
A C omparison of Exact String Search
A lgorithms for D eep Packet Inspection

Submitted in fulfilment
of the requirements of the degree of

M a s t e r o f S c ie n c e

of Rhodes University

Kieran Hunt

Grahamstown, South Africa
October 12, 2017

Abstract

Every day, computer networks throughout the world face a constant onslaught of attacks.
To combat these, network administrators are forced to employ a multitude of mitigating
measures. Devices such as firewalls and Intrusion Detection Systems are prevalent today
and employ extensive Deep Packet Inspection to scrutinise each piece of network traffic.
Systems such as these usually require specialised hardware to meet the demand imposed
by high throughput networks. Hardware like this is extremely expensive and singular in
its function.

It is with this in mind that the string search algorithms are introduced. These algorithms
have been proven to perform well when searching through large volumes of text and may
be able to perform equally well in the context of Deep Packet Inspection. String search
algorithms are designed to match a single pattern to a substring of a given piece of text.
This is not unlike the heuristics employed by traditional Deep Packet Inspection systems.

This research compares the performance of a large number of string search algorithms
during packet processing. Deep Packet Inspection places stringent restrictions on the
reliability and speed of the algorithms due to increased performance pressures.

A test system had to be designed in order to properly test the string search algorithms
in the context of Deep Packet Inspection. The system allowed for precise and repeatable
tests of each algorithm and then for their comparison.

Of the algorithms tested, the Horspool and Quick Search algorithms posted the best
results for both speed and reliability. The Not So Naive and Rabin-Karp algorithms were
slowest overall.

Acknowledgements

Very many people have provided assistance and guidance throughout this research. I am
indebted to my family for their support and encouragement throughout the years. Their
influence has shaped me into the person I am today. For that, I am forever grateful.

To my supervisor, Barry Irwin, I am thankful for his mentorship, guidance and counsel
throughout this research and, I’m sure, for many years to come. I could not have achieved
this without him.

This work was undertaken in the Distributed Multimedia CoE at Rhodes University,
with financial support from Telkom SA, Tellabs/CORIANT, Easttel, Bright Ideas 39,
THRIP and NRF SA (UID 90243). The author acknowledge that opinions, findings and
conclusions or recommendations expressed here are those of the author and that none of
the above mentioned sponsors accept liability whatsoever in this regard.

Contents

I Introduction 1

1 Introduction 2

1.1 Problem Statem ent.. 3

1.2 Research O u tlin e ... 5

1.3 Research M e th o d ... 5

1.4 Document Conventions... 6

1.5 Document Structure .. 6

2 Literature Review 8

2.1 General Network Security .. 8

2.1.1 Tenets of Network Security... 10

2.1.2 Common Network Security T hreats... 11

2.1.3 Network Threat Mitigation Techniques.. 12

2.1.4 S u m m ary ... 13

2.2 Firewalls ... 14

2.2.1 Layer 7 - Application L a y e r ... 16

2.2.2 Layer 4 - Transport L a y e r .. 17

2.2.3 Layer 3 - Network L a y e r ... 18

2.2.4 Network Address Translation .. 19

2.2.5 Other Firewalling T echniques.. 19

I

CONTENTS II

2.2.6 Denial of S e rv ic e .. 20

2.2.7 Shortfalls ... 21

2.2.8 S u m m ary ... 21

2.3 Intrusion Detection System s.. 21

2.3.1 IDS R u le s ... 25

2.3.2 Effectiveness... 26

2.3.3 Performance.. 27

2.4 Packet Inspection... 30

2.4.1 Shallow Packet Inspection .. 31

2.4.2 Medium Packet Inspection.. 31

2.4.3 Deep Packet Inspection.. 33

2.4.4 Encrypted T raffic.. 35

2.4.5 Why Perform D P I ? ... 36

2.5 Summary ... 39

3 Algorithms 40

3.1 Stringology P r im e r .. 41

3.2 Naive... 44

3.3 Morris-Pratt.. 45

3.4 Knuth-Morris-Pratt.. 45

3.5 Boyer-Moore.. 45

3.6 H orspool... 46

3.7 R abin -K arp .. 46

3.8 Zhu-Takaoka.. 47

3.9 Quick Search ... 47

3.10 Smith 47

CONTENTS III

3.11 Apostolico-Crochemore... 48

3.12 Colussi.. 48

3.13 Raita ... 48

3.14 Galil-Gaincarlo.. 49

3.15 Bitap ... 49

3.16 Simon .. 49

3.17 Not So Naive ... 50

3.18 Turbo Boyer-Moore .. 50

3.19 Reverse Colussi .. 50

3.20 Summary ... 51

4 Datasets 53

4.1 Dataset A ... 53

4.2 Dataset B ... 54

4.3 Dataset C ... 55

4.4 Dataset D ... 56

4.5 Dataset E ... 57

4.6 Dataset F ... 58

4.7 Summary ... 59

II Packet Inspection Framework 60

5 Design 61

5.1 Introduction .. 61

5.2 Overall Design... 62

5.3 Input ... 62

5.4 Processing 63

CONTENTS IV

5.5 Statistics G eneration.. 64

5.6 Statistical O utput... 66

5.7 Raw O u tput.. 67

5.8 Summary ... 68

6 Implementation 69

6.1 Example T e s t ... 70

6.1.1 Program S ta rtu p .. 70

6.1.2 Testing... 72

6.1.3 Statistics Generation .. 74

6.1.4 Output ... 75

6.1.5 Test Configuration... 76

6.1.6 Statistics Output .. 78

6.1.7 Raw Results Output .. 80

6.2 Summary ... 82

III Testing and Analysis 83

7 Initial Algorithm Comparison 84

7.1 R ules... 85

7.2 Test Hardware... 86

7.3 Algorithm Performance... 87

7.3.1 Dataset A ... 87

7.3.2 Dataset B ... 89

7.4 Which algorithms vary the m o s t ? .. 91

7.5 Length Impact on Performance ... 94

7.5.1 Horspool 97

CONTENTS V

7.5.2 Quick Search .. 99

7.5.3 Not So N a iv e ...100

7.5.4 R abin -K arp..102

7.6 Summary ...104

8 Further Algorithm Comparison 106

8.1 Performance versus input length with no m a tch es ... 107

8.1.1 Horspool.. 108

8.1.2 Quick Search .. 109

8.1.3 Not So N a iv e ...110

8.1.4 Rabin-Karp ... 111

8.2 Performance versus number of m atch es... 113

8.2.1 Horspool.. 114

8.2.2 Quick Search ...115

8.2.3 Not So N a iv e ...116

8.2.4 R abin -K arp.. 117

8.3 How does multithreading affect processing s p e e d ? ... 118

8.3.1 Horspool.. 119

8.3.2 Quick Search .. 121

8.3.3 Not So N a iv e ...122

8.3.4 R abin -K arp..123

8.4 Summary ... 124

9 Conclusion 126

9.1 Document R e c a p ... 126

9.2 Research Objectives.. 127

9.3 Future Work 128

CONTENTS VI

References 131

Appendix A 142

Appendix B 144

List of Figures

2.1 An example of application-layer proxies... 17

2.2 A traditional network setup with a firewall at the network edge and the
Intrusion Detection System behind it.. 23

2.3 A typical network I D S ... 24

2.4 Snort processing time broken down by g rou p ... 27

2.5 A comparison of the broad categories of IDSs available................................... 28

2.6 An example packet. Different levels of packet inspection have access to
different protocols within a packet... 32

3.1 A timeline of the string search algorithms selected for this research 42

3.2 An example of a multi-core, multi-threaded CPU... 44

3.3 String search algorithms family t r e e ... 51

4.1 Dataset C ... 56

4.2 Dataset D ... 57

4.3 Dataset E ... 57

4.4 Dataset F ... 59

5.1 A diagram describing the broad design of the testing system......................... 62

5.2 A representation of the input to the test system... 62

5.3 The functioning of the main processing logic of the test system.........................64

5.4 The flow of the statistics generation design.. 65

VII

LIST OF FIGURES VIII

5.5 The structure of the output of the statistics generation 66

5.6 A representation of the output of the test system... 67

6.1 Test run example screenshot 1. From the start of the system to setting the
number of threads. ... 71

6.2 Test run example screenshot 2. From the start of the testing to somewhere
into the tests... 73

6.3 Test run example screenshot 3. End of the testing to statistics generation. 74

6.4 Test run example screenshot 4. Statistics generation to completion....................75

7.1 Algorithm mean input processing time for Dataset A , ranked by processing
time.. 88

7.2 Algorithm mean input processing time for Dataset B .. 89

7.3 Mean packet processing time standard deviation for Dataset A 92

7.4 95

7.5 96

7.6 Overall mean processing time for combined algorithms versus input length
for Dataset A .. 97

7.7 Horspool algorithm: Input processing time versus input length for Dataset
A . .. 98

7.8 Quick Search algorithm: Input processing time versus input length for
Dataset A ... 99

7.9 The results of a DNS lookup using the dig utility. The command used was
dig ru .ac.za +stats..101

7.10 Not So Naive algorithm: Input processing time versus input length for
Dataset A ...102

7.11 Rabin-Karp algorithm: Input processing time versus input length for Dataset
A 103

8.1 Horspool algorithm: Input processing time versus input length for Dataset
C. ... 108

8.2 Quick Search algorithm: Input processing time versus input length for
Dataset C ... 109

LIST OF FIGURES IX

8.3 Not So Naive algorithm: Input processing time versus input length for
Dataset C .. 111

8.4 Rabin-Karp algorithm: Input processing time versus input length for Dataset
C . .. 112

8.5 Horspool algorithm: Input processing time versus number of matches for
Dataset F ...114

8.6 Quick Search algorithm: Input processing time versus number of matches
for Dataset F .. 115

8.7 Not So Naive algorithm: Input processing time versus number of matches
for Dataset F .. 116

8.8 Rabin-Karp algorithm: Input processing time versus number of matches
for Dataset F .. 117

8.9 Horspool algorithm: Input processing time versus number of inputs for
Dataset D .. 120

8.10 Quick Search algorithm: Input processing time versus number of inputs for
Dataset D .. 121

8.11 Not So Naive algorithm: Input processing time versus number of inputs
for Dataset D .. 122

8.12 Rabin-Karp algorithm: Input processing time versus number of inputs for
Dataset D .. 123

A.1 If ISPs did not respect Net Neutrality..143

List of Tables

2.1 Snort’s rule structure breakdown .. 25

3.1 Implemented string search algorithms... 43

4.1 Datasets used by the test system during the t e s t s ... 54

7.1 Rules used throughout the algorithm testin g ... 85

7.2 The four chosen algorithms.. 95

7.3 Chapter 7 algorithm ran k in gs.. 104

8.1 Thread counts used in the multithreading tests..119

8.2 Algorithm rankings for each test...124

X

List of Listings

2.1 Snort rule structure.. 25

2.2 A very simple working Snort r u l e .. 26

2.3 Snort rule featuring a static pattern and a regular expression........................ 26

2.4 Example of 5-Tuple based configuration... 31

4.1 Creating 10000 random DNS packets for Dataset C .. 55

4.2 Creating a bare DNS packet with Python and Scapy 58

6.1 Example test configuration JSON file.. 77

6.2 Running the test system... 78

6.3 Example statistical output... 79

6.4 Example raw results o u t p u t .. 81

B.1 Example code for editing and creating PCAP files with Python and Scapy 144

XI

Part I

Introduction

1

Chapter 1

Introduction

As network usage grows, so too does the importance of network security. A study by
Gantz, Florean, Lee, Lim, Sikdar, Lakshmi, Madhavan, and Nagappan (2014) showed
that cybercrime in 2014 cost the world’s businesses a combined $315 billion. On the
frontline of traditional network security is the firewall. In the early years of computer
networks, firewalls were simple devices used to control the flow of traffic into and out of
a network (Ingham and Forrest, 2002). They worked by employing a set of elementary
filters to discriminate against unwanted traffic. This simple approach to security proved
fast but ultimately impractical as attacks grew more and more complex.

The next evolutionary step in the defence of computer networks came with the introduc
tion of Intrusion Detection and Prevention Systems. Intrusion Detection Systems serve
to monitor network traffic flow for signs of potentially malicious activity. An important
component of IDSs and modern network firewalls is that of Deep Packet Inspection.

Deep Packet Inspection (DPI) is the process by which network packets have their payloads
analysed for content that is of interest. Interesting content may take the form of a mali
cious attack, a data leak, the illegal transfer of copyrighted material, or communications
unfavourable to the state amongst many other types (AbuHmed, Mohaisen, and Nyang,
2007). Deep Packet Inspection systems are required to very quickly and accurately assess
the content of every packet. This is usually done by modelling interesting content and
then using those models as fingerprints to match traffic in real time.

In order to meet the demands of modern networking systems, custom hardware can be
employed to parallelise the process of Deep Packet Inspection (Dharmapurikar, Krish-
namurthy, Sproull, and Lockwood, 2003; Yu, Chen, Diao, Lakshman, and Katz, 2006;

2

1.1. PROBLEM STATEMENT 3

Parsons, 2014). This technique, although fast, has its drawbacks: The hardware required
to perform at network speeds is usually expensive to purchase and maintain, is often
proprietary, and makes scaling with the demand of the network very difficult. Network
administrators must provision the maximum amount of hardware in order to meet any
load.

This work extensively defines and compares an alternative technique for performing Deep
Packet Inspection that, although slower than hardware-based methods, provides advan
tages that are of interest to the maintainer of a modern network. The alternative technique
to be introduced is the use of traditional string search algorithms for Deep Packet Inspec
tion. These algorithms have been proven to accomplish searches within text at very high
speeds on general purpose processors. Such processors power just about every computing
system available today, from servers in the largest datacentres to smart phons.

1.1 Problem Statement

Modern Deep Packet Inspection systems provide fast and reliable detection of network-
based attacks and identification of other interesting traffic. In order to achieve the speed
and reliability that these systems offer, they must forfeit cost, scalability and interoper
ability (Parsons, 2014).

Contemporary Deep Packet Inspection systems rely on custom hardware - such a field-
programmable gate arrays or application-specific integrated circuits - to achieve the speeds
required in modern networking scenarios (Parsons, 2014). This hardware is not readily
available in existing data centres and, as such, must be purchased or developed in-house.
Purchased systems, such as those from Palo Alto Networks1, are financially expensive,
often have mandatory yearly licensing fees and require special training and certification
to manage (Palo Alto Networks, 2016).

A custom hardware-based approach to Deep Packet Inspection also introduces the issue
of scalability (Dharmapurikar et al., 2003; Kumar, Turner, and Williams, 2006). Most
networks see periodic traffic flow corresponding to the time of day, the day of the week,
and even state holidays (Grondman, 2006; van Splunder, 2015). Often, systems that see
periodic usage can take advantage of this by scaling to meet the needs of the current or
near-future load based on heuristics learnt over time (van Splunder, 2015). In the case of 1

1https://www.paloaltonetworks.com/

https://www.paloaltonetworks.com/

1.1. PROBLEM STATEMENT 4

custom hardware, this isn’t possible as the hardware serves a singular use and cannot be
repurposed at will.

Furthermore, modern Deep Packet Inspection, through these custom hardware solutions,
often relies on proprietary software and protocols. Companies such as Cisco Systems2,
Hewlett-Packard3, McAfee4, and Juniper Networks5 all sell proprietary Intrusion Detec
tion Systems. This type of system has a high initial cost but also forms a closed ecosystem
which prevents the owners of such systems from switching providers without substantial
monetary investment (Eisenmann, Parker, and van Alstyne, 2009). Closed ecosystems are
systems which do not interact with outside systems. These systems will accept network
traffic and process it but will not provide a means of communicating with other devices.
Such a closed ecosystem limits the network administrator to selecting additional systems,
generally by the same company, which are able to interoperate with the current systems.
Although the use of homogenous devices provides advantages, selecting such closed sys
tems places all the power in the hands of that company (Eisenmann et al., 2009). A
network administrator who has chosen to use this kind of closed ecosystem would have
the following options when looking to upgrade their infrastructure: accept whatever cost
the supplier decides to charge, not upgrade the system, or pay for a completely new system
without the same constrained upgrade conditions.

An alternate means of achieving Deep Packet Inspection without hardware-based or
hardware-assisted Deep Packet Inspection is done via software means (AbuHmed et al.,
2007; Sourdis, 2007; Chaudhary and Sardana, 2011). Pure Software-based Deep Packet
Inspection benefits from being mostly independent of the underlying hardware. Such
methods are generally slower than hardware alternatives (AbuHmed et al., 2007) but do
not succumb to the drawbacks listed above. These software-based approaches take advan
tage of the prevalence of general purpose processors available on commodity computing
platforms in data centres today. Most research in the field of Deep Packet Inspection is
done with custom hardware as the implementation.

There exist string search algorithms which have been proven to be very fast at traversing
large amounts of text (Crochemore and Wojciech, 2002; Lecroq, 2007; Faro and Lecroq,
2013). These algorithms have not been benchmarked in the context of packet inspection
which has different properties to large volumes of contiguous text. Certain algorithms

2http://www.cisco.com/
3http://www.hp.com/
4http://www.mcafee.com/
5http://www.juniper.net/us/en/

http://www.cisco.com/
http://www.hp.com/
http://www.mcafee.com/
http://www.juniper.net/us/en/

1.2. RESEARCH OUTLINE 5

which may have a very well known performance in textual or bibliographic settings are
not well understood in the constrained environment of Deep Packet Inspection.

This research aims to enable the use of commodity computational hardware for Deep
Packet Inspection through string search algorithms. By the comparison of these string
search algorithms, this research establishes a benchmark of algorithm performance and
behaviour with packet data as the input.

1.2 Research Outline

The following research was conducted with these objectives in mind:

• Survey the current state of Deep Packet Inspection, with increasingly generalised
summaries of the state of Intrusion Detection Systems, network firewalls and general
network security.

• Compile and describe a sizable set of algorithms designed for exact string searching
which have unknown performance in the context of Deep Packet Inspection.

• Construct a system for testing the performance of Deep Packet Inspection with sup
port for different input types and that is easily extensible so that future algorithms
may be added or the functionality of the system improved.

• Use the previously constructed system to extensively test the chosen algorithms
with different kinds of both textual and packet data.

• Analyse the results of the various tests and present findings comparing the speed of
each algorithm, the reliability, and their general performance in the context of Deep
Packet Inspection.

1.3 Research Method

It is the goal of this research to complete the research objectives listed in Section 1.2
through initial literature review, the construction of a test system, subsequent imple
mentation of the search algorithms, and then through thorough testing and exhaustive
analysis of the resulting data.

1.4. DOCUMENT CONVENTIONS 6

The initial review of literature will be presented as an overview of the work done in the
various fields related to network security, network firewalls, Intrusion Detection Systems,
Deep Packet Inspection and then finally exact string matching algorithms.

The test system will be created using an initial design and then subsequent implementation
based on the proposed design. The system itself will be implemented in Java 86 and
provide support for both packet and textual data.

The test system and various string search algorithms will be tested over many iterations
using specially designed datasets. The results of these tests will be analysed and compared
among themselves.

1.4 Document Conventions

The definition of the term packet is overloaded even within the field of computer network
ing. In the OSI model (Aschenbrenner, 1986), packets refer to the data carried in layer
three, the Network Layer. The term packet has also been used to mean transmitted data
from layer two and up. For the rest of this research packet refers to the latter variation.

URLs for any website mentioned in this text have been added as footnotes. Within the
electronic version of this text, references to parts, chapters, sections and subsections are all
hyperlinks to the relevant places within the text. Citations are also added as references
to the full citation within the bibliography. The names of the datasets as well as the
algorithms are hyperlinks to their introduction in this text. Clicking one of these in the
electronic document will move the reader to where the concept is discussed.

1.5 Document Structure

This document has been separated into three distinct parts, each part is then subdivided
logically into chapters:

P art I provides an introduction and overview of the current state of the art for Deep
Packet Inspection, an in-depth review of each of the algorithms selected for testing and
information on the datasets used in the tests conducted in Part III.

6http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

1.5. DOCUMENT STRUCTURE 7

• Chapter 2 surveys the current state of the art of both software- and hardware-based
Deep Packet Inspection, Intrusion Detection Systems, network firewalls and general
network security.

• Chapter 3 presents each of the algorithms selected for testing during the course
of this research. It also provides a comparison of their algorithmic complexity - a
theoretical indication of their performance.

• Chapter 4 examines the datasets - both artificially constructed and real-world - used
throughout the research.

Part II explains the software developed for the purpose of conducting and benchmarking
Deep Packet Inspection using string search algorithms.

• Chapter 5 shows the design of the packet inspection framework.

• Chapter 6 discusses the implementation of the system and gives an example of its
operation.

Part III analyses, compares and contrasts the string search algorithms. It juxtaposes a
number of factors affecting the speed of the packet inspection and provides the results
from the tests.

• Chapter 7 gives an initial comparison of the string search algorithms and discusses
their advantages and disadvantages. It also selects four interesting algorithms and
compares their speed against the length of the inputs.

• Chapter 8 drills down into a few select algorithms and analyses them in a variety
of different ways.

• Chapter 9 rounds out and concludes the research presented below.

Chapter 2

Literature Review

As the number of people with internet access grows, so too does importance of keeping
our digital information safe. With an ever increasing number of internet connected people
and more of their lives lived through that interconnectivity, extra requirements to ensure
the confidentiality, integrity and availability of their information are added. These re
quirements are not limited to the individual. Individuals, businesses, corporations, and
governments all have much at stake.

This chapter looks at the work done previously in the fields of general network security
(Section 2.1), network firewalls (Section 2.2), Intrusion Detection Systems (Section 2.3)
and finally Packet Inspection (Section 2.4).

2.1 General Network Security

Network security is not a new concept. In the early days of geographically dispersed
computer networks, ARPANET 1, the precursor to today’s internet, was a collection of
academic and military computer networks (Hauben and Hauben, 2006). The ARPANET
was designed for openness and easy interoperability between computers on the network
(Leiner, Cerf, Clark, Kah, Kleinrock, Lynch, Postel, Roberts, and Wolff, 2009). Within a
few years of its inception, in 1986, the first major malicious security incident was identified.

The first computer program to automatically move between computers on a network was
Creeper (Metcalf, 2014). The Creeper program, written in 1971 by Robert Thomas, would

1Advanced Research Projects Agency Network, https://en.wikipedia.org/wiki/ARPANET

8

https://en.wikipedia.org/wiki/ARPANET

2.1. GENERAL NETWORK SECURITY 9

run on TENEX systems and print the message: I ’ M THE CREEPER : CATCH ME IF YOU
CAN (Metcalf, 2014). Shortly after, Ray Tomlinson (who famously invented the first email
system (Ward, 2001)) wrote the Reaper program to move between computers and remove
Creeper (Metcalf, 2014).

In 1986, a researcher by the name of Clifford Stoll2, who at the time was working for the
Lawrence Berkeley National Laboratory3, was tasked with solving an accounting error
in a system connected to the ARPANET (Stoll, 1989; Wuermeling, 1989). During his
investigation, Stoll uncovered evidence of a spy known to be working for the Russian
Komitet Gosudarstvennoy Bezopasnosti (known in the west as the KGB) on the system.
This spy’s intention was to use the ARPANET to gain access to military and government
systems which were, at the time, also connected to the network (Stoll, 1989; Wuermeling,
1989). He was eventually caught using a honeypot set up by Clifford Stoll. Stoll, himself,
initially struggled to gain the cooperation of the authorities due to this being the first
record of such an incident and the overall infancy of computing in the public eye. Stoll
(1989) has chronicled these events in his book The Cuckoo’s Egg.

That first breach in network security was highly targeted and required active participation
on the part of the attacker. Soon after, in 1988, the first widely-publicised automated
instance of a network security attack was documented (Gardner, 1989). Coined the Morris
worm after its author Robert T. Morris Jnr, this piece of software worked by exploiting
known vulnerabilities within the systems connected to the ARPANET (Eisenberg, Gries,
Hartmanis, Holcomb, and Lynn, 1989; Spafford, 1989a). The Morris worm was designed
to gain access to a computer, make a copy of itself there and then move on to the next
system. The processes is then repeated ad infinitum (Spafford, 1989b; Denning, 1989).

After these incidents and as a result of the increased understanding of the importance of
network security, many different initiatives were set up to further the advancement of the
field. An early addition was that of the network firewall (outlined in Section 2.2) which
limited traffic flow into and out of a computer network based on predefined rules. These
rules would specify criteria such as port number, source and destination IP addresses and
even application-layer protocols.

2https://en.wikipedia.org/wiki/Clifford_Stoll
3https://www.lbl.gov/

https://en.wikipedia.org/wiki/Clifford_Stoll
https://www.lbl.gov/

2.1. GENERAL NETWORK SECURITY 10

2.1.1 Tenets of Network Security

As discussed earlier, the original design of networks using the OSI Model (Aschenbrenner,
1986) focused on flexibility, interoperability, and the standardisation of the protocols used.
With its stack-based design and standard protocols, the OSI Model can be used to create
networking environments perfectly suited to the situation. An example of this would be
a web server; it would combine Ethernet, IP, TCP and then HTTP to serve web pages.
Furthermore, the implementation of each layer of the stack can be swapped out without
affecting the layers above or below it. If the administrator of this example web server
wanted to serve its traffic over a wireless connection, they would just have to swap out
the Ethernet portion for some kind of wireless protocol without affecting the higher level
protocols on the stack. The process for implementing network security is not as well
defined. This may be a consequence of the original design of the network work stack.
When developing a secure network, the entire network needs to be considered rather
than just the parts which are externally facing. A secure network needs to consider the
following tenets:

• Confidentiality - measures by which sensitive and private information is prevented
from being exposed (Perrin, 2008). This covers leaks to systems outside of a network
as well as unauthorised users within the network.

• Integrity - ensuring that the data within your network can be trusted at any point
either during storage or transport (Perrin, 2008). Data that is lost or corrupted,
either by malevolently or accidentally can pose a risk to the reliability of the data.

• Availability - ensuring that data is available when it is needed (Perrin, 2008). If a
network or system cannot supply data when required then there is little point in it
storing that data.

• Authentication - the process by which an individual or system is verifiably who they
present themselves as. A person may use a password, security token, biometric test,
or some combination of those to verify their identity.

• Authorisation - strict policies surrounding the access to elements within a network,
generally applied once authentication has taken place.

• Accountability - ensuring that every action within a system (and more specifically
the network) is accounted for and a paper trail is left. It was the presence of a paper
trail that led Stoll (1989) to discover the KGB spy on their network.

2.1. GENERAL NETWORK SECURITY 11

Effectively securing a network requires the consideration of those tenets at every level.
Furthermore, knowledge of your attackers, your network’s vulnerabilities and the level of
security desired are all factors to consider when planning your network security (Dowd
and McHenry, 1998).

2.1.2 Common Network Security Threats

The following list details common attacks on a computer network (Adeyinka, 2008):

• Viruses - infect files on a computer and usually propagate to many other files.
They limit the integrity and availability of information as users are not able to
access those files subsequent to them becoming infected.

• System and B oot R ecord Infectors - these attacks target a lower level than
a virus. They infect areas of storage media that are part of the start-up process
ensuring that they are run whenever the system starts. Other examples of this type
of threat infect the system at a hardware level, rendering them very difficult to
repair. This limits the integrity and availability of information.

• Eavesdropping - this kind of attack allows malicious parties to access information
during transit. Confidentiality of important information is compromised.

• H acking - hackers generally try to gain access to systems in order to create, steal
or destroy information. Hacks to web servers are prevalent today and usually aim to
steal users login information. Hackers will sometimes leave publicly visible messages4
to brag about their accomplishments. They compromise confidentiality, integrity
and availability.

• W orm s - worms traverse systems on networks. They act autonomously, usually for
the purpose of depositing a virus or trojan. The first instance of a computer worm
is discussed earlier in this section.

• Tro jans - these programs disguise themselves as benign applications such as some
thing attached to an email or as a familiar program. They carry a payload similar
to a worm which executes when the user or system opens the disguised file. The
term trojan is a reference to the Trojan Horse written about by Homer in the Iliad5.

4For a gallery of such messages: https://www.google.co.za/search?q=hacked+website
5https://www.gutenberg.org/cache/epub/6130/pg6130.txt

https://www.google.co.za/search?q=hacked+website
https://www.gutenberg.org/cache/epub/6130/pg6130.txt

2.1. GENERAL NETWORK SECURITY 12

• IP Spoofing - attackers can change the source IP address of packets in order to
gain access to a network. Rudimentary firewall systems with simple access policies
may be vulnerable to these kinds of attacks. IP Spoofing can take advantage of a
system with a poor approach to authentication which may by default trust packets
from a certain IP address. An example of such a vulnerability is implicitly trusting
traffic from IP addresses within a network (Ferguson and Senie, 2000).

• D enial o f Service - attacks such as these leverage the poor configuration of a
system or by a brute-force approach to limit the access to that system, thus com
promising availability of information. A Denial of Service attack may send many
requests to a system and by some means cause that system to allocate many re
sources to respond to that request. If enough requests are made the system’s ability
to respond to legitimate requests made be impaired.

• Phishing - phishing attacks attempt to take advantage of a layman’s naivete by
posing as a legitimate request for information and leveraging the trust of others to
steal confidential information. These kinds of attacks are often used to steal internet
banking information, but can also be used to gain access to a computer network or
system on that network.

2.1.3 Network Threat Mitigation Techniques

A variety of methods are deployed in order to mitigate threats caused by the attacks listed
before. Such mitigating measures include (Adeyinka, 2008):

• C ryptograph ic Systems - a system for encoding information into a encrypted
form and then decoding it again; only someone with access to a key is able to
decode the encrypted information. These systems can be used to store sensitive
data so that in the event of the data being leaked, whoever stole the data would
need access to the key to read it.

• Firewalls - Firewalls act as a basic line of defence for traffic entering or egressing
a network. Firewalls generally filter traffic based on IP address, UDP or TCP ports
or subnets. Firewalls are traditionally designed to be closed to traffic unless an
exception or rule has been made to allow it. Firewalls are discussed in-depth in
Section 2.2.

2.1. GENERAL NETWORK SECURITY 13

• Intrusion D etection Systems - Intrusion Detection Systems employ heuristics to
determine the threat level of traffic flowing into and out of a network as well as the
behaviour of people and systems within the network itself. These systems have to
monitor different kinds of traffic traversing a network looking for signs of malicious
intent. Effective Intrusion Detection Systems must check for all of the attacks listed
above and provide some kind of alert.

• A nti-m alw are Software - traditionally this software is deployed onto systems to
detect signs of the presence of viruses, worms and trojans. Once found, anti-malware
software generally removes or blocks the malicious software in order to protect the
system. Modern versions of anti-malware software make use of quarantine tech
niques to silo the files in case the user deems them safe.

• Internet P rotoco l Security (IP Sec) - this protocol provides a way to securely
transmit information between two machines. It is a popular way of connecting two
physically separated networks across an untrusted network (such as the internet).
VPNs6 are an example of software making use of IPSec; they bridge two networks
in such a way that the machines on each of the networks appear to be on the same
network.

• Secure Sockets Layer (SSL) - similarly to internet protocol security, secure socket
layer provides encryption for data during transport. Unlike internet protocol secu
rity, secure socket layer encrypts data up to the protocol layer rather than just
between machines. Secure socket layer is now the defacto encryption method for
serving TCP traffic - most notably on the world wide web. The modern version of
SSL is Transport Layer Security.

• C ontent Filtering - a more specific form of firewalling which looks at the content
of the traffic itself. This mitigation technique is often employed by businesses to
limit employee access to certain websites (Rouse, 2011).

2.1.4 Summary

This section has covered the general field of network security and the reasons for employing
and encouraging its use throughout all computer networks. Many vulnerabilities exist and
exploiters of such vulnerabilities mean to steal and compromise private information. It is

6Virtual Private Networks: https://en.wikipedia.org/wiki/Virtual_private_network

https://en.wikipedia.org/wiki/Virtual_private_network

2.2. FIREWALLS 14

very important to have good knowledge of network security so that you may ensure that
your networks are secure.

The coming sections will explore a number of measures used to counteract attacks on a
computer network. These measures represent a small fraction of the methods used to
secure a network.

2.2 Firewalls

The term firewall is described by the Oxford English Dictionary (Fowler, Fowler, and
Allen, 1990) as

“A wall or partition designed to inhibit or prevent the spread of fire.”

This term was subsequently used in computer networking to define a device or system
used to separate one network from another (Zwicky, Cooper, and Chapman, 2000). Be
fore the advent of network firewalls, simple routers separated one network from another.
This separation could protect users and systems on one network from a misconfiguration
(Ingham and Forrest, 2002) or noisy applications and protocols (Avolio, 1999) on another.
The first firewalls appeared in 1987 (Ingham and Forrest, 2002) and and since have de
veloped to include the following functions: network address translation, filtering, virtual
private networks, and proxies.

For a device to be considered a firewall, it should satisfy the following requirements
(Ingham and Forrest, 2002):

• Firewalls should separate two networks. They should form the boundary.

• All traffic from one network to another should flow through the firewall.

• The firewall must permit some kinds of traffic and block others.

Historically, the development of network firewalls has matched the levels of the OSI Model
(Aschenbrenner, 1986) - initially only low-level inspection and filtering of traffic would
occur but as time went on more and more levels of the protocol stack were understood,
inspected and filtered by the firewall.

2.2. FIREWALLS 15

The key concept of a network firewall is that users and systems on one side of a firewall are
trusted to a different extent to users and systems on the other side (Zwicky et al., 2000).
The firewall separating the network of an academic institution, such as a university, from
the rest of the internet is an example of such a system. Users on the university’s network
are trusted more than users on the internet. There are therefore usually fewer restrictions
in place for traffic flowing within and out of the university’s networked compared to traffic
flowing from outside in. Users within the network may be permitted to serve web pages
or share files with other users on the network but all of this traffic would be blocked from
flowing out of the firewall.

Firewall administrators quantify trust by creating policies which describe how different
kinds of traffic are to be treated. The different levels of trust placed on different kinds of
traffic can be attributed to the following reasons (Ingham and Forrest, 2002):

• O perating System and program security flaws - Many operating systems or
programs running within operating systems have known vulnerabilities. Often it is
not possible to ensure that every machine connected to a network has been updated
with the latest security patches - especially on networks where the administrators
have no control over the connected computers - and so network administrators can
use firewalls to limit the access of that machine to an outside network by blocking
specific protocols or checking packets for exploits. An example of this would be to
block telnet traffic flowing into a network.

• Preventing access to inform ation - many businesses and governments imple
ment firewalls which limit the access of users inside the network to information
outside. For businesses this is often to block access to websites and services offering
nonbusiness-related things. Governments can block information that does align with
their political ideals (such as the Chinese government with their Great Firewall of
China) or for the supposed protection of their inhabitants (like Britain’s Hadrian’s
Firewall7) .

• Preventing inform ation leaks - Computer networks can contain machines with
sensitive information on them. Due to the myriad of vulnerabilities in computers and
the people using them, often internet firewalls are used to stop private information
from leaving a network. To do this the firewalls need to have intimate knowledge of
what constitutes confidential information and wrongly identifying such information
could qualify as a degradation of availability.

7http://www.bbc.com/news/uk-23401076

http://www.bbc.com/news/uk-23401076

2.2. FIREWALLS 16

• E nforcing policy - As some devices are not controlled by the network adminis
trators, a firewall can be used to limit which applications and protocols are able
to work within a network. Firewalls can also provide bandwidth monitoring and
limiting services in bandwidth constrained networks.

• A uditing - Firewalls can record all traffic that flows through them. After a network
attack has been recorded the audit logs stored by the firewall may prove important
in preventing future attacks.

As discussed earlier, network firewalls often focus of specific layers of the network stack.
The forthcoming subsections will discuss a few examples of network firewalls operating at
different layers of the stack.

2.2.1 Layer 7 - Application Layer

As mentioned earlier, network firewalls follow a history that mimics the layers of the OSI
model. The first description of a firewall that filters traffic was written by Mogul (1989)
and the design was subsequently improved upon by Ranum (1992), creating the Securing
External Access Link (SEAL) - one of the first commercially available firewalls.

The SEAL system provided an application-layer firewall through the use of various proxies.
Proxies work by making connections to an external system on behalf of users both within
and outside the network. The proxies provided users of the network with connections for:
email and USENET, Telnet, FTP, WHOIS, and X Windows. The advantage of such a
system of proxies was that the proxies could enforce the correct use of protocols as they
were acutely aware of how the protocols were implemented. See Figure 2.1 for an example
of such a proxy.

This kind of firewall is not without its drawbacks. Implementing application-layer proxies
means that a separate proxy must be implemented for each application-layer protocol
that the administrator wants to support. Furthermore, the client must often be aware
of the proxy server and authenticate with it. For many applications this requires that
the developer implements these changes and for applications which do not publish their
protocols, this task may be impossible.

Although application layer proxies provide heightened security by making external con
nections on behalf of the users of a network, they are difficult to maintain and do not scale

2.2. FIREWALLS 17

Hosts in the
Network

Application-layer
Proxies

Figure 2.1: An example of application-layer proxies

to meet the number of different Application Layer protocols in use throughout modern
networks today. The next subsection discusses the use of Transport Layer proxies to try
and reduce the number of proxies that have to be supported.

2.2.2 Layer 4 - Transport Layer

The Transport Layer is mainly used by the TCP and UDP protocols. As there are
fewer protocols, far fewer proxies need to be written to support more kinds of traffic.
The advantage of working at the Transport Layers is that external traffic cannot spoof
established TCP connections. This is becauses the firewall maintains the state of each
connection (Ingham and Forrest, 2002). Unlike Application Layer proxies, Transport
Layer proxies cannot enforce behaviour for protocols above the Transport Layer.

The first transport-layer gateway was written by Cheswick (1990) for AT&T8 and a pop
ular later implementation was the SOCKS (Koblas and Koblas, 1992) proxy. In SOCKS,
rather than making a socket() call, the application would make a SOCKS call instead.
All traffic would then be routed through a SOCKS server. Protocols such as Secure Shell
are able to create local SOCKS servers and tunnel network traffic to external computers
much in the same way as VPNs transparently create bridges between two networks. The
popularity of the SOCKS protocol has since decreased in popularity.

8https://www.att.com/

https://www.att.com/

2.2. FIREWALLS 18

2.2.3 Layer 3 - Network Layer

Like the Transport Layer, the Network Layer also has a very limited number of protocols
that a firewall needs to be aware of. Internet Protocol - versions four (Postel, 1981)
and six (Deering and Hinden, 1998) - are the most popular. Simple packet filtering at
the network layer is a popular method of implementing network firewalls but they are
limited in that they cannot keep state of ongoing connections (Ingham and Forrest, 2002;
Chaudhary and Sardana, 2011).

Packet filtering is much faster than the other firewall implementations discussed previously
as it does not require that the packets traverse the entire protocol stack (Corbridge, Henig,
and Slater, 1991). Packet filtering is transparent to the users of a network in so far as
they do not have to make alterations to their applications for it to work, unless those
applications violate the policies of the Transport Layer Firewall.

Packet filtering firewalls are usually configured using a standard “5-Tuple” rule (Al-Shaer
and Hamed, 2003). The following is a list of example criteria that a Network Layer firewall
may use to distinguish wanted and unwanted traffic:

• Source address

• Destination address

• Transport layer protocol

• Flags set in the network layer header

• Various transport layer features - such as source and destination port

A drawback to pure packet filtering is that the identity of the originator of a packet cannot
be confirmed. Packets only contain information about the originating IP address and not
the user behind that address. On a shared system or behind some kind of NAT (see
Subsection 2.2.4) it is almost impossible for a firewall operating purely at the Transport
Layer to identify the originator of the traffic. Furthermore, IP addresses can be easily
spoofed - rendering them insufficient methods of authentication, particularly in stateless
firewalls (Ingham and Forrest, 2002).

The proxy methods mentioned in Subsections 2.2.1 and 2.2.2 provide safety that a packet
filter cannot. As the proxies make connections on behalf of the users behind them, the

2.2. FIREWALLS 19

proxy administrators can ensure that the protocols used are up to date and correctly
adhered to (Ingham and Forrest, 2002). Compared to the packet filters where the client
makes the connection to the remote machine, this shrinks the attack surface to just the
proxy system.

One way that a firewall can try and protect the clients from attacks based on bugs and
flaws in their systems is by keeping state of the connections (Ingham and Forrest, 2002).
Stateful firewalls track the state of connections by monitoring both layer three and four
of the packets flowing through it.

2.2.4 Network Address Translation

Network Address Translation (NAT) was originally designed as a way to deal with the
shortage of IPv4 addresses on the internet (Egevang and Francis, 1994) by sharing con
nections. A router implementing NAT could manage many clients - all behind a single or
a few IP addresses. NAT routers work by using DPI to read and then rewrite the source
address of outgoing packets to match their own external address. The NAT device then
uses an unused port number from a layer four protocol to identify the connection which
can then be looked up when a reply is received. NAT thus provides similar features to
the proxies mentioned earlier in that a connection needs to already exist for packets to
flow into the network. Devices wishing to receive unsolicited traffic (such as web servers)
may use port forwarding to automatically send packets of a certain type directly to the
device behind the NAT router.

NAT is not the happy medium that is desired. In order to work correctly, NAT must
break the transport layer protocols and use the port numbers as identifiers for devices on
its network. NAT was originally designed as a way for more devices to connect to the
internet than there are IPv4 addresses available. The solution to that problem is IPv6
although it is still not widely adopted.

2.2.5 Other Firewalling Techniques

An alternative to the explicit proxying solutions discussed earlier is the transparent proxy
(Chatel, 1996). A transparent proxy works by allowing the client to send packets to the
remote device as if no proxy existed. All packets flowing into and out of a network are sent
through the proxy and when the packets reach the proxy, the proxy creates the connection

2.2. FIREWALLS 20

with the remote device and replies to the client as if it is the remote device. Transparent
proxies are required to understand all application-level protocol that they wish to proxy.

A further application of network firewalling is increased security through a concept know
as normalisation. Attackers are often able to evade detection by using ambiguities in
the stream of traffic that they send to a network (Handley, Paxson, and Kreibich, 2001).
These attackers use techniques such as splitting traffic into smaller chunks, not adhering
to a protocol specification, or exploiting a packet’s time to live (TTL) so that is doesn’t
reach its intended recipient (Shankar and Paxon, 2003). For the latter of those examples,
an attacker may be able to glean information about the topology of a network by whether
it receives replies to its messages. A network normaliser works to correct some of these
potential vulnerabilities by altering the network flow so that the traffic is normalised
(Handley et al., 2001): Out of order packets are reordered and packets that cannot reach
their destination are dropped.

2.2.6 Denial of Service

Network firewalls have also been employed to mitigate the effects of a denial of service
(DOS) attack. DOS attacks aim to restrict the use of a system by overloading it in some
way. These kind of attacks usually work by sending carefully constructed requests that
are designed to take long to process, with enough of these kinds of requests, a system
could become overloaded. Another method is to send so many valid requests that a
system cannot process them all. This style of denial of service is usually referred to as
distributed denial of service.

For these kinds of attacks, a network firewall is often a good tool to combat them. Input
rate limiting will stop too many resource intensive requests from being accepted, and
dropping packet originating from the DOS location is often sufficient to curb such a
threat. This may limit the service’s availability to legitimate users who are originating
from those locations but the vast majority of benign requests are able to be received.
Later, once such an attack has ended, the firewall could begin reaccepting traffic from
those temporarily blocked locations.

No network security measure will ever be complete safe and sufficient without drastically
compromising availability. The next subsection discusses a few shortfalls of firewalls.

2.3. INTRUSION DETECTION SYSTEMS 21

2.2.7 Shortfalls

Firewalls are not the perfect security solution. Since the introduction of SSL in the
1990s9, and with further enhancements to it and subsequent protocols, there is an ever
increasing amount of encrypted traffic flowing through networks today. Encrypting traffic
means that the information that it contains can only be read by someone who has the
correct key. Unless actions be taken10, firewalls are unable to directly read the data within
packets forming part of true encrypted streams. This could provide a pipeline for sensitive
information to leak out of a network or for malicious packets to enter under cover.

Cheswick (1990) describes networks as “a sort of crunchy shell around a soft, chewy
center.” That description becomes relevant when one considers the threat posed by users
inside the network. Physical security is often undervalued or sometimes entirely ignored.
In such cases malicious users may gain physical access to systems on the network. Through
this vector, users could steal private data or plant malicious code.

2.2.8 Summary

As has been shown, firewalls are not entirely sufficient security devices on their own.
Administrators need to try and find a balance between good, reliable access for their
users as well as maintain a adequate level of security. In practise, administrators will
employ many different security measures to try and approach the problem from different
vantage points. Another such measure, which also makes use of Deep Packet Inspection,
is that of Intrusion Detection Systems. These are discussed further in Section 2.3.

2.3 Intrusion Detection Systems

Another way of detecting intrusion attempts into a network is via the use of Intrusion De
tection Systems. Intrusion Detection Systems are designed to gain insight into a network
for the purpose of detecting malicious behaviour on or misuse of a network (Kemmerer
and Vigna, 2002; Ashoor and Gore, 2011) by using pattern matching. What an Intrusion

9The protocol was originally designed by Netscape. A n archived version of the original web page
is available here: https://web.archive.Org/web/19970614020952/http://home.netscape.com/newsref/
std/SSL.html

10 Some companies add themselves as certificate authorities to employee machines so that they may
inspect encrypted traffic. They typically use systems such as Blue Coat: https://www.bluecoat.com/

https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/std/SSL.html
https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/std/SSL.html
https://www.bluecoat.com/

2.3. INTRUSION DETECTION SYSTEMS 22

Detection System finds is the evidence of an intrusion; this is often called its manifestation
Kemmerer and Vigna (2002). The definition of the roles of an intrusion detection is quite
fuzzy. Any system that detects intrusions in some way could be considered an Intrusion
Detection System. The following lists some features which could classify a system as an
IDS (Ashoor and Gore, 2011):

• Monitoring system and user behaviour

• Checking system configuration and identifying known vulnerabilities

• Assessing the integrity of a system

• Identifying attacks by known patterns or heuristics

• Identifying and recording policy violations

Initially, intrusion detection was done manually by network administrators. The admin
istrators would monitor for intrusions by watching access to systems throughout their
network (Kemmerer and Vigna, 2002). The network administrators would watch for lo
gins or activity from users which seemed out of place. If an office secretary was logged
as connecting the production database server that may indicate some form of compro
mise. The administrators relied on intuition which proved somewhat effective but did not
scale to the size of modern computer networks. Following that (in the 1970s and 1980s)
administrators would print off access logs and trawl through them looking for patterns
which could signify suspicious behaviour. As the network administrators would do this
periodically, it served more as a tool for detecting past intrusions rather than catching
one in the act (Kemmerer and Vigna, 2002).

In the early 1980s, Anderson (1980) developed a system to monitor for intrusions auto
matically. Anderson’s system would characterise typical use of computers by monitoring
what time users were usually active, seeing which files they touch or program they used,
and monitoring which devices they interfaced with. All of these properties where used to
create a model of particular usage for a user with a specific role. Activities of users which
did not fit into the model defined by their role could be a sign of an intrusion.

Traditionally, an IDS has been positioned behind a network firewall as described in Figure
2.2 (See Figure 2.3 for a better breakdown of the internals of an IDS). In this configuration,
the firewall acts as a first line of defence whereafter the Intrusion Detection System would
monitor the traffic approved by the firewall. The Intrusion Detection System, as the name

2.3. INTRUSION DETECTION SYSTEMS 23

would imply, does not directly interact with the traffic. Usually, if it identifies a threat, the
Intrusion Detection System would notify some other device. In the setup shown in Figure
2.2, the Intrusion Detection System might notify the firewall of the potential intrusion
and the firewall would make appropriate changes to its rules to mitigate such a threat.

Figure 2.2: A traditional network setup with a firewall at the network edge and the
Intrusion Detection System behind it.

Figure 2.3 shows a prototypical IDS. The first part of an IDS, often called the preproces
sor, is responsible for collecting individual packets, grouping them by connection (most
attacks span multiple packets), sorting, and finally decoding if necessary (Some attacks
try to use different or obscure encodings in order to subvert IDSs) (Sourdis, 2007). These
amalgamated connections are then passed over to the detection engine which tries to
match the input against a known database of rules. The detection engine uses both
packet classification and content inspection to try and ascertain the intent of the packet.
Packet classification uses data in the header of the packet to establish identifying informa
tion such as the protocol and the packet’s source. Packets originating from a IP address
known to be a source for malicious traffic or of a protocol destined for a system which
should not support that protocol should be a sign of malintent. Content inspection makes
use of patterns and heuristics to identify the contents of the packet’s payload. For more
information of the rules used by Intrusion Detection Systems, see subsection 2.3.1.

An issue facing IDSs is that of data collection. Designers of such systems have to decide
what level of data collection is enough to ensure the required security. Simple IDSs could
simply log failed login attempts which may be used as part of detecting a compromised
account or rogue employee. More complex systems could log every packet flowing through
the network’s firewall (Kemmerer and Vigna, 2002). Logging the right amount of data is
important to ensure that patterns over a long period of time are detected and that those
patterns are not hidden behind too much else.

Simply collecting the data is not enough. IDSs need to actually analyse the data to find

2.3. INTRUSION DETECTION SYSTEMS 24

Figure 2.3: A typical network IDS (Sourdis, 2007)

evidence of intrusion. Broadly speaking there are two wide categories of techniques used
for intrusion detection (Kemmerer and Vigna, 2002):

• A nom aly detection - This type of IDS models normal user and system behaviour
and uses those models to identify irregularities which may indicate an intrusion
(Denning, 1987; Ghosh, Wanken, and Charron, 1998; Chandola, Banerjee, and Ku
mar, 2009). Factors can include: when a user is usually active on their systems,
what their usual tasks are, and whether they usually encounter access errors. Data
indicating behaviour outside of the normal observed boundaries may be a manifes
tation of an intrusion. This is the same technique employed by Anderson (1980).

• M isuse detection - This approach to IDSs uses known threats to model potential
attacks. Misuse detection works well to identify threats the same as or similar to
known threats and so does not produce many false positives (Kemmerer and Vigna,
2002). This technique doesn’t do well at detecting intrusions which do not match
known signatures. Examples of systems using misuse detection include: Snort11,
OpenVAS11 12, Fortinet13, Checkpoint14, Suricata15, and Bro16.

Once an Intrusion Detection System is confident that an attack is taking place, it must
create some kind of response. Responses usually include all relevant information about
the ongoing attack or intrusion. These responses are then sent to whichever system is

11https://www.snort.org/
12http://www.openvas.org/
13https://www.fortinet.com/products/fortigate/index.html
14https://www.checkpoint.com/products/ips-software-blade/
15 http://suricata-ids.org/
16https://www.bro.org/

https://www.snort.org/
http://www.openvas.org/
https://www.fortinet.com/products/fortigate/index.html
https://www.checkpoint.com/products/ips-software-blade/
http://suricata-ids.org/
https://www.bro.org/

2.3. INTRUSION DETECTION SYSTEMS 25

responsible for mitigating attacks. IDSs notify administrators through some kind of alert,
siren or alarm (Kemmerer and Vigna, 2002).

There are two classes of issues which remain for developers implementing effective Intru
sion Detection Systems. The first being effectiveness - how well IDSs detect intrusions -
and the second being speed - how quickly IDSs detect intrusions. For an IDS to be effec
tive it must be able to detect as many possible intrusions as possible. The intrusions are
detected by matching traffic - or some other kind of data - with known rules or heuristics.
Subsection 2.3.1 discusses the rules used by a contemporary IDS.

2.3.1 IDS Rules

IDSs use well-defined rules to specify what to look for in the packets they process. The
rules themselves are generally written in some kind of domain specific language defined for
the particular Intrusion Detection System. Snort is an example of an Intrusion Detection
System which makes employs misuse detection to identify attacks on a network. The
subsection that follows will be discussing rules specifically pertaining to the Snort IDS11.

Snort’s system for describing rules is both powerful and complex. All rules in Snort obey
the structure presented in Listing 2.1. Table 2.1 gives a breakdown of the keywords used
in Listing 2.1 and describes the features of the language.

i action proto src_ip src_port direction dst_ip dst_port (options)

Listing 2.1: Snort rule structure

Variable
action

proto
src_ip
src_port
d irection
dst_ip
dst_port
(options)

Description
The action to perform when the rule has been matched, examples include:
a lert, log, and pass.
The protocol to match on, examples include: tcp, udp, and icmp.
The source IP address.
The source TCP or UDP port.
The direction of the traffic flow, examples include: ->, <-, and <>.
The destination IP address.
The destination TCP or UDP port.
Various other options.

Table 2.1: Snort’s rule structure breakdown

An example of the simplest working rule can be found in Listing 2.2. This rule will create
an alert for any packet containing a TCP header.

2.3. INTRUSION DETECTION SYSTEMS 26

alert tcp any any -> any any (msg: A l e r t ! ;)

Listing 2.2: A very simple working Snort rule

Rules in Snort and many other systems can be defined by either static patterns or regular
expressions. Static patterns exactly describe the content of a packet which is of interest.
Regular expressions (usually of the Perl-compatible17 kind) describe a sequence or pattern
to be found within the packet. An example of a Snort rule containing both a static pattern
and a regular expression can be found in Listing 2.3.

alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (content:"A TTACK"; pc r e : "/~

PASS\s*\n/smi” ; within:10;)

Listing 2.3: Snort rule featuring a static pattern and a regular expression (Sourdis, 2007)

In Listing 2.3, con ten t:”ATTACK” forms the static pattern part of the rule. Snort will
use this rule to find the text ATTACK in each of the packets that it inspects. This also
shows an example of a regular expression used for intrusion detection within Snort. In
the example, p cre :” / APASS\s*\n/smi” is an example of a regular expression-based rule.
This particular regular expression can be broken down as follows18:

• APASS - Matches the text APASS literally.

• \s* - Matches any white space character as many times as possible.

• \n - Matches a newline character.

Finally, Listing 2.3 also contains one further constraint on the packet matching rule. The
text within:10 limits the second match to occur within 10 bytes after the first.

2.3.2 Effectiveness

IDSs need to achieve near perfect detection of intrusions into a network. To achieve this,
modern Intrusion Detection Systems rely on misuse detection. Misuse detection relies
on predefined rules based on known attacks and, as such, must be updated constantly

17 http://www.pcre.org/
18Regex 101 provides a good explanation of the regular expression: https://regex101.com/rZiL1qH4

http://www.pcre.org/
https://regex101.com/r/iL1qH4

2.3. INTRUSION DETECTION SYSTEMS 27

to keep up with the latest vulnerabilities (Kemmerer and Vigna, 2002). This approach
is often only sufficient for attacks which are known to the system or are very similar to
other attacks. New attacks or attacks specially designed to defeat this particular system
may be enough to overcome an Intrusion Detection System with a fully up-to-date set of
rules.

2.3.3 Performance

System performance is the crux of the problem and will be discussed through the rest
of this research. There is always going to be a limit to the number of signatures that
a system can search for in a finite amount of time. Figure 2.4 shows the results from a
study by Schuff and Pai (2007) wherein the authors measure the amount of processing
time spent on the Snort Intrusion Detection System during normal running. From that
pie chart is is clear that a majority of Snort’s processing time for each packet is spent on
content inspection wherein it tries to match the content traffic to patterns defined in the
rules.

Snort Packet Processing Breakdown

■ Content Inspection ■ Packet Classification ■ Preprocessing ■ Other

Figure 2.4: Snort processing time broken down by group (Schuff and Pai, 2007).

As mentioned earlier, although the speed of processors has been increasing in a similar
way to network speed, the number of known attacks has also increased. An increase in
number of attacks should directly result in a greater number of rules needed to perform
effective intrusion detection. Sourdis (2007) gives a table showing the increasing number
of Snort rules over a period of time from 2003 to 2007. In 2003 the number of rules stood
at just over two thousand. By 2007 the number had increased to over eight thousand. In
April 2016, for Snort version 2.9, that number had grown to almost nine thousand rules.

2.3. INTRUSION DETECTION SYSTEMS 28

Sourdis (2007) showed that the number of regular expressions (Section 2.3.1) used in
Snort rules increased dramatically between 2003 and 2007. Regular expressions allow for
far more complex and flexible rules to be created. As a result of the increased flexibility
gained by using a regular expression, it is likely that many rules which were previously
implemented as distinct rules using the static-style expressions have been combined into a
single rule using regular expressions. Regular expressions themselves have nondetermin
istic properties which, for poorly designed rules, could lead to massive slowdowns during
processing.

With this in mind, the slow increase in the number of Snort rules can be attributed,
in part, to the increased reliance on regular expressions. Variations on existing rules
can be implemented within the rules themselves rather than as separate rules entirely.
Furthermore, even though there are more networked devices than ever before19, computer
security is increasingly a concern for developers of such systems and often on the mind of
even the general public which may encourage better diligence when it comes to ensuring
that their systems are protected. Snort retires rules which they deem end-of-life (EOL).
These rules are for vulnerabilities present in older systems or software not supported by
Snort or for systems in which the vulnerability has been patched.

Generic
Flexible

Reduced Risk
Dev Time

V_________________ J

Performance
Power
Cost

J

Dedicated

>
General Purpose Processors Network Processors Reconfigurable Hardware Application Specific

Fixed Function

Figure 2.5: A comparison of the broad categories of IDSs available (Sourdis, 2007).

Im plem entation

In order to cope with the ever increasing performance demand put on IDSs, and in par
ticular the speed required for packet processing, a number of different methods for im
plementing these systems are availabile. There are four broad categories (represented
in Figure 2.5) under which an IDS implementation can fall (Shah, 2001; Sourdis, 2007;
Becchi, Wiseman, and Crowley, 2009; Jiang and Prassana, 2009):

19See for instance the Internet of Things (IoT) movement: https://en.wikipedia.org/wiki/Internet_
o f Things

https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Internet_of_Things

2.3. INTRUSION DETECTION SYSTEMS 29

• General Purpose Processors (GPPs)

• Network Processors (NPs)

• Reconfigurable Hardware

• Application Specific Fixed Function (ASIC)

Each of these implementation styles has its own advantages and disadvantages. This
tradeoff usually manifests itself as a reciprocity between performance and flexibility.

G eneral P urpose P rocessors are the standard processors found in data-centres and
personal computers throughout the world. GPPs are easy to develop software for - owing
to the fact that they are present on every software developer’s personal machine - and
cheap because of their ubiquity and flexibility. GPPs struggle, however, to match network
line speeds because of their general design and linear processing pattern that they follow
(Sourdis, 2007).

N etw ork Processors try to take the advantages from GPPs - namely how easy it is
to develop for the platform - but employ dedicated and specialised network hardware to
further increase performance (Shah, 2001). Some of the networking work is offloaded to
this special hardware whilst the inspection continues to run on the GPP. The obvious
speed bottleneck is, again, the GPP.

R econfigurable Hardware provides a middle-ground between the generic and slower
software-based solutions and the dedicated hardware. Sourdis (2007) defines the differ
ence between reconfigurable and reprogrammable as follows: “a reconfigurable device can
support directly in hardware arbitrary functions on demand, while a reprogrammable
device can choose only between its predefined (and committed at fabrication), finite num
ber of functions.” Generally speaking software based implementations are able to switch
their behaviour on a per-packet basis whereas with reconfigurable hardware functionality
changes may only be made when the entire ruleset is altered (Shah, 2001). Reconfigurable
hardware typically refers to implementations on field programmable gate arrays (FPGAs).

A pplication Specific Fixed Function are typically ASIC devices used for very fast
packet processing. ASICs sacrifice ease of development and flexibility for processing speed.
ASICs tend to be very difficult to make changes to which means that rulesets are generally
hardwired.

2.4. PACKET INSPECTION 30

It is with Application Specific Fixed Function and Reconfigurable Hardware that the
hardware-based solutions discussed earlier are implemented (Shah, 2001) and it is through
general purpose processors (Yu et al., 2006) that this research’s solution is implemented.

A solution to the limiting processing speed of an IDS is to split the processing up onto
many different machines. Traffic will generally encounter a single, fast, centrally located
machine which will send traffic to different machines based on load and other factors.
The issue with splitting the traffic is that, depending on how the splitting is performed,
intrusions may slip by as a single system performing the traffic analysis would not have
the entire context of a connection to correctly identify an attack (Kemmerer and Vigna,
2002).

For IDSs built with custom hardware this solution could prove to be very expensive. For
each additional machine the initial high cost of the hardware must be incurred again.

Another approach to meeting the speed demand of the network is to deploy the IDSs at
or near the hosts on the network they are trying to protect. This approach means that
network traffic has already been separated out due to the normal traffic routing algorithms
employed in the network. Traffic reaching the IDS should just be intended for that host.
This does mean that often many more pieces of hardware are needed to perform at the
same speed as the previous approach. This approach tends forms part of a Host-based
Intrusion Detection System (HIDS) through which the network traffic flowing into a host
as well as the behaviour of programs and users of that system is monitored.

As has been shown, the problem with fast, reliable network security is still open. There
are many facets which must be considered when implementing any solution and especially
when dealing with network traffic in real time. The specific issues surrounding packet
inspection and possible solutions are discussed in Section 2.4.

2.4 Packet Inspection

In modern computer networks, packet inspection is employed throughout these networks
to provide a variety of services. Firewalls (Section 2.2) often make use of packet inspection
to aid the filtering of unwanted traffic (Zwicky et al., 2000). Intrusion Detection Systems
(Section 2.3) also make use of use packet inspection to detect anomalous or malicious
behaviour (Kemmerer and Vigna, 2002).

In the field of packet inspection can be further separated into three distinct groups:

2.4. PACKET INSPECTION 31

• Shallow Packet Inspection or SPI (Subsection 2.4.1) - 5-Tuple based inspection used
in packet filtering firewalls (Ingham and Forrest, 2002).

• Medium Packet Inspection or MPI (Subsection 2.4.2) - Application proxies such as
SOCKs proxies (Koblas and Koblas, 1992).

• Deep Packet Inspection or DPI (Subsection 2.4.3) - Allows implementors to exactly
monitor and inspect the content of network traffic (Ingham and Forrest, 2002).

2.4.1 Shallow Packet Inspection

Shallow packet inspection (SPI) is the simplest form of packet inspection. SPI systems
work by monitoring just the header portion of a packet - up to and including the network
layer (Ingham and Forrest, 2002). In firewalls implementing SPI, the fields of the packet
headers are used to decide whether a packet should be accepted or dropped. These
decisions are based on blacklists or whitelists configured by a network administrator. In
Figure 2.6, shallow packet inspection will, usually, have access to the Ethernet, IP, and
TCP headers.

Typical SPI devices make use of 5-Tuple based configuration to define their behaviour.
Listing 2.4 gives an example a 5-tuple entry (Al-Shaer and Hamed, 2003).

i <order> <protocol> <src_ip> <src_port> <dst_ip> <dst_port> <action>

Listing 2.4: Example of 5-Tuple based configuration

A filtering blacklist contains a combination of 5-Tuple entries defining where traffic may
not flow. A filtering whitelist contains 5-Tuple entries defining where traffic may only
flow.

Shallow packet inspection provides only the most rudimentary form of packet analysis
and is useful for simple firewalls but cannot be used to enforce complex policies reliant
on the packet’s payload (Ingham and Forrest, 2002).

2.4.2 Medium Packet Inspection

Medium Packet Inspection (MPI) is what is used by the application proxies described in
Subsection 2.2.1. MPI is used to control the traffic flow through a network at the applica
tion layer (Mogul, 1989). With MPI it is possible to enforce the use of specific applications

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ethernet
Header

IP
Header

TCP
Header

Figure 2.6: An example packet. Different levels of packet inspection have access to
different protocols within a packet.

2.4. PACKET INSPECTION 33

and protocols, thus limiting the potential attack surface of the network (Ranum, 1992).
Systems implementing MPI are even able to restrict the kind of files being transmitted
(usually by looking in the presentation layer) which can be used to curb file sharing to an
extent (Parsons, 2009).

A further use of MPI is detecting anomalous behaviour in known protocols. A system
implementing MPI is required to be aware of different application-layer protocols and
check for packets which do not comply with the standards defined for those protocols
(Handley et al., 2001). Figure 2.1 exemplifies proxies which perform MPI.

As mentioned in Subsection 2.2.1, these kinds of systems are required to have intimate
knowledge of the protocols they wish to proxy. New protocols are designed and released
every day. Some protocols are even obfuscated to the point where developing an applica
tion layer proxy is impossible. This type of approach to packet inspection cannot scale
well if the administrators wish to continue supporting new protocols (Parsons, 2014).

2.4.3 Deep Packet Inspection

Deep Packet Inspection (DPI) is the process by which packets flowing through an Intru
sion Detection System, firewall, or other system interested in network traffic are searched
through for threats within their payload (Parsons, 2014). DPI can combine signature
matching and heuristics to assess the threat of the communication. In order to achieve
the speed needed to match modern network bandwidth, custom application-specific in
tegration circuits (ASICs) are often deployed to provide the speed required. For a Deep
Packet Inspection system to perform correctly, firewalls need to maintain both the state
of the underlying connection but also the state of any application using it. Sourdis (2007)
describes DPI as “ [analyse] packet contents and [provide] content-aware processing.”

Sourdis (2007) describes the following requirements for DPI systems wishing to act in real
time on network traffic: •

• High processing throughput. Yu et al. (2006) emphasize the importance of this in
their work - especially on general purpose processors.

• Low implementation cost. Custom hardware solutions present considerable costs.

• Ease of modifiability. New threats result in new rules and systems must be able to
quickly implement these changes.

2.4. PACKET INSPECTION 34

• Scalability. The traffic on networks is very periodic and DPI systems must be able
to handle such scenarios.

It is not a trivial task for the technology behind DPI systems to keep up with modern
networks. Although the speed of computer processors increases rapidly and predictably
(Moore, 1965), so too does the speed of communication within and between networks
(Neilsen, 1998). Furthermore, every day more and more network-based attacks are devel
oped, these attacks are often used to create patterns and rules. The resulting patterns
and rules are then used in DPI systems to detect those attacks.

DPI has many different applications. Internet Service Providers (ISPs) use Deep Packet
Inspection to perform bandwidth limiting and cost analysis (Networks, 2011; Bendrath
and Mueller, 2011; Mueller and Asghari, 2012). It is often useful for an ISP to know
exactly what application-layer protocol is being used by customers on their network.
ISPs may bill differently depending on the type of content being transferred (Mueller and
Asghari, 2012). DPI also has many uses for securing a network - both at the network’s
edge with a firewall (Section 2.2) and within IDSs (Section 2.3).

One technique used by DPI systems is to identify the files being transferred by comparing
a hash of the file to hashes of known files. First, complete streams spanning multiple
TCP segments must be reassembled (Necker, Contis, and Schimmel, 2002), then by using
the file or packet as an input to a hash function, a DPI system can quickly match that
file to a file previously identified by the system or known to it via a signature (Callado,
Kelner, Sadok, Kamienski, and Fernandes, 2010). Although fast, this approach is limited
as even the smallest change to a file will cause it to be unidentifiable by its hash. A
more refined, but programatically and computationally more intensive, approach is that
of fingerprinting.

DPI systems can employ fingerprinting to identify the contents of a file within a packet
(Parsons, 2014). To represent the fingerprint of a packet, the DPI system needs to have
a deep understanding of the contents of a packet. If the packet’s payload is a file from
Microsoft Excel then the DPI system needs to be aware of the structure of an excel file
in order to better understand its contents (Callado et al., 2010; Liao, 2015).

An example of fingerprinting used to identify traffic is given in Parsons (2014). In it
Parsons describes the use of fingerprinting to identify traffic associated with the Skype20
program. Skype uses encryption to mask the contents and even the true headers of

20https://www.skype.com/en/

https://www.skype.com/en/

2.4. PACKET INSPECTION 35

packets that it transmits. To identify traffic from Skype, DPI systems have to use different
measures.

When initiating a voice call in Skype, the Skype program will initially transmit a seemingly
random burst of packets which, after further analysis by Bonfiglio, Mellia, Meo, Rossi,
and Tofanelli (2007), can be shown to follow a pattern and in turn this pattern can be
identified by heuristics. Thereafter, Skype traffic can be identified by Intrusion Detection
Systems by the heuristics demonstrated in Bonfiglio et al. (2007).

2.4.4 Encrypted Traffic

While packet inspection, and more specifically Deep Packet Inspection, can be very ef
fective at identifying patterns and rules in unencrypted traffic, it is far more difficult to
perform the analysis on traffic that is encrypted(Sherry, Lan, Popa, and Ratnasamy, 2015;
Lin, Lin, Prassana, Chao, and Lockwood, 2014). Traditionally application-layer proto
cols have mappings (assigned by the Internet Assigned Numbers Authority (IANA)21) to
TCP or UDP port numbers and can be identified through those numbers. Often times,
as is the case with Skype (Bonfiglio et al., 2007), even the protocol itself has been obfus
cated by means of encryption and port numbers are assigned randomly (Alshammari and
Zincir-Heywood, 2011). In 2005, Moore and Papagiannaki showed that the classification
of traffic by port number alone is 70% accurate.

Through the analysis of the packet payload itself - and comparing it to known signatures
- unencrypted traffic can be classified at near 100% accuracy (Moore and Papagiannaki,
2005). For encrypted traffic it is far more difficult. Researchers have employed techniques
such as Hidden Markov models, Naive Bayesian models, AdaBoost, RIPPER, Decision
Trees, expert systems and Maximum Entropy methods (Alshammari and Zincir-Heywood,
2011). Further statistical models for classification are also employed.

Internet service providers are one of the major implementors of Deep Packet Inspection
today (Hibberd, 2012). Subsubsection 2.4.5 will discuss the incentives for these ISPs to
perform DPI. For many ISPs, Deep Packet Inspection only stretches as far as to identify
the kinds of traffic flowing through their network and often, in the case of HTTP traffic,
the specific website being accessed. ISPs and others wishing to identify traffic like this can
resort to other measures. Examples of which include matching the destination or source
IP address of a packet to a known domain name. These domain names can then be used

21https://www.iana.org/

https://www.iana.org/

2.4. PACKET INSPECTION 36

to identify websites. Streams of small packets both towards and away from a client is a
strong indication of VOIP traffic.

2.4.5 Why Perform DPI?

In discussing the technicalities of Deep Packet Inspection, a few examples of DPI in use
have been briefly covered. DPI employed by ISPs for bandwidth monitoring and by net
work administrators for security reasons has been discussed. This subsection will formally
define and categorise the reasons for ISPs, companies, and governments to perform any
kind of packet inspection.

Parsons (2014) suggests that there are three main reasons for networks to perform DPI:

• Technical - DPI is used by network administrators for general security, access re
striction and quality of service (QOS) monitoring (Parsons, 2014). As mentioned in
Section 2.3, DPI was originally intended to improve the administrators’ ability to
detect intrusions into their network, and even prevent future intrusions (Kemmerer
and Vigna, 2002). Furthermore, DPI provided vital logging which allows adminis
trators to gain valuable insight into the kind of traffic traversing their network and,
in the event of a breach, a historical view of how the attacker gained access to the
network.

A system designed to log HTTP traffic could keep track of which websites were
being visited, separate traffic by upload and download or even the type of traffic
being transmitted (images, movies, text, etc.). Such logs can be used to build usage
patterns for users which in turn could be used by IDSs (Section 2.3) to identify an
intrusion (Kemmerer and Vigna, 2002).

DPI is often used to flag traffic as potentially interesting (for the reasons listed
above) which could then be analysed offline (without having to match the network
speed) (Yang, Liao, Luo, Wang, and Yeh, 2010).

Deep Packet Inspection can also be used to identify the user that packet can orig
inated from (usually via some kind of authentication) and provide services specific
to that user. Within the context of an ISP, the user may only be allowed to transfer
HTTP and SMTP traffic whereas other users may be allowed unrestricted traffic flow
(Kumar et al., 2006; Parsons, 2014). Furthermore, ISPs may use DPI to intercept

2.4. PACKET INSPECTION 37

HTTP traffic and add their own banners or advertisements to pages22.

ISPs or network administrators may use DPI to identify time-sensitive (or realtime)
protocols and give those packets priority during times of congestion.

• E conom ic - There are many economic reasons for ISPs to implement DPI. ISPs
may offer different levels of service based on how much a customer is willing to pay
and can then use Deep Packet Inspection to identify traffic and act according to the
agreed level of service. Customers may be able to choose a basic internet connection
package which limits the speed that they are able to connect to some services or
specific websites with - DPI is instrumental in identifying these services or websites
allowing the ISP to treat the traffic differently.

ISPs can also use DPI to identify traffic from services that they themselves offer.
That traffic may then be treated differently. Examples of special treatment to traffic
include: zero rating it so that it does not count towards some kind of limited usage
quota or giving the traffic preferential treatment during times of congestion. ISPs
may even slow or block traffic to services offered by their competitors.

As mentioned earlier ISPs could use DPI to distinguish traffic based on the service
that a customer has chosen to pay for. Basic packages may only offer web browsing
and email whereas - often at a cost - an advanced package may make the entire
internet available. For a look at a rather dystopian idea of what an ISP could
achieve through DPI see Figure A.1 (/u/quink, 2009) on page 143.

The idea expressed by that graphic is that of the ‘app-model’ of the internet (Par
sons, 2014). The concept of an ‘app-model’ is where connectivity is charged based
on the application being used rather than the overall bandwidth consumed. An
analogous example is that of an electricity supplier charging differently for the same
amount of power used by a toaster and a kettle. Some ISPs try to frame this concept
as a security feature that limits a client’s attack surface by restricting the traffic
to them. The debate surrounding these practices has been very heated. The term
coined to describe the principal that these ideas subvert is Net Neutrality23.

A further economic incentive for DPI is that of detecting and subsequently stopping
the illegal transfer of copyrighted material. ISPs using DPI could monitor traffic
for signs of copyright infringement (often by using some kind of fingerprinting on
media contained within the packets (Gupta, 2013)) and stop the transfers before

22Here is an example of this being performed by Telkom, South Africa’s largest ISP: https://www.
reddit.com/r/southafrica/comments/3cnpit/telkom_is_using_a_maninthemiddle_attack_to_change/
23https://en.wikipedia.org/wiki/Net_neutrality

https://www.reddit.com/r/southafrica/comments/3cnpit/telkom_is_using_a_maninthemiddle_attack_to_change/
https://www.reddit.com/r/southafrica/comments/3cnpit/telkom_is_using_a_maninthemiddle_attack_to_change/
https://en.wikipedia.org/wiki/Net_neutrality

2.4. PACKET INSPECTION 38

they reach the recipient. ISPs are especially motivated to perform such monitoring
when they themselves are holders to the rights of material24.

ISPs are also able to generate revenue through the injection of ’’ foreign code” (Par
sons, 2014) into traffic. Such examples of this are the use of code injection for adding
advertisements or tracking cookies into the packet’s payload. Advertisements are
paid for through some kind of ad network and the ISP would then be paid per view
or click.

• Political - Governments have for long been concerned with the way their citizens
communicate with each other. Before the advent of the internet, some governments
would routinely monitor phone calls, telegrams or letters sent by people of interest
to them. In the internet age, governments have been known to use DPI to monitor
the communication of citizens; often this can be done in a way that is transparent
to the person or group being watched.

Governments can employ DPI to monitor network traffic for things such as: child
pornography, communication that is unfavourable to the government, or even just
encrypted traffic (which some governments look to ban25) . Governments, such as
the Chinese government26, may block access to websites in an effort to limit free
speech.

The process of actively inspecting traffic for an entire country can be extremely
demanding of resources and so governments often deploy a different strategy for
ensure that DPI takes place. The strategy is known as intermediary liability.

Intermediary liability is described as governments shifting the liability of what they
deem to be illegal activity to the companies who transmit the data. It is thus those
intermediary companies who are responsible for ensuring that the customers on their
networks do not break the law by monitoring all traffic.

As has been discussed, there are many reasons to perform Deep Packet Inspection. Very
few of these reasons seem to add positive value to the users of networks with the exception
of a few security cases. The Net Neutrality argument continues, and the core technology
behind it is Deep Packet Inspection.

24A n example of this is Time Warner who operate in the U S as an ISP (Time Warner Cable) and
produce T V shows (through networks like H B O and Cartoon Network) and films (through production
companies like Warner Bros.). See: http://www.timewarner.com/

25 http://www.itnews.com.au/news/uk-pm-wants-to-ban-encrypted-comms-399338
26https://en.wikipedia.org/wiki/Great_Firewall

http://www.timewarner.com/
http://www.itnews.com.au/news/uk-pm-wants-to-ban-encrypted-comms-399338
https://en.wikipedia.org/wiki/Great_Firewall

2.5. SUMMARY 39

2.5 Summary

This chapter has introduced and discussed a number of different areas which have influ
ence on Deep Packet Inspection. Section 2.1 discussed the overall field of network security
and the various dangers posed to modern networks and the devices therein. Later, Sec
tion 2.2 took a deeper look into the history and status of network firewalling. It was
shown how import packet inspection is in firewalls and just how important firewalls are to
network security. Section 2.3 investigated the use of Intrusion Detection Systems in mod
ern networks and saw how vital they were in keeping users of those networks protected.
Intrusion Detection Systems were shown to rely heavily on Deep Packet Inspection in
performing their duties. Finally, Section 2.4, took a in-depth look at the varying levels of
packet inspection with an emphasis on Deep Packet Inspection.

It is with this that the prevalence and importance of Deep Packet Inspection in modern
networks today has been established and the research presented hereafter justified.

Chapter 3 will investigate the field of string search algorithms and present a set of algo
rithms chosen to test and benchmark in the context of Deep Packet Inspection.

Chapter 3

Algorithms

String search algorithms prove useful in many different disciplines within the field of com
puter science (Crochemore and Wojciech, 2002). Traditionally, these algorithms have been
used to search for key words or short sentences within large volumes of text (Stephen,
1994). String search algorithms are not, however, limited to searching through books.
Many other kinds of information are stored in textual formats and benefit from the per
formance of string search algorithms. An example of this is genetic code1 which is used to
store entire genomes in a four-letter alphabet. Furthermore, the amount of binary data
(of which textual data is a subset) that is stored and processed grows substantially every
year.

Packet processing typically does not make much use of string search algorithms and in
particular exact string search algorithms (Chaudhary and Sardana, 2011). The exact
string search algorithms presented in this chapter are have been designed to run sequen
tially. Packet processing systems are usually implemented as custom hardware solutions
and make use of highly parallelisable algorithms (Sourdis, 2007). The algorithms intro
duced and discussed in this chapter are best suited to implementations on the GPP-style
hardware presented in Section 2.3 which, as shown there, are not particularly well suited
to fast packet analysis (Chaudhary and Sardana, 2011).

The following chapter presents an introduction to Stringology (the study of string search
algorithms), and then presents each of the string search algorithms selected for implemen
tation and comparison.

1https://en.wikipedia.org/wiki/Genetic_code

40

https://en.wikipedia.org/wiki/Genetic_code

3.1. STRINGOLOGY PRIMER 41

3.1 Stringology Primer

The authoritative source of information on the exact string search algorithms - the al
gorithms which this research was limited to - is the Handbook of Exact String-Matching
Algorithms, by Charras and Lecroq (2004). In it, the authors describe in detail a num
ber of different exact string search algorithms, their seminal publications, and the special
properties of each algorithm. In the text, a standard nomenclature was adopted for de
scribing the algorithms in such a way that it was easy to compare one algorithm with one
another. The same naming scheme is employed hereafter.

String-searching is defined as finding one or more patterns or rules in a piece of text or
input. Patterns are represented as x = x[0...m — 1] where m is the length of the pattern.
Text is represented as y = y[0...n — 1] where n is its length. The alphabet is the finite set
of characters which the text or pattern may be comprised of. The alphabet is denoted as
£ with a size of a. When a pattern is matched with some point in the text, the position
of the match is noted by the index of the first matching character in the text.

The realm of string search algorithms has usually been within textual data (Crochemore
and Wojciech, 2002). String search algorithms have, on occasion, been employed to search
through biological sequences (Srikantha, Bopardikar, Kaipa, Venkataraman, Lee, Ahn,
and Narayanan, 2010). Network packets, on the other hand, represent their data as a
series of bytes. In some cases these bytes may just be encoded text but this is often not
the case. For the purposes of this research, textual data has been reduced to its ASCII
representation, i.e. 0x000 to 0xFFF. When text is reduced to its byte representation, the
same algorithms can be used for searching through packets and through plain text.

For string searching, the following terms and their definitions are relevant:

• prefix - a prefix p of a string a is defined as a = p + q where q is possibly zero-length.

• suffix - a suffix q of a string a is defined as a = p + q where p is possibly zero-length.

• substring - a substring s of a string a is defined as a = r + s + 1 where r and t may
be zero-length.

This research looks only at the string search algorithms that can be defined as exact string
matching and single rule matching. As discussed earlier, a large selection of such string
search algorithms has been amassed by Charras and Lecroq (2004). From this collection

3.1. STRINGOLOGY PRIMER 42

of 34 exact string matching algorithms, a subset of nineteen algorithms was chosen to
implement, benchmark and then compare. Table 3.1 provides a summary of the chosen
string search algorithms. The summary includes: the name of the algorithm, the year it
was published, its author, and the algorithmic complexity during searching. Each of the
chosen algorithms share two important features: exact string matching and single rule
matching. Those terms are defined as follows (Charras and Lecroq, 2004):

• E xact String M atching - all of the algorithms match exactly with substrings
in the input text. Partial matches, no matter how similar to the pattern, are not
considered matches.

• Single R ule M atching - all of the algorithms are designed to search for just a
single rule at a time. In order to search for multiple rules simultaneously further
parallelisation is needed. Two further categories of string search algorithms exists,
namely algorithms which match a finite set of patterns and algorithms which match
an infinite set of patterns.

Figure 3.1 shows all of the chosen algorithms plotted on a timeline based on their year
or release and Big-0 classification. Every algorithm, except for the Naive algorithm, was
published in some kind of paper, journal article or technical report. The Naive algorithm
has no known year of invention. The year in which they were first published has been
plotted along the x-axis.

O(n) | Galil-Giancarlo |

0 (n + m) | Raita j

O(nm) | Colussi | jReverse Colussij

iQuickSearchi | Turbo Boyer-Moore

I Horspool! | Zhu-Takaoka i| Apostolico-Crochemore |

;Morris-Pratt; |Boyer-Moore| [Rabin-Karp] iSmithi |Not So Naive

Naive! 1 Knuth-Morris-Pratt I Apostolico-Giancarlo Bitap | ; Simon

o , - i c \] o o ,vtH L n u) r - o o c r) 0 , - i c \] C Q ' v t i L O U 3 r - ' C o c r ! 0 ! - i c M O r) ^
r - r ' r ^ - r - i > r - ! > r - i > r - o o c o o o c o o o c o o o c o o o c o < y i c r i < y t c r i c y)

* • * o i o i o i o i a i o i o i o i t y i f l i t y i f l i t y i o i o i o i o i o i o i o i o i o i o i o i o i

Figure 3.1: A timeline of the string search algorithms selected for this research

Each of the string search algorithms has a known theoretical performance. This per
formance is known as algorithmic complexity and usually written in Big-0 notation (pre
sented in the Time Complexity column of Table 3.1 and as either a solid, dotted or dashed

3.1. STRINGOLOGY PRIMER 43

Algorithm Year Author(s) Time Complexity

Naive O(mn)
Morris-Pratt 1970 Morris and Pratt O(n + m)
Knuth-Morris-Pratt 1977 Knuth et al. O(n + m)
Boyer-Moore 1977 Boyer and Moore O(nm)
Horspool 1980 Horspool O(n + m)
Apostolico-Giancarlo 1986 Apostolico and Giancarlo ° (n)
Rabin-Karp 1987 Karp and Rabin O(mn)
Zhu-Takaoka 1987 Feng and Takaoka O(mn)
Quick Search 1990 Sunday O(mn)
Smith 1991 Smith O(mn)
Ap ostolico-Cro chemore 1991 Apostolico and Crochemore O(n)
Colussi 1991 Colussi O(n)
Raita 1991 Raita O(nm)
Galil-Giancarlo 1992 Galil and Giancarlo O(n)
Bitap (Shift Or) 1992 Baeza-Yates and Gonnet O(n)
Not So Naive 1993 Hancart O(nm)
Simon 1994 Simon O(n + m)
Turbo Boyer-Moore 1994 Crochemore et al. O(n)
Reverse Colussi 1994 Colussi O(n)

Table 3.1: Implemented string search algorithms.

line bordering the algorithms on the timeline in Figure 3.1). This value is generally re
lated in some way to both the length of the input and the length of the rule. Algorithmic
complexity often only provides insight into processing speed where large variations in the
length of the input (differing orders of magnitude) are present. In packet data, a limited
range of input lengths is possible. The maximum length of a packet is defined by the
maximum transmission unit (MTU) of the communications medium (Law, Diab, Healy,
Carlson, Maguire, Anslow, and Hajduczenia, 2012). The performance of these algorithms
may come down to minutiae within the algorithms themselves rather than their overall
algorithmic complexity.

As these algorithms are designed to match just a single rule at a time, in order to match
multiple rules searches needs to either be run sequentially or in parallel. In a sequentially
designed system, only a single search for a rule may be run at a time. In parallel, many
rules could be searched for at once. In modern processor architectures, CPUs feature
multiple cores and each core is able to handle many threads at the the same time (Figure
gives the basic idea of such a multi-core multi-threaded CPU). An upper bound for the
number of concurrent searches exists. This upper bound is defined by the processor, the
number of cores it has, and the number of hyperthreads each core supports.

3.2. NAIVE 44

core
r

threads

core

threads

Figure 3.2: An example of a multi-core, multi-threaded CPU (Jenkov, 2014).

For a system with ten cores, running a search in a single thread (and therefore on a
single core) is only using at most ten percent of the potential processing power. Splitting
the search across ten cores should serve to give close to an order of magnitude speed
increase. If those ten threads were saturating the processing speed of all ten cores (using
one hundred percent of the available processing power), adding more threads might serve
to reduce the benefits seen before. The overhead of switching between threads on a single
core may start to adversely affect the processing time.

Many of the implemented algorithms make use of a preprocessing phase to aid the string
search. The preprocessing phase will generally create some kind of data-structure based
on the pattern to be searched for. As long as the pattern - or set of patterns - remains
the same between successive searches, then the preprocessing phase does not need to be
run again. In the context of packet inspection this means that the preprocessing phase
will only need to run when a change is made to the ruleset.

The following sections will introduce and discuss each of the algorithms selected for testing.

3.2 Naive

The Naive algorithm is the simplest, and oldest, of the algorithms chosen for this research.
It is often referred to as the Brute Force algorithm. The algorithm performs no prepro
cessing and always shifts the search window by exactly one position to the right (Charras
and Lecroq, 2004). The algorithm has a search complexity of 9(nm) and an average of
2n text comparisons are made.

3.3. MORRIS-PRATT 45

The algorithm works by checking all characters between 0 and n — m. After a mismatch,
the window is shifted to the right by one character (Charras and Lecroq, 2004).

3.3 Morris-Pratt

The Morris-Pratt algorithm (1970) is an early refinement of the Naive algorithm. Morris
and Pratt noted that the Naive algorithm ‘wastes’ information gathered during previous
attempts when conducting the current attempt. The refinements made to the Naive
algorithm allow the Morris-Pratt algorithm to shift more than the single character done
by the Naive algorithm and simultaneously keep track of some already-compared pieces of
text (Charras and Lecroq, 2004). As a result a number of character comparisons can be
saved and the overall speed of the search improved (Aho, Hopcraft, and Ullman, 1974).

In order to keep track of the suffixes already compares, the Morris-Pratt algorithm makes
uses of a ‘next’ table constructed using the search pattern. The Morris-Pratt algorithm
has a search time-complexity of Q(n + m) and performs at most 2n — 1 comparisons.

3.4 Knuth-Morris-Pratt

The Knuth-Morris-Pratt algorithm (1977) is a refinement of the work previously done
on the Morris-Pratt algorithm in Morris and Pratt (1970). The Knuth-Morris-Pratt
algorithm hopes to improve the maximum length of shifts that the algorithm can perform
during searching. The Knuth-Morris-Pratt algorithm has a search time-complexity of
9(n + m).

The maximum number of comparisons of a single character in the input is limited to
log^(m) where $ = 1+2A>/5 or the golden ratio (Knuth et al., 1977; Charras and Lecroq,
2004).

3.5 Boyer-Moore

The Boyer-Moore algorithm (1977) is often considered one of the fastest exact string
search algorithms (Charras and Lecroq, 2004). The Boyer-Moore algorithm is used in the

3.6. HORSPOOL 46

very popular GNU Grep (Haertel, 2010) tool. It has a time complexity of Q(nm) and
performs at most 3n character comparisons.

The Boyer-Moore algorithm performs its searches from the right-most character of the
search window to the left most. In the case of a mismatch, two precomputed tables are
consulted to determine how much to shift by (Charras and Lecroq, 2004). The algorithm
is very fast for large alphabets(Lecroq, 1995). Large alphabets are defined as being much
larger than the length of the pattern being searched for (Boyer and Moore, 1977).

3.6 Horspool

The Horspool algorithm (1980) is a refinement and simplification of the Boyer-Moore algo
rithm (Boyer and Moore, 1977). It simplifies the Boyer-Moore algorithm by only making
use of the ‘bad-character’ shift table presented in Boyer and Moore (1977). Horspool
noted that the ‘bad-character’ shift table was quite efficient for large alphabets; alpha
bets such as those provided by the ASCII (Bemer, 1960) or UTF-8 (Pike and Thompson,
1993) encodings.

The searching time-complexity of the Horspool algorithm is d(nm) (Charras and Lecroq,
2004). The average number of comparisons with a single character can be shown to be
between 1 and ^+y (Baeza-Yates and Gonnet, 1992), where a is the length of the alphabet.

3.7 Rabin-Karp

The Rabin-Karp algorithm (1987) (often referred to as Karp-Rabin) makes use of hashing
to avoid constant recomparisons with the pattern. By computing a hash (or fingerprint) of
the pattern (Aho, 1990) during the preprocessing phase, the algorithm is able to compare
the hash of the current window into the text with that known hash of the pattern (Charras
and Lecroq, 2004).

The speed of the algorithm can be negatively affected if the fingerprint is slow to compute
or if many false positives are produced (Karp and Rabin, 1987). The Rabin-Karp also
benefits from being able to search for many strings at the same time, with each pattern
only adding an additional integer comparison during the search.

The Rabin-Karp algorithm has a searching time complexity of d(nm).

3.8. ZHU-TAKAOKA 47

3.8 Zhu-Takaoka

Yet another variant of the Boyer-Moore algorithm (Boyer and Moore, 1977) is that of the
Zhu-Takaoka algorithm (Feng and Takaoka, 1987). The Zhu-Takaoka algorithm uses two
characters for the Boyer-Moore algorithm’s ‘bad-character’ shift table.

The Zhu-Takaoka algorithm exhibits a Q(nm) time-complexity for searches (Lecroq, 2007).

3.9 Quick Search

The Quick Search algorithm is another variant of the work done on the Boyer-Moore
algorithm by Boyer and Moore (1977). In the Quick Search algorithm, when a mismatch
has occurred, the window will necessarily shift by at least one character. Because of
this, the first character after the window can be used in the Boyer-Moore algorithm’s
‘bad-character’ shift table.

The Quick Search algorithm has been shown to have excellent performance for short
patterns in long alphabets (Sunday, 1990; Stephen, 1994; Lecroq, 1995; Crochemore and
Lecroq, 1996). The algorithm has a search time-complexity of Q(nm) (Charras and Lecroq,
2004).

3.10 Smith

The Smith algorithm (1991) is a amalgamation of both the Horspool (Horspool, 1980)
and Quick Search (Sunday, 1990) algorithms. Smith noticed that computing the ‘bad-
character‘ shift with the rightmost character of the window (as done in the Horspool
algorithm) could, sometime, give more of a shift than if it were calculated using the
method described by the Quick Search algorithm (Smith, 1991). Smith proposed to take
the maximum value from both of those method in order to maximise the shift each time
(Smith, 1991).

The Smith algorithm completes its search with a time-complexity of d(nm) (Charras and
Lecroq, 2004).

3.11. APOSTOLICO-CROCHEMORE 48

3.11 Apostolico-Crochemore

The Apostolico-Crochemore (1991) algorithm builds on the work done in Knuth et al.
(1977) by making use of the ‘next’ shift table. In the Apostolico-Crochemore algorithm,
the maximum number of comparisons is bounded by |n (Charras and Lecroq, 2004).
This bounding is generally good for Deep Packet Inspection as it guarantees deterministic
processing times for the large number of inputs usually seen in such an application. The
Apostolico-Crochemore algorithm has a search time-complexity of 0(n).

3.12 Colussi

The Colussi algorithm (Colussi, 1991) is yet another refinement of the work done for
the Knuth-Morris-Pratt algorithm by Knuth et al. (1977). The Colussi algorithm has a
searching time-complexity of 0(n).

The algorithms itself works by splitting the pattern into two half, working from right to left
on the first half and then left to right on the second (Breslauer, 1992; Galil and Giancarlo,
1992). As with the Apostolico-Crochemore algorithm, the number of comparisons is
bounded by |n (Charras and Lecroq, 2004).

3.13 Raita

The Raita algorithm (1991) has a slower search time-complexity than that of the Co
lussi, at 0(nm). This algorithm was designed to take advantage of what the author calls
‘character dependencies’ in English text.

In English, there is often a high dependency which governs the occurrence of characters
in text. This dependency is strongest for characters positioned next to each other (Raita,
1991) and weakest at word boundaries. As an example, the character ‘q ’ is almost always
followed by the character ‘u’. Raita argues that this dependency makes comparison of
successive symbols from left to right (and from right to left) not profitable (Charras and
Lecroq, 2004). Raita suggests that character comparisons should occur from the point of
weakest inter-character dependency to strongest.

3.14. GALIL-GAINCARLO 49

In practice, the algorithm works by first comparing the last characters, then the first,
then the middle, and finally by comparing each of the other characters. The algorithm
makes use of the Boyer-Moore algorithm’s ‘bad-character shift’ function to compute the
shift in the case of a mismatch.

In Smith (1994), the author argues that the improvement suggested in Raita (1991) was
merely a result of the behaviour of the compiler, rather than the algorithm itself.

3.14 Galil-Gaincarlo

The Galil-Giancarlo algorithm (1992) builds on the work done on the Colussi algorithm
(Colussi, 1991). It too has a search time-complexity of 0(n) (Charras and Lecroq, 2004).
It improve the upper bound of the maximum number of text comparisons from |n, in the
Colussi algorithm, to |n.

Galil and Giancarlo noticed that the Colussi algorithm had very poor performance for
patterns which begin or end with repeated characters (Breslauer, 1992). When encoun
tering such a set of repeated characters, the Colussi algorithm will shift by only a single
character. Galil and Giancarlo devised a way to shift by more characters in such a case.

3.15 Bitap

The Bitap (or Shift Or) algorithm (Baeza-Yates and Gonnet, 1992) makes use of bitwise
operations to perform its search and extends very easily to allow for non-exact matching
(Baeza-Yates and Gonnet, 1992; Charras and Lecroq, 2004). The algorithm performs
its search in 0(n) time. The algorithm works by representing the state of the search as
some number, and then subsequent comparisons inflict some kind of arithmetic for logical
operation on that number to represent the next state (Baeza-Yates and Gonnet, 1992;
Wu and Manber, 1992; Crochemore and Lecroq, 1996).

3.16 Simon

The Simon algorithm (1994) is an example of a deterministic finite state automaton (DFA)
used for string searching. It makes improvements on the basic DFA presented by Charras
and Lecroq (2004) et al.

3.17. NOT SO NAIVE 50

Simon notes that the number for edges used in the basic DFA is excessive. He posits
that the number of edges can be bounded by 2m (Charras and Lecroq, 2004) and thus
the maximum number of text comparisons is bounded by 2n — 1. The algorithm has a
time-complexity of 0(n + m).

3.17 Not So Naive

The Not So Naive algorithm (Hancart, 1993) is an improvement on the base Naive algo
rithm. It works works in much the same way as the Naive algorithm except that the Not
So Naive algorithms tries to find two repeated characters and, when it does, shifts by two
places instead of one (Charras and Lecroq, 2004).

The Not So Naive algorithm has an average time-complexity of 0(nm).

3.18 Turbo Boyer-Moore

As the name would imply, the Turbo Boyer-Moore algorithm (Crochemore et al., 1994)
is a variant of the Boyer-Moore algorithm (Boyer and Moore, 1977) or a simplification of
the Apostolico-Giancarlo algorithm (Lecroq, 1995). The algorithm works by remembering
the last suffix matched during the previous attempt, allowing the algorithm to jump by
the length of that suffix or perform a ‘turbo’ shift.

The Turbo Boyer-Moore algorithm performs the search with a 0(n) time-complexity and
will do, at most, 2n character comparisons (Charras and Lecroq, 2004).

3.19 Reverse Colussi

The Reverse Colussi algorithm (1994) is yet another variant of the Boyer-Moore algorithm
by Boyer and Moore (1977). The algorithm has a search time-complexity of 0(n) and at
worst will perform 2n comparisons (Charras and Lecroq, 2004) whereas the Boyer-Moore
algorithm will perform 3n (Colussi, 1994). Like the Colussi algorithm (Colussi, 1991), the
Reverse Colussi algorithm works by splitting the pattern into two halves.

3.20. SUMMARY 51

3.20 Summary

In recent years many more string search algorithms have been invented (Faro and Lecroq,
2013). Most of these algorithms fall under the categories of automata- and bit-parallelism-
based algorithms. These categories of algorithms differ from most of the algorithms listed
above which are mostly classified as character-based comparison algorithms (Faro and
Lecroq, 2013).

In Faro and Lecroq (2013), the authors compare many of the more modern string search
algorithms experimentally. Through those experiments a few algorithms stood out as
good performers. For patterns of longer length and alphabets of varying sizes, the SSEF
algorithm (Kulekci, 2009) was fastest overall. For smaller rule lengths the results varied
a fair amount with with the EBOM (Fan, Yao, and Ma, 2009) and FSBNDM (Faro and
Lecroq, 2009) algorithms showing good results.

In the preceding chapter, each of the chosen algorithms has been presented and discussed.
Each of the nineteen algorithms help to form part of the backbone of the field of string
search algorithms. Figure 3.3 gives an idea of the genealogy of the chosen string search
algorithms.

Figure 3.3: String search algorithms family tree

Figure 3.3 paints a rich picture of the constant collaboration and improvement that occurs
within the string search algorithm field. The selected algorithms have two distinct cate
gories: Naive- and DFA-based algorithms. The Morris-Pratt, Boyer-Moore, Rabin-Karp,

3.20. SUMMARY 52

Bitap, and Not So Naive algorithms all descend from the Naive algorithm. Refinements to
the Boyer-Moore are made by the Horspool, Apostolico-Giancarlo, Zhu-Takaoka, Quick
Search, Raita, Turbo Boyer-Moore, and Reverse Colussi algorithms. The Morris-Pratt
algorithm is improved by the Knuth-Morris-Pratt algorithm. The Smith algorithm im
proves on both the Horspool and Quick Search algorithms. The Colussi and Apostolico-
Crochemore algorithms make further improvements to the Knuth-Morris-Pratt algorithm
and the Galil-Giancarlo algorithm makes refinements to the Colussi algorithm.

Each of the algorithms was designed to find a single pattern within a body of text. Some of
these algorithms, like the Boyer-Moore algorithm, have found their way into mainstream
use with implementations in popular programs (Haertel, 2010).

Chapters 5 and beyond present a harness for testing the algorithms listed above. They
also perform various tests and present those results.

Chapter 4

Datasets

For the purpose of this research a number of datasets needed to be assembled, and con
structed. Each of the datasets was designed to allow very specific questions to be posed
about the algorithms. For the artificially constructed datasets, special care was taken to
limit the possible variables affecting the processing speed of the algorithms. Table 4.1
presents the five datasets and other pertinent information.

Two types of data were used to construct the datasets. The first was PCAP data. PCAP
files are logical collections of packets (Garcia, 2008). PCAP files are often created using
the tcpdump1 tool listening on a network interface. Packet data makes up the majority
of the datasets, and is represented by: Dataset A , Dataset C , Dataset D , Dataset E , and
Dataset F . The second type of data is textual and that makes up just Dataset B . Most
of the datasets are PCAP files as they provide the best representation of network traffic.
The textual data is a good representation of the kind of data traditionally parsed by these
algorithms. Sections 4.1 to 4.6 discuss each dataset.

For the purpose of this research, textual data is treated as a single input whereas PCAP
files are split into their constituent packets and each packet is treated as a separate input.
This is discussed further in Chapter 5.

4.1 Dataset A

Dataset A is a PCAP file containing 10000 packets of real-world DNS data. The data
represents requests from a network of clients to DNS servers and their responses. 1

1 http://www.tcpdump.org/

53

http://www.tcpdump.org/

4.2. DATASET B 54

Name Description n # Inputs

Dataset A Real-world DNS traffic 109.61 10000
Dataset B Full text of Alice in Wonderland by Lewis

Carroll
163780 1

Dataset C Randomly generated DNS traffic with a pay
load size between 0 and 1500 bytes

770.89 10000

Dataset D Dataset C edited so that the payload just
contains matches to the required rules

770.89 10000

Dataset E Dataset C edited so that each packet is filled
with a random number of matches

769.92 10000

Dataset F Packets of fixed length - filled with a random
number of matches

1500 10000

Table 4.1: Datasets used by the test system during the tests

This dataset is important as it represents actual network traffic - it is similar to the traffic
that can be found passing through a network firewall or being examined by Intrusion
Detection Systems and has a high proportion of textual content. This dataset does,
however, have a flaw. The packets contained in Dataset A are on average about one
hundred and ten bytes long. This is far shorter than a packet of average length which
flows through networks today.

On a traditional ethernet network without jumbograms (Borman, Deering, and Hinden,
1999) the maximum payload size (referred to as Maximum Transmission Unit (MTU))
for packets traversing the network is 1500 bytes (Law et al., 2012). As seen in Table 4.1,
the average length of the packets in Dataset A is approximately one hundred and ten
bytes. Although these packets are a good representation of real-world DNS traffic, they
are generally much shorter than a packet of average length.

Packet size variation is important as the length of the packet affects the time that each
packet takes to process. As a results of the smaller processing time, the behaviour of the
algorithms processing the packets may be concealed by overheads in the test system itself.

4.2 Dataset B

Dataset B is unique among the the datasets chosen for this research as it does not represent
network traffic. Dataset B represents a large volume of text. Each of the string search
algorithms introduced in Chapter 3 was originally designed to search through large textual
datasets.

4.3. DATASET C 55

The text chosen for this dataset was Alice in Wonderland by Lewis Carol. The book was
chosen because it is very large in comparison to the other datasets and the structure is
a fair representation of prosaic English text. The book itself has for many years been
freely available in the public domain and the copy used for this dataset was sourced from
Project Gutenberg2 3.

As discussed at the start of this chapter, text-based datasets are treated a bit differently
to their packet-based counterparts. In a packet-based dataset, each packet is treated as
an individual input the algorithm and are searched separately. In Dataset B , the entire
body of text is considered as a single input. This approach allows for the use of Dataset
B as a baseline for the expected performance of each algorithm.

4.3 Dataset C

Dataset C was created as a way of overcoming the shortfalls presented by Dataset A
(Section 4.1). This dataset is a set of randomly generated DNS packets up to 1500 bytes
in length.

To create such a dataset, the authors used Wireshark’s randpkt 3 tool (Ramirez, 1999).
The command used is given in Listing 4.1.

i $ randpkt -b 1500 -c 10000 -t dns random_dns.pcap

Listing 4.1: Creating 10000 random DNS packets for Dataset C

Using the randpkt tool, ten thousand packets could be generated, with an overall mean
length of seven hundred and seventy bytes. That’s more than six hundred bytes longer
than the mean packet length in Dataset A .

As Dataset C was randomly generated, the contents of each packet is just garbled bytes.
This limits the effectiveness of algorithms which take advantages of partial or full matches
in the test to skip comparisons altogether. This dataset will, however, allow us judge the
speed of each algorithm whilst limiting the number of possible matches to the rules.

Figure 4.1 gives an example of a packet in Dataset C . The first few bytes of each packet
is the standard header - filled with random contents. After the header, a random number

2https://www.gutenberg.org/ebooks/11
3https://www.wireshark.org/docs/man-pages/randpkt.html

https://www.gutenberg.org/ebooks/11
https://www.wireshark.org/docs/man-pages/randpkt.html

4.4. DATASET D 56

of bytes are generated and placed into the rest of the packet. Each packet has a length,
n , of up to 1500 bytes.

0 n

IPv4 UDP DNS < r a n d o m b y t e s >

Figure 4.1: Dataset C

4.4 Dataset D

Dataset D was derived by editing Dataset C so that the contents of each packet would
only contain matches. Each packet of the dataset remained the same length whilst its
payload was replaced with the rules being searched for. The specific rules are listed in
Section 7.1.

To create this dataset a Python4 library, Scapy5, was used to edit Dataset C . The set
of rules was initially compiled into a Python list6. Following that the Scapy library was
used to read each packet from Dataset C ’s PCAP file. For each packet the order of the
list of rules was randomised and the list turned into a single string. The string was then
concatenated with itself repeatedly until the length of the string exceeded the length of
the packet’s payload. The string was then truncated to exactly the length of the packet’s
payload and finally the payload was replaced with the new string.

The resulting PCAP file was similar to the PCAP file for Dataset C in that each packet
remained the same length as before. For an algorithm searching for the rules used to
compile this dataset, matches will be found constantly.

Figure 4.2 shows what the structure of a packet in Dataset D would look like. Each packet
from Dataset D is a modification of the corresponding packet in Dataset C . Instead of a
random number of bytes being generated and used to fill the packet’s payload, the rules
are repeated and placed there instead. Each packet is the same length of its partner in
Dataset C , with a maximum length of 1500 bytes.

4https://www.python.org/
5http://www.secdev.org/projects/scapy/
6https://docs.python.org/2/tutorial/introduction.html#lists

https://www.python.org/
http://www.secdev.org/projects/scapy/
https://docs.python.org/2/tutorial/introduction.html%23lists

4.5. DATASET E 57

0 n

IPv4 UDP DNS < r u l e s >

Figure 4.2: Dataset D

4.5 Dataset E

Dataset E is a further variation on Dataset C and D. In Dataset D , the number of
matches in a packet is directly related to the length of each packet’s payload. Larger
packets necessarily have more matches than shorter packets. In Dataset E , the number
of matches in a packet is arbitrarily defined by a randomly generated number.

The process for creating this dataset is very similar to the process described in Section
4.4. In Dataset D , the string of randomised rules is repeatedly concatenated with itself
until the length of the new string exceeds the length of the packet’s payload. For Dataset
E , the same string is repeatedly concatenated but this process ends when the length of
the new string exceeds some randomly generated number between zero and the length
of the packet’s payload. The bytes of the payload from zero to that randomly generated
number are then replaced by the new string and the remaining bytes are left untouched.

The resulting PCAP file contains packets of random length with an arbitrary number of
matches in each.

Figure 4.3 gives an example of a packet from Dataset E . In each packet, a random number
of bytes are inserted up until the point marked n'. Between n' and n the rules are repeated
the same way as Dataset D . Each packet in Dataset E is still the same length as the
corresponding packets from Dataset C and Dataset D but with a random number of
guaranteed matches in each.

0 n' n

IPv4 UDP DNS < r a n d o m b y t e s > j < r u l e s >

Figure 4.3: Dataset E

4.6. DATASET F 58

4.6 Dataset F

Dataset F was created in order to deal with a limiting property identified in Dataset E . In
Dataset E , every packet has two independently varying values which govern the number
of matches to rules in each. The independently varying values are the length of the packet
and the randomly chosen number of bytes to fill part of the payload with. This property
makes it very difficult to freeze one variable whilst allowing the other to vary. In Dataset
F , the variable length packets have been eliminated while still allowing each packet to
have a arbitrary number of matches.

randpkt, which was used earlier to create Dataset C will not work to create this new
dataset. The packets generated by randpkt are always of random length; there is no way
to fix the length of the packets. To overcome this limitation, Scapy was employed to
create each packet.

Creating the packets needed for Dataset F proved to be a very similar process to that
used in Dataset D and Dataset E . Initially, a default DNS packet is created using Scapy7.
That snippet is given in Listing 4.2. The payload is generated in much the same way as
what was done for Dataset E . A random number of rules are concatenated together and
that is set as the packet’s payload, since each of the packet need to have the same length
the rest of the payload is set to random bytes.

i packet = IP ()/UDP ()/DNS ()

Listing 4.2: Creating a bare DNS packet with Python and Scapy

With Dataset F , the length of the packet has been kept constant while the number of
matches is able to vary. Being able to edit the dataset itself means that later, when
the results are analysed, the causes of processing time differences are better able to be
separated.

Figure 4.4 shows the structure of a packet in Dataset F . Unlike Dataset D and Dataset
E , each packet in Dataset F is 1500 bytes long. Packets are again created with the usual
IP, UDP and DNS headers. After each header a random number (marked from the end
of the header to n') of bytes is inserted. Finally the last part of each packet, from n' to
1500, is filled with repeated rules.

7http://www.secdev.org/projects/scapy/

http://www.secdev.org/projects/scapy/

4.7. SUMMARY 59

0 n' 1500

IPv4 UDP DNS < r a n d o m b y t e s > j < r u l e s >

Figure 4.4: Dataset F

4.7 Summary

Each of the datasets described in the sections above have been designed in way that
gives the researcher the most control over the data. These datasets allow for testing
of properties of the algorithms (given in chapter 3) which are specifically important to
Deep Packet Inspection. Part II presents the framework for testing these datasets against
various algorithms.

Part II

Packet Inspection Framework

60

Chapter 5

Design

5.1 Introduction

For the purpose of this research a testing framework had to be constructed. The reason
for this was to provide a platform to test string search algorithms in the context of packet
inspection. Unlike textual data such as plain text files, packet processing must be tested
by connecting to either a packet capture handle or by reading from a packet capture file.

The domain of string search algorithms has, traditionally, been for searching within the
buffer of a text editor or in text files saved to disk. The packet data encountered by
network firewalls or Intrusion Detection Systems is almost never so static. A packet
capture handle provides a live interface between a program and a network interface; a
PCAP file is a saved representation of a capture handle over a period of time.

As the purpose of this research is to provide a comparison between string search algorithms
as they process packet data, the test system could be designed in such a way that it
read PCAP files. Reading PCAP files, rather than reading packets directly off the wire,
provides a way to reliably reperform tests using the exact same input data.

This chapter looks at the design of the test system developed to test the string search
algorithms. It examines the broad design and focuses on a few goals for the finished
design.

61

5.2. OVERALL DESIGN 62

Figure 5.1: A diagram describing the broad design of the testing system.

5.2 Overall Design

The overall design of the test system is presented in Figure 5.1. The goal of this design
was to provide a simple but configurable method of giving the test system input, allowing
it to be configured by that input, run through the various tests, and then provide output
in the form of both statistical information and raw data.

5.3 Input

As mentioned earlier, the test system needed to be easily configurable and the configura
tion had to persist in such a way that the same test could be run again at a later time.
To meet those goals the design for the system’s input was developed as shown in Figure
5.2.

Test

Figure 5.2: A representation of the input to the test system.

The test system’s input consists of a single JSON (Crockford, 2006) file (an example of
which can be found in Listing 6.1 in Chapter 6) with the following fields:

5.4. PROCESSING 63

• a lg o rith m s - A list of the algorithms to test. Each algorithm needed to correspond
with an algorithm listed in Table 3.1.

• ru le s - A list of rules or patterns to search for in the input.

• in p u ts - A list of inputs to perform the search on. Inputs could include both text
and PCAP files.

— For text files, the entire contents of that file is treated as a single input.

— For PCAP files, each packet in the file is considered an individual input to the
system.

• tim es - The number of times to perform the search. In order to limit the influence of
external variation on the algorithm’s performance and to establish a large number of
results for each input, the system is designed to repeat tests as often as configured.

• th re a d s - The number of active threads allowed during each search. Some algo
rithms perform differently depending on the number of threads available to it.

The JSON (Crockford, 2006) file is ingested by the system and converted into a test
object. The test object represents an entire test and all details about that test such as
the results of the test.

5.4 Processing

Once the test object has been constructed, the testing is able to begin. The design for
the test hopes to ensure that each of the algorithms, rules and inputs are fairly evaluated
and measured. A diagram representing the test design is presented in Figure 5.3. During
a test the system performs the following sequence:

1. The system iterates through each of the test runs specified in the configuration (la
belled in Figure 5.3 as “For each run”). At this point a unique identity is generated
and assigned to the run, this is known as the run ID. Run IDs help to distinguish
this run from another run performed using the exact same configuration.

2. For each run, the system will iterate through each of the algorithms specified in the
configuration.

5.5. STATISTICS GENERATION 64

For each run

For each algorithm

For each input

Complete

Match Found

Results

Result

Figure 5.3: The functioning of the main processing logic of the test system.

3. For each of the algorithms, the system will iterate through each of the inputs.

4. At this point the test system should execute the search. The system will split each
rule into its own thread and, when the total number of threads does not exceed the
configured value, a search will commence.

5. Once each of the rules has been searched for the next iteration can continue.

6. During testing and if a match is found, the location of the match is logged to a result
object. Each result object forms part of a larger results object which is managed
by the test system.

After the test system has completed all its tests, just the results of the tests should be
left. The results describe each iteration of the processor above as well as the locations at
which matches were found.

5.5 Statistics Generation

It is from those results that the statistical generator is able to run. The statistics generator
was designed to provide statistics for the different aspects of algorithm testing. In Figure

5.5. STATISTICS GENERATION 65

Figure 5.4: The flow of the statistics generation design.

5.4, the statistics generator is separated out into four components. Each of the components
provides insights into the data by giving its minimum value, maximum value, mean value,
the standard deviation and a count of the number of results. Each component is described
below:

• A lgorithm s - For each of the algorithms specified in the input (Figure 5.2), the
statistics generator creates statistics pertaining to a specific algorithm.

• R un ID - Because the test system support multiple test runs within a single test,
the statistics generator creates statistics for each of those tests. This is especially
useful in isolating tests which may present extreme data.

• Input Files - As described earlier, PCAP files are separated into the packets they
contain - each packet is an input. For text files the file itself is an input. The
statistics generator gives statistics per input file rather than for every input. •

• A ll - This provides statistics for all of the results from the tests.

5.6. STATISTICAL OUTPUT 66

5.6 Statistical Output

Figure 5.5: The structure of the output of the statistics generation

The test system is also responsible for writing the statistics to file. Figure 5.5 shows the
design of a statistics file. For an example of such a file, see Listing 6.3 in Chapter 6. Each
category of statistic is group in the output file. Within each category the statistics for
the individual elements may be found. For the algorithm category, each element would
correspond to an algorithm name. In Figure 5.5, this is labeled algorithm 1 to algorithm
n. The same goes for each other category of statistic. The statistics generated by the
system are fairly simple but provide valuable insight into the behaviour of the algorithms.
The following describes each one:

• count - the total number of results used to create these statistics.

• minimum - the smallest elapsed time for the results.

• maximum - the largest elapsed time for the results.

5.7. RAW OUTPUT 67

• mean - the average amount of time elapsed in the results.

• standard deviation - the standard deviation of the elapsed time.

Statistics such as the minimum and maximum values provides insight into the nature
of outliers within the data. The standard deviation allows us to judge how variant the
results of the algorithms are.

5.7 Raw Output

JSON

Following the statistics generation and output, the test system is then ready to write out
the results. The results, like the input configuration, are in JSON (Crockford (2006)).
As discussed earlier, for every search there is a corresponding result object. Each result
object documents every aspect about the search that took place. The file that the test
system writes out is a list of every result object generated during its run. Figure 5.6 gives
an example of just one result of the many written to file once the testing is complete. For

5.8. SUMMARY 68

an example of the result object, see Listing 6.4 in Chapter 6. In the list below, the details
of that result object are dicussed:

• start tim e - the time that this particular search started.

• end tim e - the time that the search ended.

• elapsed tim e - the time the search took (effectively endtime — starttime).

• rules - the list of rules searched for. With its current design, the test system searches
for the same rules in every different iteration. Future designs may require that the
list of rules changes between search and so knowing which rules were searched for
is very important.

• locations - a list of every location that the algorithm matched the rules to the
input.

• algorithm - the algorithm used to perform the search.

• input file - the name of the file in which the input is contained.

• input ID - the ID of the input itself. Each of our packet-based datasets had ten
thousand inputs. Each input was uniquely identified by this ID assigned to it.

• run num ber - the number of the run that this test corresponds to.

• run ID - the unique ID associated with the test run. This number distinguishes
runs from different tests.

5.8 Summary

The design presented here represents the overall structure of the the test system. Through
the use of easily replaceable modules it is hoped that the design of the test system promotes
easy use and extensive future expansion.

The next chapter discusses the details surrounding the implementation of the test system.

Chapter 6

Implementation

Implementing the test system proved to be one of the more time consuming parts of this
research. The original intention was for the test system to be implemented using the
Rust1 programming language.

The Rust programming language is touted as fast, memory safe, and highly concurrent.
A full prototype system was developed, complete with a few algorithms, and proved to
work as intended. At that point it was decided that a change of direction was needed. It
was found difficult to create a test system that was as flexible and extensible as planned.
The prototype system also suffered from being very difficult to extend.

As a result of this, the system was rewritten in Java1 2. Java was chosen for a few reasons.
Firstly, it is the language that the author knows best and, over time, Java has proven to
be an excellent language for developing robust, and highly extensible applications. The
main drawback of using Java is that it is notably slower than a traditional language such
as C to compile and run.

The relative speed lost when running software written in Java does not have a large effect
on the research goal of this work. This work intends to compare string search algorithms
with each other within the context of Deep Packet Inspection. Since the speed of the
algorithms relative to each other is the important metric the absolute speed of program
execution does not matter.

The system itself was developed using the IntelliJ IDEA3 platform. The Pcap4J4 library

1 https://www.rust-lang.org/
2https://www.java.com/en/
3https://www.jetbrains.com/idea/
4https://github.com/kaitoy/pcap4j

69

https://www.rust-lang.org/
https://www.java.com/en/
https://www.jetbrains.com/idea/
https://github.com/kaitoy/pcap4j

6.1. EXAMPLE TEST 70

was employed in order to interface with the packet capture files. Extensive unit tests for
all of the search algorithms were implemented to ensure that the algorithms performed as
intended. Each unit test was designed in such a way as to be tested against every single
algorithm. With this it could be confirmed that the algorithms performed consistently.

Each of the algorithms was implemented by the author according to the design outlined
in the respective originating papers. For references to those papers, see Chapter 3. The
author decided on reimplementation rather than seeking a library. For the actual imple
mentation see the author’s git repository5.

The test system itself was implemented as a command line application with all configu
ration being supplied by the configuration file. The system would output information to
stdout as well as log to file. The statistics and results file were written to disk.

6.1 Example Test

In order to properly describe how the system was implemented and subsequently how a
test would be run, the following section is intended to explore the system by running an
example test.

The screenshots shown as Figures 6.1, 6.2, 6.3, and 6.4 show what is written to stdout
during the example run. A number of lines have been omitted from between Figures 6.2
and 6.3 and from between Figures 6.3 and 6.4 for brevity. The omitted line repeated what
had already been discussed.

6.1.1 Program Startup

Figure 6.1 shows output of the test system from the start of the program until the number
of threads has been set. The following list describes what is happening within the program
to produce the output seen in that figure:

• In the first 6 lines, the system prints out information about itself and about the
author.

5https://github.com/KieranHunt/dpi-algorithms-java

https://github.com/KieranHunt/dpi-algorithms-java

6.1. EXAMPLE TEST 71

• • 1. kieran@mirage: *» (ssh)
kieran@>miragc: ~ (ssh) 3€1

kieran@mirage
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
I
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10

~/dpi-
26:00
26:00
26:00
26:00

algorithm s-java$ java - j a r d p i-a lg o r ith m s -ja v a .ja r te stC o n figu ra tio n . json
IN F O ---
INFO - DPI Algorithm Benchmark System
INFO - By Kieran Hunt
IN F O ---

26:00
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01
26:01

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

Using te s t configuration found at te stC o n figu ra tio n .jso n
Found te s t configu ra tion at te stC o n figu ra tio n .jso n
Checking fo r ru les
Found 40 ru le (s)
Checking fo r algorithm s
Found Algorithm : Horspool
Found Algorithm : RabinKarp
Found Algorithm : QuickSearch
Found Algorithm : NotSoNaive
Found 4 a lgorithm (s)
Checking fo r Inputs
Found pcap en try at fixed_length_random_contents.pcap
Read 10000 packets from fixed_length_random_contents.pcap
Found 10000 in p u t(s)
Checking fo r number of te s t times
S etting te s t times t D 20
Checking fo r number of threads to use
Setting thread count to 18

0

Figure 6.1: Test run example screenshot 1. From the start of the system to setting the
number of threads.

• By default the test system looks at the first command line argument for the location
of the configuration file. If the configuration file isn’t specified as a command line
argument or if the specified file does not exist, the test system looks in the cur
rent directory for a file named testC onfiguration.json. In this case the file was
specified on the command line.

• The test system is able to find the file specified on the command line at the location
identified. It is from this file that the test system will construct the forthcoming
test.

• Once the file is found, it is parsed and an Input object is created. The Input object
represents all of the data found in the configuration file.

• The first item that the system looks for in the configuration file is the list of rules.
These are the the same rules that will be searched for later in the test. In this case
the system found forty rules listed in the file.

• Next the system will try to identify the algorithms specified. A factory method
is used to match the string representation of an algorithm to a list of known al
gorithms. If the algorithm can be matched, then it is created. If an algorithm is

6.1. EXAMPLE TEST 72

incorrectly spelt or it has not been implemented an error is returned. At this point
the preprocessing steps for each of the algorithms are run. The preprocessing steps
require that the system be aware of each rule. The preprocessing phases complete
fairly quickly and the system is ready to move on.

• In this example test, four algorithms have been specified in the configuration file.

• The system then checks for inputs. Inputs can either be text or PCAP files. Text
files are used to create a single input and PCAP files are split so that a single input
is created for each packet in the file.

• In this case a single file has been specified: fixed_length_random_contents.pcap.

• Inside the input file the system has found ten thousand individual packets. These
packets are subsequently instantiated as individual inputs.

• The test system will then check to see how many times the tests should be run
- again by checking a variable set in the configuration file. In our example the
tests have been set to run twenty times. Twenty times was chosen to help promote
statistical significance.

• Finally the system will check the maximum number of threads to use. This example
test has been configured to use eighteen threads.

At this point the system is poised to start the tests. All of the preprocessing and config
uration has been completed.

6.1.2 Testing

Figure 6.2 shows the start of a test. This is the same process represented in Figure 5.3 of
the original design. The following describes the output listed in that figure: •

• Like in the first six lines of Figure 6.1, the processing portion of the test system
prints out a few lines to show that it has starting the tests.

• The system then prints out information relating to the tests. This information is
designed to give a rough idea of how long the tests will take based on the number
of variables to test. In this case the system was given ten thousand inputs, forty
rules and four algorithms, it was set to repeat the test twenty times. This leads to
the creation of 32 000 000 result objects.

6.1. EXAMPLE TEST 73

P
1. kieran@mirage; - (ssh)

kicran@>miragc: - (ssh) 3€ 1

2016-03-07 10:26:01 INFO -
2016-03-07 10:26:01 INFO - S ta rting Testing
2016-03-07 10:26:01 INFO ---

2016-03-07 10
tim e (s). Th is
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
2016-03-07 10
@016-03-07 10

:26:01 INFO - S ta rting te s t w ith 10000 in p u t(s) , 40 ru le (s) and 4 a lgo rith m (s). Running 20
w i l l generate 32000000 re su lt ob jects .
26:01 INFO - Running te s t 1/20 w ith ID 8cf76df5a919
26:01 INFO - Performing search w ith QuickSearch algorithm
26:01 INFO - Searching through fixed_length_random_contents.pcap
26:32 INFO - Performing search w ith RabinKarp algorithm
26:32 INFO - Searching through fixed_length_random_contents.pcap
31:37 INFO - Performing search w ith NotSoNaive algorithm
31:37 INFO - Searching through fixed_length_random_contents.pcap
32:44 INFO - Performing search w ith Horspool algorithm
32:44 INFO - Searching through fixed_length_random_contents.pcap
33:05 INFO - Running te s t 2/20 w ith ID S97287a0efa4
33:05 INFO - Performing search w ith QuickSearch algorithm
33:05 INFO - Searching through fixed_length_random_contents.pcap
33:36 INFO - Performing search w ith RabinKarp algorithm
33:36 INFO - Searching through fixed_length_random_contents.pcap
38:44 INFO - Performing search w ith NotSoNaive algorithm
38:44 INFO - Searching through fixed_length_random_contents.pcap
39:51 INFO - Performing search w ith Horspool algorithm
39:51 INFO - Searching through fixed_length_random_contents.pcap □wm

Figure 6.2: Test run example screenshot 2. From the start of the testing to somewhere
into the tests.

• Following that, the system commences testing.

• As shown previously in Figure 5.3, the system starts by iterating through each of
the test runs. The number of the test run is specified here as 1/20 and the test
run’s ID is also given.

• For each test run, each of the algorithms is iterated through. In this example the
system has started with the Quick Search algorithm and follows that with Rabin
Karp.

• For each algorithm, the test system iterates through each of the inputs. Since the
PCAP files can contain many thousands of separate inputs, not every input ID is
listed during the search - merely the original input file is printed. •

• The output is then repeated as the system iterates through each of the inputs,
algorithms, and runs.

6.1. EXAMPLE TEST 74

1. kieran@mirage; - (ssh)
kicran@>miragc: ~ (ssh) 3€ 1

2016-03-07 12:56:44 INFO
2016-03-07 12:56:44 INFO

2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016
2016-
2016H

10016

k

03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07
03-07

12:56:44
12:56:44
12:56:44
12:56:44
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45

Test complete
T o ta l time fo r te s ts elapsed: 43s

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

A l l S ta t is t ic s
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r
s ta t is t ic s fo r

a lgorithm : Horspool
a lgorithm : QuickSearch
a lgorithm : RabinKarp
a lgorithm : NotSoNaive
run ld : 760452fb02f7

8cf76df5a919
2a35e01e4ae2
597287a0efa4
f38283f2c0de
3f5del70c2f6
f47fecbe0a42
2823cff5270f
ff3b88614c9b
45f47ce3beef
9815ac2f8620
dl0ce3880d47
29264f207017
7c3c8f2alld2
6190440ced33
5eddc0a48384
67c268ec71f5

runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:
runld:

Figure 6.3: Test run example screenshot 3. End of the testing to statistics generation.

6.1.3 Statistics Generation

Following the completion of the search, the system generates statistics described by Figure
5.4. The following describes that process:

• The first two lines are the end of the testing process. Those lines state that the
testing is finished and that this particular test took 43 seconds to complete.

• As described in Figure 5.4, the statistics generation is split into four separate parts.

• The test system uses a filter to isolate only the results belonging to the current
category. In the screenshot, the algorithm and run ID categories are shown.

• The statistics generation begins with the algorithm category. Here the statistics are
generated for all results relating to each of the algorithms. The algorithms in this
particular test were: Horspool, Quick Search, Not So Naive, and Rabin-Karp. •

• Following that, statistics are generated for each of the run IDs. This allows us
to isolate runs which may show extremes in processing times. These extremes are
possibly related to other processes running on the test machine.

6.1. EXAMPLE TEST 75

6.1.4 Output

n 1. kieran@mirage: - (ssh)
kieran(§>mirage: - (ssh) 3£1

2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07
2016-03-07

12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:45
12:56:47
12:56:48
12:56:49
12:56:49
12:56:49

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:
Generating s ta t is t ic s fo r runld:

2016-03-07 12:56:49 INFO
2016-03-07 12:56:49 INFO
2016-03-07 12:56:49 INFO

ff3b88614c9b
45f47ce3beef
9815ac2f8620
dl0ce3880d47
29264f207017
7c3c8f2alld2
6190440ced33
5eddc0a48384
67c268ec71f5
5749d3dbef7c
188cd35c574b
7d9f82ffa6c6

Generating s ta t is t ic s fo r f i l e : fixed_length_random_contents.pcap
Generating S ta t is t ic s fo r every re su lt
Attempting to w rite out s ta t is t ic s
S uccessfu lly wrote s ta t is t ic s to resu lts/statistics-3 8 1 2 c2 d7 .json
T o ta l time fo r s ta t is t ic s elapsed: 4s

- Testing and Analysing Complete

2016-03-07 12:56:51 INFO - Attempting to w rite out raw re su lts
2016-03-07 12:57:03 INFO - S uccessfu lly wrote raw re su lts to results/raw -results-3812c2d7.json
[Jie ran@mi rage: ~ /d p i-a lgorith m s-j ava$I aiAiAiii.1 a y e . ”/

Figure 6.4: Test run example screenshot 4. Statistics generation to completion.

In the fourth and final screenshot (Figure 6.4), the system finishes generating the statistics,
and writes out to file. That process is described as follows:

• The first part of this screenshot, lines one to fourteen, shows the last segment of the
statistics generation. In this particular example the system was configured to run
the tests twenty times. As such, statistics are generated for each run ID associated
with a repeated test. •

• Following the generation of statistics for each of the test runs, the system will then
generate statistics about each of the input files. The input files generally group
inputs of similar type (see the datasets listed in Table 4.1) and so statistics on a
per-file basis are relevant. In this particular test there was just a single input file,
fixed_length_random_contents.pcap, and so statistics are generated for just that
file.

• Finally, as discussed in Chapter 5, statistics are generated for the entire set of results.

• Every single set of statistics contains the same information: minimum, maximum,
mean, count, and standard deviation.

6.1. EXAMPLE TEST 76

• Following the completion of the statistics generation, the test system will write the
statistics to file. By default, the statistics are written to resu lts /sta tistics-< ID > .json .
Where <ID> is the unique identifier for this set of tests. The statistics are written
out in JSON format (Crockford, 2006).

• The time elapsed whilst generating the statistics is then printed. In this case the
statistics generation took four seconds to complete.

• Once the statistics generation is complete, the system prints out some text letter
the user know.

• Finally, the test system will write the raw results to file. The raw results are written
out as JSON (Crockford, 2006) and are written to results/raw -results-<ID >.json
where the <ID> is the unique identifier for the run - the same as above - which
separates results of one run from the results of another.

• For each run, the run ID is printed.

6.1.5 Test Configuration

As discussed before (In Sections 5.3, 5.6, and 5.7 and in Subsection 6.1.4), the test system
uses JSON (Crockford, 2006) as a standard way of both ingesting configuration and as
a way of outputting raw results and statistical information. Having a structured and
documented way of transferring information to and from the application means that ex
periments are easily reproducible. This reproducibility stems from the ability to easily
log and save the configuration used for a particular test; allowing for use in any subse
quent run. Furthermore, data structured as JSON (Crockford, 2006) is widely used and
understood by many systems and programming languages (Crockford, 2006).

Listing 6.1 gives an example of a test configuration used as input for the test system.
This particular test configuration file was used to produce the test shown in Figures 6.1
to 6.4.

The structure of Listing 6.1 directly corresponds to design of the test configuration shown
in Figure 5.2. As with Figure 5.2, there are five different fields which must be present for
the system to run. Each of those five fields is discussed below: •

• a lg o r ith m s (lines 2 to 7) - the different string search algorithms to be tested are
listed here. In this example, the Horspool, Rabin-Karp, Quick Search and Not So

6.1. EXAMPLE TEST 77

1 {
2 "algorithms": [
3 "Horspool" ,
4 "RabinKarp" ,
5 "Q uickSearch",
6 "NotSoNaive"
7],
8 "rules " : [
9 "time" ,

10 "person" ,
11 * * * >
12 "msn"
13],
14 "i nputs": [
15 {
16 "t yp e": " p ca p",
17 "location": "fixed_length_random_contents.pcap"
18 }
19],
20 "t im es ": 20,
21 "threadCount": 18
22 }

Listing 6.1: Example test configuration JSON file.

Naive algorithms have been selected. The JSON specification (Crockford, 2006)
does not include namespacing like in other notations such as XML (Bray, Paoli,
and Sperberg-McQueen, 1998). Consequently, there is no way to limit which strings
can be given as algorithm names. In the test system itself, checks are performed
comparing the given algorithm name against a list of algorithms known to the
system.

• ru le s (lines 8 to 13) - here the rules are given in a similar way to the algorithms.
Each rule is specified individually and in the form of a string. In its current form,
the test system can only handle rules in the form of text-based strings, although
adding some kind of byte-based input method can be trivially achieved in the future. •

• in p u ts (lines 14 to 19) - the inputs to be searched through are given here. As
discussed previously, the inputs can either be in the form of text or PCAP files.
Just a single type of input is used in Listing 6.1. The given input is of PCAP type
and the location is specified. The configuration requires that both the type of the
input as well as the location at which it can be found be specified for every input.
In this example the input file with the name fixed_length_random_contents.pcap
is given; this corresponds to Dataset F .

6.1. EXAMPLE TEST 78

1 java -jar dp i- al gorithms-java.jar testConfiguration.json

Listing 6.2: Running the test system.

• tim es (line 20)- here is where the number of time each test should be repeated is
set. In this example the number of times that the tests have been set to run is
twenty.

• th readC ount (line 21)- the number of threads to use is given here. Any positive
integer is valid but performance can heavily influenced by this number.

Typically the test system is run by passing the test configuration file in as the first
parameter on the command line. The system could also be run through the development
IDE or, in future, perhaps some kind of web interface. Listing 6.2 shows the command
used to run the test system. Note that testC onfiguration .json is the file name of the
configuration file specified in Listing 6.1.

6.1.6 Statistics Output

Similarly to the configuration of the tests, the test system uses JSON (Crockford, 2006)
to format its output, both for the statistical and raw results. The statistical output, as
discussed earlier, is given a file name of the form resu lts /sta tistics -< ID > .json where
<ID> is the unique identity for that test. The unique identifier for each test is generated
using Java’s UUID Library. Listing 6.3 gives an example of the statistics output by the
system.

The test system was designed to output the statistics like Figure 5.5. The actual output
of the system given in Listing 6.3 closely matches the original design. The list below
examines the finer details of that output:

• a lg o r ith m S ta t is t ic s (lines 2 to 11) - Statistics pertaining to each of the algorithms
tested. In the example four algorithms were tested. Only the statistical output has
been shown for Rabin-Karp for brevity. •

• te s t R u n S ta t is t ic s (lines 12 to 21) - Each test run has statistics associated with
it. In Listing 6.3, the statistics for the test run with the ID 188cd35c574b are given
on line 13.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

79

{
"algorithmStatistics": {

"RabinKarp": {
"c ou nt ": 200000,
"m i n " : 27001653,
"m a x " : 18532053519,
" m ea n": 31470558,
"standardDeviation": 46101820.53767535

},

},
"testRunStatistics": {

"188cd35c574b": {
"coun t" : 40000 ,
"m i n " : 1752744,
"m a x " : 12028122395,
"mean" : 1 1 239891 ,
"standardDeviation": 61286959.98985055

},

},
"inputFileStatistics": {

"fixed_length_random_contents.p c a p " : {
"coun t" : 800000 ,
"m i n " : 1680008,
"m a x " : 26757414816,
" m ea n": 11294479,
"standardDeviation" : 72743902.6433408

}
},
"overallStatistics": {

"coun t" : 800000 ,
"min ": 1680008,
"max ": 26757414816,
"m ea n": 11294479,
"standardDeviation": 72743902.6433408

}
}

Listing 6.3: Example statistical output.

6.1. EXAMPLE TEST 80

• in p u t F i le S t a t is t i c s (lines 22 to 30)- Statistics are given for each of the input files
used to create the inputs. In this example the results for the fixed_length_random_
contents.pcap file are given.

• o v e r a l lS t a t i s t i c s (lines 31 to 37) - Statistics for every result are given too. These
help to check the overall performance of the tests and provide a benchmark for
comparing specific statistics to.

The system uses nanoseconds as its time unit of measurement. Every output using a unit
of time is presented in nanoseconds. Each statistics object can be broken down as follows:

• count - A count of the number of results evaluated in this statistics object. For the
Rabin-Karp-specific statistics, there were a total of two hundred thousand result
objects used to generate these statistics.

• min - The minimum elapsed time featured in all of the result objects used to create
these statistics. For the overall statistics - the statistics representing all results
created during the test - the value was 1680008 nanoseconds.

• max - Similarly to the minimum elapsed time, the max field indicates the max
imum elapsed time for the set of results used to create the statistics. For the
inputF ileS tatistics, and specifically the file with the name fixed_length_random_
contents.pcap, the maximum elapsed time was 26757414816 nanoseconds.

• mean - the mean amount of time for a packet to be searched through in this grouping
of results. For the test run labeled with the ID 188cd35c574b, the mean time is
11239891 nanoseconds or about eleven milliseconds.

• s ta n d a rd D e v ia tio n - Finally the standard deviation for the results is given on lines
8, 18, 28, and 38. For the Rabin-Karp algorithm in this example, the standard
deviation is given as 46101820.53 nanoseconds.

6.1.7 Raw Results Output

The last file that the system writes to disk is the raw results. The raw results are every
result created during the entire running period of the test system. They are identified by
raw-results-<ID>.json where the <ID> is the unique identifier assigned to this test - the
same identifier used for the statistical output. The structure of the raw results follows

6.1. EXAMPLE TEST 81

1 [
2 {
3 "s tart": 206079193307938,
4 " e nd ": 206079207132342,
5 "elapsed": 13824404,
6 "rules" : [
7 "time" ,
8 "per so n",
9 * * * >

10 "msn"
11],
12 "locations": [],
13 "algorithm": "RabinKarp",
14 " inputFile": "fixed_length_random_contents.p c a p " ,
15 "inputID": "bf75f aa 5",
16 "runNumber": 1 ,
17 "r unld": "188cd35c574b"
18 },
19

20 }

Listing 6.4: Example raw results output

exactly with the design given in Figure 5.6. Listing 6.4 provides an example of the raw
results written to file.

• s t a r t (line 3) - The time that this particular test started. This is the number of
nanoseconds since the start of the Unix epoch (Thompson and Ritchie, 1975)6.

• end (line 4) - This is the time that the test ended. Similarly to the start value, it
is measured in nanoseconds since epoch.

• e lap sed (line 5) - This is the start value subtracted from the end value to give
the time elapsed during this particular search. 13824404 nanoseconds or about 138
milliseconds in our example.

• ru le s (lines 6 to 11) - A list of the rules searched for during the test. This list,
at the time of writing, should be the same for each result in the test. For future
additions to the test system the rules may vary per search. Our example test had
forty rules but that list has been shortened to save space.

• lo c a t io n s (line 12)- The locations in the input at which a result was matched. This
particular input did not have a single match to the rules.

6This value is usually defined as seconds since the start of the Unix epoch but for the purposes of
these tests, wherein greater granularity was desired, nanoseconds since the start of the Unix epoch was
used.

6.2. SUMMARY 82

• a lg o r ith m (line 13) - The algorithm that performed the searched and produced this
result.

• in p u t F i le (line 14) - The file from which the input was sourced. Since different
input files generally group inputs of similar type it is important to record which file
this input emerged from.

• in p u tID (line 15) - The unique identifier for the input. This allows speeds to be
compared for the same inputs in different tests.

• runNumber (line 16) - The number of the run in which the test was performed.

• ru n Id (line 17) - The identifier for the run. since run numbers are reset when the
test system starts and increase monotonically, this value uniquely identifies each
run.

6.2 Summary

Chapter 6 presented the implementation of the packet inspection framework used through
out the body of this research. The outcome of this development work was a stable, robust
and extensible system which allows for countless different test configurations and auto
mates much of the manual processes which would ordinarily be associated with performing
these kinds of tests. The test system itself produces detailed results which, in the case of
the statistical results, can be used to compare the algorithms or, in the case of the raw
results, are perfectly suited to ingestion by another system for further analysis.

Earlier, in Chapter 5, the design of this system was presented. The objective was to allow
for the easy and repeatable testing of string search algorithms on network traffic and text
files.

Part II has shown the structure and objectives of the test system used to test the string
search algorithms. Next, in Part III, the testing of each of the algorithms using this test
system is performed and their behaviour analysed.

Part III

Testing and Analysis

83

Chapter 7

Initial Algorithm Comparison

In Chapters 1 to 6, the the full context of this research has been established. The im
plications of Deep Packet Inspection (DPI) in modern networks was discussed. The need
for approaches to DPI which can scale in the manner required by modern networks was
identified. Chapter 3 discussed string search algorithms in detail.

The goal of this research is to establish a credible benchmark of string search algorithms
in the context of Deep Packet Inspection. To achieve that, a collection of tests were run on
each of the algorithms mentioned earlier. Each test sought to answer different questions
pertaining to the algorithms’ performance when processing packet data.

Part III separates the testing of the algorithms and their subsequent discussion into two
distinct chapters. This chapter looks at an overall comparison of the algorithms and
analyses their performance. From those results, four distinct algorithms were selected
based on their processing speed. Those algorithms were then further analysed to better
quantify their packet processing performance. In the next chapter (labeled as Chapter
8), the algorithms selected in this chapter are put through further tests in an effort to
properly examine how they behave when processing packets of varying structure.

Each chapters contains a set of questions which are asked about the algorithms. Those
questions are then answered using testing, statistical analysis and examination of plotted
data.

Each of the graphs, and much of the statistics, have been created using the R programming
language (Ihaka and Gentleman, 1996). The graphs themselves were produced using

84

7.1. RULES 85

the ggplot23 library (Wickham, 2011). This library proved invaluable in producing high
quality plots, allowing the results to better speak for themselves.

7.1 Rules

In order to consistently test each of the string search algorithms, a standard set of rules
was compiled. These rules were used as search patterns for the algorithms throughout
the testing. Table 7.1 presents each of the selected rules.

Table 7.1: Rules used throughout the algorithm testing

Rules

time person year way
day thing man world
life hand part child
eye woman place work
week case point government
google facebook youtube baidu
yahoo amazon wikipedia qq
twitter taobao live sina
linkedin weibo ebay yandex
hao123 vk bing msn

The rules were specifically chosen as they are expected to appear often in both general
English (of which Dataset B exemplifies) and in domain names (which can be found
throughout Dataset A). The domain-name based rules may be similar to those used in a
corporate firewall in order to restrict traffic to certain websites.

The first twenty rules were sourced from the Oxford English Corpus’ Facts about the
language2 wherein the top twenty five most common nouns, verbs and adjectives in English
are listed. The top twenty most common nouns were selected for testing as they appear
often in both Dataset A and Dataset B .

The second twenty rules were sourced from Alexa’s The top 500 sites on the web3 wherein
the publishers list the 500 most popular web sites on the internet. The top twenty were
selected as they should appear often in various DNS requests.

1http://ggplot2.org/
2The list of words was sourced from https://www.oxforddictionaries.com/words/the-oec-facts-

about-the-language
3http://www.alexa.com/topsites

http://ggplot2.org/
https://www.oxforddictionaries.com/words/the-oec-facts-about-the-language
https://www.oxforddictionaries.com/words/the-oec-facts-about-the-language
http://www.alexa.com/topsites

7.2. TEST HARDWARE 86

It is using these rules that much of Dataset D , Dataset E , and Dataset F were constructed
as discussed in Chapter 4.

7.2 Test Hardware

In order to ensure consistent results, the tests needed to be run on the same hardware each
time. A server-style computer, made available through the researcher’s research group,
was chosen for this work. The device has the following important specifications:

• Two Intel® Xeon® E5-26204 Processors - a six core CPU with 2 hyperthreads per
core for a total of 24 threads.

• 64 GB of RAM

• more than 5 TB of hard disk space.

• Debian 8.3

• Linux Kernel 3.16.0-4-amd64

• Java 8

It is with this system the the following results were generated. Each test was run using
the command given in Listing 6.2 on a normal user account. The GNU Screen5 termi
nal multiplexer was employed to detach shell sessions so that the test system could run
autonomously and improve resilience to power cuts.

Each of the tests completed in this chapter were run with the rules discussed in Section
7.1. Eighteen threads were used consistently throughout and the tests were set to repeat
20 times each to both keep each test fair and to limit the influence of outside factors on
the performance of each algorithm.

4http://ark.intel.com/products/64594/Intel-Xeon-Processor-E5-2620-15M-Cache-2_00-GHz-
7_20-GTs-Intel-QPI

5https://www.gnu.org/software/screen/

http://ark.intel.com/products/64594/Intel-Xeon-Processor-E5-2620-15M-Cache-2_00-GHz-7_20-GTs-Intel-QPI
http://ark.intel.com/products/64594/Intel-Xeon-Processor-E5-2620-15M-Cache-2_00-GHz-7_20-GTs-Intel-QPI
https://www.gnu.org/software/screen/

7.3. ALGORITHM PERFORMANCE 87

7.3 Algorithm Performance

The goal of this research is to establish the performance on these string search algorithms
when processing packet data. The string search algorithms have shown themselves to
be highly performant when searching through large volumes of text (Crochemore and
Wojciech, 2002; Charras and Lecroq, 2004; Lecroq, 2007; Faro and Lecroq, 2013); the
performance of these algorithms for very constrained inputs such as network packets is
unknown.

For network devices implementing packet inspection, and in particular those who employ
Deep Packet Inspection, the packet inspection should not adversely affect the overall speed
of the network (Kumar et al., 2006). In network firewalls, this is extremely important as
they present a single point through which all network traffic flows (Zwicky et al., 2000).
Chapter 2 covers this is much more detail.

7.3.1 D a ta set A

The goal of the first test was to establish a comparison of each of the string search algo
rithms using Dataset A . Since this dataset contains real-world data, comparing algorithms
with it should give a good initial indication of their performance in practice. Figure 7.1
shows the results of that comparison. In that figure, the algorithms are ordered based on
their mean packet processing times, where the algorithm with the smallest time is on the
left and algorithms with increasingly longer packet processing times appear to the right.

By examining Figure 7.1, a few points are immediately clear. First, every algorithm,
except for the Not So Naive algorithm (Section 3.17), show extremely similar results.
The faster algorithms on the left have a mean processing time of around 0.17 ms. The
Not So Naive algorithm posted a mean processing time 0.2 ms greater than that, at 0.37
ms.

The fastest string search algorithm observed during this this test was the Quick Search
algorithm (Section 3.9) with the Horspool algorithm (Section 3.6) trailing closely behind.

The results of this test may, at first, seem fairly inconclusive. Although it is clear that the
Not So Naive algorithm performed very poorly, the other algorithms have such similar
results that one may assume this test proves very little. On the contrary this test has
shown us a very important piece of information. It would seem that, because Dataset A is

7.3. ALGORITHM PERFORMANCE 88

Figure 7.1: Algorithm mean input processing time for Dataset A , ranked by processing
time.

comprised solely of short DNS packets (as described in Section 4.1), the relative differences
in processing time that each algorithm’s design would give are minimised by the incredibly
small amount of data that each must process at a time. These algorithms were designed to
process inputs of the order seen in Dataset B where each input is hundreds of thousands
of bytes long. With inputs on average 110 bytes in length, Dataset A may conceal the
true behaviour of these algorithms.

In most Deep Packet Inspection contexts - such as firewalls and Intrusion Detection Sys
tems (Sections 2.2 & 2.3, respectively) - the average length of packets encountered is
typically much longer than that given by Dataset A . As discussed before, the maximum
size of an ethernet frame’s payload is 1500 bytes6 (Law et al., 2012) and further to this, se
curity systems will often collect and search full connections of packets at a time (Handley
et al., 2001) - thus multiplying the average search length.

6Jumbograms excluded (Borman et al., 1999)

7.3. ALGORITHM PERFORMANCE 89

7.3.2 D a ta set B

The next test was devised in order to better compare these algorithms. In this test the
algorithms are used to search through Dataset B (the full text of Alice in Wonderland).
Dataset B provides a good representation of the typical input for one of these string search
algorithms. The length of Dataset B is 163 780 bytes, four orders of magnitude larger
than the average length of Dataset A . It is expected that the true speed of each algorithm
should show better here than in the previous test. Figure 7.2 shows the results of that
test. Again, as with Figure 7.1, the fastest algorithm is positioned on the left and the
algorithms of increasing processing time follow to the right.

Figure 7.2: Algorithm mean input processing time for Dataset B .

Figure 7.2 clearly shows far more variation in the processing speed of the string search
algorithms; the desired result when compared with the results presented in Figure 7.1.
Again in these results a few salient points are immediately apparent. The Rabin-Karp
algorithm (Section 3.7) stands out as the overall slowest algorithm. It is as much as six
times as slow as the next slowest algorithm - the Bitap algorithm (Section 3.15) in this

7.3. ALGORITHM PERFORMANCE 90

case. The Horspool algorithm appears to be the fastest; a result similar to that in Figure
7.1 where the Horspool gave the second fastest processing speed.

Like the previous set of results, the results of this test on Dataset B has produced a few
algorithms which appear to perform better than others. In Figure 7.1, the Quick Search
and Horspool algorithms were the fastest overall and in the results on Dataset B those
two algorithms make up two of the top three fastest algorithms. The Horspool and Quick
Search algorithms would appear to be strong contenders in the context of Deep Packet
Inspection.

In Aho (1990); Stephen (1994); Lecroq (1995); Crochemore and Lecroq (1996), the authors
note that the Horspool algorithm - with its simplification of the Boyer-Moore algorithm
using only the bad-character shift - shows discernibly favourable results for searches where
the alphabet is very large when compared to the length of the pattern. These are exactly
the kinds of searches being performed in our tests. In our case the alphabet is 256
characters whilst the longest rule (“government”) is a mere ten characters long. This
could be further improved by selecting a character encoding that allows for even larger
alphabets such as UTF-8.

The length of each rule is bounded by the maximum length of a packet. That is to say
that a rule necessarily must be shorter than the input for a match to be expected. With
a large enough alphabet it is possible to ‘force’ the behaviour seen in these tests for even
very long patterns.

Towards the right-hand side of the graph - the algorithms with slower processing speeds
- the relative positions of the algorithms are not as consistent. In Figure 7.1, the Not So
Naive algorithm (Section 3.17) was clearly the slowest of them all; whereas in Figure 7.2
the Rabin-Karp algorithm is clearly the slowest.

This variable nature of the algorithms’ relative positions may indicate some kind of be
haviour not shown by their algorithmic complexity in Table 3.1.

What is particularly interesting about the Not So Naive and Rabin-Karp algorithms is
that, in their respective tests, they were by far the slowest overall and even to some degree
eclipsed the results of the others. Further investigation of these algorithms should show
why their performance is so poor.

7.4. WHICH ALGORITHMS VARY THE MOST? 91

7.4 Which algorithms vary the most?

An important feature of real-time systems such as firewalls and Intrusion Detection Sys
tems is having a known upper bound on a given percentage of processing times (Zwicky
et al., 2000). Having an upper bound on the times ensures that a system can be guar
anteed to perform exactly as expected. If a packet inspection system takes too long to
process a packet or the time to process a packet is not well known, this could have serious
implications on the availability and quality of the service being offered. In Section 2.1,
one of threats to network security that was discussed was denial of service.

Some systems quantify processing time boundaries using percentile metrics. A manufac
turer might quote the latency of a DPI system in terms of a P50, P90, P99 etc. time.
These latencies indicate the maximum time in which 50, 90 and 99 percent of operations
complete respectively.

Denial of service has two distinct threat models. The first is known as distributed denial of
service (DDoS) and is used to make a service unavailable by sending so many requests to
it that it cannot keep up (Hoffman, 2013). Usually such attacks are performed by massive
botnets7 wherein computers controlled centrally are instructed to send many requests to
the target system or service. Such attacks are common and are sometimes implemented
as a means of censorship. Recently, the Chinese government has been linked (Anthony,
2015) to DDOS attacks on the code hosting platform GitHub8. It is believed that such
attacks were designed to limit the availability of tools used to circumvent China’s national
firewall (Anthony, 2015).

The other mode of a DoS attack is more sophisticated than the first. It uses intimate
knowledge of a system to send requests which are designed to use many of the system’s
resources. Minimal amounts of work done by the attacker can create substantial amounts
of work for the system (Needham, 1993; Dougligeris and Mitrokotsa, 2004; Abliz, 2011).
When a system accepts more work than it can handle this is sometimes called a brown
out. There are many ways that a system could have such an attack performed on it and
one of those is through packet inspection. A malicious entity could send packets which
cause the DPI system to spend an inordinate amount of time checking that packet. If
enough specifically crafted packets are sent to such a system, it can negatively impact the
system’s ability to provide service to legitimate traffic.

7https://en.wikipedia.org/wiki/Botnet
8https://github.com/

https://en.wikipedia.org/wiki/Botnet
https://github.com/

7.4. WHICH ALGORITHMS VARY THE MOST? 92

One way of mitigating these threats is to ensure that you can put a bound on packet
processing times. A good indication of this is the variation of the processing time for each
packet. This can be specifically quantified by the standard deviation of mean processing
time for packets of equal length. Figure 7.3 gives a comparison of the standard deviation
for the mean of each algorithm’s processing time for Dataset A . The mean standard
deviation is given in milliseconds.

Algorithm Processing Times Standard Deviation for smallcapture.pcap

Algorithm

Figure 7.3: Mean packet processing time standard deviation for Dataset A

Figure 7.3 provides some interesting results. Obviously, the Not So Naive algorithm shows
massive variance in its processing speed. This kind of behaviour is unwanted because it
would indicate some level on nondeterminism. Furthermore, the Quick Search algorithm
appears on the higher end of the spectrum of mean standard deviations. For an algorithm
with such fast performance as seen in Figures 7.1 & 7.2, this kind of result could mean
that the Quick Search algorithm is not a suitable candidate for a good packet inspection
algorithm.

The Horspool algorithm, on the other hand, shows very little variance in its processing
times; well under 0.5 ms in this test. This indicates that the Horspool algorithm could

7.4. WHICH ALGORITHMS VARY THE MOST? 93

prove to be a very strong algorithm for Deep Packet Inspection. The standard deviation
gives us an indication of how variant the processing speeds of each algorithm are. Some
algorithms may have a few outliers which do not affect the standard deviation as much as
highly variant data would. These outliers might indicate edge cases where the algorithm
could encounter potential slow downs. That kind of behaviour in most undesirable.

One of the algorithms tested, the Smith algorithm (Section 3.10), was noted as being a
combination of the Horspool and Quick Search algorithms. The Smith algorithm takes
maximum value produced by the ‘bad-character’ shift functions of both the Horspool and
Quick Search algorithms (which, in turn, have modified the ‘bad-character’ shift function
by the Boyer-Moore algorithm (Section 3.5) (Boyer and Moore, 1977)). One would expect
that an algorithm that pitted the shift functions of our two fastest algorithms against one
another would be extremely quick. On the contrary the Smith algorithm shows mediocre
results. In the tests with Dataset A and Dataset B , the Smith algorithm posted mean
processing times which put it near the centre of the algorithms tested.

In order to better understand the behaviour of these algorithms, it is important that
they are looked at individually. To better examine fully each algorithm, only the most
interesting can be selected for further examination. With that, the following algorithms
have been chosen:

• Horspool algorithm (Section 3.6) - Was the fastest algorithm to process Dataset B
and the second fastest algorithm to process Dataset A . The Horspool algorithm also
showed minimal variance in its processing time in Figure 7.3. These factors make
it our strongest contender for an excellent Deep Packet Inspection algorithm and
warrant its further examination.

• Quick Search algorithm (Section 3.9) - Was the only algorithm faster than the
Horspool algorithm in the test using Dataset A . It performed poorly in the test
of variation shown in Figure 7.3 but may prove to be a good algorithm to study
because of that behaviour. •

• Not So Naive algorithm (Section 3.17) - This algorithm performed very poorly in
the test of Dataset A but showed much better times when processing Dataset B .
This algorithm is important to study because of its inconsistent behaviour; knowing
why the Not So Naive algorithm performs the way it does may give us better insight
into what makes an efficient algorithm for Deep Packet Inspection.

7.5. LENGTH IMPACT ON PERFORMANCE 94

• Rabin-Karp algorithm (Section 3.7) - Lastly, this algorithm was chosen because of its
massively inefficient performance when processing Dataset B . A pertinent question
for this algorithm is why its true behaviour wasn’t apparent in the test with Dataset
A .

These four algorithms give a good indication of the variety of behaviours exhibited by
string search algorithms when performing Deep Packet Inspection. The next section looks
at how each of these algorithms’ processing times vary as a function of the length of the
input.

7.5 Length Impact on Performance

As discussed in Section 7.3, algorithms that are too easily slowed by certain types of
packets would not be viable in a real-world packet inspection scenario. In this section,
the algorithms are examined based on their performance for inputs of varying length.

The speed of each of the implemented algorithms can be described by its algorithmic
complexity. That complexity is usually classified using ‘Big-9’ notation. The algorithmic
complexity for all of the algorithms tested is well known and generally described in their
originating papers. See Table 3.1 for each of the algorithm’s Big-9 classification.

The algorithmic complexity for string search algorithms is usually expressed as some
function of the length of the input (n) and the length of the rule (m). Big-9 notation
describes the shape function that the algorithms approach as the factors tend to infinity
(Bachman, 1894; Landau, 1909). The shape of the function determines how quickly the
processing time increases as the other factors increase. Categorising the algorithms by the
shape of the function means that any coefficients describing their behaviour are irrelevant
as the factors tend to infinity.

Because the Big-9 notation categorises algorithms as they tend to infinity, the behaviour
of these algorithms for very short inputs is not as well defined. As an example take the
Big-9 notations: 9(n2) and 9(n). For these two examples the algorithm with a complexity
of 9(n2) will be faster for very small values whereas the algorithm with a complexity 9(n)
will fare better with longer inputs. If the second example was replaced with 9(1000n)
- the 1000 usually being stripped off with Big-9 notation - then the second algorithm
becomes far less viable for Deep Packet Inspection as it requires very long values to be
more efficient than the first.

7.5. LENGTH IMPACT ON PERFORMANCE 95

Algorithm Complexity

Horspool 9(n + m)
Quick Search 9(nm)
Rabin-Karp 9(nm)
Not So Naive 9(nm)

Figures 7.4 and 7.5 give a comparison of the possible behaviour of algorithms for smaller
input lengths. In Figure 7.4, the function f (n) = n is compared with f (n) = n2. It is
clear that, for even very small values of n, the f (n) = n function is much more efficient
than f (n) = n2. But, as seen in Figure 7.5, if a large enough coefficient is applied to
f (n) = n the f (n) = n2 function is more efficient for smaller input lengths.

The algorithmic complexities for the four algorithms chosen algorithms are given in Table
7.2.

From Table 7.2 it is evident why the Horspool algorithm has performed better than
the others; it has a complexity related to the sum of the length of the rule and input
whereas the other three algorithms all have complexities related to the multiplication of
the length of the rule and input. In the larger table of algorithms (labelled as Table 3.1),

7.5. LENGTH IMPACT ON PERFORMANCE 96

some algorithms even feature 9(n) time complexity but did not prove to be the fastest
experimentally. The different speed of each of the last three algorithms seems to be hidden
in the missing coefficients of the notation.

It is now time to to see how each of the algorithms fares when inputs of varying length
are given. Figure 7.6 shows the relationship between input length and processing time for
all of the algorithms combined using Dataset A . The plotted line indicates the smoothed
conditional mean for every data point throughout the graph and the cone surrounding
the line gives the confidence interval thereof.

From Figure 7.6, it is clear that the speed of the algorithms - the inverse of the time to
process a packet - decreases as the length of the input increases. This is the expected
result as none of the algorithms’ processing times have an inverse relationship to the input
lengths. The graph has been plotted with a logarithmic scale on the y-axis so as to not
give too much emphasis on the large values. From this plot it is also clear that there are
a large number of packets with a length of around 80 bytes and that the input times for
those packets varies wildly - basically spanning the entire range of processing times.

The processing time versus input length for each algorithm must be looked at in order to
better understand the four chosen algorithms. Figures 7.7 to 7.11 show these results.

7.5. LENGTH IMPACT ON PERFORMANCE 97

Figure 7.6: Overall mean processing time for combined algorithms versus input length for
Dataset A .

7.5.1 Horspool

The Horspool algorithm (Section 3.6) is the first of the algorithms to be examined. As
with the test shown in Figure 7.6, Dataset A was used to conduct this test. The results
of the test are presented in Figure 7.7.

Figure 7.7 shows a good representation of the Horspool algorithm’s behaviour at various
input lengths. As you can see, by looking at the minimum processing time for each
discrete input length, the processing time does increase with the input length. Again, a
large cluster of data points around the 80 byte range can be seen (marked on the figure
with a thick, vetical, black line); this would indicate that the dataset has a large number
of packets of that length. Furthermore, the processing times for each packet would appear
to remain fairly constant as the packet size increases when compared to the variation seen
at the 80 bytes mark. This is evident by the distribution of points. The range of the
y-axis is linear, unlike with Figure 7.6, and range from around 0.1 milliseconds to just
over 0.6 milliseconds.

7.5. LENGTH IMPACT ON PERFORMANCE 98

Figure 7.7: Horspool algorithm: Input processing time versus input length for Dataset A .

An issue with this dataset set may be that many of the packets of longer length are made
up of packets which can be processed faster - an example of this is a packet without any
matches and with very few partial matches which can take up precious processing time.
An interesting experiment would be to compare the speed of packet processing versus the
input length when there are no matches within the payload and so the algorithms can be
compared more equally. This experiment is discussed in Section 8.1.

From Figure 7.7, it can be observed that the range of input lengths is between about 60
bytes to just under 600 bytes. As discussed in Section 4.3, the maximum payload size
for ethernet frames is 1500 bytes (Law et al., 2012) and so Dataset A does not properly
cover all of the input lengths that are currently achievable and commonplace in networks
today.

7.5. LENGTH IMPACT ON PERFORMANCE 99

7.5.2 Quick Search

The next test looks at the Quick Search algorithm (Section 3.9) and compare its processing
speed with the length of the input. The Quick Search algorithm was also tested using
Dataset A and the results are given in Figure 7.8.

A

In the test discussed in Section 7.3 (where Dataset A was used as the input), the Quick
Search algorithm performed better than the Horspool algorithm. This is evident from
the results presented in Figure 7.8 when compared with those in Figure 7.7. The scale
of the y-axis has been shifted down by 0.1 milliseconds indicating that the respective
minimum and maximum values that the Quick Search algorithm produces is less than
those produced by the Horspool algorithm. Furthering that point is that the gradient of
the curve fitted to the data of the Quick Search algorithm is clearly less than that of the
Horspool. This indicates that a smaller increase in processing time for longer packets is
achievable with the Quick Search algorithm.

That last point - that the Quick Search algorithm appears to fare better at longer input

7.5. LENGTH IMPACT ON PERFORMANCE 100

lengths than the Horspool algorithm - is not actually the case. This can be seen in Figure
7.2. In those results it is the Horspool algorithm that has shown a dramatically faster
mean processing time than the Quick Search algorithm for a far longer input length.

In Figure 7.3, the Horspool algorithm is shown to have a lower deviation on its mean
packet processing time than the Quick Search algorithm. This may not be immediately
apparent from the data presented in Figures 7.7 and 7.8 but if one examines the results of
both algorithms at the right-hand end of the graphs (results for longer input lengths) it
is evident that the Quick Search algorithm shows more results of longer processing times
than the Horspool algorithm does.

In Figure 7.8 (as seen again in Figure 8.1), there is a large variation of processing speeds
for packets of around 80 bytes in length. This variation could be attributed to the varying
contents of DNS packets. Each of these algorithms has differing procedures for dealing
with partial or full matches. Packets without matches to the rules are treated differently
to those with.

Figure 7.9 shows the results of a DNS lookup request for ru .ac.za (the researcher’s
university’s domain). The results of the request indicate (see the last row of the response)
that the size of the data received is 308 bytes in length. The same request for news24.com
receives a response of 124 bytes and a request for mybroadband.co.za receives a response
of 212 bytes. The larger size of the response for ru .ac.za can be attributed to the use
of a large number of additional name servers and the support for IPv6 addresses in the
form of AAAA records (Thomson, Huitema, Ksinant, and Souissi, 2003).

From this very small test it is clear that the length of DNS requests can vary quite a large
amount but the majority of requests would appear to be small compared to the maximum
size achievable on the medium.

7.5.3 Not So Naive

The next algorithm tested was one of the slowest shown in earlier tests. It is the Not So
Naive algorithm (Section 3.17). The results of the test using Dataset A are presented in
Figure 7.10.

The Not So Naive algorithm was developed as an improvement on the traditional Naive
algorithm (Section 3.2). It aimed to keep the original design of the Naive algorithm with
a few added improvements. In the earlier tests - the results of which can be seen in Figure

ru.ac.za
news24.com
mybroadband.co.za
ru.ac.za

7.5. LENGTH IMPACT ON PERFORMANCE 101

• o • 2. kieran@Kierans-MacBook-Pro: - (zsh)
~ {zsh) s i [

-* ~ d ig ru .a c .za +stats

; < o > DiG 9 .8 .3 -P I < o > ru .a c .za +stats
; ; g lo ba l options: +cmd
; ; Got answer:
; ; - »H E A D E R « - opcode: QUERY, s ta tu s : NOERROR, id : 49085
; ; f la g s : q r rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 8

; ; QUESTION SECTION:
; ru .a c .za . IN A

; ; ANSWER SECTION:
ru .a c .za . 118 IN A 146.231.128.43

; ; AUTHORITY SECTION:
ru .a c .za . 32698 IN NS ra ccoon.ru .ac .za .
ru .a c .za . 32698 IN NS h ip p o .ru .a c .za .
ru .a c .za . 32698 IN NS te rra p in .ru .a c .z a .
ru .a c .za . 32698 IN NS u cth p x .u c t.a c .za .

; ; ADDITIONAL SECTION:
h ip p o .ru .a c .za . 33073 IN A 146.231.128.1
h ip p o .ru .a c .za . 33673 IN AAAA 2081:4200:1018::1
u cth p x .u c t.a c .za . 21830 IN A 137.158.128.1
u cth p x .u c t.a c .za . 33959 IN AAAA 2081:43f8:75::3
ra ccoon.ru .ac .za . 72 IN A 84.22.103.222
ra ccoon.ru .ac .za . 72 IN AAAA 2a82: 2770:8 : : 21a: 4 a ff : fe e a : ee6f
te rra p in .ru .a c .z a . 39304 IN A 146.231.128.6
te rra p in .ru .a c .z a . 80 IN AAAA 2081:4200:1018::6

; ; Query time: 4 msec
; ; SERVER: 192.168.3.1#53(192.168.3.1)
; ; WHEN: Hon Apr 25 07:59:34 2016
; ; MSG SIZE rcvd: 308

Figure 7.9: The results of a DNS lookup using the dig utility. The command used was
dig ru .ac.za +stats.

7.1 - the Not So Naive algorithm fared very poorly for Dataset A . In Figure 7.10, the range
of values in the data from the test with the Not So Naive algorithm is between about 0.2
milliseconds and 0.7 milliseconds. This presents a larger range of values than what was
seen with the Horspool and Quick Search algorithms with the maximum value being far
less than the other two.

In the previous two results, the following behaviour has been seen: for packets of shorter
length (of which there are many) there is a large variation in the processing time but
as the length of the packets increases the variation would appear to decrease. In Figure
7.10, the processing times at each of the input lengths appears to vary much more than
what was seen in Figures 7.7 & 7.8. This behaviour is also exhibited in the comparison
of standard deviations of each algorithm presented in Figure 7.3 where the Not So Naive
algorithm shows the largest standard deviation of them all.

7.5. LENGTH IMPACT ON PERFORMANCE 102

Figure 7.10: Not So Naive algorithm: Input processing time versus input length for
Dataset A .

If the behaviour of the Not So Naive algorithm is similar to that of the Naive algorithm,
then the Not So Naive algorithm could be expected to vary very little as the number of
matches within a packet varies. This behaviour is a result of the Naive algorithm not
employing any special logic in the event of a partial or full match.

In Figure 7.10, the minimum processing time for packets of increasing length appears to
increase as well. The line fitted to the data does not show much change as the length
increases as the overall packet processing time for the longer length has remained about
the same.

7.5.4 Rabin-Karp

The results of the Rabin-Karp algorithm (Section 3.7) processing Dataset A versus the
input length are presented in Figure 7.11.

7.5. LENGTH IMPACT ON PERFORMANCE 103

Figure 7.11: Rabin-Karp algorithm: Input processing time versus input length for Dataset
A .

The Rabin-Karp algorithm, at least for Dataset A , is not the slowest. The slowest for
Dataset A was the Not So Naive algorithm. The Rabin-Karp algorithm was by far the
slowest when processing Dataset B (a dataset with very long input). At the start of this
section it was discussed that Big-0 notation strips the coefficients off of the functions that
it describes. In this case it would appear that the Rabin-Karp algorithm was faster than
the Not So Naive algorithm for smaller input lengths. So it would appear that Not So
Naive has large enough coefficients that Rabin-Karp is faster for packets of DNS length.
This is also evident from the maximum value shown in Figure 7.11, which is less than 0.6
milliseconds whereas the maximum value for Not So Naive is just under 0.7 milliseconds.

The Rabin-Karp algorithm actually works in much the same way as the Naive algorithm.
There is a window into the input, the same size as the rule, which is shifted along, byte by
byte, trying to find a match. The contents of the window are hashed and then compared
with the known hash of the rule. If a match is found the window needs to be compared,
byte by byte, with the rule to make sure that there was no false positive. False positives
can occur because the hashing algorithm could transform two unique string into the same

7.6. SUMMARY 104

value. It would appear that a combination of the continuous hashing and having to
recheck after a potential match is made is enough to cause the behaviour seen in Figure
7.11.

It would seem that the Rabin-Karp algorithm is poised to take over as the slowest algo
rithm for packets just slightly longer than the ones in this dataset.

7.6 Summary

Table 7.3: Chapter 7 algorithm rankings

Rank
Speed

Dataset A
Subsection 7.3.1

Speed
Dataset B

Subsection 7.3.2

Variation
Dataset A
Section 7.4

Input Length
Dataset C

Sections 7.5

1 Quick Search Horspool Horspool Horspool
2 Horspool Quick Search Rabin-Karp Quick Search
3 Rabin-Karp Not So Naive Quick Search Not So Naive
4 Not So Naive Rabin-Karp Not So Naive Rabin-Karp

Table 7.3 gives the rankings for each of the selected algorithms tested in Chapter 7.

From the results presented in Table 7.3 and in the sections above it is clear that there
is some very interesting behaviour associated with these string search algorithms. For
inputs with lengths which are within their usual domain (inputs of book length) these
algorithms have very well known behaviours. These behaviours can break down when the
input lengths decrease to the size of packets. This nondeterminism can be detrimental to
system performance in packet inspection contexts.

What is also evident from these results is that further examination is necessary. The data
produced by these algorithms using Dataset A and Dataset B is indicative of real-world
behaviour but does not provide the flexibility to fully examine the behavioural nuances
exhibited by these algorithms.

This chapter has established a good comparison of each algorithm, their speed to process
in the packet inspection domain, and compared that with their speed to process in their
intended domain. This chapter has also taken a first cursory look at the algorithms’
performance when compared to the length of the input - a property of the algorithms
which could show good candidacy for an excellent packet inspection algorithm.

7.6. SUMMARY 105

The following chapter further examines the four algorithms chosen and answer more
questions which have arisen.

Chapter 8

Further Algorithm Comparison

The previous chapter started to look at the string search algorithms and how they perform
in datasets mimicking network traffic in the real world. From those results, four algorithms
were chosen, based on various behaviours, to further examine in order to establish a good
body of knowledge representing their performance in the context of packet inspection.

The four algorithms, chosen for their unique behaviours, were:

• The Horspool algorithm (Section 3.6) - This algorithm was chosen as it showed the
best processing speed when given Dataset B as an input and gave the second fastest
mean time to process in the comparison for Dataset B.

• The Quick Search algorithm (Section 3.9) - The Quick Search algorithm was selected
because it was the fastest to process Dataset A and was third fastest for Dataset B .

• The Not So Naive algorithm (Section 3.17) - This algorithm was selected as it showed
very poor processing times for Dataset A but recovered well when processing Dataset
B to place within the middle of the algorithms performance-wise.

• The Rabin-Karp algorithm (Section 3.7) - The Rabin-Karp algorithm was by far
the slowest algorithm when processing the textual dataset (Dataset B) but was not
nearly as slow with Dataset A .

It is believed that these selected algorithms will show a good indication of how well string
search algorithms perform Deep Packet Inspection and may give light to some of the edge
cases which may also make them unsuitable. Generally, these algorithms are interesting as

106

8.1. PERFORMANCE VERSUS INPUT LENGTH WITH NO MATCHES 107

the first two (Horspool and Quick Search) represent the faster end of the testing spectrum
and the latter two (Not So Naive and Rabin-Karp) represent the the slower end. These
four edge cases were chosen in the hope that they may reveal what affects parts the their
design affects a string search algorithm when it comes to packet inspection (be it positively
or negatively).

This chapter will further scrutinise these algorithms and examine their behaviour under
all manner of conditions. It will ask, again, how the speed of the algorithms is affected
by input length (Section 8.1), how the number of matches affects the processing speed
(Section 8.2, and how multithreading can change the behaviour of the algorithms (Section
8.3).

8.1 Performance versus input length with no matches

In the previous chapter, how the length of the input affects the speed at which these
algorithms perform their packet inspection was discussed. When performing those tests,
there are a number of issues with the real-world dataset (Dataset A) which came to light.

The average length of the inputs in Dataset A is 109.61 bytes (Table 4.1). This is far
shorter than the maximum length of a ethernet frame, which is 1500 bytes (Law et al.,
2012), and is still even less than half of that value.

The actual data in Dataset A is real-world data and the rules used in these tests are
designed to match well with that data. As a result of this is that there are many matches
to the rules within this dataset which may affect the comparison of the speed of the
algorithm with the length of the input. A short input which produces many matches
to the rules may affect the algorithm’s time to process more than a long input with no
matches.

In order to mitigate this a new dataset, Dataset C (Section 4.3) - which provides packets
with lengths of up to 1500 bytes and contains no matches, was created. This dataset was
created using Wireshark’s randpkt utility (Ramirez, 1999) using the command in Listing
4.1. Dataset C has an average packet length of 770 bytes (See Table 4.1) which is far
more than the 109.61 bytes of Dataset A and as such should force each of the algorithms
to spend more time processing each packet than before.

8.1. PERFORMANCE VERSUS INPUT LENGTH WITH NO MATCHES 108

8.1.1 Horspool

The following tests were designed to reexamine at how the length of the input affects the
performance of the algorithm when there are no matches. Figure 8.1 shows a comparison
of the Horspool algorithm versus the length of the input for Dataset C .

Figure 8.1: Horspool algorithm: Input processing time versus input length for Dataset C.

From Figure 8.1 quite a bit of interesting information is apparent. The graph itself shows
a processing time of between 0.10 milliseconds to just under 0.25 milliseconds. The range
of input lengths vary from about 50 bytes to 1500 bytes.

When comparing Figure 8.1 to Figure 7.7 one may conclude that these figures do not
align well, but if you were to truncate the data in Figure 8.1 so that the maximum packet
length is no more than 600 bytes, 8.1 would look very much like Figure 7.7. This shape
of this algorithm can be attributed to the fact that it does not have to do much work for
each input - as there are no matches it can fail early - and so it is just iterating through
longer and longer arrays of characters. For each character there is some work that must
be done and so this can account for the pattern seen here.

8.1. PERFORMANCE VERSUS INPUT LENGTH WITH NO MATCHES 109

The hump in the data seen on the graph at about 250 bytes can be attributed to the initial
overhead of the system and the behaviour of the algorithm thereafter (from about 500
bytes to 1500 bytes) is a true indication of the Horspool algorithm’s actual performance.

8.1.2 Quick Search

Figure 8.2 shows the performance of the Quick Search algorithm when inspecting the data
in Dataset C .

Figure 8.2: Quick Search algorithm: Input processing time versus input length for Dataset
C

The Quick Search algorithm has a created results similar in look to the results produced by
the Horspool algorithm. Unlike the Horspool algorithm, the Quick Search algorithm pro
duced processing times ranging from about 0.12 milliseconds to almost 0.30 milliseconds.
These processing times are higher than those produced by the Horspool algorithm.

In Section 7.3, it was concluded that, for shorter input lengths, the Quick Search algorithm
was faster than the Horspool algorithm but, as the input length increased, the Horspool

8.1. PERFORMANCE VERSUS INPUT LENGTH WITH NO MATCHES 110

algorithm would achieve better processing speeds. For packets of a length expected on
a ethernet network, the Horspool algorithm has performed better than the Quick Search
algorithm.

In Figure 8.2, there is a clear clustering of values near the minimum processing time for
each input length as well as around the fitted curve. These clusterings merge as the input
length increases indicating that the property affecting the packet processing that makes
the gap seen in the clustering does not affect it as much when the length of the input and
the time to processes increase. The disappearance of the clusters can be attributed to
some small amount of work needed to be done to perform the search which is minimised
over longer input lengths.

The variation of processing speeds for packets of similar length seen in Figure 7.8 is not
as apparent in the latest set of results. This reduction in variation could be attributed
to the removal of the variation introduced by matches within the inputs. An input with
many matches may cause an algorithm to spend more time processing than when there
are fewer matches. This reduction in processing time could be attributed to the extra
load caused by reporting a match.

8.1.3 Not So Naive

Figure 8.3 presents the packet processing speed versus the length of the input where there
are not matches for the Not So Naive algorithm. Dataset C was used for this test.

The Not So Naive algorithm is the first of the two poorer performing algorithms to be
examined in this chapter. In Figure 8.3 a plot of the processing time versus the length of
the input is presented.

The maximum processing time of the Not So Naive algorithm is clearly more than that
shown for the Horspool algorithm in Figure 8.3 and the Quick Search algorithm in Figure
8.2. The minimum processing time For the Not So Naive algorithm appears to be around
0.1 milliseconds whilst the maximum processing time is just under 0.7 milliseconds.

In this plot it would appear that the results are clustered around the fitted curve with
few discernible outliers. Comparing this to what is seen in the results for the Quick
Search algorithm (Figure 8.2) where there are two distinct clusters and quite a large
number of outliers it can be concluded that the slower processing speeds, exhibited in the

8.1. PERFORMANCE VERSUS INPUT LENGTH WITH NO MATCHES 111

Figure 8.3: Not So Naive algorithm: Input processing time versus input length for Dataset
C .

Not So Naive algorithm and towards the larger input of the Horspool and Quick Search
algorithms, produce more tightly grouped results.

Figure 8.3 also shows an extreme rise in processing times following the 400 bytes mark.
This corresponds to a point near the tail end of Dataset A which was not shown well in
the results of the tests using that dataset. This extreme rise is probably attributable to
its O(nm) complexity (see Section 3.1).

8.1.4 Rabin-Karp

Figure 8.4 presents the results of the same test for the Rabin-Karp algorithm, using
Dataset C .

Even though the Rabin-Karp algorithm was not the slowest when processing Dataset A ,
it was by far the slowest when processing Dataset B . This is indicative of an algorithm

8.1. PERFORMANCE VERSUS INPUT LENGTH WITH NO MATCHES 112

Figure 8.4: Rabin-Karp algorithm: Input processing time versus input length for Dataset
C .

which is slower for longer inputs. This test aimed to see at which point this algorithm
becomes slower than the Not So Naive algorithm. If, during these tests, it was found
that the Rabin-Karp algorithm performed better than the Not So Naive algorithm then it
could be established that the Rabin-Karp algorithm is better within the context of packet
inspection than the Not So Naive algorithm. This, however, was not the case as can be
seen in Figure 8.4.

The processing times for the Rabin-Karp algorithm in Dataset C range between about 0.2
milliseconds to just over 3 milliseconds. The Rabin-Karp algorithm is by far the slowest
of all four of the algorithms tested here.

There are a few points of interest on the graph. The first interesting point, again, is that
for smaller input lengths (around 250 bytes), the Rabin-Karp algorithm performs about
the same as the three previously examined algorithms. The second interesting point is
how little variation is seen on the processing time through the range of input lengths.

The lack of variation seen in the Rabin-Karp algorithm’s results, especially when compared

8.2. PERFORMANCE VERSUS NUMBER OF MATCHES 113

to the Horspool and Quick Search algorithms, can be attributed to its implementation.
The algorithm does not care at all about partial matches - they do not affect its running
- as partial matches will produce a hash completely different to the hash of the rule. As
this dataset (Dataset C) was designed to produce no matches, this algorithm will always
perform the exact same operations as it inspects the input. If the only change is the
length of the input, it is then expected that there is very little variation on the processing
times for the Rabin-Karp algorithm.

From the preceding tests the relationship of the length of the inputs to the algorithms and
the time it takes for each algorithm to process its input has been succinctly determined.
This kind of information is important when it comes to Deep Packet Inspection as Deep
Packet Inspection usually has very strict requirements on the maximum time to process
the packet’ s payload.

Through the use of the carefully constructed Dataset C (See section 4.3 for more in
formation on that dataset) the influence of external variables on the performance of the
algorithms has been eliminated by removing those variables. Dataset C does not perfectly
represent traffic expected in real-world scenarios but does well represent a certain aspects
thereof - namely the length of the packets.

8.2 Performance versus number of matches

In Section 8.1, the dataset itself was used to examine the behaviour of a certain aspect
of the chosen algorithms. This section aims to see how the number of matches affects the
processing time of the algorithms. In order to separate the number of matches from the
length the input, a new dataset needed to be constructed.

This new dataset, Dataset F (Section 4.6) was constructed in such a way that the length
of the input did not affect the number of matches. To construct this dataset, a PCAP file
was created with 10000 packets - the same number of packets as every other packet-based
dataset - and then each packet was filled with a random number of guaranteed matches
to the rules and the rest of the packet filled with random bytes. Each packet then ended
up being exactly 1500 bytes in length (See Table 4.1).

8.2. PERFORMANCE VERSUS NUMBER OF MATCHES 114

8.2.1 Horspool

It is with Dataset F that Figure was created to test the speed of the Horspool algorithm
against the number of matches found in the dataset.

Processing Time vs Number of Matches Found for Horspool

Number of Matches Found

Figure 8.5: Horspool algorithm: Input processing time versus number of matches for
Dataset F .

At first look, Figure appears to be a mess of highly variant data. Upon closer inspection
there are a few elements which indicate how this algorithm actually performs.

The graph itself has processing time ranging from about 0.18 milliseconds all the way to
just over 0.35 milliseconds. The curve fitted to the data indicates, by its slight upward
trend, that the processing time of the algorithm does, in fact, increase as the number of
matches increases.

An interesting point to note the the dramatic variation of the processing times for the
same number of matches found and, because the number of matches is independent of the
length of the input, this discrepancy must come from somewhere else. One explanation of

8.2. PERFORMANCE VERSUS NUMBER OF MATCHES 115

this behaviour is that, because the matches within each packet are randomised, there may
be an overwhelmingly number of long matches in the data which take longer to process.

8.2.2 Quick Search

Figure 8.6 shows the results of the Quick Search algorithm in Dataset F .

Figure 8.6: Quick Search algorithm: Input processing time versus number of matches for
Dataset F .

The results of the Quick Search algorithm quite closely resemble those of the Horspool al
gorithm. These algorithms have shown similar results through the course of this research.
The fitted curve to these results in Figure 8.6 shows un upward trend, steeper than that
of the Horspool, which would also indicates a relationship between the number of matches
and the length of the input.

8.2. PERFORMANCE VERSUS NUMBER OF MATCHES 116

8.2.3 Not So Naive

Figure 8.7 presents the results of our next algorithm, the Not So Naive algorithm, as it
processes the inputs in Dataset F .

Processing Time vs Number of Matches Found for NotSoNaive

<

»'
7V N *tP»®

Pa *

Number of Matches Found

Figure 8.7: Not So Naive algorithm: Input processing time versus number of matches for
Dataset F .

The Not So Naive algorithm’s results show a very slight increase in processing time as the
length of the input increases. The results here closely resemble the results presented earlier
for the Horspool and Quick Search algorithms. In these results, a far larger variation on
processing speed is seen. This variation would indicate that the relationship between
number of matches and processing speed is not very strong.

The algorithm’s processing speed may not exhibit a strong coupling with the number
of matches because it spends so much time just processing the packet that the added
processing overhead of an actual match is negligible.

8.2. PERFORMANCE VERSUS NUMBER OF MATCHES 117

8.2.4 Rabin-Karp

The forth and final comparison is with the Rabin-Karp algorithm and its processing of
Dataset F . The results are presented in Figure 8.8.

Figure 8.8: Rabin-Karp algorithm: Input processing time versus number of matches for
Dataset F .

The Rabin-Karp algorithm’s processing speed only shows a very small correlation to the
number of matches found. This slight increase in processing time as the number of matches
increase can likely be attributed to the overhead of the system as new matches are logged
and not the algorithm itself.

The processing times themselves range from between about 2.9 milliseconds to just under
3.5 milliseconds. This processing time range would would appear to be just the natural
variation in processing times for the Rabin-Karp algorithm with an input of 1500 bytes in
length. This is, notedly, quite a large variance - especially when deterministic performance
is needed for Deep Packet Inspection.

8.3. HOW DOES MULTITHREADING AFFECT PROCESSING SPEED? 118

T h is section has examined the performance of each of the chosen algorithm s when when

the length of the input was fixed and the num ber of matches was varied. I t is through

th is that the relationship between the num ber of matches and the processing time can

be properly examined. Th e Horspool and Q uick Search algorithm s showed a much larger

dependency on the the num ber of matches when compared to the N ot So Naive algorithm .

T h e results of the R a b in -K a rp test were devoid of a correlation between num ber of matches

and processing speed. It may be that the faster the algorithm - the more it is affected

by finding matches. There is certainally some overhead associated w ith reporting the

matches.

8.3 How does multithreading affect processing speed?

T h is section examines how the use of m ultithreading can affect the performance of the

chosen algorithm s and tries to find a proper thread-count which guarantees best perfor

mance on the test system. As discussed in Section 7.2, the test system has a total of

tw enty four threads made available th rough the test hardware.

Each of the implemented algorithm s were o rig ina lly designed to search for just a single

rule at a time. T h is is a perfectly justifiable decision especially since, at the time, most

systems were running on single core, single thread C P U s (L i l ly , 2009). M odern C P U s

have been designed to allow for m any physical C P U cores and even more hyper threads

(L i l ly , 2009). T h e test hardware (Section 7.2) is an example of such a design. W ith

the advent of these m ultithreaded systems it would be wasteful to ignore all of the extra

processing power available. Th e test system was designed w ith this in m ind and runs each

of the rules in parallel.

M u ltith rea d ing in the test system works as follows:

• T h e num ber of threads to use is specified in the test configuration.

• A thread pool is created w ith a size equal to the num ber of threads specified.

• D u rin g run time, the test system assigns one thread from the threadpool to each

rule. •

• Once the rule has been searched for the thread is returned to the pool.

8.3. HOW DOES MULTITHREADING AFFECT PROCESSING SPEED? 119

• If there are more rules than threads in the thread pool then the system must wait
for a rule to finish before another one may be assigned a thread and start.

Essentially this design is a parallelism over multiple rules. A potential alternative imple
mentation would be parallelism over multiple packets; it was not investigated here but
could prove to be an interesting area of further research in the future. Further paral
lel implementations could also take a hybrid approach where both rules and packets are
mixed and searched simultaneously.

With such a system, it is now possible to ask how the number of threads affects the
processing speed of the algorithms. Table 8.1 shows each of the selected thread-counts
for these tests.

Table 8.1: Thread counts used in the multithreading tests

Base 10 Base 2 Note

1 20 The same as the linear method of testing.
2 21
4 22
8 23
16 24 The last value for which there are fewer program threads than

cessor threads.
pro-

32 25 The first value for which there are more program threads than
cessor threads but fewer program threads than rules.

pro-

64 26 The first value for which there are more threads than rules.

In the following tests, each of the selected algorithms was tested using Dataset D (Section
4.4, the dataset with a packets of random length but wherein each is filled entirely with
matches to the rules, using the same rules as before but where the number of threads was
varied each time.

8.3.1 Horspool

Figure 8.9 shows a comparison of processing times for each run of the Horspool algorithm
at different numbers of threads. Each thread is assigned a different colour and the results
are plotted as a function of the length of the input.

What is to be expected from these results is that, for smaller input lengths, fewer threads
would be faster and as the input length increased, the number of threads for the most

8.3. HOW DOES MULTITHREADING AFFECT PROCESSING SPEED? 120

Figure 8.9: Horspool algorithm: Input processing time versus number of inputs for Dataset
D .

efficient configuration would increase. For smaller inputs, the overhead associated with
switching threads constantly would make the system slower and as the input grows, so too
does the time to process, which makes the overhead for switching threads less impactful
on the overall processing time.

In Figure 8.9, the behaviour that was just discussed is present. At the smaller input
lengths, thread counts of one and two are far more efficient than higher thread counts. As
the length of the input rises, the number of threads jostle for the fastest position until,
at 1500 bytes, eight threads appears to be optimal.

The most efficient number of threads at the midpoint, 770 bytes, is either four or eight
threads. It is at this thread-count, and for this particular machine and algorithm that
the optimal number of threads is between four and eight.

8.3. HOW DOES MULTITHREADING AFFECT PROCESSING SPEED? 121

8.3.2 Quick Search

Figure 8.10 gives a comparison of the processing speed for Dataset D of the Quick Search
algorithm, for varying numbers of threads.

Figure 8.10: Quick Search algorithm: Input processing time versus number of inputs for
Dataset D .

Earlier it was found that the Quick Search algorithm was more efficient than the Horspool
algorithm for smaller input lengths. This relationship is evident in a comparison between
Figures 8.9 and 8.10. In the Quick Search algorithm’s graph, the four thread line becomes
more efficient than the two thread line at inputs of about 400 bytes in length, in the
Horspool algorithm’s graph this crossover takes place at inputs of about 500 bytes in
length.

The four thread line becomes less efficient than eight thread line at inputs of about 600
bytes in length and eventually, at inputs greater than 1500 bytes in length, the sixteen
threaded line becomes the most efficient. The lines representing the results from the single
thread test in both of the preceding graphs become totally inefficient very quickly, proving
how important a multithreaded approach is to this problem.

8.3. HOW DOES MULTITHREADING AFFECT PROCESSING SPEED? 122

8.3.3 Not So Naive

Figure 8.11 shows the processing time versus the input length of the Not So Naive algo
rithm with Dataset D as its input and for varying numbers of threads.

Figure 8.11: Not So Naive algorithm: Input processing time versus number of inputs for
Dataset D .

The Not So Naive algorithm is one of the slowest algorithms in the test. Because of its
slowness, more threads become more efficient faster than with the more efficient algo
rithms. For input lengths as low as about 770 bytes a sixteen thread configuration proved
to be the most efficient.

Given the trend of the lines as they go from shorter input lengths to longer input lengths,
one may think that, in the case of Figure 8.11, even more threads should be more ef
ficient than sixteen threads at 1500 bytes. This would be the case for a system with a
CPU capable of concurrently processing more threads but, for our test hardware with a
maximum number of simultaneous threads of twenty four, thirty two threads would mean
that there are more OS threads than there are available in the hardware. At this point

8.3. HOW DOES MULTITHREADING AFFECT PROCESSING SPEED? 123

further overhead is introduced as thread vie for processing time on the CPU and there is
further context switching as the operating system must try to fairly schedule the work.

This phenomenon - the hard limit set by the hardware itself - can be seen in the next
test.

8.3.4 Rabin-Karp

The final test was performed using the Rabin-Karp algorithm to search through Dataset
D using varying numbers of threads each time. Figure 8.12 compares the processing time
of that test to the length of the input.

Figure 8.12: Rabin-Karp algorithm: Input processing time versus number of inputs for
Dataset D .

This test, using the Rabin-Karp algorithm, is the most extreme of the cases that has
been tested here. The Rabin-Karp algorithm proved to be very slow in previous tests
(see Section 7.3). The slower algorithms have shown reach an efficient number of threads
at lower inputs lengths than their faster counterparts. For the Rabin-Karp algorithm, at

8.4. SUMMARY 124

the very smallest of input lengths, the eight threaded solution was most efficient but at
inputs of about 200 bytes long the sixteen thread line takes over as most efficient and
stays there for every other length of input.

As discussed earlier, for inputs of infinite length, and of the thread counts used in these
tests, it is believed that sixteen threads would always be the most efficient. For packets
of average length - about 770 bytes long - between four and sixteen threads has proven
to be the most efficient number to use across the various algorithms used.

This section shows how important multithreading can be, especially with modern, highly
parallelizable, CPUs. More than that, the points at which varying levels of multithread
edness are more efficient were investigated.

8.4 Summary

Table 8.2: Algorithm rankings for each test.

R ank
Speed

D ataset A
S ubsection 7.3.1

Speed
D ataset B

S ubsection 7.3.2

V ariation
D a taset A

Section 7.4

Input Length
D a taset C

Sections 7.5 & 8.1

M atches
D a taset F
Section 8.2

M ultithreading
D a ta set D
Section 8.3

1 Q uick Search H orspool H orspool H orspool H orspool H orspool
2 H orspool Q uick Search R abin -K arp Q uick Search Q uick Search Q uick Search
3 R abin -K arp N ot So N aive Q uick Search N ot So N aive N ot So Naive N ot So N aive
4 N ot So Naive R abin -K arp N ot So N aive R a bin -K arp R abin -K arp R abin -K arp

Throughout this chapter the four chosen algorithms have been put through further testing
to really understand how they perform at the scale needed for Deep Packet Inspection.
A number of questions were asked and answered surrounding the performance of these
algorithms through the use of a multitude of different tests and inputs.

Table 8.2 gives a summary of the results presented in this and the previous chapter. The
algorithms are ranked based on their performance in each of the tests conducted. For
the ‘Input Length’, and ‘Multithreading’ tests, the algorithms have been ranked based on
their speeds at 770 bytes. The ‘Matches’ tests have been ranked based on the performance
of the algorithms at 150 matches.

From the results above it was shown how well the Horspool algorithm (Section 3.6) per
formed - both in terms of overall speed and determinism of processing time - much better
than its peers. In this chapter it was also shown that faster algorithms seem to be more
affected by the small overheads produced by the system itself. In Table 8.2, the Horspool

8.4. SUMMARY 125

algorithm ranked first for five of six tests. The Horspool algorithm posted extremely
good results in each of the tests and proved itself to be a very viable algorithm for packet
inspection.

In the previous chapter, Chapter 7, the Quick Search algorithm (Section 3.9) showed
the potential for becoming a good algorithm for packet inspection. It was later shown
that this algorithm, although relatively fast, produced results that were quite variant. A
large variation of processing times in a real-time packet inspection system could be open
to unpredictable slowdowns and perhaps even cause denial of service. In Table 8.2, the
Quick Search algorithm fared well in each of the tests expect for the test of variation.
Although seemingly minor, this behaviour is most unwarranted. An algorithm such as
the Quick Search algorithm may have, at first glance, shown strong signs of being a good
packet inspection algorithm. After further investigation it was revealed that the Quick
Search algorithm posses unwanted properties.

The slower algorithms were also examined in an attempt to see what hampered their
performance. In the first test in Chapter 7, the Not So Naive algorithm (Section 3.17)
showed very poor processing times for Dataset A . Upon closer inspection it was found
that the Not So Naive algorithm was actually not the slowest overall. That title belonged
to the Rabin-Karp algorithm. Table 8.2 shows how the Not So Naive algorithm moved
from being the poorest performing algorithm in the first test to being only the second
worst performer in each of the subsequent tests.

The Rabin-Karp algorithm (Section 3.7) showed initially mediocre results and later proved
to be extremely inefficient at longer length inputs. By examining such a slow algorithm
the behaviour of these algorithms for longer processing times is now better understood.
Table 8.2 shows the results of the Rabin-Karp algorithm in each of the performed tests.
The behaviour of the Rabin-Karp algorithm is indicative of an algorithm which performs
well for shorter inputs but has poor performance for inputs of about 1500 bytes.

Chapter 9

Conclusion

The research presented in this document has implemented, assessed and compared a large
number of exact string search algorithms with a variety of different textual and packet-
based inputs1. Each different test pitted the algorithms against each other in order to
understand how they performed in the context of Deep Packet Inspection. Although the
raw performance of these algorithms does not match the processing speed offered by other
implementations (Chaudhary and Sardana, 2011), it is believed that this novel research
may, one day, prove useful.

In order to conduct the tests and generate the statistics used throughout this body of
work, a test harness needed to be constructed. Although systems for comparing string
search algorithms (Faro and Lecroq, 2011) and others for performing packet inspection
exist, no such system for comparing string search algorithms in the context of Deep
Packet Inspection had been developed. The system developed proved extremely useful
for generating precise, accurate data for later examination.

9.1 Document Recap

This section summarises the document in its entirety.

1In Chapter 7, ten thousand and one inputs were used on nineteen different algorithms over twenty
separate test runs generating almost four million data points. In Chapter 8, ten thousand inputs were
used on four algorithms in thirty six different tests, each test with twenty runs, for a total of just under
thirty million data points.

126

9.2. RESEARCH OBJECTIVES 127

C hapter 1 - Introduced the research itself, defined its scope and gave a layout of the
document to come.

C hapter 2 - A comprehensive overview of the current state of general network security
(Section 2.1), Intrusion Detection Systems (Section 2.3), firewalls (Section 2.2), and Deep
Packet Inspection (Section 2.4).

C hapter 3 - An introduction to searching for strings in text and details about each of
the implemented algorithms (Sections 3.2 to 3.19).

C hapter 4 - Discussed each of the six datasets used later in the tests. The datasets were
labeled Dataset A to Dataset F .

C hapter 5 - The discussion of the test system began by giving an analysis of the de
sign of the system itself. This chapter makes use of diagrams to succinctly describe the
functioning of the system.

C hapter 6 - Continues the discussion of the test system, this time by discussing the
implementation details. Example uses of the system of given - complete with screenshots
of it during use.

C hapter 7 - The implemented algorithms were initially compared for speed using Dataset
A and Dataset B , packet and textual datasets, respectively. The algorithms were then
compared for variation on processing times. Four algorithms, Horspool, Quick Search,
Not So Naive, and Rabin-Karp were selected for further examination. The four selected
algorithms had their speed compared to the length of the input to gain insight into their
algorithmic complexity.

C hapter 8 - This chapter continues on the work done in Chapter 7 buy further examining
the four selected algorithms. Another test comparing algorithm speed and input length
was conducted, followed by a comparison of algorithm speed and number of matches.
Finally the four algorithms were tested using varying numbers of threads to see what the
optimal number of threads was for each.

9.2 Research Objectives

In Chapter 1, Section 1.2, a number of research objectives were listed and the following
reports on the progress towards those objectives:

9.3. FUTURE WORK 128

• T h e first goal of th is research was to establish the current state of the art for software-

based Deep Packet Inspection. C hapter 2, and specifically in Sections 2.1 to 2.4,

works through the background behind this research from a network security point

of view , concluding w ith a discussion on packet inspection and specifically Deep

Packet Inspection in Subsection 2.4.3. T h e im portance of network security (Section

2.1), and the role of ID Ss and firewalls (Sections 2.3 & 2.2) was also emphasised.

• A set of string search algorithm s which may perform well at Deep Packet Inspection

was compiled and discussed in C hapter 3. T h e ir specific algorithm ic com plexity as

well as finer points about the ir h istory and behaviour were discussed.

• A test system was developed for the purpose of testing the algorithm s. T h e sys

tem itself was designed in such a way that it can easily be extended to add more

algorithm s or alter its functionality. T h a t system is discussed fu lly in P art I I .

• T h e test system was then used to run each of the algorithm s th rough a be vy of tests

in order to compare them for use in Deep Packet Inspection. Various inputs were

used w hich are documented during the testing in Chapters 7 and 8 and in Chapter

4.

• La stly the results were heavily analysed and comments were made about some of

the algorithm s and the ir potentia l performance at Deep Packet Inspection. I t was

found that the Horspool algorithm performed ve ry well in most of the tests, the

Q uick Search algorithm showed promise but had unwanted behaviour in the form

of processing tim e variation, the N ot So Naive algorithm very slow in the tests w ith

D a ta se t A and fina lly the R a b in -K a rp was fa ir ly quick for shorter input but slows

heavily as the input length increases.

9.3 Future Work

T h e result of the work done during this research has been presented in Chapters 7 and 8.

T h a t work focused on the benchm arking, comparison and later analysis of a set of exact

string m atching algorithm s w hich had orig ina lly been designed to find short strings in

larger bodies of text. Those results allowed for the proper comparison of the algorithm s

in a num ber of scenarios and investigate the properties which are im portant to Deep

Packet Inspection. In order to achieve the results that have been presented, a test system

was designed to accurately measure the performance of the algorithm s. T h is test system

9.3. FUTURE WORK 129

proved itself to be a ve ry robust platform for the kind of testing that was im portant for

th is research. Th e system itself was designed to be as extensible as possible and allow

for ve ry com plex configurations and operation thereafter. W ith these details in m ind the

follow ing is a list of future work in the field and on the test system:

• O n ly a fraction of the existing exact string m atching algorithm s were implemented

for th is work as time would not allow for im plem entation and testing of every avail

able algorithm . Charras and Lecroq (2004), in the ir work, provide a list and analysis

of th irty four algorithm s and even more are available online through the work pre

sented in Faro and Lecroq (2011). It is a fa irly time consuming job to implement

each to the string search algorithm s bu t, once implemented, the test system accepts

them easily.

• T h is work has focused solely on exact string m atching algorithm s (these are defined

at the beginning of Chapter 3), there are ve ry m any other string searching algorithm s

which do not qualify as exact string m atching algorithm s. Some algorithm s are able

to match m ultiple rules at the same tim e and others have no lim it to the number

of rules they may match. I t would be interesting to see a comparison of these

other types of algorithm s and contrast the ir results w ith those expressed in this

research. Regular expression (Th om pson , 1968) based m atching is ve ry popular

today and a comparison w ith some algorithm s im plem enting regular expressions

would be enlightening.

• T h e test system itself can be re lative ly easily extended to add additional functional

ity. Exam ple of such functiona lity m ight include additional configuration based on

which byte a rule may start and end the m atching. A lte rna tive input types might

be useful too and adding the a b ility for the system to d irectly read from a packet

capture handle would be a useful addition.

• In addition to the previous point, a real-w orld study m ight prove to be ve ry en

lightening. Once the system has been extended to where a packet capture handle is

understood, the system could act as a rud im entary firewall. •

• Software-based approaches to Deep Packet Inspection - such as the ones discussed

in this research - have been shown to not be as fast as other, hardware-based,

implementations (C haud hary and Sardana, 2011). T h is research does not make any

direct comparisons between the speed of the string search algorithm s and hardware-

based techniques.

9.3. FUTURE WORK 130

Although string search algorithms are not widely used in systems that implement Deep
Packet Inspection, it is important to establish a comparison of these algorithms. Fu
ture advancements to the general purpose processors used in this research could mean
that string search algorithms become more useful for Deep Packet Inspection. As more
and more information is entrusted to computers, likewise does the requirement for good,
practical security measures grow.

References

M. Abliz. Internet Denial of Service Attacks and Defense Mechanisms. Technical report,
Department of Computer Science, University of Pittsburgh, 2011.

T. AbuHmed, A. Mohaisen, and D. Nyang. A Survey on Deep Packet Inspection for
Intrusion Detection Systems. Journal of Korean Communications (Information and
Communication), 24(11):25-36, 2007.

O. Adeyinka. Internet Attack Methods and Internet Security Technology. In Second Asia
International Conference on Modeling & Simulation, 2008. AICMS 08, pages 77-82,
Kuala Lumpur, Malaysia, 2008. IEEE.

A. Aho. Algorithms for Finding Patterns in Strings, chapter 5, pages 255-300. Handbook
of Theoretical Computer Science, Volume A, Algorithms and Complexity. Elsevier,
1990.

A. Aho, J. Hopcraft, and J. Ullman. The Design and Analysis of Computer Algorithms.
978-0-201-00029-0. Addison-Wesley, 1974.

E. Al-Shaer and H. Hamed. Firewall Policy Advisor for Anomaly Discovery and Rule Edit
ing. In G. Goldszmidt and J. Schonwalder, editors, IFIP/IEEE Eighth International
Symposium on Integrated Network Management, 2003, pages 17-30. IEEE, 2003.

R. Alshammari and A. Zincir-Heywood. Can Encrypted Traffic Be Identified Without
Port Numbers, IP Addresses and Payload Inspection? Computer Networks, 55(6):
1326-1350, 2011.

J. Anderson. Computer Security Threat Monitoring and Surveillance. Technical report,
James P. Anderson Company, Fort Washington, Pennsylvania, 1980.

S. Anthony. GitHub Battles “largest DDOS” in Site’s History, Targeted at Anti
censorship Tools. Online h ttp ://arstech n ica .com /security /2015 /03 /g ithub-

131

http://arstechnica.com/security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-censorship-tools/
http://arstechnica.com/security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-censorship-tools/

REFERENCES 132

b a ttle s -la rg e st-d d o s -in -s ite s -h is to ry -ta rg e te d -a t-a n ti-ce n so rsh ip -to o ls /
Date Accessed: 29 April 2016, 2015.

A. Apostolico and M. Crochemore. Optimal Canonization of all Substrings of a String.
Information and Computation, 95(1):76-95, 1991.

A. Apostolico and R. Giancarlo. The Boyer Moore Galil String Searching Strategies
Revisited. SIAM Journal on Computing, 15(1):98-105, 1986.

J. Aschenbrenner. Open Systems Interconnection. IBM Systems Journal, 25(3.4):369-379,
1986.

A. Ashoor and S. Gore. Importance of Intrusion Detection System (IDS). International
Journal of Scientific and Engineering Research, 2(1):1-4, 2011.

F. Avolio. Firewalls and Internet Security, the Second Hundred (Internet) Years. The
Internet Protocol Journal, 2(4):24-32, 1999.

P. Bachman. Die Analytische Zahlentheorie, volume 2. Teubner, 1894.

R. Baeza-Yates and G. Gonnet. A New Approach to Text Searching. Communications of
the ACM, 35(10):74-82, 1992.

M. Becchi, C. Wiseman, and P. Crowley. Evaluating Regular Expression Matching En
gines on Network and General Purpose Processors. In P. Onufryk, K. Ramakrishnan,
P. Crowley, and J. Wroclawski, editors, Proceedings of the 5th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, pages 30-39. ACM,
2009.

R. Bemer. A Proposal for Character Code Compatibility. Communications of the ACM,
3(2):71-72, 1960.

R. Bendrath and M. Mueller. The End of the Net as We Know It? Deep Packet Inspection
and Internet Governance. New Media & Society, 13(7):1142-1160, 2011.

D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli. Revealing Skype Traffic:
When Randomness Plays with You. ACM SIGCOMM Computer Communication Re
view, 37(4):37-48, 2007.

D. Borman, S. Deering, and R. Hinden. Request for Comments: 2675 - IPv6 Jumbograms.
Technical report, IETF, 1999.

http://arstechnica.com/security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-censorship-tools/
http://arstechnica.com/security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-censorship-tools/

REFERENCES 133

R. Boyer and J. Moore. A Fast String Searching Algorithm. Communications of the ACM,
20(10):762-772, 1977.

T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible Markup Language (XML) 1.0.
Technical report, World Wide Web Consortium, 1998.

D. Breslauer. Efficient String Algorithmics. PhD thesis, Computer Science Department,
Columbia University, New York, New York, 1992.

A. Callado, J. Kelner, D. Sadok, C. Kamienski, and S. Fernandes. Better Network Traffic
Identification through the Independent Combination of Techniques. Journal of Network
and Computer Applications, 33(4):433-446, 2010.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Com
puting Surveys, 2009.

C. Charras and T. Lecroq. Handbook of Exact String-Matching Algorithms. Institut
d ’electronique et d ’informatique Gaspard-Monge, 2004.

M. Chatel. Request for Comments: 1919 - Classical versus Transparent IP Proxies.
Technical report, IETF, 1996.

A. Chaudhary and A. Sardana. Software Based Implementation Methodologies for Deep
Packet Inspection. In 2011 International Conference on Information Science and Ap
plications, pages 1-10, Jeju Island, Republic of Korea, 2011. IEEE.

B. Cheswick. The Design of a Secure Internet Gateway. In USENIX Summer Conference
Proceedings, 1990.

L. Colussi. Correctness and Efficiency of Pattern Matching Algorithms. Information and
Computation, 95(2):225-251, 1991.

L. Colussi. Fastest Pattern Matching in Strings. Journal of Algorithms, 16(2):163-189,
1994.

B. Corbridge, R. Henig, and C. Slater. Packet Filtering in an IP Router. In Proceedings
of the Fifth USENIX Lange Installation and System Administration Conference, pages
227-232, 1991.

M. Crochemore and T. Lecroq. Pattern Matching and Text Compression Algorithms,
chapter 8, pages 162-202. CRC Press Inc., Boca Raton, Florida, 1996.

REFERENCES 134

M. Crochemore and R. Wojciech. Jewels of Stringology: Text Algorithms. World Scientific,
2002.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and
W. Rytter. Speeding up Two String-Matching Algorithms. Algorithmica, 12(4-5):247-
267, 1994.

D. Crockford. Request for Comments: 4627 - The application/json Media Type for
JavaScript Object Notation (JSON). Technical report, IETF, 2006.

S. Deering and R. Hinden. Request for Comments: 2460 - Internet Protocol, Version 6
(IPv6) Specification. Technical report, IETF, 1998.

D. Denning. An Intrusion-Detection Model. IEEE Transactions on Software Engineering,
(2):222-232, 1987.

P. Denning. The Science of Computing: The Internet Worm. American Scientist, 77(2):
126-128, 1989.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep Packet Inspec
tion using Parallel Bloom Filters. In D. Azada, editor, 2003 IEEE 11th Annual Sympo
sium on High-Performance Interconnects, pages 44-51, Stanford University, Stanford,
California, 2003. IEEE.

C. Dougligeris and A. Mitrokotsa. DDoS Attacks and Defense Mechanisms: Classification
and State-of-the-Art. Computer Networks, 44(5):643-666, 2004.

P. W. Dowd and J. T. McHenry. Network Security: It’s Time to Take It Seriously.
Computer, 31(9):24-28, 1998.

K. Egevang and P. Francis. Request for Comments: 1631 - The IP Network Address
Translator (NAT). Technical report, IETF, 1994.

T. Eisenberg, D. Gries, J. Hartmanis, D. Holcomb, and M. S. Lynn. The Cornell Com
mission: on Morris and the Worm. Communications of the ACM, 32(6):706-709, 1989.

T. Eisenmann, G. Parker, and M. van Alstyne. Opening Platforms: How, When and Why?
In A. Gawer, editor, Platforms, Markets and Innovation. Edward Elgar Publishing,
2009.

H. Fan, N. Yao, and H. Ma. Fast Variants of the Backward-Oracle-Marching Algorithm. In
Fourth International Conference on Internet Computing for Science and Engineering,
pages 56-59, 2009.

REFERENCES 135

S. Faro and T. Lecroq. Efficient Variants of the Backward-Oracle-Matching Algorithm. In
20, editor, International Journal of Foundations of Computer Science, volume 6, pages
967-984. World Scientific, 2009.

S. Faro and T. Lecroq. SMART: String Matching Research Tool. Online http://www.
d m i.u n ict.it /~ faro /sm art/ Date Accessed: 10 May 2016, 2011.

S. Faro and T. Lecroq. The Exact Online String Matching Problem: A Review of the
Most Recent Results. ACM Computing Surveys, 45(2):13, 2013.

Z. R. Feng and T. Takaoka. On Improving the Average Case of the Boyer-Moore String
Matching Algorithm. Journal of Information Processing, 10(3):173-177, 1987.

P. Ferguson and D. Senie. Request for Comments: 2827 - Network Ingress Filtering: De
feating Denial of Service Attacks which employ IP Source Address Spoofing. Technical
report, IETF, 2000.

H. Fowler, F. Fowler, and R. Allen. The Concise Oxford Dictionary: firewall, n. ISBN:
0-19-861200-1. Clarendon Press - Oxford, 1990.

Z. Galil and R. Giancarlo. On the Exact Complexity of String Matching: Upper Bounds.
SIAM Journal on Computing, 21(3):407-437, 1992.

J. Gantz, A. Florean, R. Lee, V. Lim, B. Sikdar, S. Lakshmi, L. Madhavan, and M. Na-
gappan. The Link between Pirated Software and Cybersecurity Breaches. Technical
report, National University of Singapore and IDC, 2014.

L. Garcia. Programming with Libpcap - Sniffing the Network From Our Own Applications.
In Hakin9, volume February 2008, pages 38-46. HAKIN9 MEDIA SP, 2008.

P. Gardner. The Internet Worm: What Was Said and When. Computers and Security, 8
(4):305-316, 1989.

A. Ghosh, J. Wanken, and F. Charron. Detecting Anomalous and Unknown Intrusions
Against Programs. In Proceedings. 14th Annual Computer Security Applications Con
ference, 1998, pages 259-267. IEEE, 1998.

I. Grondman. Identifying Short-term Periodicities in Internet Traffic. Master’s thesis,
University of Twente, 2006.

V. Gupta. File Detection in Network Traffic Using Approximate Matching. Master’s
thesis, Norwegian University of Science and Technology, 2013.

http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/

REFERENCES 136

M. Haertel. Why GNU grep is Fast. Online h t tp s ://l is ts .fre e b sd .o rg /p ip e rm a il/
freebsd-current/2010-August/019310.html Date Accessed: 9 May 2016, 2010.

C. Hancart. Analyse Exacte et en Moyenne D ’algorithmes de Recherche D ’un Motif dans
un Texte. PhD thesis, Universite Paris Diderot, 1993.

M. Handley, V. Paxson, and C. Kreibich. Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol Semantics. In USENIX Security Symposium,
pages 115-131, 2001.

M. Hauben and R. Hauben. Behind the Net: The Untold History of the ARPANET and
Computer Science. Netizens: On the History and Impact of Usenet and the Internet,
2006.

M. Hibberd. Encryption: Will It Be the Death of DPI? Online http ://te lecom s.com /
3 9 7 1 8 /en cry p tion -w ill-it-b e -th e -d ea th -o f-d p i/ Date Accessed: 03 May 2016,
2012.

S. Hoffman. DDoS: A Brief History. Online h ttp s ://b log .fo rtin e t .com /p ost /d d os -a -
b r ie f-h is to ry Date Accessed: 9 May 2016, 2013.

R. N Horspool. Practical Fast Searching Strings. Software: Practice and Experience, 10
(6):501-506, 1980.

R. Ihaka and R. Gentleman. R: A Language for Data Analysis and Graphics. Journal of
Computational and Graphical Statistics, 5(3):299-314, 1996.

K. Ingham and S. Forrest. A history and survey of network firewalls. Technical report,
University of New Mexico, 2002.

J. Jenkov. Java Concurrency / Multithreading Tutorial. Online h t tp ://tu to r ia ls .
jenkov.com /java-concurrency/index.htm l Date Accessed: 9 May 2016, 2014.

W. Jiang and V. Prassana. Large-Scale Wire-Speed Packet Classification on FPGAs. In
Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate
Arrays, pages 219-228. ACM, 2009.

R. M. Karp and M. O. Rabin. Efficient Randomized Pattern-Matching Algorithms. IBM
Journal of Research and Development, 31(2):249-260, 1987.

R. Kemmerer and G. Vigna. Intrusion Detection: A Brief History and Overview. Com
puter, (4):27-30, 2002.

https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html
https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html
http://telecoms.com/39718/encryption-will-it-be-the-death-of-dpi/
http://telecoms.com/39718/encryption-will-it-be-the-death-of-dpi/
https://blog.fortinet.com/post/ddos-a-brief-history
https://blog.fortinet.com/post/ddos-a-brief-history
http://tutorials.jenkov.com/java-concurrency/index.html
http://tutorials.jenkov.com/java-concurrency/index.html

REFERENCES 137

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast Pattern Matching in Strings. SIAM
Journal on Computing, 6(2):232-350, 1977.

D. Koblas and M. Koblas. SOCKS. In In UNIX Security Sympsium III Proceedings, 1992.

M. Kulekci. Filter Based Fast Matching of Long Patterns by Using SIMD Instructions .
In J. Holub and Zdarek, editors, In Proceedings of the Prague Stringology Conference,
pages 118-128, 2009.

S. Kumar, J. Turner, and J. Williams. Advanced Algorithms for Fast and Scalable Deep
Packet Inspection. In Proceedings of the 2006 ACM/IEEE Symposium on Architecture
for Networking and Communications Systems, pages 81-92. ACM, 2006.

E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen, volume 1. Teubner,
1909.

D. Law, W. Diab, A. Healy, S. Carlson, V. Maguire, O. Anslow, and M. Hajduczenia.
IEEE Standard for Ethernet. Technical report, IEEE Standards Association, 2012.

T. Lecroq. Experimental Results on String Matching Algorithms. Software: Practice and
Experience, 25(7):727-765, 1995.

T. Lecroq. Fast exact string matching algorithms. Information Processing Letters, 102
(6):229-235, 2007.

B. Leiner, V. Cerf, D. Clark, R. Kah, L Kleinrock, D. Lynch, J. Postel, L. Roberts,
and S. Wolff. A Brief History of the Internet. SIGCOMM Computer Communications
Review, 39(5):22-31, 2009.

Y. Liao. A survey of software-based string matching algorithms for forensic analysis.
In Proceedings of the Conference on Digital Forensics, Security and Law, page 77.
Association of Digital Forensics, Security and Law, 2015.

P. Lilly. A Brief History of CPUs: 31 Awesome Years of X86. Online http://www.
pcgam er.com /a-brief-history-of-cpus-31-aw esom e-years-of-x86/ Date Accessed:
10 May 2016, 2009.

Y. Lin, P. Lin, V. Prassana, H. Chao, and J. Lockwood. Guest editorial deep packet
inspection: Algorithms, hardware, and applications. IEEE Journal on Selected Areas
in Communications, 32(10):1781-1783, 2014.

J. Metcalf. Creeper & Reaper. Online http://corew ar.co.uk /creeper.htm Date Ac
cessed: 4 May 2016, 2014.

http://www.pcgamer.com/a-brief-history-of-cpus-31-awesome-years-of-x86/
http://www.pcgamer.com/a-brief-history-of-cpus-31-awesome-years-of-x86/
http://corewar.co.uk/creeper.htm

REFERENCES 138

J. Mogul. Simple and Flexible Datagram Access Controls for Unix-based Gateways.
Technical report, Western Research Laboratory, 1989.

A. Moore and K. Papagiannaki. Toward the Accurate Identification of Network Appli
cations. In C. Dovrolis, editor, Passive and Active Network Measurement. Springer,
2005.

G. Moore. Cramming More Components onto Integrated Circuits. Proceedings of the
IEEE, 3(20):33-35, 1965.

J. H. Morris and V. R. Pratt. A Linear Pattern-Matching Algorithm. Technical report,
University of California, Berkeley, 1970.

M. Mueller and H. Asghari. Deep Packet Inspection and Bandwidth Management: Battles
over BitTorrent in Canada and the United States. Telecommunications Policy, 36(6):
462-475, 2012.

M. Necker, D. Contis, and D. Schimmel. TCP-Stream Reassembly and State Tracking in
Hardware. In 10th Annual IEEE Symposium on Field-Programmable Custom Comput
ing Machines, 2002, pages 286-287. IEEE, 2002.

R. Needham. Denial of Service. In CCS ’93 Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 151-153. ACM, 1993.

J. Neilsen. Nielsen’s Law of Internet Bandwidth. Online https://www.nngroup.com/
articles/law -of-ban dw idth / Date Accessed: 07 April 2016, 1998.

Arbor Networks. Arbor E100. Online http://w w w .lextel.com /w p-content/uploads/
E100Datasheet.pdf Date Accessed: 14 February 2016, 2011.

Palo Alto Networks. Education. Online https://www .paloaltonetworks.com /services/
education Date Accessed: 1 May 2016, 2016.

C. Parsons. Deep Packet Inspection and Law Enforcement. Online https:
//www.christopher-parsons.com /deep-packet-inspection-and-law-enforcem ent/
Date Accessed: 3 May 2016, 2009.

C. Parsons. The Politics of Deep Packet Inspection: What Drives Contemporary Western
Internet Service Provider Surveillance Practices. PhD thesis, Department of Political
Science, University of Victoria, 2014.

C. Perrin. The CIA Triad. Online h ttp ://w w w .tech repu blic .com /b log /it-secu rity /
th e -c ia -tr ia d / Date Accessed: 2 May 2016, 2008.

https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/
http://www.lextel.com/wp-content/uploads/E100Datasheet.pdf
http://www.lextel.com/wp-content/uploads/E100Datasheet.pdf
https://www.paloaltonetworks.com/services/education
https://www.paloaltonetworks.com/services/education
https://www.christopher-parsons.com/deep-packet-inspection-and-law-enforcement/
https://www.christopher-parsons.com/deep-packet-inspection-and-law-enforcement/
http://www.techrepublic.com/blog/it-security/the-cia-triad/
http://www.techrepublic.com/blog/it-security/the-cia-triad/

REFERENCES 139

R. Pike and K. Thompson. Hello World. In Proceedings of the Winter 1993 USENIX
Conference, Berkeley, CA, USENIX Association, pages 43-50. USENIX, 1993.

J. Postel. Request for Comments: 791 - Internet Protocol. Technical report, IETF, 1981.

T. Raita. Tuning the Boyer-Moore-Horspool String Searching Algorithm. Software: Prac
tice and Experience, 22(10):879-884, 1991.

G. Ramirez. randpkt. Online https://github.com /w ireshark/w ireshark/blob/m aster/
randpkt.c Date Accessed: 10 May 2016, 1999.

M. Ranum. A Network Firewall. In Proceedings of the World Conference on System
Administration and Security, 1992.

M. Rouse. Content Filtering (Information Filtering). Online h ttp ://search secu rity .
te ch ta rg et.com /d e fin ition /con ten t-filter in g Date Accessed: 11 June 2016, 2011.

D. Schuff and V. Pai. Design Alternatives for a High-Performance Self-Securing Ethernet
Network Interface. In Parallel and Distributed Processing Symposium, pages 1-10.
IEEE, 2007.

N. Shah. Understanding Network Processors. Master’s thesis, University of California,
Berkeley, 2001.

U. Shankar and V. Paxon. Active Mapping: Resisting NIDS Evasion Without Altering
Traffic. In 2003 Symposium on Security and Privacy, 2003., pages 44-61. IEEE, 2003.

J. Sherry, C. Lan, R. Popa, and S. Ratnasamy. Blindbox: Deep packet inspection over en
crypted traffic. Technical report, ACM SIGCOMM Computer Communication Review,
2015.

I. Simon. String Matching Algorithms and Automata. In Proceedings of the Colloquium
in Honor of Arto Salomaa on Results and Trends in Theoretical Computer Science.
Springer, 1994.

D. Smith, P. Experiments with a Very Fast Substring Search Algorithm. Software:
Practice and Experience, 21(10):1065-1074, 1991.

D. Smith, P. On Tuning the Boyer-Moore-Horspool String Search Algorithms. Software:
Practice and Experience, 1994.

I. Sourdis. Designs and Algorithms for Packet and Content Inspection. PhD thesis, Delft
University of Technology, 2007.

https://github.com/wireshark/wireshark/blob/master/randpkt.c
https://github.com/wireshark/wireshark/blob/master/randpkt.c
http://searchsecurity.techtarget.com/definition/content-filtering
http://searchsecurity.techtarget.com/definition/content-filtering

REFERENCES 140

E. Spafford. Crisis and Aftermath. Communications of the ACM, 32(6):678-687, 1989a.

E. Spafford. The Internet Worm Program: An Analysis. Communications of the ACM,
19(1):17-57, 1989b.

A. Srikantha, A. Bopardikar, K. Kaipa, P. Venkataraman, K. Lee, T. Ahn, and
R. Narayanan. A Fast Algorithm for Exact Sequence Search in Biological Sequences
Using Polyphase Decomposition . Bioinformatics, 26(18):i414-i419, 2010.

G. Stephen. String Search Algorithms, volume 3 of Lecture Notes Series on Computing.
World Scientific, 1994.

C. Stoll. The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer Espionage.
Doubleday, 1989.

D. M. Sunday. A Very Fast Substring Search Algorithm. Communications of the ACM,
33(8):132-142, 1990.

K. Thompson. Programming Techniques: Regular Expression Search Algorithm. Com
munications of the ACM, 11(6):419-422, 1968.

K. Thompson and D. Ritchie. UNIX Proframmer’s Manual. Technical report, Bell Tele
phone Laboratories, 1975.

S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. Request for Comments: 3596 -
DNS Extensions to Support IP Version 6. Technical report, IETF, 2003.

/u/quink. Here’s a new scenario I just created illustrating what happens if net neutral
ity disappears. [PIC]. Online https://www.reddit.com/comments/9yj1f/heres_a_new_
scenario_i_just_created_illustrating, 2009.

J. van Splunder. Periodicity Detection in Network Traffic. Master’s thesis, Mathematisch
Instituut, Universiteit Leiden, 2015.

M. Ward. H@ppy Birthday to You. Online http ://new s.bbc.co.uk /2Zhi/in_depth /
sci_tech/2000/dot_life/1586229.stm Date Accessed: 6 May 2016, 2001.

H. Wickham. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2):
180-185, 2011.

S. Wu and U. Manber. Fast Text Searching: Allowing Errors. Communications of the
ACM, 35(10):83-91, 1992.

https://www.reddit.com/comments/9yj1f/heres_a_new_scenario_i_just_created_illustrating
https://www.reddit.com/comments/9yj1f/heres_a_new_scenario_i_just_created_illustrating
http://news.bbc.co.uk/2/hi/in_depth/sci_tech/2000/dot_life/1586229.stm
http://news.bbc.co.uk/2/hi/in_depth/sci_tech/2000/dot_life/1586229.stm

REFERENCES 141

U. Wuermeling. New Dimensions of Computer-Crime - Hacking for the KGB - A Report.
Computer Law & Security Review, 5(4):20-21, 1989.

C. Yang, M. Liao, M. Luo, S. Wang, and C. Yeh. A Network Management System Based
on DPI. In 2010 13th International Conference on Network-Based Information Systems
(NBiS), pages 385-388. IEEE, 2010.

F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. Katz. Fast and Memory-efficient Reg
ular Expression Matching for Deep Packet Inspection. In Proceedings of the 2006
ACM/IEEE Symposium on Architecture for Networking and Communications Systems,
pages 93-102. ACM, 2006.

E. Zwicky, S. Cooper, and D. Chapman. Building Internet Firewalls. O ’Reilly Media,
Inc., 2000.

Appendix A

Figure A.1, by /u/quink (2009), shows the possible outcome if net neutrality is not
enforced. This particular example shows the potential offerings of an Internet Service
Provider who discriminates heavily based on the kind of traffic being transmitted.

142

143

Figure A.1: If ISPs did not respect Net Neutrality (/u/quink, 2009)

Appendix B

Listing B.1 shows the Python code used to create Dataset A to Dataset F in Chapter 4.
The code is available online at https://github.com /KieranHunt/pcapcreator.

f ro m scapy . a l l im p o r t *
im p o r t sys
f ro m random im p o r t s h u f f l e
im p o r t s t r i n g

max_payl oad_s i ze = 1500 — 39

urh p ar a ms = sys . argv

a = rdpcap (ur h pa ra ms [1])

rules = [" t i me " , " p e r s o n ” , " y e a r ” , ” way” , ” d ay ” , " t h i n g ” , "man"
” w o r l d ” , " l i f e ” , "hand" , " p a r t " , " c h i l d " , " e y e " ,

"woman" , " p l a c e " , "work" , "week" , " c a s e " , " p o i n t
g o v e r n m e n t " , " g o o g l e " , " f a c e b o o k " , " y o u t u b e " , " b ai du" ,

"yahoo" , "amazon" , " w i k i p e d i a " , "qq" , " t w i t t e r " ,
t aoba o" , " l i v e " , " s i n a " , " l i n k e d i n " , " w e i b o " , "ebay" ,

"yandex" , "hao123" , "vk" , " b i n g " , "msn"]

packets = []

f o r i , packet in e n u m e ra te (a) :

Dataset D

it n
13

14

22

23

24

25

s h u f f l e (r u l e s)
r a n d o m_ r ul e _s t r i n g = ’ ’ . j o i n (r u l e s)
l e n g t h _ o f _ p a y l o a d = le n (packet . payload . payload . payload .

144

https://github.com/KieranHunt/pcapcreator

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

145

p a y l o a d . p a y l o a d)
l e n g t h _ o f _ r u l e _ s t r i n g = len (r a n d o m _ r u l e _ s t r i n g)

d i v i s o r = m a x _ p a y l o a d _ s i z e / l e n g t h _ o f _ r u l e _ s t r i n g

r a n d o m _ r u l e _ s t r i n g = r a n d o m _ r u l e _ s t r i n g * (d i v i s o r + 1)

p a c k e t . p a y l o a d . p a y l o a d . p a y l o a d . p a y l o a d . p a y l o a d =
r a n d o m _ r u l e _ s t r i n g [: l e n g t h _ o f _ p a y l o a d]

Dataset E

s h u f f l e (r u l e s)
r a n d o m _ r u l e _ s t r i n g = ’ ’ . j o i n (r u l e s)
l e n g t h _ o f _ p a y l o a d = len (p a c k e t . p a y l o a d . p a y l o a d . p a y l o a d .

p a y l o a d . p a y l o a d)
l e n g t h _ o f _ r u l e _ s t r i n g = len (r a n d o m _ r u l e _ s t r i n g)

d i v i s o r = m a x _ p a y l o a d _ s i z e / l e n g t h _ o f _ r u l e _ s t r i n g

r a n d o m _ r u l e _ s t r i n g = r a n d o m _ r u l e _ s t r i n g * (d i v i s o r + 1)

i f (l e n g t h _ o f _ p a y l o a d ! = 0) :
r a n d o m _ v a l u e _ l e s s _ t h a n _ l e n g t h = ran dom . r a n d i n t (1 ,

l e n g t h _ o f _ p a y l o a d)

p a c k e t . p a y l o a d . p a y l o a d . p a y l o a d . p a y l o a d . p a y l o a d = ’ ’ . j o i n
(ra n d o m . c h o i c e (s t r i n g . l o w e r c a s e) f o r x in range (
r a n d o m _ v a l u e _ l e s s _ t h a n _ l e n g t h — 1)) + r a n d o m _ r u l e _ s t r i n g [
r a n d o m _ v a l u e _ l e s s _ t h a n _ l e n g t h : l e n g t h _ o f _ p a y l o a d]

Dataset F

s h u f f l e (r u l e s)

s t a r t _ n o n _ r a n d o m = ran do m . r a n d i n t (0 , m a x _ p a y l o a d _ s i z e)
r a n d o m _ r u l e _ s t r i n g = ’ ’ . j o i n (r u l e s)
l e n g t h _ o f _ r u l e _ s t r i n g = len (r a n d o m _ r u l e _ s t r i n g)

d i v i s o r = m a x _ p a y l o a d _ s i z e / l e n g t h _ o f _ r u l e _ s t r i n g

r a n d o m _ r u l e _ s t r i n g = r a n d o m _ r u l e _ s t r i n g * (d i v i s o r + 1)

p a y l o a d = ’ ’ . j o i n (ra n d o m . c h o i c e (s t r i n g . l o w e r c a s e) f o r x in
range (s t a r L n o ^ r a n d o m — 1)) + r a n d o m _ r u l e _ s t r i n g [

146

s t a r t _ n o n _r an d om : m ax _p a y l o a d_ s i z e]
63

64

65

66

67

68

69

packet = a = IP () /U D P() /D N S()
packet . payload . payload . payload = payload

p a c k e t s . a p p e n d (p a c k e t)

wr pca p(” d a t a s e t . p c a p ” , p a c ke t s)

Listing B.1: Example code for editing and creating PCAP files with Python and Scapy

