinogenesis. American journal of physiology. 
Gastrointestinal and liver physiology 310 (11), G1081-90. 10.1152/ajpgi.00026.2016. 

Mesange, P., Poindessous, V., Sabbah, M., Escargueil, A.E., Gramont, A. de, Larsen, A.K., 
2014. Intrinsic bevacizumab resistance is associated with prolonged activation of 
autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be 
overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 5 (13), 4709–
4721. 10.18632/oncotarget.1671. 

Mesquita, M.B. de, Civitelli, F., Levine, A., 2008. Epidemiology, genes and inflammatory 
bowel diseases in childhood. Digestive and liver disease : official journal of the Italian 
Society of Gastroenterology and the Italian Association for the Study of the Liver 40 (1), 
3–11. 10.1016/j.dld.2007.07.165. 

Miclea, R.L., Karperien, M., Langers, A.M., Robanus-Maandag, E.C., van Lierop, A., van der 
Hiel, B., Stokkel, M.P., Ballieux, B.E., Oostdijk, W., Wit, J.M., Vasen, H.F., Hamdy, N.A., 
2010. APC mutations are associated with increased bone mineral density in patients with 
familial adenomatous polyposis. Journal of bone and mineral research : the official journal 
of the American Society for Bone and Mineral Research 25 (12), 2624–2632. 
10.1002/jbmr.153. 

Mimnaugh, E.G., Chavany, C., Neckers, L., 1996. Polyubiquitination and proteasomal 
degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by 
geldanamycin. The Journal of biological chemistry 271 (37), 22796–22801. 

Mishra, V.K., Johnsen, S.A., 2014. Targeted therapy of epigenomic regulatory mechanisms 
controlling the epithelial to mesenchymal transition during tumor progression. Cell and 
tissue research 356 (3), 617–630. 10.1007/s00441-014-1912-y. 

Mohiuddin, M., Winter, K., Mitchell, E., Hanna, N., Yuen, A., Nichols, C., Shane, R., 
Hayostek, C., Willett, C., 2006. Randomized phase II study of neoadjuvant combined-
modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 
0012. Journal of clinical oncology : official journal of the American Society of Clinical 
Oncology 24 (4), 650–655. 10.1200/JCO.2005.03.6095. 

Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., Benchimol, 
E.I., Panaccione, R., Ghosh, S., Barkema, H.W., Kaplan, G.G., 2012. Increasing 



References 

201 

 

incidence and prevalence of the inflammatory bowel diseases with time, based on 
systematic review. Gastroenterology 142 (1), 46-54.e42; quiz e30. 
10.1053/j.gastro.2011.10.001. 

Mora, J.R., Andrian, U.H. von, 2008. Differentiation and homing of IgA-secreting cells. 
Mucosal immunology 1 (2), 96–109. 10.1038/mi.2007.14. 

Morales, F., Giordano, A., 2016. Overview of CDK9 as a target in cancer research. Cell cycle 
(Georgetown, Tex.) 15 (4), 519–527. 10.1080/15384101.2016.1138186. 

Munteanu, I., Mastalier, B., 2014. Genetics of colorectal cancer. Journal of medicine and life 
7 (4), 507–511. 

Murata, S., Zhang, C., Finch, N., Zhang, K., Campo, L., Breuer, E.-K., 2016. Predictors and 
Modulators of Synthetic Lethality: An Update on PARP Inhibitors and Personalized 
Medicine. BioMed research international 2016, 2346585. 10.1155/2016/2346585. 

Myrelid, P., Salim, S.Y., Darby, T., Almer, S., Melgar, S., Andersson, P., Soderholm, J.D., 
2015. Effects of anti-inflammatory therapy on bursting pressure of colonic anastomosis in 
murine dextran sulfate sodium induced colitis. Scandinavian journal of gastroenterology 
50 (8), 991–1001. 10.3109/00365521.2014.964760. 

Nechaev, S., Adelman, K., 2011. Pol II waiting in the starting gates: Regulating the transition 
from transcription initiation into productive elongation. Biochimica et biophysica acta 1809 
(1), 34–45. 10.1016/j.bbagrm.2010.11.001. 

Neurath, M.F., 2014. Cytokines in inflammatory bowel disease. Nature reviews. Immunology 
14 (5), 329–342. 10.1038/nri3661. 

Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E.C., 
Biryukov, S., Abbafati, C., Abera, S.F., Abraham, J.P., Abu-Rmeileh, N.M.E., Achoki, T., 
AlBuhairan, F.S., Alemu, Z.A., Alfonso, R., Ali, M.K., Ali, R., Guzman, N.A., Ammar, W., 
Anwari, P., Banerjee, A., Barquera, S., Basu, S., Bennett, D.A., Bhutta, Z., Blore, J., 
Cabral, N., Nonato, I.C., Chang, J.-C., Chowdhury, R., Courville, K.J., Criqui, M.H., 
Cundiff, D.K., Dabhadkar, K.C., Dandona, L., Davis, A., Dayama, A., Dharmaratne, S.D., 
Ding, E.L., Durrani, A.M., Esteghamati, A., Farzadfar, F., Fay, D.F.J., Feigin, V.L., 
Flaxman, A., Forouzanfar, M.H., Goto, A., Green, M.A., Gupta, R., Hafezi-Nejad, N., 
Hankey, G.J., Harewood, H.C., Havmoeller, R., Hay, S., Hernandez, L., Husseini, A., 
Idrisov, B.T., Ikeda, N., Islami, F., Jahangir, E., Jassal, S.K., Jee, S.H., Jeffreys, M., 
Jonas, J.B., Kabagambe, E.K., Khalifa, Shams Eldin Ali Hassan, Kengne, A.P., Khader, 
Y.S., Khang, Y.-H., Kim, D., Kimokoti, R.W., Kinge, J.M., Kokubo, Y., Kosen, S., Kwan, 
G., Lai, T., Leinsalu, M., Li, Y., Liang, X., Liu, S., Logroscino, G., Lotufo, P.A., Lu, Y., Ma, 
J., Mainoo, N.K., Mensah, G.A., Merriman, T.R., Mokdad, A.H., Moschandreas, J., 
Naghavi, M., Naheed, A., Nand, D., Narayan, K.M.V., Nelson, E.L., Neuhouser, M.L., 
Nisar, M.I., Ohkubo, T., Oti, S.O., Pedroza, A., Prabhakaran, D., Roy, N., Sampson, U., 
Seo, H., Sepanlou, S.G., Shibuya, K., Shiri, R., Shiue, I., Singh, G.M., Singh, J.A., 
Skirbekk, V., Stapelberg, N.J.C., Sturua, L., Sykes, B.L., Tobias, M., Tran, B.X., 
Trasande, L., Toyoshima, H., van de Vijver, S., Vasankari, T.J., Veerman, J.L., 
Velasquez-Melendez, G., Vlassov, V.V., Vollset, S.E., Vos, T., Wang, C., Wang, X., 
Weiderpass, E., Werdecker, A., Wright, J.L., Yang, Y.C., Yatsuya, H., Yoon, J., Yoon, S.-
J., Zhao, Y., Zhou, M., Zhu, S., Lopez, A.D., Murray, C.J.L., Gakidou, E., 2014. Global, 



References 

202 

 

regional, and national prevalence of overweight and obesity in children and adults during 
1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 
(London, England) 384 (9945), 766–781. 10.1016/S0140-6736(14)60460-8. 

Nijman, S.M.B., Luna-Vargas, M.P.A., Velds, A., Brummelkamp, T.R., Dirac, A.M.G., Sixma, 
T.K., Bernards, R., 2005. A genomic and functional inventory of deubiquitinating 
enzymes. Cell 123 (5), 773–786. 10.1016/j.cell.2005.11.007. 

Ning, Z., Wang, A., Liang, J., Xie, Y., Liu, J., Feng, L., Yan, Q., Wang, Z., 2014a. USP22 
promotes the G1/S phase transition by upregulating FoxM1 expression via beta-catenin 
nuclear localization and is associated with poor prognosis in stage II pancreatic ductal 
adenocarcinoma. International journal of oncology 45 (4), 1594–1608. 
10.3892/ijo.2014.2531. 

Ning, Z., Wang, A., Liang, J., Xie, Y., Liu, J., Yan, Q., Wang, Z., 2014b. USP22 promotes 
epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells. 
Oncology reports 32 (4), 1451–1458. 10.3892/or.2014.3354. 

Nordgren, S., McPheeters, G., Svaninger, G., Oresland, T., Hulten, L., 1997. Small bowel 
length in inflammatory bowel disease. International journal of colorectal disease 12 (4), 
230–234. 

Novelli, M., 2015. The pathology of hereditary polyposis syndromes. Histopathology 66 (1), 
78–87. 10.1111/his.12590. 

O'Connell, J.B., Maggard, M.A., Ko, C.Y., 2004. Colon cancer survival rates with the new 
American Joint Committee on Cancer sixth edition staging. Journal of the National Cancer 
Institute 96 (19), 1420–1425. 10.1093/jnci/djh275. 

Ohhara, Y., Fukuda, N., Takeuchi, S., Honma, R., Shimizu, Y., Kinoshita, I., Dosaka-Akita, 
H., 2016. Role of targeted therapy in metastatic colorectal cancer. World journal of 
gastrointestinal oncology 8 (9), 642–655. 10.4251/wjgo.v8.i9.642. 

Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., Nakaya, R., 1990. A 
novel method in the induction of reliable experimental acute and chronic ulcerative colitis 
in mice. Gastroenterology 98 (3), 694–702. 

O'Keeffe, B., Fong, Y., Chen, D., Zhou, S., Zhou, Q., 2000. Requirement for a kinase-specific 
chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-
TEFb-mediated tat stimulation of HIV-1 transcription. The Journal of biological chemistry 
275 (1), 279–287. 

Okugawa, Y., Grady, W.M., Goel, A., 2015. Epigenetic Alterations in Colorectal Cancer: 
Emerging Biomarkers. Gastroenterology 149 (5), 1204-1225.e12. 
10.1053/j.gastro.2015.07.011. 

Oldenburg, B., Koningsberger, J.C., Van Berge Henegouwen, G P, van Asbeck, B.S., Marx, 
J.J., 2001. Iron and inflammatory bowel disease. Alimentary pharmacology & therapeutics 
15 (4), 429–438. 



References 

203 

 

Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S., Reinberg, D., 1998. FACT, a factor that 
facilitates transcript elongation through nucleosomes. Cell 92 (1), 105–116. 

Ortega-Gomez, A., Perretti, M., Soehnlein, O., 2013. Resolution of inflammation: an 
integrated view. EMBO molecular medicine 5 (5), 661–674. 10.1002/emmm.201202382. 

Paepe, B. de, Creus, K.K., Martin, J.-J., Weis, J., Bleecker, J.L. de, 2009. A dual role for 
HSP90 and HSP70 in the inflammatory myopathies: from muscle fiber protection to active 
invasion by macrophages. Annals of the New York Academy of Sciences 1173, 463–469. 
10.1111/j.1749-6632.2009.04812.x. 

Pancione, M., Remo, A., Colantuoni, V., 2012. Genetic and epigenetic events generate 
multiple pathways in colorectal cancer progression. Pathology research international 
2012, 509348. 10.1155/2012/509348. 

Panda, S., El khader, I., Casellas, F., Lopez Vivancos, J., Garcia Cors, M., Santiago, A., 
Cuenca, S., Guarner, F., Manichanh, C., 2014. Short-term effect of antibiotics on human 
gut microbiota. PloS one 9 (4), e95476. 10.1371/journal.pone.0095476. 

Patel, S.G., Ahnen, D.J., 2012. Familial colon cancer syndromes: an update of a rapidly 
evolving field. Current gastroenterology reports 14 (5), 428–438. 10.1007/s11894-012-
0280-6. 

Pavri, R., Zhu, B., Li, G., Trojer, P., Mandal, S., Shilatifard, A., Reinberg, D., 2006. Histone 
H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA 
polymerase II. Cell 125 (4), 703–717. 10.1016/j.cell.2006.04.029. 

Perse, M., Cerar, A., 2012. Dextran sodium sulphate colitis mouse model: traps and tricks. 
Journal of biomedicine & biotechnology 2012, 718617. 10.1155/2012/718617. 

Petersson, J., Schreiber, O., Hansson, G.C., Gendler, S.J., Velcich, A., Lundberg, J.O., 
Roos, S., Holm, L., Phillipson, M., 2011. Importance and regulation of the colonic mucus 
barrier in a mouse model of colitis. American journal of physiology. Gastrointestinal and 
liver physiology 300 (2), G327-33. 10.1152/ajpgi.00422.2010. 

Peuker, K., Muff, S., Wang, J., Kunzel, S., Bosse, E., Zeissig, Y., Luzzi, G., Basic, M., Strigli, 
A., Ulbricht, A., Kaser, A., Arlt, A., Chavakis, T., van den Brink, Gijs R, Schafmayer, C., 
Egberts, J.-H., Becker, T., Bianchi, M.E., Bleich, A., Rocken, C., Hampe, J., Schreiber, S., 
Baines, J.F., Blumberg, R.S., Zeissig, S., 2016. Epithelial calcineurin controls microbiota-
dependent intestinal tumor development. Nature medicine 22 (5), 506–515. 
10.1038/nm.4072. 

Pickart, C.M., 2001. Mechanisms underlying ubiquitination. Annual review of biochemistry 70, 
503–533. 10.1146/annurev.biochem.70.1.503. 

Prenzel, T., Begus-Nahrmann, Y., Kramer, F., Hennion, M., Hsu, C., Gorsler, T., Hintermair, 
C., Eick, D., Kremmer, E., Simons, M., Beissbarth, T., Johnsen, S.A., 2011. Estrogen-
dependent gene transcription in human breast cancer cells relies upon proteasome-
dependent monoubiquitination of histone H2B. Cancer research 71 (17), 5739–5753. 
10.1158/0008-5472.CAN-11-1896. 



References 

204 

 

Proia, D.A., Bates, R.C., 2014. Ganetespib and HSP90: translating preclinical hypotheses 
into clinical promise. Cancer research 74 (5), 1294–1300. 10.1158/0008-5472.CAN-13-
3263. 

Qadri, S.M., Mahmud, H., Lang, E., Gu, S., Bobbala, D., Zelenak, C., Jilani, K., Siegfried, A., 
Foller, M., Lang, F., 2012. Enhanced suicidal erythrocyte death in mice carrying a loss-of-
function mutation of the adenomatous polyposis coli gene. Journal of cellular and 
molecular medicine 16 (5), 1085–1093. 10.1111/j.1582-4934.2011.01387.x. 

Qi, D., Larsson, J., Mannervik, M., 2004. Drosophila Ada2b is required for viability and normal 
histone H3 acetylation. Molecular and cellular biology 24 (18), 8080–8089. 
10.1128/MCB.24.18.8080-8089.2004. 

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., 
Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., 
Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.-M., Hansen, T., 
Le Paslier, D., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., 
Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., 
Yang, H., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., 
Parkhill, J., Weissenbach, J., Bork, P., Ehrlich, S.D., Wang, J., 2010. A human gut 
microbial gene catalogue established by metagenomic sequencing. Nature 464 (7285), 
59–65. 10.1038/nature08821. 

Rakoff-Nahoum, S., Bousvaros, A., 2010. Innate and adaptive immune connections in 
inflammatory bowel diseases. Current opinion in gastroenterology 26 (6), 572–577. 
10.1097/MOG.0b013e32833f126d. 

Ramalingam, S.S., Maitland, M.L., Frankel, P., Argiris, A.E., Koczywas, M., Gitlitz, B., 
Thomas, S., Espinoza-Delgado, I., Vokes, E.E., Gandara, D.R., Belani, C.P., 2010. 
Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line 
therapy of advanced non-small-cell lung cancer. Journal of clinical oncology : official 
journal of the American Society of Clinical Oncology 28 (1), 56–62. 
10.1200/JCO.2009.24.9094. 

Rehman, A., Lepage, P., Nolte, A., Hellmig, S., Schreiber, S., Ott, S.J., 2010. Transcriptional 
activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease 
patients. Journal of medical microbiology 59 (Pt 9), 1114–1122. 10.1099/jmm.0.021170-0. 

Renz, H., Mutius, E. von, Brandtzaeg, P., Cookson, W.O., Autenrieth, I.B., Haller, D., 2011. 
Gene-environment interactions in chronic inflammatory disease. Nature immunology 12 
(4), 273–277. 10.1038/ni0411-273. 

Reverdy, C., Conrath, S., Lopez, R., Planquette, C., Atmanene, C., Collura, V., Harpon, J., 
Battaglia, V., Vivat, V., Sippl, W., Colland, F., 2012. Discovery of specific inhibitors of 
human USP7/HAUSP deubiquitinating enzyme. Chemistry & biology 19 (4), 467–477. 
10.1016/j.chembiol.2012.02.007. 

Reya, T., Clevers, H., 2005. Wnt signalling in stem cells and cancer. Nature 434 (7035), 843–
850. 10.1038/nature03319. 



References 

205 

 

Rhoades, R., Tanner, G.A., 2003. Medical physiology, 2nd ed. Lippincott Williams & Wilkins, 
Philadelphia, x, 781. 

Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., 
Pandey, A., Chinnaiyan, A.M., 2004. ONCOMINE: a cancer microarray database and 
integrated data-mining platform. Neoplasia (New York, N.Y.) 6 (1), 1–6. 

Richardson, P.G., Hideshima, T., Anderson, K.C., 2003. Bortezomib (PS-341): a novel, first-
in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. 
Cancer control : journal of the Moffitt Cancer Center 10 (5), 361–369. 

Richardson, P.G., Hungria, V.T.M., Yoon, S.-S., Beksac, M., Dimopoulos, M.A., Elghandour, 
A., Jedrzejczak, W.W., Guenther, A., Nakorn, T.N., Siritanaratkul, N., Schlossman, R.L., 
Hou, J., Moreau, P., Lonial, S., Lee, J.H., Einsele, H., Sopala, M., Bengoudifa, B.-R., 
Corrado, C., Binlich, F., San-Miguel, J.F., 2016. Panobinostat plus bortezomib and 
dexamethasone in previously treated multiple myeloma: outcomes by prior treatment. 
Blood 127 (6), 713–721. 10.1182/blood-2015-09-665018. 

Richmond, T.J., Davey, C.A., 2003. The structure of DNA in the nucleosome core. Nature 
423 (6936), 145–150. 10.1038/nature01595. 

Riihimaki, M., Hemminki, A., Sundquist, J., Hemminki, K., 2016. Patterns of metastasis in 
colon and rectal cancer. Scientific reports 6, 29765. 10.1038/srep29765. 

Robanus-Maandag, E.C., Koelink, P.J., Breukel, C., Salvatori, D.C.F., Jagmohan-Changur, 
S.C., Bosch, C.A.J., Verspaget, H.W., Devilee, P., Fodde, R., Smits, R., 2010. A new 
conditional Apc-mutant mouse model for colorectal cancer. Carcinogenesis 31 (5), 946–
952. 10.1093/carcin/bgq046. 

Robertis, M. de, Massi, E., Poeta, M.L., Carotti, S., Morini, S., Cecchetelli, L., Signori, E., 
Fazio, V.M., 2011. The AOM/DSS murine model for the study of colon carcinogenesis: 
From pathways to diagnosis and therapy studies. Journal of carcinogenesis 10, 9. 
10.4103/1477-3163.78279. 

Roda, G., Sartini, A., Zambon, E., Calafiore, A., Marocchi, M., Caponi, A., Belluzzi, A., Roda, 
E., 2010. Intestinal epithelial cells in inflammatory bowel diseases. World journal of 
gastroenterology 16 (34), 4264–4271. 

Rogers, M.A.M., Aronoff, D.M., 2016. The influence of non-steroidal anti-inflammatory drugs 
on the gut microbiome. Clinical microbiology and infection : the official publication of the 
European Society of Clinical Microbiology and Infectious Diseases 22 (2), 178.e1-9. 
10.1016/j.cmi.2015.10.003. 

Rogler, G., 2014. Chronic ulcerative colitis and colorectal cancer. Cancer letters 345 (2), 
235–241. 10.1016/j.canlet.2013.07.032. 

Roslani, A.C., Abdullah, T., Arumugam, K., 2012. Screening for colorectal neoplasias with 
fecal occult blood tests: false-positive impact of non-dietary restriction. Asian Pacific 
journal of cancer prevention : APJCP 13 (1), 237–241. 



References 

206 

 

Round, J.L., Mazmanian, S.K., 2009. The gut microbiota shapes intestinal immune responses 
during health and disease. Nature reviews. Immunology 9 (5), 313–323. 10.1038/nri2515. 

Rozen, P., Macrae, F., 2006. Familial adenomatous polyposis: The practical applications of 
clinical and molecular screening. Familial cancer 5 (3), 227–235. 10.1007/s10689-005-
5674-2. 

Rozen, P., Samuel, Z., Rabau, M., Goldman, G., Shomrat, R., Legum, C., Orr-Urtreger, A., 
2001. Familial adenomatous polyposis at the Tel Aviv Medical Center: demographic and 
clinical features. Familial cancer 1 (2), 75–82. 

Ruemmele, F.M., 2010. Pediatric inflammatory bowel diseases: coming of age. Current 
opinion in gastroenterology 26 (4), 332–336. 10.1097/MOG.0b013e328339ec2d. 

Ryan, K.M., Phillips, A.C., Vousden, K.H., 2001. Regulation and function of the p53 tumor 
suppressor protein. Current opinion in cell biology 13 (3), 332–337. 

Sadanandam, A., Lyssiotis, C.A., Homicsko, K., Collisson, E.A., Gibb, W.J., Wullschleger, S., 
Ostos, L.C.G., Lannon, W.A., Grotzinger, C., Del Rio, M., Lhermitte, B., Olshen, A.B., 
Wiedenmann, B., Cantley, L.C., Gray, J.W., Hanahan, D., 2013. A colorectal cancer 
classification system that associates cellular phenotype and responses to therapy. Nature 
medicine 19 (5), 619–625. 10.1038/nm.3175. 

Saidel-Odes, L., Odes, S., 2014. Hygiene hypothesis in inflammatory bowel disease. Annals 
of gastroenterology : quarterly publication of the Hellenic Society of Gastroenterology 27 
(3), 189–190. 

Samara, N.L., Datta, A.B., Berndsen, C.E., Zhang, X., Yao, T., Cohen, R.E., Wolberger, C., 
2010. Structural insights into the assembly and function of the SAGA deubiquitinating 
module. Science (New York, N.Y.) 328 (5981), 1025–1029. 10.1126/science.1190049. 

Sanderson, I.R., 2014. Growth problems in children with IBD. Nature reviews. 
Gastroenterology & hepatology 11 (10), 601–610. 10.1038/nrgastro.2014.102. 

San-Miguel, J.F., Hungria, V.T.M., Yoon, S.-S., Beksac, M., Dimopoulos, M.A., Elghandour, 
A., Jedrzejczak, W.W., Gunther, A., Nakorn, T.N., Siritanaratkul, N., Corradini, P., 
Chuncharunee, S., Lee, J.-J., Schlossman, R.L., Shelekhova, T., Yong, K., Tan, D., 
Numbenjapon, T., Cavenagh, J.D., Hou, J., LeBlanc, R., Nahi, H., Qiu, L., Salwender, H., 
Pulini, S., Moreau, P., Warzocha, K., White, D., Blade, J., Chen, W., La Rubia, J. de, 
Gimsing, P., Lonial, S., Kaufman, J.L., Ocio, E.M., Veskovski, L., Sohn, S.K., Wang, M.-
C., Lee, J.H., Einsele, H., Sopala, M., Corrado, C., Bengoudifa, B.-R., Binlich, F., 
Richardson, P.G., 2014. Panobinostat plus bortezomib and dexamethasone versus 
placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and 
refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. The 
Lancet. Oncology 15 (11), 1195–1206. 10.1016/S1470-2045(14)70440-1. 

Sann, H., Erichsen, J.v., Hessmann, M., Pahl, A., Hoffmeyer, A., 2013. Efficacy of drugs used 
in the treatment of IBD and combinations thereof in acute DSS-induced colitis in mice. 
Life sciences 92 (12), 708–718. 10.1016/j.lfs.2013.01.028. 



References 

207 

 

Sauer, R., Becker, H., Hohenberger, W., Rodel, C., Wittekind, C., Fietkau, R., Martus, P., 
Tschmelitsch, J., Hager, E., Hess, C.F., Karstens, J.-H., Liersch, T., Schmidberger, H., 
Raab, R., 2004. Preoperative versus postoperative chemoradiotherapy for rectal cancer. 
The New England journal of medicine 351 (17), 1731–1740. 10.1056/NEJMoa040694. 

Savage, D.C., 1977. Microbial ecology of the gastrointestinal tract. Annual review of 
microbiology 31, 107–133. 10.1146/annurev.mi.31.100177.000543. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, 
S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., 
Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-
image analysis. Nature methods 9 (7), 676–682. 10.1038/nmeth.2019. 

Shahbazi, J., Liu, P.Y., Atmadibrata, B., Bradner, J.E., Marshall, G.M., Lock, R.B., Liu, T., 
2016. The Bromodomain Inhibitor JQ1 and the Histone Deacetylase Inhibitor 
Panobinostat Synergistically Reduce N-Myc Expression and Induce Anticancer Effects. 
Clinical cancer research : an official journal of the American Association for Cancer 
Research 22 (10), 2534–2544. 10.1158/1078-0432.CCR-15-1666. 

Sheaffer, K.L., Kim, R., Aoki, R., Elliott, E.N., Schug, J., Burger, L., Schubeler, D., Kaestner, 
K.H., 2014. DNA methylation is required for the control of stem cell differentiation in the 
small intestine. Genes & development 28 (6), 652–664. 10.1101/gad.230318.113. 

Shen, S., Wong, C.H., 2016. Bugging inflammation: role of the gut microbiota. Clinical & 
translational immunology 5 (4), e72. 10.1038/cti.2016.12. 

Shenoy, S., 2016. Genetic risks and familial associations of small bowel carcinoma. World 
journal of gastrointestinal oncology 8 (6), 509–519. 10.4251/wjgo.v8.i6.509. 

Sheth, K.R., Clary, B.M., 2005. Management of hepatic metastases from colorectal cancer. 
Clinics in colon and rectal surgery 18 (3), 215–223. 10.1055/s-2005-916282. 

Shim, J., Karin, M., 2002. The control of mRNA stability in response to extracellular stimuli. 
Molecules and cells 14 (3), 323–331. 

Slotkin, T.A., Seidler, F.J., 1975. Acute and chronic effects of nicotine on synthesis and 
storage of catecholamines in the rat adrenal medulla. Life sciences 16 (10), 1613–1622. 

Smith, D.M., 1977. Health care of people at work-agricultural workers. The Journal of the 
Society of Occupational Medicine 27 (3), 87–92. 

Smith, G., Carey, F.A., Beattie, J., Wilkie, M.J.V., Lightfoot, T.J., Coxhead, J., Garner, R.C., 
Steele, R.J.C., Wolf, C.R., 2002. Mutations in APC, Kirsten-ras, and p53--alternative 
genetic pathways to colorectal cancer. Proceedings of the National Academy of Sciences 
of the United States of America 99 (14), 9433–9438. 10.1073/pnas.122612899. 

Smith, R.A., Eschenbach, A.C. von, Wender, R., Levin, B., Byers, T., Rothenberger, D., 
Brooks, D., Creasman, W., Cohen, C., Runowicz, C., Saslow, D., Cokkinides, V., Eyre, 
H., 2001. American Cancer Society guidelines for the early detection of cancer: update of 
early detection guidelines for prostate, colorectal, and endometrial cancers. Also: update 



References 

208 

 

2001--testing for early lung cancer detection. CA: a cancer journal for clinicians 51 (1), 38-
75; quiz 77-80. 

Solarova, Z., Mojzis, J., Solar, P., 2015. Hsp90 inhibitor as a sensitizer of cancer cells to 
different therapies (review). International journal of oncology 46 (3), 907–926. 
10.3892/ijo.2014.2791. 

Sommer, F., Backhed, F., 2013. The gut microbiota--masters of host development and 
physiology. Nature reviews. Microbiology 11 (4), 227–238. 10.1038/nrmicro2974. 

Souza, E.L., Elian, S.D., Paula, L.M., Garcia, C.C., Vieira, A.T., Teixeira, M.M., Arantes, 
R.M., Nicoli, J.R., Martins, F.S., 2016. Escherichia coli strain Nissle 1917 ameliorates 
experimental colitis by modulating intestinal permeability, the inflammatory response and 
clinical signs in a faecal transplantation model. Journal of medical microbiology 65 (3), 
201–210. 10.1099/jmm.0.000222. 

Sowa, M.E., Bennett, E.J., Gygi, S.P., Harper, J.W., 2009. Defining the human 
deubiquitinating enzyme interaction landscape. Cell 138 (2), 389–403. 
10.1016/j.cell.2009.04.042. 

Strahl, B.D., Allis, C.D., 2000. The language of covalent histone modifications. Nature 403 
(6765), 41–45. 10.1038/47412. 

Subramaniam, R., Mizoguchi, A., Mizoguchi, E., 2016. Mechanistic roles of epithelial and 
immune cell signaling during the development of colitis-associated cancer. Cancer 
research frontiers 2 (1), 1–21. 10.17980/2016.1. 

Sulciner, D.J., Irani, K., Yu, Z.X., Ferrans, V.J., Goldschmidt-Clermont, P., Finkel, T., 1996. 
rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB 
activation. Molecular and cellular biology 16 (12), 7115–7121. 

Supek, F., Bosnjak, M., Skunca, N., Smuc, T., 2011. REVIGO summarizes and visualizes 
long lists of gene ontology terms. PloS one 6 (7), e21800. 10.1371/journal.pone.0021800. 

Sussman, R.T., Stanek, T.J., Esteso, P., Gearhart, J.D., Knudsen, K.E., McMahon, S.B., 
2013. The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic 
stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 
(SOX2). The Journal of biological chemistry 288 (33), 24234–24246. 
10.1074/jbc.M113.469783. 

Swidsinski, A., Ladhoff, A., Pernthaler, A., Swidsinski, S., Loening-Baucke, V., Ortner, M., 
Weber, J., Hoffmann, U., Schreiber, S., Dietel, M., Lochs, H., 2002. Mucosal flora in 
inflammatory bowel disease. Gastroenterology 122 (1), 44–54. 

Taipale, J., Beachy, P.A., 2001. The Hedgehog and Wnt signalling pathways in cancer. 
Nature 411 (6835), 349–354. 10.1038/35077219. 

Taketo, M.M., Edelmann, W., 2009. Mouse models of colon cancer. Gastroenterology 136 
(3), 780–798. 



References 

209 

 

Tan, K.Y., Tan, S.-M., Tan, A.G.S., Chen, C.Y.Y., Chng, H.-C., Hoe, M.N.Y., 2003. Adult 
intussusception: experience in Singapore. ANZ journal of surgery 73 (12), 1044–1047. 

Tarcic, O., Pateras, I.S., Cooks, T., Shema, E., Kanterman, J., Ashkenazi, H., Boocholez, H., 
Hubert, A., Rotkopf, R., Baniyash, M., Pikarsky, E., Gorgoulis, V.G., Oren, M., 2016. 
RNF20 Links Histone H2B Ubiquitylation with Inflammation and Inflammation-Associated 
Cancer. Cell reports 14 (6), 1462–1476. 10.1016/j.celrep.2016.01.020. 

The Medical Letter, I., 2014. A stool DNA test (Cologuard) for colorectal cancer screening. 
The Medical letter on drugs and therapeutics 56 (1453), 100–101. 

Theresa Gorsler, 2013. The role and regulation of histone H2B monoubiquitination during 
tumorigenesis. PhD Thesis, Göttingen. 

Thirunavukarasu, P., Sathaiah, M., Singla, S., Sukumar, S., Karunamurthy, A., 
Pragatheeshwar, K.D., Lee, K.K.W., Zeh, H.3., Kane, K.M., Bartlett, D.L., 2010. Medullary 
carcinoma of the large intestine: a population based analysis. International journal of 
oncology 37 (4), 901–907. 

Tian, Z., D'Arcy, P., Wang, X., Ray, A., Tai, Y.-T., Hu, Y., Carrasco, R.D., Richardson, P., 
Linder, S., Chauhan, D., Anderson, K.C., 2014. A novel small molecule inhibitor of 
deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and 
overcomes bortezomib resistance. Blood 123 (5), 706–716. 10.1182/blood-2013-05-
500033. 

Tiwari, A.K., Roy, H.K., 2012. Progress against cancer (1971-2011): how far have we come? 
Journal of internal medicine 271 (4), 392–399. 10.1111/j.1365-2796.2011.02462.x. 

Torres, I.O., Fujimori, D.G., 2015. Functional coupling between writers, erasers and readers 
of histone and DNA methylation. Current opinion in structural biology 35, 68–75. 
10.1016/j.sbi.2015.09.007. 

Townsend, N., Nichols, M., Scarborough, P., Rayner, M., 2015. Cardiovascular disease in 
Europe 2015: epidemiological update. European heart journal 36 (40), 2673–2674. 

Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J.G., Baylin, S.B., Issa, J.P., 1999. CpG 
island methylator phenotype in colorectal cancer. Proceedings of the National Academy of 
Sciences of the United States of America 96 (15), 8681–8686. 

Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., Gordon, J.I., 2009. The 
effect of diet on the human gut microbiome: a metagenomic analysis in humanized 
gnotobiotic mice. Science translational medicine 1 (6), 6ra14. 
10.1126/scitranslmed.3000322. 

Udo, I.A., Abudu, E.K., Uduma, F., 2016. Adult intussusception: An 8 years institutional 
review. Nigerian medical journal : journal of the Nigeria Medical Association 57 (4), 204–
207. 10.4103/0300-1652.188324. 

Upasana Bedi, 2013. Regulation of H2B monoubiquitination pathway in breast cancer. Ph.D. 
Thesis, Göttingen. 



References 

210 

 

van der Flier, Laurens G, Clevers, H., 2009. Stem cells, self-renewal, and differentiation in 
the intestinal epithelium. Annual review of physiology 71, 241–260. 
10.1146/annurev.physiol.010908.163145. 

van der Flier, Laurens G, Haegebarth, A., Stange, D.E., van de Wetering, M., Clevers, H., 
2009. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of 
colorectal cancer cells. Gastroenterology 137 (1), 15–17. 10.1053/j.gastro.2009.05.035. 

van der Sluis, M., De Koning, Barbara A E, De Bruijn, Adrianus C J M, Velcich, A., Meijerink, 
J.P.P., van Goudoever, J.B., Buller, H.A., Dekker, J., van Seuningen, I., Renes, I.B., 
Einerhand, A.W.C., 2006. Muc2-deficient mice spontaneously develop colitis, indicating 
that MUC2 is critical for colonic protection. Gastroenterology 131 (1), 117–129. 
10.1053/j.gastro.2006.04.020. 

Vasen, H.F., Watson, P., Mecklin, J.P., Lynch, H.T., 1999. New clinical criteria for hereditary 
nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International 
Collaborative group on HNPCC. Gastroenterology 116 (6), 1453–1456. 

Veeman, M.T., Slusarski, D.C., Kaykas, A., Louie, S.H., Moon, R.T., 2003. Zebrafish prickle, 
a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Current 
biology : CB 13 (8), 680–685. 

Verhulst, J., Ferdinande, L., Demetter, P., Ceelen, W., 2012. Mucinous subtype as prognostic 
factor in colorectal cancer: a systematic review and meta-analysis. Journal of clinical 
pathology 65 (5), 381–388. 10.1136/jclinpath-2011-200340. 

Vilar, E., Gruber, S.B., 2010. Microsatellite instability in colorectal cancer-the stable evidence. 
Nature reviews. Clinical oncology 7 (3), 153–162. 10.1038/nrclinonc.2009.237. 

Vleugels, J.L.A., van Lanschot, Meta C J, Dekker, E., 2016. Colorectal cancer screening by 
colonoscopy: putting it into perspective. Digestive endoscopy : official journal of the Japan 
Gastroenterological Endoscopy Society 28 (3), 250–259. 10.1111/den.12533. 

Voskoglou-Nomikos, T., Pater, J.L., Seymour, L., 2003. Clinical predictive value of the in vitro 
cell line, human xenograft, and mouse allograft preclinical cancer models. Clinical cancer 
research : an official journal of the American Association for Cancer Research 9 (11), 
4227–4239. 

Wang, E., Kawaoka, S., Yu, M., Shi, J., Ni, T., Yang, W., Zhu, J., Roeder, R.G., Vakoc, C.R., 
2013. Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. 
Proceedings of the National Academy of Sciences of the United States of America 110 
(10), 3901–3906. 10.1073/pnas.1301045110. 

Wang, Y., Duan, H., Yang, H., Lin, J., 2015. A pooled analysis of alcohol intake and 
colorectal cancer. International journal of clinical and experimental medicine 8 (5), 6878–
6889. 

Weber, A., Heinlein, M., Dengjel, J., Alber, C., Singh, P.K., Hacker, G., 2016. The 
deubiquitinase Usp27x stabilizes the BH3-only protein Bim and enhances apoptosis. 
EMBO reports 17 (5), 724–738. 10.15252/embr.201541392. 



References 

211 

 

White, M.C., Holman, D.M., Boehm, J.E., Peipins, L.A., Grossman, M., Henley, S.J., 2014. 
Age and cancer risk: a potentially modifiable relationship. American journal of preventive 
medicine 46 (3 Suppl 1), S7-15. 10.1016/j.amepre.2013.10.029. 

Whitesell, L., Lindquist, S.L., 2005. HSP90 and the chaperoning of cancer. Nature reviews. 
Cancer 5 (10), 761–772. 10.1038/nrc1716. 

Wicha, M.S., Liu, S., Dontu, G., 2006. Cancer stem cells: an old idea--a paradigm shift. 
Cancer research 66 (4), 1883-90; discussion 1895-6. 10.1158/0008-5472.CAN-05-3153. 

Wu, N., Yang, X., Zhang, R., Li, J., Xiao, X., Hu, Y., Chen, Y., Yang, F., Lu, N., Wang, Z., 
Luan, C., Liu, Y., Wang, B., Xiang, C., Wang, Y., Zhao, F., Gao, G.F., Wang, S., Li, L., 
Zhang, H., Zhu, B., 2013. Dysbiosis signature of fecal microbiota in colorectal cancer 
patients. Microbial ecology 66 (2), 462–470. 10.1007/s00248-013-0245-9. 

Xavier, R.J., Podolsky, D.K., 2007. Unravelling the pathogenesis of inflammatory bowel 
disease. Nature 448 (7152), 427–434. 10.1038/nature06005. 

Xiao, H., Tian, Y., Yang, Y., Hu, F., Xie, X., Mei, J., Ding, F., 2015. USP22 acts as an 
oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer. 
Biochemical and biophysical research communications 460 (3), 703–708. 
10.1016/j.bbrc.2015.03.093. 

Xu, H., Liu, Y.-L., Yang, Y.-M., Dong, X.-S., 2012. Knock-down of ubiquitin-specific protease 
22 by micro-RNA interference inhibits colorectal cancer growth. International journal of 
colorectal disease 27 (1), 21–30. 10.1007/s00384-011-1275-8. 

Yang, D.-d., Cui, B.-B., Sun, L.-y., Zheng, H.-q., Huang, Q., Tong, J.-X., Zhang, Q.-F., 2011. 
The co-expression of USP22 and BMI-1 may promote cancer progression and predict 
therapy failure in gastric carcinoma. Cell biochemistry and biophysics 61 (3), 703–710. 
10.1007/s12013-011-9229-x. 

Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., 
Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., Heath, A.C., Warner, B., 
Reeder, J., Kuczynski, J., Caporaso, J.G., Lozupone, C.A., Lauber, C., Clemente, J.C., 
Knights, D., Knight, R., Gordon, J.I., 2012. Human gut microbiome viewed across age and 
geography. Nature 486 (7402), 222–227. 10.1038/nature11053. 

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T.L., 2012. Primer-
BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC 
bioinformatics 13, 134. 10.1186/1471-2105-13-134. 

Yoshida, K., Miki, Y., 2004. Role of BRCA1 and BRCA2 as regulators of DNA repair, 
transcription, and cell cycle in response to DNA damage. Cancer science 95 (11), 866–
871. 

Young, B., Wheater, P.R., 2007. Wheater's functional histology: A text and colour atlas ; 
[online access + interactive extras studentconsult.com], 5th ed. Churchill Livingstone 
Elsevier, Philadelphia, Pa., 437 pp. 



References 

212 

 

Young, G.P., Symonds, E.L., Allison, J.E., Cole, S.R., Fraser, C.G., Halloran, S.P., Kuipers, 
E.J., Seaman, H.E., 2015. Advances in Fecal Occult Blood Tests: the FIT revolution. 
Digestive diseases and sciences 60 (3), 609–622. 10.1007/s10620-014-3445-3. 

Yu, X.-F., Zou, J., Dong, J., 2014. Fish consumption and risk of gastrointestinal cancers: a 
meta-analysis of cohort studies. World journal of gastroenterology 20 (41), 15398–15412. 
10.3748/wjg.v20.i41.15398. 

Zeissig, S., Blumberg, R.S., 2013. Commensal microbiota and NKT cells in the control of 
inflammatory diseases at mucosal surfaces. Current opinion in immunology 25 (6), 690–
696. 10.1016/j.coi.2013.09.012. 

Zeissig, S., Kaser, A., Dougan, S.K., Nieuwenhuis, E.E.S., Blumberg, R.S., 2007. Role of 
NKT cells in the digestive system. III. Role of NKT cells in intestinal immunity. American 
journal of physiology. Gastrointestinal and liver physiology 293 (6), G1101-5. 
10.1152/ajpgi.00342.2007. 

Zhang, F., Yu, X., 2011. WAC, a functional partner of RNF20/40, regulates histone H2B 
ubiquitination and gene transcription. Molecular cell 41 (4), 384–397. 
10.1016/j.molcel.2011.01.024. 

Zhang, P.-Y., Yang, Y.-J., Xue, Y., Fu, J., Zhang, C.-X., Wang, Y., Yang, Y., Shi, H., 2015. 
Cancer stem cells: targeting tumors at the source. European review for medical and 
pharmacological sciences 19 (10), 1821–1828. 

Zhang, X.-Y., Pfeiffer, H.K., Thorne, A.W., McMahon, S.B., 2008a. USP22, an hSAGA 
subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed 
ubiquitylation of histone H2A. Cell cycle (Georgetown, Tex.) 7 (11), 1522–1524. 
10.4161/cc.7.11.5962. 

Zhang, X.-Y., Varthi, M., Sykes, S.M., Phillips, C., Warzecha, C., Zhu, W., Wyce, A., Thorne, 
A.W., Berger, S.L., McMahon, S.B., 2008b. The putative cancer stem cell marker USP22 
is a subunit of the human SAGA complex required for activated transcription and cell-
cycle progression. Molecular cell 29 (1), 102–111. 10.1016/j.molcel.2007.12.015. 

Zhang, Z.-J., Zheng, Z.-J., Kan, H., Song, Y., Cui, W., Zhao, G., Kip, K.E., 2011. Reduced 
risk of colorectal cancer with metformin therapy in patients with type 2 diabetes: a meta-
analysis. Diabetes care 34 (10), 2323–2328. 10.2337/dc11-0512. 

Zhao, Y., Huang, Z.-J., Rahman, M., Luo, Q., Thorlacius, H., 2013. Radicicol, an Hsp90 
inhibitor, inhibits intestinal inflammation and leakage in abdominal sepsis. The Journal of 
surgical research 182 (2), 312–318. 10.1016/j.jss.2012.10.038. 

Zhou, X., Fan, L.X., Peters, D.J.M., Trudel, M., Bradner, J.E., Li, X., 2015. Therapeutic 
targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD. Human 
molecular genetics 24 (14), 3982–3993. 10.1093/hmg/ddv136. 

Zhu, B., Zheng, Y., Pham, A.-D., Mandal, S.S., Erdjument-Bromage, H., Tempst, P., 
Reinberg, D., 2005. Monoubiquitination of human histone H2B: the factors involved and 
their roles in HOX gene regulation. Molecular cell 20 (4), 601–611. 
10.1016/j.molcel.2005.09.025.



 

213 

 

ACKNOWLEDGEMENTS 

 

There are many people who have supported me in their own special way over the past four 

years. Therefore, I would like to take the opportunity to express my appreciation. 

 

I would like to show my greatest gratitude to Prof. Steven A. Johnsen who took over the 

supervision of this project and welcomed me to his wonderful group. Your motivation, 

encouragement and suggestions are invaluable and you helped me experience the exciting 

and quickly evolving field of science on another level. Your continuous support has encouraged 

me to believe in my own scientific ideas and skills. 

 

I am very grateful to Dr. Yvonne Begus-Nahrmann and Prof. Dr. Matthias Dobbelstein for their 

help during the early phases of this project. My fascination for cancer research has grown 

under your guidance. Thank you for all the scientific discussions and the support.  

 

Moreover, I sincerely thank my thesis committee members, Prof. Dr. Heidi Hahn and Prof. Dr. 

Holger Reichardt for their helpful suggestions and constructive discussions as well as for their 

genuine interest in my project. 

 

Special thanks to AG Johnsen for your companionship. Immediately after joining the group, 

your openness, kindness and humor made it really easy for me to fit in. On a special note, the 

advice and comments given by Florian have been a great help during the course of this project.  

 

Moreover, I would like to thank Dominik, Feda, Florian, and Madhobi for proofreading this 

manuscript. 



 

214 

 

 

In addition, I am grateful for the assistance given by all the students I supervised and who 

showed me how much I enjoy passing on my knowledge and scientific tricks. Thank you for all 

the fun moments we have shared, Arshiya, Elina, Franziska, Frederike, Ivan, Lorenz, Madhobi, 

Mahmoud, Melanie, and Pia. 

 

Finally, I cannot find words to express my gratitude to my loved ones. I am so lucky to have 

you in my life. The constant encouragement, understanding and unconditional love of my 

parents and my brother have made me who I am today. Thank you, Dominik, for your 

continuous support and finding the right words. You were always there for me when I needed 

a shoulder to lean on. For everything else that I failed to mention, thank you! 


	Table of contents
	Abbreviations
	List of figures
	List of tables
	Abstract
	1. Introduction
	1.1 Epidemiology of colorectal cancer (CRC)
	1.2 Risk factors associated with CRC
	1.2.1 Diet and lifestyle
	1.2.2 Inflammatory bowel diseases (IBDs)
	1.2.3 Genetic susceptibility
	1.2.4 Genetic mutations
	1.2.5 Epigenetic deregulation

	1.3 The composition of the intestinal system
	1.4 The intestinal microbiota
	1.5 The intestinal immune defense and ulcerative colitis
	1.6 Colorectal tumor progression
	1.7 Colorectal cancer detection
	1.8 Classification of CRC subtypes
	1.8.1 Histopathological classification
	1.8.2 Molecular classification

	1.9 Colorectal cancer treatment
	1.10 Heterogeneity of colorectal cancer
	1.11 Murine models for ulcerative colitis and colorectal cancer
	1.12 Ubiquitination and cancer
	1.13 USP22 as a crucial player of CRC
	1.14 Implications of USP22 in intestinal cell differentiation (preliminary data)
	1.15 Objectives of this study

	2. Materials and Methods
	2.1 Materials
	2.1.1 Technical devices
	2.1.2 Consumables
	2.1.3 Chemicals and reagents
	2.1.4 Cell culture
	2.1.5 Kits
	2.1.6 Oligonucleotides
	2.1.7 Antibodies
	2.1.8 Buffers
	2.1.9 Software and tools

	2.2 Methods
	2.2.1 Animal studies
	2.2.1.2 Tamoxifen injection
	2.2.1.4 Stool guaiac test
	2.2.1.5 Determination of disease activity index (DAI)
	2.2.1.6 Tissue isolation
	2.2.1.7 Serum isolation
	2.2.1.8 Isolation of intestinal epithelial cells
	2.2.1.9 X-gal staining of embryos
	2.2.1.10 Preparation of mouse embryonic fibroblasts (MEFs)
	2.2.1.11 Preparation of paraffin-embedded tissue
	2.2.1.12 H&E and Nissl staining
	2.2.1.13 Immunohistochemistry (IHC)
	2.2.1.14 Histo-score (H-score)
	2.2.1.15 Mechanical bone testing

	2.2.2 Cell culture
	2.2.2.1 Cell culture and inhibitor treatment
	2.2.2.2 siRNA transfection
	2.2.2.3 Proliferation assessment
	2.2.2.4 Migration assay
	2.2.2.5 Colony formation assay
	2.2.2.6 Soft agar colony formation assay
	2.2.2.7 CRISPR/Cas9-mediated knockout of USP22

	2.2.3 Molecular biology techniques
	2.2.3.1 DNA extraction from tail biopsies or cells
	2.2.3.2 Genotyping of experimental mice
	2.2.3.3 RNA isolation
	2.2.3.4 RNA gel electrophoresis
	2.2.3.5 cDNA synthesis
	2.2.3.6 Quantitative Real-Time PCR (qPCR)
	2.2.3.7 Luciferase reporter assay

	2.2.4 Protein biochemistry
	2.2.4.1 Protein isolation
	2.2.4.2 Bicinchoninic acid (BCA) assay
	2.2.4.3 SDS-PAGE and western blot
	2.2.4.4 Co-Immunoprecipitation (Co-IP)

	2.2.5 Next generation sequencing
	2.2.5.1 Microarray using mouse embryonic fibroblasts
	2.2.5.2 mRNA Library Preparation
	2.2.5.3 mRNA-seq data processing

	2.2.6 Statistical analyses


	3. Results
	3.1 USP22 is required for proper murine development and lineage specification
	3.2 The role of USP22 in colorectal tumorigenesis in vivo
	3.2.1 Inflammation-induced CRC: Intestinal Usp22 deletion prior to colitis (Tam-DSS)
	3.2.1.1 Intestinal Usp22 loss shortens survival and increases intestinal tumor burden
	3.2.1.2 Usp22 ablation is associated with inflammation and invasive carcinomas

	3.2.2 Inflammation-induced CRC: Colitis prior to intestinal Usp22 deletion (DSS-Tam)
	3.2.2.1 Inducing colitis prior to Usp22 loss reduces tumor and inflammation burden

	3.2.3 Intestinal Usp22 deletion in a model of sporadic CRC (Tam)
	3.2.3.1 Intestinal Usp22 deficiency promotes sporadic colorectal tumorigenesis

	3.2.4 Intestinal Usp22 deletion prior to colitis results in the worse prognosis

	3.3 Intestinal Usp22 loss elevates acute colitis burden resulting in bone fragility
	3.4 Heterogeneous USP22 expression levels in CRC patients and cell lines
	3.5 USP22 regulates proliferation and differentiation processes in CRC cells
	3.6 USP22 regulates the stability of heat shock proteins
	3.7 Induction of synthetic lethality in USP22-deficient CRC cells

	4. Discussion
	4.1 USP22 is involved in differentiation and developmental processes in vivo
	4.2 Intestinal Usp22 deletion causes mild spontaneous intestinal inflammation
	4.4 Intestinal Usp22 loss promotes inflammation-induced and sporadic CRC
	4.5 Intestinal Usp22 deletion in APC1638N/+ animals decreases life span
	4.6 The heterogeneity of USP22 expression in colorectal cancer
	4.7 The interaction between USP22 and HSP90AB1
	4.8 USP22: oncogene or tumor suppressor?
	4.9 USP22 as a target in colorectal cancer therapy?
	4.10 Concluding remarks

	5. References
	Acknowledgements

