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Abstract

An important trend in fuzzy group theory in recent years has been the notion
of classification of fuzzy subgroups using a suitable equivalence relation. In
this dissertation, we have successfully used the natural equivalence relation
defined by Murali and Makamba in [81] and a natural fuzzy isomorphism to
classify fuzzy subgroups of some finite abelian p-groups of rank three of the
form Zpn + Zp + Zp for any fixed prime integer p and any positive integer
n. This was achieved through the usage of a suitable technique of enumerat-
ing distinct fuzzy subgroups and non-isomorphic fuzzy subgroups of G. We
commence by giving a brief discussion on the theory of fuzzy sets and fuzzy
subgroups from the perspective of group theory through to the theory of sets,
leading us to establish a linkage among these theories. We have also shown in
this dissertation that the converse of theorem 3.1 proposed by Das in [24] is
incorrect by giving a counter example and restate the theorem. We have then
reviewed and enriched the study conducted by Ngcibi in [94] by characterising
the non-isomorphic fuzzy subgroups in that study. We have also developed a
formula to compute the crisp subgroups of the under-studied group and pro-
vide its proof. Furthermore, we have compared the equivalence relation under
which the classification problem is based with various versions of equivalence
studied in the literature. We managed to use this counting technique to obtain
explicit formulae for the number of maximal chains, distinct fuzzy subgroups,
non-isomorphic maximal chains and non-isomorphic fuzzy subgroups of these
groups and their proofs are provided.

KEYWORDS : Fuzzy subgroups, normal subgroups, level subgroups, alpha-
cuts, equivalent fuzzy subgroups, isomorphic fuzzy subgroups.
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Chapter 1

INTRODUCTION

1.1 A BRIEF HISTORICAL ACCOUNT OF GROUP THEORY

In the 19th century, assortments of algebraic concepts were propounded by the
heavy weights in mathematics. However, some of these concepts did not gain
the needed pivotal recognition in mathematics as more emphases were placed
on the development of the fundamental algebraic structures. The concept of
a group is unquestionably one of the best tools forging algebraic homogeneity.
Generally, contemporary algebra has the group-properties as the cohesive force
which networks the various algebraic concepts. It is therefore conclusive that
the group-theoretic techniques have enriched algebra in totality. The notion
of a group commenced its activity in a solidified mode. However, its abstract
characterization, which we will be highlighting later in the preliminaries, was
not easily resolved until the early years of the 20th century.
Group theory, which can be described as the study of the algebraic structures
referred to as a group in mathematics, specifically abstract algebra, has a long
and rich history in its evolution. We briefly highlight three historical roots,
namely: number theory, the theory of algebraic equations and geometry, which
had earlier been researched into by Lagrange, Abel and Galois [66].
Originally, the concept of a group and its name is largely an invention of the
19th century. Its antecedents, however, can be traced back at least to La-
grange in the late 18th century and his study of roots of polynomials, though
this depended heavily upon a pre-natal work from the mid-17th century, [36],
[93] and [121].
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However, it is Galois and Cauchy who are accredited with the major promotion
of group theory. Even though Galois did not categorically define a “group”
with adequate axioms, he was the first to use it. Furthermore, in his final
notes on the papers he wrote the night prior to his untimely death, he did
mention “closure axioms”, a manifestation that he had a “closed system” or
an “object”. Analogous to Galois’s work, Ruffini and Abel studied the prob-
lem of the solvability of the general quintic equation by radicals though their
definition of a group was not straightforward. However, they really had a great
notion of Galois’ object. Cauchy, in 1844 attuned with Ruffini’s work and part
of Galois’ previous work, which provided a characterization of an entity he
termed a “conjugate system of substitutions” [121].
Thereafter, an extensive effort was initiated by Cayley in 1854 to give “group”
an entirely abstract character. Even though Cayley is being acknowledged by
few authors for the usage of the name “group” in its contemporary abstract
taste for the inaugural stage, Boole and others in the 1840s, as asserted by
Kline, cannot be overlooked [67]. In 1870, Jordan endorsed Galois’ idea of a “
group” which then became the accepted name [37]; [44]; [64]; [65]; [70]; [77];
[121].
Kronecker in 1870 came up with another almost-definition of a group. How-
ever, he did not link his notion to group theory [121]. Thereafter, Von Dyck
and Weber in 1882 [18] both presented definitions of a group, again close to
the contemporary one . Burnside in 1897 defined a group in terms of closure,
associativity and inverse [66]. Simultaneously, Frobenius, Holder and Weber
made headway in the direction of the contemporary definition independent of
Burnside’s, [52]; [76]; [107].
Hasse [51] in 1926, used the equivalence relation defined in algebra as a gen-
eralization of the notion of equality between elements of a set in the realm of
group theory and defines a relation on the group G by letting aRb if ab−1 ∈ H.
It is proved that this is an equivalence relation and the right cosets are the
equivalence classes. The right cosets thus form a partition, (a decomposition
of a set into disjoint subsets whose union is the set ), of the group G. Del-
sarte [30] painstakingly studied all subgroups of a given group. Vogt [119] also
studied the lattice of subgroups.
Here are some of the recent works in the realm of abstract group theory that
will be useful in this dissertation.
Thomas Stehling [109] in 1992 studied how to compute the number of sub-
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groups of a finite abelian group. A new method of proving some classical
theorems of abelian groups was established by T ărnăuceanu [112] in 2007 and
subsequently he presented an arithmetic method of counting the subgroups of
a finite abelian group[113] in 2010. On the other hand, Grigore Călugăreanu
[16] also worked on the total number of subgroups of a finite abelian group.
Mario Hampejs and László T óth [50] worked on the subgroups of finite abelian
groups of rank three and proposed that the total number of subgroups of (Zp)

3

is determined by s(p) =
∑3

k=0

[

3

k

]

= 2 (p2 + p+ 2) where

[

3

k

]

is the Gaussian

coefficient for 0 ≤ k ≤ 3 and an arbitrary positive integer 1 ≤ p ≤ 50.
Based on the above developments, group theory can be seen as a twentieth
century phenomenon, since it is the century in which it received massive and
rapid advancements. This paved the way for conventional set theory which in
essence has enhanced the abstract nature of group theory.

1.2 A BRIEF HISTORICAL ACCOUNT OF SET THEORY

Unlike most fields in mathematics where their emergence involves more than
one mathematician, conventional set theory which forms part of mathematical
logic, being described as the study of sets, is an autonomous field and rather
different. The whole transfinite landscape can be viewed as having been artic-
ulated by Cantor in significant part to solve the Continuum Problem.
Though initiated by Georg Cantor, his decisions and ability to forge on were
influenced by Richard Dedekind [28] in the 1870s. However, it was Cantor’s
paper [17], published in 1874, that positioned set theory on a suitable math-
ematical footing. The notion of infinity was a great concern from the time
of the Greeks, one of whom is Zeno of Elea who made a great contribution
around 450BC through his investigation on the infinite, see [130]. But for the
intervention of Ernst Zermelo [126] (1904), set theory was nearly rejected due
to numerous paradoxes discovered by Cantor himself and many other mathe-
maticians of his time.
In 1904 Zermelo [126] officially devised, tested and proved the axiom of choice
when he established that every set can be well-ordered, which is Cantor’s con-
jecture. He further developed the workable axiomatic set theory in 1908 [127],
which was improved upon by Fraenkel [42] in 1922, (The axiomatic set theory
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- ZF). Gödel [46] in 1940 tested the Zermelo-Fraenkel axiom of choice while
proving the famous consistency of continuum hypodissertation which was the
brain-child of Georg Cantor, leading to Gödel’s prestigious inner theorem. Sub-
sequently, Paul Cohen [23] in 1963 established that the axiom of choice is an
exclusive of the alternative axioms of set theory.

1.3 A BRIEF HISTORICAL ACCOUNT OF FUZZY SET AND
FUZZY GROUP THEORY

As characterized by Cantor [17] and axiomatised by Zermelo [127] and Fraenkel
[42] in conventional set theory, an object is either an element of a set or not.
In fuzzy set theory however, this status quo was liberalized by Lotfi A. Zadeh
[123]. According to him, an object has a degree of membership in a set, a
number between 0 and 1. He therefore described a fuzzy set as a collection
of objects with imprecise boundaries in which the transition from membership
to non-membership is gradual rather than abrupt. For instance, the grade of
membership of an individual in the set of “tall people” is more relaxed than a
simple yes or no answer and can be a real number such as 0.85. Although fuzzy
set was the brain-child of Zadeh[123] in 1965, its root could be traced back to a
multiplicity of notable thinkers such as Plato, Georg Wilhelm Friedrich Hegel,
Karl Marx , Jan Lukasiewicz and others. Furthermore Buddha, the founder
of Buddhism, played a momentous role towards the advancement of fuzzy
logic around 500BC. His beliefs were based on the notion that the universe is
packed with contradictions, that virtually everything comprises a number of
its reverse, or that things can be A and not A at the same time, see [129]. In
the early part of the 20th century, Brouwer [53] was even led to question the
validity of the law of excluded middle, a basic law of logic which states that
every statement is either true or false. Brouwer reasoned that there may be
a third possibility, that is three-valued logic. This viewpoint was later shared
by Bertrand Russell [102] in 1923 and subsequently by Charles Sanders Peirce
[98] in 1931 that “logicians have too much neglected the study of vagueness,
not suspecting the important part it plays in mathematical thought”.
It is without any doubt that there is a correlation between Buddha’s belief
and the modern fuzzy logic which forms part of fuzzy mathematics. After
the introduction of the concept of a fuzzy set by Zadeh [123], considerable
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facets of fuzzy subsets were studied. In 1971, Rosenfeld [101] imported the
notion of fuzzy sets to the domain of group theory and coined the notion of
fuzzy subgroups of a group. As a matter of fact, he showed how manifolds
of fundamental properties in group theory should be extended in a basic way
to establish the theory of fuzzy groups. Though Anthony and Sherwood [6]
in 1979 redefined fuzzy groups, Rosenfeld’s definition appears to be the most
essential and accepted one. Since then, the classification of fuzzy subgroups of
a finite group has been one of the most considered problems in fuzzy theory.
This topic has enjoyed a constant evolution since its inception.
Based on the Rosenfeld’s definition of fuzzy group, several fuzzy algebraic con-
cepts were investigated and vigorous attempts have been made to “fuzzify”
a number of important classical mathematical structures such as topological
spaces, algebras, categories and groups and also to consider fuzzy automata,
fuzzy programmes, fuzzy graphs, fuzzy probability, and so on. P. Das [24] in
1981 characterized all fuzzy subgroups of finite cyclic groups using what he
termed “level subgroups” of a fuzzy subgroup which is based on the concept
of a “level subset” introduced earlier by Zadeh [123]. Das’s definition of level
subgroup was transformed by Ajmal [2] by restricting t ∈ Im µ. This modified
definition of level subgroups has been used by Jain and Ajmal [61] to define a
new category of fuzzy subgroups. We give both definitions of level subgroups in
this dissertation. Alkhamees [5] continued then with the investigation of fuzzy
cyclic subgroups based on fuzzy cyclic p-groups. In a series of papers, Mukher-
jee and Bhattacharya [10], [11], [12], [13] have developed fuzzy analogs of a
number of notions in classical group theory, and proved fuzzy generalization
of a couple of valuable theorems such as Lagrange’s and Cayley’s theorems,
thereby enriching the theory of fuzzy groups. Bhattacharya [13] in 1987 showed
that two fuzzy subgroups of a finite group with identical level subgroups are
equal if and only if their image sets are equal. Further, Bhattacharya charac-
terized all fuzzy subgroups of a finite group, thereby generalizing the earlier
results by Rosenfeld [101] and P. Das[24]. Extending the effect of group ho-
momorphisms on fuzzy groups as earlier studied by Rosendeld [101], Anthony
and Sherwood [6], Sidky and Mishref [108], Kumar [69] and Akgul [4], Sebas-
tian and Babu Sunder [104] investigated group homomorphism on the chains of
level subgroups of an arbitrary fuzzy group and obtained generalizations of the
earlier results on finite level cardinality in [125]. B.B. Makamba [72] extended
the notion of fuzzy normality introduced by Mukherjee and Bhattacharya to
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the notion of normality of a fuzzy subgroup in another fuzzy group. Murali
and Makamba [84] have determined the number of distinct fuzzy subgroups of
Abelian groups of the order pnqm under suitably defined equivalence relation
on fuzzy subgroups of a group, where p and q are different primes. Zhang
and Zou [128] considered a similar problem and obtained the number of fuzzy
subgroups of cyclic groups of order pn, where p is a prime number. Several
other notions of equivalence of fuzzy subgroups were studied by the following
researchers, Volf [120], Branimir and Tepavcevic [15], Degang et al [29], Tar-
nauceanu and Bentea [116], Ghafur and Sulaiman [110], Ajmal [3], Mordeson
[78], Dixit et al [38], [39], Zhang and Zou [128], Jain [60], Tarnauceanu [115],
Mashinchi and Mukaidonon [75] and Iranmanesh and Naraghi [55]. Makamba
and Murali in [74] used a group theoretical-property to obtain fuzzy subgroups
and continued to establish a congruence relation. The notion of external direct
product of fuzzy subgroups was a brain-child of Sherwood [105], while the idea
of the internal direct product of fuzzy subgroups was introduced by Makamba
[73]. Rosenfeld [101] established that a homomorphic image of a fuzzy sub-
group is a fuzzy subgroup if and only if the fuzzy subgroup has a sup-property.
A homomorphic pre-image of a fuzzy subgroup is always a fuzzy subgroup.
Subsequently, Anthony and Sherwood [6] showed that the homomorphic im-
age of a fuzzy subgroup is a fuzzy subgroup irrespective of the sup-property.
Some of the most recent investigations into homomorphic images and pre-
images of fuzzy subgroups were studied by the likes of Makamba [73], Murali
[80], Abou-Zaid [1], Sidky and Mishref [108] and Kumar [69]. Kaufmann [63]
examined the fuzzy relation that was earlier defined on a set by Zadeh [123],
[125] and subsequently dealt with by Rosenfeld [101]. M.K.Chakraborty and
M.Das [19], [20], [21] also considered fuzzy relations in connection with fuzzy
functions and equivalence relations.
In parallel to Das and Chakraborty’s [19] work, Murali and Makamba in a
series of papers [81], [82],[83], [84] studied fuzzy relations and then a natural
equivalence relation on the class of all fuzzy sets of a set. The aforementioned
was used to established the number of distinct equivalence classes of fuzzy
subgroups of p-groups. Murali and Makamba [82] further used keychains to
classify fuzzy subgroups of some finite groups. The concept of a pinned flag
was also introduced by Murali and Makamba [83] to deal with the operations
such as union, intersection and sum associated with the aforementioned natu-
ral equivalence. O. Ndiweni [89] used the natural equivalence relation defined
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by Murali and Makamba [81], [82],[83], [84] to characterize fuzzy subgroups of
some finite groups and further determined the number of equivalence classes
of fuzzy subgroups, specifically for the symmetric group S3, dihedral group
D4, the quaternion group Q8, cyclic p-groups G = Zpn ; G = Zpn + Zqm ;
G = Zpn + Zqm + Zr; and G = Zpn + Zqm + Zrs , where p,q,r are all dis-
tinct primes and n,m,s are all positive integers and its extension. Sulaiman
and Ghafur [111] worked on a particular case of finite cyclic groups namely
G = Zp+Zq+Zr+Zs with p, q ,r , s all distinct prime numbers. Humera and
Raza [54] determined the number of fuzzy subgroups of finite Abelian groups
G = Zpn +Zq and G = Zp1 + Zp2 + · · ·+ Zpn , where p1, p2, ..., pn are all distinct
primes. They also determined the number of fuzzy subgroups of the Abelian
groups. In both groups, the equivalence relation used on the fuzzy subgroups
of any group G is the one by Sulaiman and Abdul Ghafur [111]. Ngcibi [94]
classified the fuzzy subgroups of finite Abelian groups of the form G = Zpn+Zp

for any prime p and n = 1, 2, 3. Further they developed the general formulae
for the number of maximal chains, the number of crisp subgroups and, for the
case n = m, the number of non-equivalent fuzzy subgroups. S. Ngcibi [95] used
the equivalence relation characterized by Murali and Makamba [81], [82],[83],
[84] to investigate the number of the distinct equivalence classes of fuzzy sub-
groups of a finite abelian p- group G of rank two and devised formulae for both
the number of maximal chains and the number of distinct equivalence classes
of fuzzy subgroups. M. T ărnăuceanu and L. Bentea [117] successfully used
a recurrence relation indicated in [117] to count the number of distinct fuzzy
subgroups for two classes of finite abelian groups, namely, finite cyclic groups
and finite elementary abelian p-groups and have given an explicit formula for
the number of fuzzy subgroups of Zp + Zp + Zp where p is a prime. This may
be considered as one of the remarkable studies towards our study. The same
authors, later in [114] extended their study of classifying fuzzy subgroups of
abelian finite groups to a class of non-abelian groups, specifically hamiltonian
groups. They obtained an explicit formula for the number of distinct fuzzy
subgroups of a finite hamiltonian group in a particular case. Esengul Salturk
and Irfan Siap [103] also used the equivalence relation defined by Murali and
Makamba in [81] to examine the structure of equivalence classes of fuzzy sub-
groups of Zn

p for any given prime p and positive integer n indicating the rank
of the group. It has become an important problem in fuzzy group theory to
classify fuzzy subgroups of finite groups. Without any equivalence relation on
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fuzzy subgroups of a group, the number of fuzzy subgroups is infinite even for
the trivial group {e}. In this dissertation we will briefly compare the different
notions of fuzzy equivalence relations studied by other researchers, however,
we will focus and use the notion studied by Murali and Makamba [81], [82],[83].
These equivalence relations have been used to characterise fuzzy subgroups of
finite groups, however different results have been obtained in some cases on
the same groups. This is primarily because the classification and enumeration
techniques used in each case depend on both the type of fuzzy equivalence
relation and the counting techniques developed from that particular concept
of fuzzy equivalence. In this dissertation we focus on fuzzy subgroups of an
abelian group G of rank 3. In particular we use G = Zpn + Zp + Zp, where p
is any fixed prime and any arbitrary positive integer n. This is an extension
of Ngcibi’s work in [94].
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Chapter 2

PRELIMINARIES

2.1 INTRODUCTION

As mentioned earlier, the conventional set theory is built on the primary no-
tion of “set” of which an entity is either an element or not an element. A
sharp, crisp, and obvious dissimilarity exists between an associate and a non-
associate for any well-defined “set” of objects in this theory. Moreover, there
is an extremely defined and clear limit to specify if an object belongs to the
set. So given a set A, an object x either is in A or not in A. This is true for
both the deterministic and the stochastic logic. Furthermore, one might pose a
question such as “What is the likelihood that the object x is an element of A?”
in the domain of statistics and probability. In this logic though, a response
might be akin to “The likelihood for this object to be in set A is 95 percent”.
The ultimate result (i.e. conclusion) is still either “it is” or “it is not” a part
of the set. The probability of 95 percent does not imply that the object has
95 percent membership in the set or that it has 5 percent non-membership.
Specifically, in the conventional set theory, it is unacceptable that an element
is in a set and not in the set at the same time. As a result, several real-world
application problems cannot be illustrated and handled by the conventional
set theory, as well as all those elements having a partial membership to a set.
On the contrary, fuzzy set theory does acknowledge incomplete memberships,
and thus generalizes the conventional set theory to some extent.
In order to introduce the notion of fuzzy sets and fuzzy subgroups, we first
appraise some fundamental concepts in the basic set theory and group theory
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of the conventional mathematics. It will be seen that the fuzzy set theory is
a very natural extension of the conventional set theory, and is also a rigorous
mathematical concept.

2.2 BASIC DEFINITIONS AND CONCEPTS IN THE
CONVENTIONAL SET THEORY

Definition 2.2.1 A set is a collection of clearly defined objects referred to as
elements or members of the set. Usually we refer to the whole under-study set
as universe of discourse, and denoted by U and if an element x is in set U , we
write x ∈ U , otherwise we use the notation x /∈ U and read it as x is not in U .

Normally we denote sets by using upper case letters.

Definition 2.2.2 Let U be the universe of discourse which includes all pos-
sible elements associated with the given problem. If we define a set S in the
universe set U such that there exists an element x ∈ U but x /∈ S, then we say
S is a proper subset of the set U and we write S ⊂ U.
On the other hand, S is referred to as improper subset of U and we denote it
as S ⊆ U if whenever x ∈ S then x ∈ U .

However if S is not contained in U , we represent it as S * U and refer to S
as not a subset of U .
A set that has no element is called an empty set and we denote it by ∅ or {} .
An empty set is a subset of any set.
Basically, in the conventional set theory, a finite set can be represented by
enumerating all its elements using S = {s1, s2, s3..., sn} for some finite positive
number n. Apart from this representation, sets can be defined by specify-
ing the conditions of the elements. For instance, if the elements of set S
should satisfy the conditions b1, b2, b3, ..., bn, then the set S is described as
S = {a : a satisfies b1, b2, ..., bn}.
Additionally, if these elements si(i = 1, 2, 3, ..., k) of S form a subset A of S,
then for all elements x ∈ S the set A can be represented by its indicator or

characteristic function χA(x) =

{

1 if x ∈ A
0 otherwise

Similarly for S as a subset of U . The above indicator or characteristic func-
tion explicitly describes sets A and S. Mathematically, we express these S as
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a mapping S : U → [0, 1]. So if S(x) = 1, then x is a member of S and if
S(x) = 0 then x is not a member of S. Thus in the conventional set theory
χS(x) has only the values 0 (’false’) and 1 (’true’). We refer to such sets as
crisp sets.
Clearly, one can see that crisp set theory is incapable of representing classi-
fications and descriptions in several cases. In fact, crisp set theory provides
inadequate representation for most cases.
If the under-studied set is an n-dimensional Euclidean space, then we represent
its size by using the number of elements it contains. This number is called the
cardinality. We denote the cardinality of the set S by |S|. If the cardinality
|S| is a finite number, then the set S is a finite set. On the other hand, if |S|
is infinite, then S is an infinite set.

2.3 OPERATIONS ON THE CONVENTIONAL (CRISP) SET

Definition 2.3.1 Let A and B be nonempty sets. Then
(i) The union of A and B is the set A ∪B = {x : x ∈ A or x ∈ B}.
Clearly A ∪ B = B ∪ A. (Commutativity)
(ii) The intersection of A and B is the set A ∩ B = {x : x ∈ A and x ∈ B}.
Clearly A ∩ B = B ∩ A. (Commutativity)
(iii) A and B are equal and we write A = B if and only if A ⊆ B and B ⊆
A.
(iv) The difference of A and B is the set A−B or A |B = {x ∈ A : x /∈ B}| .
It is also referred to as the relative complement. The complement of set A is
denoted by Ac or ¬A.
(v) The Cartesian product ofA andB is the setA×B = {(a, b) : a ∈ A and b ∈ B} .

2.4 SET-THEORETIC PROPERTIES OR AXIOMS

We review the operational characteristics of union, intersection and comple-
ment on the conventional set.
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Note 2.1.0. Let A, B and C be sets on the universe of discourse U . Then
the following axioms hold
(i) A∪(B ∪ C) = (A ∪ B)∪C and A∩(B ∩ C) = (A ∩ B)∩C (Associativity).

(ii) A∪ (B ∩ C) = (A ∪ B)∩ (A ∪ C) and A∩ (B ∪ C) = (A ∩B)∪ (A ∩ C)
(Distributivity).

(iii) If A ⊆ B and B ⊆ C then A ⊆ C (Transitivity).

(iv) A ∪ ∅ = A and A ∩ ∅ = ∅ and A ∩ U = A and A ∪ U = U (Identity).

(v) A ∩ A = A and A ∪ A = A (Idempotency).

(vi) (Ac)c = A (Involution).

(vii) A ∩ Ac = ∅ (Axiom of Contradiction).

(viii) A ∪ Ac = U (Axiom of the Excluded Middle).

The De Morgan’s law is satisfied with the union, intersection and comple-
ment operations:
(ix) (A ∪ B)c = Ac ∩Bc

(x) (A ∩ B)c = Ac ∪ Bc

The indicator or characteristic function of a set S is defined by χS(x) =
{

1 if x ∈ S
0 otherwise

The above indicates the membership χS(x) in the set S for the element x in
the universe of discourse. Each member x of S is assigned to one of the two
elements of {0, 1}.
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2.5 SET-THEORETIC OPERATIONS TO FUNCTION-THEORETIC
OPERATIONS

Under this subtitle, we first define the set operations and then characterize the
set-theoretic operations in terms of functions.
Let S and T be two sets on the universal set U . Then
(i) The union: S ∪ T = {a ∈ U : a ∈ S or a ∈ T} is expressed in terms of
membership functions as χS∪T (a) = χS (a)∨χT (a) = max (χS (a) , χT (a)) ∀ a ∈
U
(ii) The intersection: S ∩ T = {a ∈ U : a ∈ S and a ∈ T} is defined on
membership functions as χS∩T (a) = χS (a)∧χT (a) = min (χS (a) , χT (a)) ∀ a ∈
U
(iii) The complement: Sc or ¬S = {a ∈ U : a /∈ S} is given in terms of
membership functions as χSc (a) or χ¬S = 1− χS (a) ∀ a ∈ U
(iv) The difference: S− T or S \ T = {a ∈ S : a /∈ T} is expressed as χS−T (a)
or χS\T (a) = χS (a) ∧ χT c (a) = min(χS (a) , 1− χT (a))∀ a ∈ U
(v) The containment S ⊆ T is defined as χS (a) ≤ χT (a) ∀ a ∈ U

2.6 SOME BASIC DEFINITIONS AND CONCEPTS IN GROUP
THEORY

Definition 2.6.1 Let S be a nonempty set. A rule that combines pairs such
as (x, y) of S to get another element of S (S is closed under the rule) is referred
to as a Binary Operation. This operation defines a map S × S → S.
Employing the multiplicative notation, the operation is said to be
1. associative if (xy)z = x(yz) for all x, y, z ∈ S
(i). If the operation is associative then the product of any n elements (ordered)
is well-defined
2. commutative if xy = yx for all x, y ∈ S
3. has an identity 1 if for all x ∈ S, 1x = x = x1
(i). An element x is said to be invertible if there exists x−1 such that xx−1 =
1 = x−1x.

Applying the additive notation, the identity is denoted by 0 and the inverse of
x is denoted by −x. The exponents xn become multiples nx. All results will
still be true whichever notation is used.
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Definition 2.6.2 A group is a pair (G, •) consisting of a nonempty set G and
binary operation
• : G×G → G such that the following axioms are satisfied
(i) g • (h • k) = (g • h) • k, ∀g, h, k ∈ G (associativity)
(ii) ∃ e ∈ G such that e • g = g • e = g ∀g ∈ G (identity element)
(iii) ∀g ∈ G, ∃ g−1 ∈ G such that g • g−1 = g−1 • g = e (inverse)
(iv) If g has a left and right inverse, they must be equal.
(v) An inverse is unique.
(vi) Inverses multiply in opposite order: (xy)−1 = y−1x−1.
The group G is said to be commutative or abelian group if the operation • on
G satisfies the additional axiom
(vii) Commutativity: xy = yx for all x, y ∈ G.

If the group G is abelian, it is customary to denote the operation additively,
using a (+) symbol, and to use the symbol 0 for the identity element.

Definition 2.6.3 The order of a group (G, •) is the cardinality or the number
of elements of the set G, written |G|.

Definition 2.6.4 A subgroup of a group G is a group H ⊆ G usually written
as H ≤ G, under binary operation of G restricted to H.

Definition 2.6.5 A subgroup H < G is said to be proper if H is not equal to
G. Otherwise, H is referred to as an improper subgroup. The subgroup 〈K〉
generated by a set K ⊆ G is the minimal subgroup in G containing K, i.e. the
subgroup of all combinations of the elements in K and their inverses.

Definition 2.6.6 If H and K are subgroups of group G, then
(i) The intersection: H ∩K or H ∧K is the maximal subgroup contained in
both H and K.
(ii) The join: H ∪K or H ∨K = 〈H,K〉 is the minimal subgroup containing
both H and K.

2.7 ON FUZZY SETS

As indicated earlier in section 2.1, the conventional set can best be described
by enumerating or outlining its elements with the aid of an indicator or a char-
acteristic function. This function only assigns a value 0 or 1 to each individual
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in the universe of discourse, thereby discriminating between elements and non-
elements of the under-studied conventional set. The aforementioned function
can be generalized to an extent that the values apportioned to the members
of the universe of discourse lie within a precise range and specify the degree
of membership of these elements in the under-considered set. Larger values
symbolize higher grades of set membership. Such a function is referred to as
a membership function and the set defined by it, a fuzzy set. We shall give
an explicit definition of universe of discourse, fuzzy set, fuzzy subset, review
the standard operations on fuzzy set with few examples and discuss some ba-
sic concepts in fuzzy set theory under this section. We shall also characterize
fuzzy subgroups and give some basic concepts in fuzzy subgroups.

2.8 CHARACTERIZATION OF UNIVERSE OF DISCOURSE

The universe of discourse for fuzzy sets in fuzzy logic was primarily described
only on the integers. Nowadays, the universe of discourse for fuzzy sets and
fuzzy relations is characterized with three numbers. The first two numbers
indicate the start and end of the universe of discourse, and the third argument
indicates the increment between elements. This provides the user more sup-
pleness in selecting the universe of discourse. For instance, the fuzzy set of
numbers described in the universe of discourse U = {uj} = {1, 2, 3, 4, · · · , 15}
is presented as Universe of Discourse → {1, 15, 1} . In this example, the first
number 1 signifies the start and the second number 15 the end respectively
while the third number 1, the increment between elements.

Definition 2.8.1 Let X be a nonempty set. A fuzzy set S in X is charac-
terized by its membership function ΨS : X → [0, 1] and ΨS (q) is interpreted
as the degree of membership of element q in fuzzy set S for each q ∈ X. It
is obvious that the set of tuples given by S = {(q) ,ΨS (q) |q ∈ X} completely
determines S. For convenience sake, we will write S (q) instead of ΨS (q).

Definition 2.8.2 Let S and T be two fuzzy sets of a conventional set X.
Then we refer to S as a fuzzy subset of T if S (q) ≤ T (q) , for all q ∈ X.
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Note 2.1.1. Throughout this dissertation, if no confusion would arise, we
will simply call a fuzzy subset a fuzzy set, keeping in mind that it has to be
a subset of some universe set and has to have a pre-described membership
function associated with it.
This membership function is a generalization of an indicator or a characteristic
function of a subset defined for {0, 1}. More generally, one can use a complete
lattice L instead of [0, 1] in a definition of a fuzzy subset S. We usually denote
the family of all fuzzy sets in X by F (X) or IX where I = [0, 1].
Note 2.1.2. In this dissertation, we used IX to represent the family of all the
fuzzy subsets of X.

Example 2.8.3 Let X = {1, 2, 3, 4} be a given universe of discourse and
MF(x) = {0.25, 0.50, 0.75, 1.00} be the grades of membership assigned to all
element in X in an orderly manner. Clearly, one can observe that the cardi-
nality of X = 4 and that of MF(x) = 4, hence there are 256 = 44 fuzzy sets as
members in F(X) among which 16 = 24 are crisp subsets of X.

2.9 REPRESENTATION OF FINITE AND INFINITE FUZZY SETS

We present here two ways of representing fuzzy sets
Suppose X = {a1, a2, a3, ..., an} is a finite set and S is a fuzzy set in X. Then
we often use the notation S = x1/a1 + x2/a2 + + xn/an where the term xi/ai,
for i = 1, ..., n signifies that xi is the degree of membership of ai ∈ S and
the plus sign represents the union. On the other hand, we use the notation
S =

∫

ΨS (a) /x when the universe is continuous and infinite.

2.10 OPERATIONS ON FUZZY SETS

Since crisp sets and its associated indicator or characteristic functions may
respectively be considered as unique cases of fuzzy sets and membership func-
tions, we extend the conventional set theoretic operations from elementary set
theory to fuzzy sets. We observe that all those operations which are extensions
of non-fuzzy (crisp) notions reduce to their usual meaning whenever the fuzzy
sets have membership grades that are drawn from {0, 1}. For this reason, when
extending the operations to fuzzy sets, the same notation as in set theory is
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used.
Let β, η and κ be fuzzy sets on the universal set X. For a given element
a ∈ X, the following function-theoretic operations for the set-theoretic opera-
tions of union, intersections, complement, difference, containment and equality
are defined for β, η and κ on X:
The union: Ψβ (a) ∪Ψη (a) = Ψ (a) ∨Ψ(a) for all a ∈ X
The intersection: Ψβ (a) ∩Ψη (a) = Ψ (a) ∧Ψ(a) for all a ∈ X
Containment: The fuzzy set β is said to be contained in fuzzy set η if and only
if for every a ∈ X we have Ψβ (a) ≤ Ψη (a)

Theorem 2.10.1 Let β and κ be two fuzzy subsets of X. If µ(x) = (β∪κ)(x)
and ν(x) = (β ∩ κ)(x) for all x ∈ X, then:
(a) ν ⊂ µ
(b) β ⊂ µ and κ ⊂ µ.
(c) ν ⊂ β and ν ⊂ κ.

Proof: See [122]
The complement: Ψβc (a) = 1−Ψβ (a) for all a ∈ X.
The difference: (β−η)(a) or (β \ η)(a) = Ψβ−η (a) or Ψβ\η (a) = Ψβ (a)∧Ψηc (a)
= min(Ψβ (a) , 1−Ψη (a)) for all a ∈ X
Equality: Two fuzzy sets β and η on the same universe of discourse X are said
to be equal if and only if for all a ∈ X, we have Ψβ (a) = Ψη (a)
Apart from the above expression, union and intersection of two fuzzy sets can
be defined through T-conorm (or S-norm) and T-norm operators respectively.
These two operators are functions S,T : [0, 1] × [0, 1] → [0, 1] satisfying some
convenient boundary, monotonicity, commutativity and associativity proper-
ties. As introduced by Zadeh [123], a more intuitive but equivalent definition
of union of fuzzy set is the “smallest” fuzzy set containing both η and κ. Anal-
ogously, the intersection of η and κ is the “largest” fuzzy set which is contained
in both η and κ.
Note 2.1.3. More generally, the intersection of a fuzzy set and its complement
is not the empty fuzzy set (whose membership set contains only the number
0) as it is in conventional set theory unless the fuzzy set is a crisp subset, see
[91].
Note 2.1.4. The union of a fuzzy set and its complement is not the universal
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set X.
For completeness’ sake, we shall utilize the examples below to further elabo-
rate the operations on fuzzy set discussed above. Before proceeding with the
examples, we first consider U as a finite universal set consisting of 1 ≤ k ele-
ments and |U | = r. If we let each element u ∈ U occupying the ith position in
the set be given by ui−1 + (i− 1)j , for 1 ≤ i ≤ r and j the constant difference,
then all fuzzy sets Ψ ⊆ U can be expressed as Ψu =
{

(ai−1 + (i− 1)j, i−1
r−i

), · · · , (ar−1 + (r − 1)j, r−1
r−i

) = 1
}

, where the i−1
r−i

denote
the grades of membership of all fuzzy sets contained in U within the closed
unit interval I = [0, 1].
Note 2.1.5. The membership grades are not all necessarily distinct. Besides,
the enumeration of fuzzy sets with the special properties are unaffected by the
uniformly chosen grades in Ψu and also conform with the preferential equality
discussed in [86].
Note 2.1.6. Although fuzzy sets and probability both can take on similar
values, it is essential to note that membership grades are not probabilities.
This is because membership grades of fuzzy sets on a finite universal set do
not satisfy any condition that their summation must be equal 1, unlike proba-
bilities. Again, the specification of membership functions is subjective, which
means that the membership functions specified for the same concept by differ-
ent persons may vary considerably. This subjectivity comes from individual
differences in perceiving or expressing abstract concepts and has little to do
with randomness. Therefore, the subjectivity and non-randomness of fuzzy
sets is one of the primary differences between the study of fuzzy sets and prob-
ability theory, which deals with objective treatment of random phenomena.
See [68]chap. 4

Example 2.10.2 . Let U be a universal set consisting of positive integers less
than or equal to 15, thus U = {1, 2, 3, · · · , 15} . Let β and η be two fuzzy sets of
U with β = {(1, 0.00), (2, 0.07), (3, 0.14), (4, 0.21), (5, 0.29), (6, 0.36), (7, 0.43),
(8, 0.50), (9, 0.57), (10, 0.64), (11, 0.71), (12, 0.79), (13, 0.86), (14, 0.93), (15, 1.00)}
and η = {(1, 0.14), (2, 0.07), (3, 0.21), (4, 0.29), (5, 0.36), (6, 0.43), (7, 0.50),
(8, 0.57), (9, 0.64), (10, 0.71), (11, 0.79), (12, 0.86), (13, 0.93), (14, 1.00), (15, 0.00)}
Then:
β ∪ η = {(1, 0.14), (2, 0.07), (3, 0.21), (4, 0.29), (5, 0.36), (6, 0.43), (7, 0.50),
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(8, 0.57), (9, 0.64), (10, 0.71), (11, 0.79), (12, 0.86), (13, 0.93), (14, 1.00), (15, 1.00)}

β ∩ η = {(1, 0.00), (2, 0.07), (3, 0.14), (4, 0.21), (5, 0.29), (6, 0.36), (7, 0.43),
(8, 0.50), (9, 0.57), (10, 0.64), (11, 0.71), (12, 0.79), (13, 0.86), (14, 0.93), (15, 0.00)}

βc = {(1, 1.00), (2, 0.93), (3, 0.86), (4, 0.79), (5, 0.71), (6, 0.64), (7, 0.57),
(8, 0.50), (9, 0.43), (10, 0.36), (11, 0.29), (12, 0.21), (13, 0.14), (14, 0.07), (15, 0.00)}
β − η = {(1, 0.00), (2, 0.07), (3, 0.14), (4, 0.21), (5, 0.29), (6, 0.36), (7, 0.43),
(8, 0.43), (9, 0.36), (10, 0.29), (11, 0.21), (12, 0.14), (13, 0.07), (14, 0.00), (15, 1.00)}

Example 2.10.3 . Consider a universal set U consisting of positive integers
≤ 15, thus U = {1, 2, 3, · · · , 15}. Let η = {(1, 0.02), (2, 0.03), (3, 0.04), (4, 0.05),
(5, 0.06), (6, 0.07), (7, 0.08), (8, 0.09), (9, 0.1)} and β = {(1, 0.00), (2, 0.01), (3, 0.02),
(4, 0.03), (5, 0.04), (6, 0.05), (7, 0.06), (8, 0.07), (9, 0.08)}

It can be easily seen that β ⊆ η

2.11 SOME BASIC CONCEPTS IN FUZZY SET THEORY

With the exception of the axiom of the excluded middle and the axiom of
contradiction which are in variance with fuzzy sets, the remaining properties
such as associativity, distributivity, idempotency, identity as well as the De
Morgans’s laws hold on fuzzy sets
We present some basic concepts in fuzzy set theory that are desirable:

2.11.1 An empty fuzzy set

.

Definition 2.11.1 . A fuzzy set ∅ of X is said to be an empty fuzzy set if for
each x ∈ X, we have ∅(x) = 0.
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2.11.2 A Fuzzy Point

Definition 2.11.2 . A fuzzy set in X is called a fuzzy point if and only if it
takes the value 0 for all y ∈ X except for one and only one element of X, say
x ∈ X.

2.11.3 A Crossover Point of a Fuzzy Set

Definition 2.11.3 If Ψβ(x) = 0.5, for a certain point x ∈ X, then such a
point is called a crossover point of a fuzzy set β.

2.11.4 The Core of a Fuzzy Set

Definition 2.11.4 . The core of a fuzzy set β, denoted by core(β), is the set
of all points x ∈ X such that Ψβ(x) = 1.

Example 2.11.5 . Consider X = {a1, a2, a3, a4, a5, a6} and β =
{(a1, 0), (a2, 0.3), (a3, 0.7), (a4, 1), (a5, 0.5), (a6, 0.9)} . Then the core(β) = {(a4, 1)}

2.11.5 The Support of a Fuzzy Set

Definition 2.11.6 Let β be a fuzzy set of X. The support of β, denoted
supp(β), is the crisp subset of X whose elements all have nonzero membership
grades in β. Thus supp(β) = {x ∈ X : β(x) > 0}.

Example 2.11.7 . Consider a space X consisting of ages of undergraduate
students in the University of Fort Hare, say X = {15, 18, 21, 24, 27, 30, 33, 36}.
Let us define a fuzzy set β on X such that β = {(15, 0.00), (18, 0.50), (21, 0.55),
(24, 0.60), (27, 0.65), (30, 0.70), (33, 0.75), (36, 0.00)}.

Then supp(β) = {18, 21, 24, 27, 30, 33} .

2.11.6 A Co-support of a Fuzzy Set

Definition 2.11.8 . The co-support of β denoted by co-supp(β), is a non-
fuzzy set which involves all elements that are completely found outside a given
fuzzy set and is given by co-supp(β) = {x ∈ X : β(x) = 0}
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Example 2.11.9 . From example 2.11.7, it is easy to see that the co-supp(β) =
{15, 36}

2.11.7 Fuzzy Singleton

Definition 2.11.10 . A fuzzy set whose support is a single point in X with
Ψ(x) = 1 is referred to as a fuzzy singleton

2.11.8 On Alpha-cut (α-cut) Set

Definition 2.11.11 A weak α-cut set or an α level-set of S denoted by Sα

is a non-fuzzy set which is made up of members whose membership grades are
not less than α and is given by Sα = {x ∈ X : ΨS(x) ≥ α}, where α ∈ (0, 1] .

Definition 2.11.12 . If Sα = {x ∈ X : ΨS(x) > α}, for α ∈ [0, 1], then Sα is
referred to as a strong α-cut.

Proposition 2.11.13 . Let β, η ∈ IX , then
1. β = η if and only if βα = ηα for all α ∈ I.
2. β = η if and only if βα = ηα for all 0 < α < 1.

Proof:. See [71]

Corollary 2.11.14 . (1). Sα = X whenever α = 0
(2). Sα = ∅ whenever α = 1

Example 2.11.15 Using example 2.11.7 and by setting α = 0.55, we have
S0.55 = {21, 24, 27, 30, 33}

Definition 2.11.16 . Let β be a fuzzy subset of the set X. Then β is said to
be normal if supβ(x) = 1, for x ∈ X.
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2.11.9 Characterization of Images and Pre-images of
Fuzzy Sets

Let X and Y be two non-empty sets and f a mapping from X into Y . For
fuzzy sets λ, λk ⊆ X and µ, µk ⊆ Y , define the image f(λ) of λ under f for
y ∈ Y as

f(λ)(y) =

{

sup{λ(x) : x ∈ f−1(x)}, if f−1(y) 6= ∅
0 ,Otherwise

The pre-image denoted by f−1(µ) of µ under f is the fuzzy subset of X such
that, for x ∈ X, f−1(µ)(x) = µ(f(x)). Thus f−1(µ) consists of precisely all
the elements of λ that are mapped to elements of µ by f.

2.11.10 An f-invariant of a Fuzzy Set

Definition 2.11.17 [101]. A fuzzy set β in X is said to be f-invariant if
β(a1) = β(a2) whenever f(a1) = f(a2) for all a1, a2 ∈ X.

2.11.11 On Sup Property

Definition 2.11.18 . Let X be any given set. A fuzzy subset β : X → [0, 1]
of X has the sup property if for any subset S of the set X there exists x0 ∈ S
such that β(x0) = sup {β(x) : x ∈ S} .

2.12 ON FUZZY SUBGROUPS

First of all, we present some basic concepts and results on fuzzy subgroups.

Definition 2.12.1 . As defined by Rosenfeld in [101]. Let υ be a fuzzy set
on a group G. Then υ is said to be a fuzzy subgroup of G if for all a, b ∈ G,
we have
1. υ(ab) ≥ min {υ(a), υ(b)}
2. υ(a−1) = υ(a).
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For the identity element e ∈ G, we have υ(a) ≤ υ(e), for all a ∈ G

Definition 2.12.2 [11] . If υ is a fuzzy subgroup on a group G and ϑ is a
map from G onto itself, we define a map υϑ : G → [0, 1] by υϑ(g) = υ(gϑ), for
all g ∈ G where gϑ is the image of g under ϑ.

Definition 2.12.3 [80]. We define υ ◦ υ(g) = sup
g=g1g2

(υ(g1) ∧ (υ(g2)).

Proposition 2.12.4 A fuzzy subset υ of G is a fuzzy subgroup of G if and
only if
(a) υ ◦ υ ≤ υ and
(b) υ−1 = υ where υ−1 is defined as υ−1 : G → I, for all g ∈ G, υ−1(g) =
υ(g−1).

Proof. See [89]

2.13 ON LEVEL SUBGROUPS

Aware of Zadeh’s[123] idea of level subsets, Das in [24] applied that concept
to characterize level subgroups of a fuzzy group. Since then, several properties
of fuzzy groups have been defined by using Das’ level subgroups, hence it has
become one of the essential tools used in the study of fuzzy groups.
We first define level subset, state a theorem and then proceed with the Das’s
definition of level subgroup, state theorem, corollary and provide their proofs.
We also give the definition of level subgroup revised by Ajmal[2] and Jain [60].
Recall from definition 2.11.11: Let υ be a fuzzy subset of S and t ∈ [0, 1] .
Then υt = {s ∈ S : υ(s) ≥ t} is called the level subset of υ at t.

Theorem 2.13.1 [24]. Let G be a group and υ be a fuzzy subgroup of G,
then the level subset υt, for t ∈ [0, 1], t ≤ υ(e), is a subgroup of G, where e is
the identity of G

Proof. See [24]
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Definition 2.13.2 [24]. Let υ be a fuzzy subgroup of the group G and 0 ≤
t ≤ υ(e), then υt is referred to as the level subgroup of υ at t.

Theorem 2.13.3 [24] Theorem 3.1
Let G be a group and υ be a fuzzy subgroup of G. Two level subgroups
υt1 , υt2(with t1 < t2) of υ are equal if and only if there is no x ∈ G such that
t1 < υ(x) < t2.

Note 2.1.5: Only one implication of the above theorem is true, its converse
is false as the next example shows.

Example 2.13.4 Let G = S3 = {e, a, a2, b, ab, a2b} such that a3 = e = b2,
be the symmetric group on 3 symbols. Define a fuzzy subset of S3 as follows:

µ(x) =







1 if x = e
1
2

if x = b
1
3

otherwise

Now no x in G exists such that 1
3
< µ(x) < 1

2
, but µ 1

2

= {e, b} 6= µ 1

3

= S3.
This is contrary to the above theorem. Hence the theorem should read

Theorem 2.13.5 Let G be a group and υ be a fuzzy subgroup of G. If two
level subgroups υt1 , υt2(with t1 < t2) of υ are equal, then there is no x ∈ G
such that t1 < υ(x) < t2.

Corollary 2.13.6 [24]Corollary 3.1
Let G be a finite group of order n and υ be a fuzzy subgroup of G.
Let Im(υ) = {ti|υ(x) = ti for some x ∈ G}. Then {υti} are the only level
subgroups of υ.

Proof: Assume Im(υ) has the elements t0 < t1 < t2 · · · < tk since G is finite.
Claim : υt0 = G.
Clearly υt0 ⊆ G. Let x ∈ G, then υ(x) = tj for some j ∈ J = {t0, t1, · · · , tk} =
Im(υ). Therefore x ∈ υtj , tj ≥ t0, implying υtj ⊆ υt0 , thus x ∈ υt0 . Therefore
G ⊆ υt0 ⇒ G = υt0 .
Suppose ∃ t ∈ [0, 1] : ti < t < ti+1 and υt 6= υtm ∀ m ∈ J . Then
υti+1

( υt ( υti · · · (1)
Let x ∈ υt, then υ(x) > t since υ(x) 6= t. Therefore υ(x) ≥ ti+1 since υ(x) ∈ J ,
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⇒ x ∈ υti+1
, therefore υt ⊆ υt+1 contradicting (1) above. Thus no t ∈ [0, 1]

exists such that ti < t < ti+1 and υt 6= υtm ∀ m ∈ J . Therefore any level
subgroup of G is of the form υt, t ∈ J. This completes the proof.

Proposition 2.13.7 [104] Prop 2.1. Let υ be a fuzzy subgroup of G with
Im(υ) = {tj : j ∈ J} and f =

{

υtj : j ∈ J
}

where J is an arbitrary index set.
Then:
(a) there exists a unique j0 ∈ J such that tj0 ≥ tj, for every j ∈ J ,
(b) υtj0 =

⋂

j∈J υtj ,
(c) G =

⋃

j∈J υtj ,
(d) the members of f form a chain.

Proof. See [104].

Definition 2.13.8 [3] Let G be a group and µ be a fuzzy subgroup of G. The
subgroups µα, α ∈ [0, 1] and α ≤ µ(e) are called level subgroups of G.
Ajmal in [2] (see also Jain [60]) revised this definition of level subgroup by
restricting α ∈ Im µ and gave the following,

Definition 2.13.9 [2]. The level subgroup of G µ>
t = {µ(x) > t : x ∈ G, t ∈

Im µ}

Definition 2.13.10 [60]. Let µ ∈ L(G). Then P (µ) = {x ∈ G : µ(x) >
Infµ} is a subgroup of G, called the penultimate subgroup of µ.

2.14 ON HOMOMORPHIC IMAGES AND PRE-IMAGES OF FUZZY
SUBGROUPS

We reproduce some propositions on homomorphic images and pre-images of
fuzzy subgroups from the work studied earlier by Rosenfeld and that of S.Sebastian
and S.B.Sundar.
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Proposition 2.14.1 [101] Prop 5.8
A homomorphic image or pre-image of a fuzzy subgroup is a fuzzy subgroup.

Proof. See [101]

Proposition 2.14.2 [104] Prop 3.1
If F ∗ is a fuzzy subgroup of G∗ and

{

F ∗
tj : j ∈ J

}

is the collection of all level

subgroups of F ∗, then
{

f−1(F ∗
tj
: j ∈ J)

}

is the collection of all level subgroups

of f−1(F ∗).

Proof. See [104]

Proposition 2.14.3 [104] Prop 4.1. If f is a surjection, F has sup-property
and

{

Ftj : j ∈ J
}

is the collection of all level subgroups of F , then
{

f(Ftj) : j ∈ J
}

is the collection of all level subgroups of f(F ).

Proof. See [104]

Theorem 2.14.4 . Let f : G → G be a homomorphism of G into G. If υ is
a fuzzy subgroup of G, then the image f(υ) of υ under f is a fuzzy subgroup
of G.

Proof. See [104]

Proposition 2.14.5 . Let f : G → G
′

be a homomorphism and υ a fuzzy
subgroup of a group G

′

. Then the pre-image f−1(υ) of υ under f is a fuzzy
subgroup of G.

Proof. See [104]

2.15 ON NORMAL FUZZY SUBGROUPS

Definition 2.15.1 [104]. Let υ be a fuzzy subgroup of a group G. Then a
fuzzy subgroup υ of the group G is said to be a fuzzy normal subgroup if for
all x, y ∈ G, we have υ(xy) = υ(yx).
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Equivalently υ is fuzzy normal if and only if υ(xyx−1) = υ(y), for all x, y ∈ G.

Proposition 2.15.2 [104]. Let υ be a fuzzy normal subgroup of G. Let
f : G → G

′

be a homomorphism where G
′

is a group. Then the image f(υ) of
υ under f is fuzzy normal in f(G).

Proof. See [104]

2.15.1 On Fuzzy Cosets

Definition 2.15.3 [79]. If υ is a fuzzy subgroup of a group G, then for any
x ∈ G, we define a left fuzzy coset of υ, denoted xυ, as the fuzzy subset G
defined by (xυ)(y) = υ(x−1y) for all y ∈ G. A right fuzzy coset of υ is also
defined by (υx)(y) = υ(yx−1).

If υ is fuzzy normal, then the set Gυ = {xυ : x ∈ G} is a group under the
binary operation defined by (xυ)(yυ) = (xy)υ, ∀ x, y ∈ G. Besides, we also
have xυ = υx for all x ∈ G.. (See [79], Proposition 4.3 and Theorem 4.5).

Proposition 2.15.4 [79]. Let υ be a fuzzy subgroup of G. Then υ is fuzzy
normal if and only if xυ = υx for all x ∈ G.

Proof. See [79]

2.15.2 On Fuzzy Conjugate

Definition 2.15.5 [11]. Let G be a group. If υ is a fuzzy subgroup of G and
x ∈ G , then the fuzzy subset Ax(υ) of G defined by Ax(υ)(g) = υ(x−1gx),
for all g ∈ G is called the fuzzy conjugate of υ determined by x.

Theorem 2.15.6 [11]. A fuzzy subgroup υ of a group G is a fuzzy normal
subgroup if and only if υ is constant on the conjugate classes of G.

Proof. See [11]
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2.15.3 On Fuzzy Abelian

Definition 2.15.7 [12]. Let G be a group and let υ be a fuzzy subgroup of
G, then υ is said to be fuzzy abelian if Gυ is an abelian subgroup of G.

Proposition 2.15.8 [12]. A non-empty subset A of G is an abelian subgroup
of G if and only if XA is a fuzzy abelian subgroup of G.

Proof. See [12]
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Chapter 3

FUZZY EQUIVALENCE AND FUZZY ISOMORPHISM

3.1 INTRODUCTION

The most excellent technique to examine similarities of like objects in a com-
pilation of objects is to subdivide them into disjoint subsets called cells such
that all the similar ones are in one cell. Such cells are called a partition of the
set of all the objects. This is possible through the utilization of the concept
of an equivalence relation. This concept of an equivalence relation oversimpli-
fies equality in that objects perceived identical can effortlessly be associated
by means of class belonging. An indispensable verity, connecting equivalence
relations and partitions is that every equivalence relation on a set determines
a specific partition of the set and every partition of a set determines a specific
equivalence relation on the set. These operations are inverse to each other.
Equivalence relations which permeate mathematics with several salient appli-
cations have considerably been investigated in different contexts by different
authors. Consequently, different names have been associated with them which
heavily depend on the author and the context where they have been investi-
gated. For instance, Zadeh [123], [125] initially described them as similarity
relations, Valverde [118], Demirci [31], [32], Boixader and Jacas [14], Jacas
[56], Jacas and Recasens [57],[58],[59] refer to them as indistinguishability op-
erators. ℑ-equivalence was how De Baets et al [25],[26], [27] termed them,
and many-valued equivalence relations by [33], [34] just to name a few. The
effects of an equivalence relation on fuzzy subsets of a set were considered
by a number of authors, amongst them Murali in [80] who characterized and
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studied properties of fuzzy equivalence relations and certain lattice theoreti-
cal properties of fuzzy equivalence relations. Chakraborty and Das [19],[20],
Dubois and Prade [40], Ounalli and Jaoua [96] and Nemitz [92] studied fuzzy
functions as fuzzy relations and fuzzy partitions. Fuzzy equivalence relations
studied in a fuzzy framework, oversimplify the crisp equivalence relation and
equality. In this chapter we give a definition of a partition, relation between
two sets, binary relation on a set, equivalence relation, equivalence classes,
and further define fuzzy relation and fuzzy partition. We also reproduce the
definitions of fuzzy equivalence relation introduced by Murali and Makamba
[81] that we use in this dissertation and briefly examine different forms of fuzzy
equivalence relations that include fuzzy reflexive relations and fuzzy transitive
relations. We again extend our discussion to cover fuzzy isomorphism intro-
duced by Murali and Makamba [81]. In addition we study and compare the
Murali and Makamba [81] definition of fuzzy equivalence to other notions of
equivalence of fuzzy subgroups that are found in literature. We conclude the
chapter by introducing the two counting techniques that are derived from this
fuzzy equivalence relation.

3.2 GENERAL EQUIVALENCE RELATION

Definition 3.2.1 [43]. Let S be a collection of nonempty subsets of a set A.
Then S is said to be a partition of A if
(1) S ∩ S

′

= ∅, for any distinct S and S
′

in S, and
(2) A =

⋃

{S|S ∈ S}.

Definition 3.2.2 . Given two nonempty sets X and Y , a relation between X
and Y is a subset ℜ ⊆ X × Y . For a relation ℜ ⊆ X × Y and x ∈ X, y ∈ Y ,
if (x, y) ∈ ℜ, we write xℜy (we say x is ℜ-related to y).

Definition 3.2.3 . A binary relation on a nonempty set X is a relation ℜ
between X and X, that is, a subset ℜ ⊆ X ×X.

Definition 3.2.4 [43]. A relation ℜ on a nonempty set A is an equivalence
relation if and only if ℜ is
(i) reflexive, i.e (a, a) ∈ ℜ,for all a ∈ A
(ii) symmetric, (a, b) ∈ ℜ ⇒ (b, a) ∈ ℜ and
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(iii) transitive, (a, b) ∈ ℜ and (b, c) ∈ ℜ, then (a, c) ∈ ℜ.

Definition 3.2.5 [45]. (i) If ℜ is an equivalence relation on a nonempty set
A, then for an element a ∈ A, the set [a] = {x|aℜx} is called the equivalence
class of a.
(ii) The element a in the bracket above is called a representative of the equiv-
alence class.

3.3 FUZZY RELATION

The concepts of a fuzzy relation and fuzzy similarity relation were introduced
and studied by Zadeh [123] in 1965 and further followed by [124] in 1966 and
[125] in 1971. He therefore introduced the concept of fuzzy equivalence class
as a natural generalisation of the notion of a crisp equivalence class. Murali
in [80] defined a fuzzy equivalence relation on a set and observed that there
is a correspondence between fuzzy equivalence relations and certain classes of
fuzzy sets. De Baets et al in [25] and Ovchinnikov et al in [97] studied fuzzy
equivalence relations in terms of fuzzy partitions. We give the following defi-
nition by Murali in [80]

Definition 3.3.1 Let X and Y be two universes of discourse. A fuzzy relation
on X × Y denoted by ℜ(a, b) or ℜ is defined as the set ℜ characterized by the
membership function µℜ(a, b) where ℜ = {((a, b), µℜ(a, b))|(a, b) ∈ X × Y,
µℜ(a, b) ∈ [0, 1]}.

Note 3.1.0:
(1) Since the relation ℜ defined above is a binary relation, it is said to be:
(i) Reflexive if µℜ(a, a) = 1, for all a ∈ X
(ii) Symmetric if µℜ(a, b) = µℜ(b, a), for all a, b ∈ X
(iii) Transitive if µℜ ◦ µℜ ≤ µℜ where µℜ ◦ µℜ is defined by µℜ ◦ µℜ(a, b) =
supc∈X(µℜ(a, c) ∧ µℜ(c, b))
If the conditions (i), (ii) and (iii) hold in a fuzzy relation on a set X, then such
a relation is called a fuzzy equivalence relation on X.
(2) Because fuzzy relations are fuzzy sets in product space, set theoretic oper-
ations such as union, intersection and complement can be defined for them.
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Though quite a number of researchers normally prefer working with the stan-
dard reflexive, symmetric and transitive conditions of fuzzy relations, not all
fuzzy equivalence relations satisfy conditions (i)−(iii) in definition 3.2.4, hence
a number of versions of fuzzy equivalence relations have been introduced based
on this definition. For instance in [125], Zadeh introduced fuzzy counterparts
of classical properties of reflexivity, symmetry, transitivity and antisymmetry
of binary relations. He exploited these properties to examine types of fuzzy
relations that include fuzzy equivalence, compatibility and ordering relations.
Reservations and objections to this definition based on the standard condi-
tions (i)-(iii) can be found in Behounek et al [8],[9], Boixader and Recasens
[14], Gottwald [47] and Jacas and Recasens [57]. Researchers have redefined
new types of fuzzy relations based on the three conditions (i)-(iii). Gupta and
Gupta in [48] pointed out that condition ∀x ∈ X, µ(x, x) = 1, for instance is
too strong for defining a fuzzy reflexive relation (see also Dutta et al in [41]).
They then proposed positive values for all µ(x, x) and that µ(y, z) ≤ µ(x, x)
for all y 6= z and x ∈ X. With the aid of this definition of a fuzzy reflexive
relation, they were able to redefine fuzzy equivalence relations that either su-
percede or improve on most of the theorems of Murali [80]. Other concepts
studied on reflexive equivalence relations include G-reflexive fuzzy relation by
Gupta and Gupta [48] as a generalisation of Zadeh’s[125] reflexive fuzzy re-
lation. For more on reflexive fuzzy relations see Gupta and Singh [49] and
Chakraborty and Das [19]. We use the standard definition of a reflexive fuzzy
relation µ(x, x) = 1 ∀x ∈ X that has been used by Murali in [80] and Nemitz
in [92].
Generally most researchers are at ease with the use of the symmetric law
∀x, y ∈ X,µ(x, y) = µ(y, x), see also Zadeh [125], Chakraborty and Das [19],
[20] and Cho [22]. Just like the reflexive part of the definition, different ap-
proaches to a fuzzy transitive relation have been studied. The first type is the
one introduced by Zadeh [123], the second is the one studied by Demirci and
Recanesens [35] and also by Jayaram and Mesiar [62]. This is defined with
the help of t-norms and is called the T -transitivity of fuzzy relations. Other
notions of a transitive relation include among others ∈-fuzzy transitivity stud-
ied by Beg and Samina in [7] that lead to the notion of ∈-fuzzy dissimilarity
relation.
In the following section we give the Murali and Makamba [81] definition of
fuzzy equivalence relation on fuzzy subgroups and compare this definition to
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some of its variants and duals.

3.3.1 The Fuzzy Partition Of A Fuzzy Subset

Definition 3.3.2 . Let X be a nonempty set and let µ be a fuzzy subset of a
set X. Then
∑

= {κ : κ is a fuzzy subset of a set X and κ ⊆ µ} is said to be a fuzzy par-
tition of µ if
(a).

⋃

κ∈
∑ κ = µ and

(b). any two members of
∑

are either identical or disjoint

3.4 EQUIVALENCE RELATION ON SUBGROUPS

Definition 3.4.1 . A fuzzy relation µ on a group G is said to be a fuzzy
equivalence relation on G if:
(i) µ(x, x) = 1, ∀x∈G
(ii) µ(x, y) = µ(y, x), ∀x, y∈G
(iii) µ ◦ µ ≤ µ

Equivalence relations of fuzzy sets have been used to study equivalence of fuzzy
subgroups. It is clear from our discussion in the previous section that not all
fuzzy equivalence relations satisfy the fuzzy equivalence relation defined by
Zadeh [123], hence the existence of several versions of fuzzy equivalence rela-
tions. In this dissertation we use the definition of Murali and Makamba [81].
Other notions of fuzzy equivalence were defined by Volf [120], Branimir and
Tepavcevic [15], Degang et al [29], Tarnauceanu and Bentea [116], Ghafur and
Sulaiman [111], Dixit et al [39], Dixit et al [38], Zhang and Zou [128], Ajmal
[3], Mordeson [78], Jain [60], Mashinchi and Mukaidonon [75] and Iranmanesh
and Naraghi [55].
The Murali and Makamba definition is as follows:

Definition 3.4.2 [81]. Let µ and ν be any fuzzy sets in IX where I = [0, 1]
and a nonempty set X. We define an equivalence relation on IX as follows:
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µ ∼ ν if and only if for all a, b ∈ X, µ (a) > µ (b) if and only if ν (a) > ν (b)
and µ (a) = 0 if and only if ν (a) = 0.

Note 3.1.1: The condition µ (a) = 0 if and only if ν (a) = 0 simply means
that the supports of µ and ν are equal.
In the condition of equivalence relation µ ∼ ν, the strict inequality can be re-
placed by ≥. Thus µ ∼ ν if and only if ∀ a, b ∈ X, µ (a) ≥ µ (b) if and only if
ν (a) ≥ ν (b) and µ (a) = 0 if and only if ν (a) = 0. It is easily seen that either
of the inequalities in the definition determines the same equivalence class of
fuzzy sets.
The condition µ (a) = 0 if and only if ν (a) = 0 is an important part of the
equivalence relation as the following example illustrates.

Example 3.4.3 . ConsiderD4 = {e, a, a2, a3, b, ab, a2b, a3b} where a4 = b2 = (ab)2

= e for e an identity element of the group. Define the fuzzy sets µ and ν on
D4 as follows:

µ(x) =







1 if x = e
1
5

if x = a, a2, a3
1
7

otherwise

and

ν(x) =







1 if x = e
1
5

if x = a, a2, a3

0 otherwise

It can be seen that the
Supp (µ) 6= Supp (ν) even though µ (x) > µ (y) if and only if ν (x) > ν (y)
∀ x, y ∈ D4.
Note 3.1.2. If µ ∼ ν, then |Im (µ) | = |Im (ν) |.
The converse is not true, thus if |Im (µ) | = |Im (ν) | or even if Im (µ) = Im (ν)
and Supp (µ) = Supp (ν), it is not necessary to have µ ∼ ν, as verified by the
example below.

Example 3.4.4 . Let S3 = {e, a, a2, b, ab, a2b} generated by a and b where
a3 = e = b2 and e the identity element.
Define fuzzy sets µ and ν as follows:

38



µ(x) =























1 if x = e

1
5

if x = b

1
7

otherwise

.

and

ν(x) =























1 if x = e

1
5

if x = ab

1
7

otherwise

.

Observe that in the above example,
Im (µ) = Im (ν) and Supp (µ) = Supp (ν) = S3

However, µ (b) > µ (ab) but ν (b) ≯ ν (ab). Therefore µ is not equivalent to ν.

Proposition 3.4.5 . Let µ and ν be two fuzzy subsets of X. Suppose for
each t > 0 there exists an s > 0 such that µt = νs. Then µ ∼ ν.

Proof. See [81]

Proposition 3.4.6 . Let µ be a fuzzy subgroup of a finite group G. If ti, tj
are elements of the image set of µ such that µti = µtj , then ti = tj.

Proof. See [12]

3.4.1 Comparison of Equivalence Relations

Before we compare the above definition with other notions of fuzzy equivalence
relations, we give the definitions of distinct fuzzy subgroups and right limited
point of Im µ.

Definition 3.4.7 [89] Two fuzzy subgroups µ and ν of a group G are said to
be distinct iff [µ] 6= [ν], where [µ] and [ν] are equivalence classes containing µ
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and ν respectively.

Definition 3.4.8 [29] Let µ be a fuzzy set of X and a ∈ X. For any ǫ > 0,
if there exist b ∈ X such that µ(a) + ǫ > µ(b) > µ(a), then µ(a) is called the
right limited point of Im µ.

The notion of equivalence of fuzzy subgroups introduced by Volf in [120] and
Tarnauceanu and Bentea in [116] differs from that of Murali and Makamba
[81]. They define an equivalence of two fuzzy subgroups µ and ν of G as fol-
lows,
µ ≈ ν ⇐⇒ ∀x, y ∈ G, µ(x) > µ(y) ⇐⇒ ν(x) > ν(y).
This definition is closely connected to the concept of level subgroups. Thus
according to Volf [120], two fuzzy subgroups µ and ν of G are equivalent if they
have the same set of level subgroups. So the necessary and sufficient condi-
tion for equivalence of two fuzzy subgroups is the equality of level subgroups.
This is a generalization of the definition given by Murali and Makamba in
[81] since the condition that their supports are equal has been discarded. The
second definition equivalent to the Tarnauceanu and Bentea [116], Dixit et al
[39], Zhang and Zou [128] and Mordeson [78] is given by Ghafur and Sulaiman
[111]. It defines the equivalence relation on fuzzy subgroups as follows:
Let µ, ν ∈ F (G) of the form:

µ(x) =































ρ1 x ∈ A1

ρ2 x A1 \ A2

.

.

.
ρn x ∈ An \ An−1

ν(x) =































ρ1 x ∈ B1

ρ2 x B1 \B2

.

.

.
ρn x ∈ Bm \Bm−1

then we say that µ and ν are equivalent if (1) m=n (2) Ai(µ) = Bi(ν),
∀i ∈ {1, 2, ..., n}
It is a generalisation of the Murali and Makamba [80] definition. It is set the-
oretical, in that the number of fuzzy subgroups is influenced by the structure
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and pattern of diagrams of lattices of subgroups of the group. Perhaps the
only difference between all these definitions that use level subgroups is that
they use the definition of level subgroup given by Das [24] while others use the
definition of level subgroup proposed by Ajmal [3].
For example Mordeson’s [78] definition is given as follows: Let G be a finite
group and µ, ν ∈ L1(G). Then ∀x, y ∈ G, µ ≡ ν if µ(x) > µ(y) ⇔ ν(x) > ν(y),
(where L1(G) is the set of all fuzzy subgroups µ of G such that µ(e) = 1) . It
is clear that this definition is similar to the one proposed by Volf [120], Tar-
nauceanu and Bentea [116]. We also notice that the definition of equivalence
given by Volf [120], Tarnauceanu and Bentea [116], Dixit et al [39], Zhang and
Zou [128] and Mordeson [78] uses the notion of level subgroups in the sense of
Das [24] hence differ from the Jain [60] and Ajmal [3] definition because for
their level subgroups µt and νt, t ∈ [0, 1] while Ajmal [3] requires that t ∈ Im
µ.
Branimir and Tepavcevic [15] are the proponents of the other version, given as
follows:
Let µ, ν : X → L. (L is a complete lattice, which in particular can be [0, 1]).
Then µ is equivalent to ν iff µ and ν have equal families of cuts.
In this definition the use of cuts has been justified because of the following rea-
sons: firstly there are normally uncountably many distinct fuzzy sets on the
same domain, be it finite or infinite, so is the case with fuzzy subgroups of a
group. Since it can be shown that not all these fuzzy subgroups are ”different”,
they argue that the equality of cut-sets could then be an essential classifica-
tion criterion. They generalize the notion of equality of fuzzy sets given by
Murali and Makamba [81]. This equivalence relation is generally defined for
lattice-valued fuzzy sets but can be restricted to fuzzy sets with finite values
in [0, 1]. This notion of equivalence is set theoretical and algebraic because
of its reliance on isomorphism between two lattices. It is clear that if this
equivalence relation defined by Branimir and Tepavcevic [15] holds, then the
one defined by Murali and Makamba in [81] holds but not conversely.
The analysis method was introduced by Degang C et al in [29]. This notion
defines the equivalence of two fuzzy subsets as follows:
Let µ and ν be fuzzy subsets of X, then µ and ν are strong equivalent if
µR = νR, where µR denotes the collection of all a ∈ X such that µ(a) is a right
limited point of Im(µ).
In addition to strong equivalence, they define two fuzzy subgroups µ and
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ν of a group X to be S∗-equivalent, denoted µ ∼= ν if Im(µ) = Im(ν),
sup(µ) ∼= sup(µ) and for any t ∈ [0, 1], µt 6= ∅ implies that there exists an
s ∈ [0, 1] such that µt ∼= νs and for any s ∈ [0, 1], νs 6= ∅ implies there exists a
t ∈ [0, 1] such that µs ∼= νt. We note that a replacement of sup(µ) ∼= sup(ν) by
sup(µ) = sup(ν) and µt ∼= νs by µt = νs transforms S∗-equivalence relation to
strong equivalence relation. For a finite group, if two fuzzy subgroups µ and ν
of a group G are equivalent using the definition of Murali and Makamba then
they are S∗-equivalent, but the converse may not always be true mainly because
two isomorphic groups may not be equal. So the equivalence relation used in
this dissertation defined in [81],[82],[83] is a special case of S∗-equivalence. In
computing the equivalence classes of fuzzy subgroups of finite groups, it is clear
that the number of distinct fuzzy subgroups will be reduced if S∗-equivalence
is used instead of the definition given by Murali and Makamba [81]. Another
difference between these two notions of equivalence is that in the infinite case
when dealing with the definition of equivalence given by Murali and Makamba
[81],[82],[83], the number of fuzzy subgroups of an infinite cyclic group with an
infinite number of membership values is infinite, but with S∗-equivalence it is
finite. So in [29] Degang et al emphasise the use of S∗-equivalence to classify
distinct fuzzy subgroups of infinite groups.
Mashinchi and Mukaidonon [75] proposed the following definition : µ is equiv-
alent to ν denoted µ ∼=t ν if there exist an isomorphism f from Supp µ to
Supp ν such that ∀x, y ∈ Supp µ we have µ(x) > ν(y) ⇔ ν(f(x)) > ν(f(y))
and Iranmanesh and Naraghi [55] gave the following definition: let G be a
group and µ, ν ∈ F (G), µ is equivalent to ν denoted µ ∼k ν if there exist
a one-to-one and onto function f : Fµ → Fν such that ∀µt ∈ Fµ µt

∼= f(µt).
We observe that for any finite group G and for any µ, ν ∈ F (G) if µ and ν
are equivalent in the sense of Mashinchi and Mukaidonon [75] then they are
equivalent in the sense of the definition of Iranmanesh and Naraghi [55].
On the other hand Naraghi [88] defined the equivalence of fuzzy subgroups as
follows, let µ, ν ∈ F (G), then µ is equivalent ν denoted µ ∼t ν if and only if
Fµ = Fν and Suppµ=Suppν. This definition is equivalent to the Murali and
Makamba’s [81].
Jain in [60] and Ajmal in [3] gave the following definition, two fuzzy subgroups
µ and ν are equivalent denoted µ ≈ ν if µ and ν have the same chain of level
subgroups, that is {µt}t∈Im µ = {νs}s∈Im ν . Firstly this definition is a variant
to the Murali and Makamba definition because it does not require finiteness of
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the group. Secondly unlike the Murali and Makamba definition that requires
that the supports be equal, Jain’s [60] in definition 2.13.10 uses the equality of
penultimate subgroups in place of supports. This definition basically says that
two fuzzy subgroups in an arbitrary group G that are equivalent necessarily
have the same penultimate subgroup but their supports may or may not be
different. It is also instructive to note that since sup µ ∈ Im µ, Inf µ ∈ Im
µ and sup µ > Inf µ ≥ 0. It is clear that if Sup µ = Inf µ then the definition of
Jain [60] and Ajmal [2] is the same as that of Murali and Makamba [81] since
both penultimate subgroups of µ and ν coincide with their supports. If Sup µ
> Inf µ, the definition of equivalence in the sense of Murali and Makamba [81]
implies equivalence in the sense of Ajmal[2] and Jain [60]. Lastly we observe
also that the two definitions coincide when the least element 0 in the evalua-
tion lattice [0, 1], 0 ∈ Im µ. This implies that Inf µ = 0 hence the supports
of µ and ν coincide with their penultimate subgroups. It is clear that the
definitions of Mordeson [78] and Ajmal [3] are a generalisation of the notion of
equality of sets, as is the definition of Mashinchi and Mukaidono in [75]. We
note also that the definitions of Mordeson [78] and Ajmal [3] are equivalent.
The Murali and Makamba [80] definition was developed for the case of finite
group whereas Jain’s [60]definition is for any arbitrary group.
The following proposition by Murali and Makamba [81] characterises a fuzzy
equivalence relation. It was further verified and improved by Degang et al in
[29].

Proposition 3.4.9 [81] Suppose µ and ν are two fuzzy subsets of X such that
µ is equivalent to ν. Then for each t ∈ [0, 1] there is an s ∈ [0, 1] such that
µt = νs or µt = ν−1(s, 1].

3.5 FUZZY ISOMORPHISM

In [100] Ray introduced his definition of isomorphic fuzzy groups, however
it has been shown that this definition of fuzzy isomorphism is weaker than
the Murali and Makamba [81] definition used in this dissertation. The same
authors in [87] classified the relationship between various notions of isomor-
phism. They compared this notion of isomorphism to that of an equivalence
relation of fuzzy subgroups of finite groups. They discovered that this notion
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of equivalence is finer than the notion of isomorphism. So this definition of
fuzzy isomorphism is a generalisation of the definition in [81] of fuzzy equiva-
lence. For a panorama on isomorphic fuzzy groups and isomorphism between
finite chains of subgroups, see Pruszyriska and Dudzicz in [99] and Ray [100],
Murali and Makamba [87]. For completeness, we begin by defining a group
homomorphism.

Definition 3.5.1 [47]. Let (G, θ) and (G
′

, ◦) be groups. A homomorphism is
a mapping f : G → G

′

such that f(aθb) = f(a) ◦ f(b), ∀a, b ∈ G.

Note 3.1.2: If f : G → G
′

is a homomorphism, by f(µ) we mean the image of
a fuzzy subset µ ofG and is a fuzzy subset ofG

′

defined by (f(µ))(g
′

)=sup{µ(g) :
g ∈ G, f(g) = g

′

} if f−1(g′) 6= ∅ and f(µ)(g
′

) = 0 if f−1(g
′

) = ∅ for g
′

∈ G
′

.
Similarly if ν is a fuzzy subset of G

′

, the pre-image of ν, f−1(ν) is a fuzzy
subset of G defined by (f−1(ν))(g) = ν(f(g)).
Exploiting the above definition, we now define a mapping that preserves both
structure and group operation.

Definition 3.5.2 [89]. An isomorphism is a homomorphism that is bijective.

Murali and Makamba in [81] gave the following definition of isomorphic fuzzy
subgroups:

Definition 3.5.3 . Let µ ∈ F (G) and ν ∈ F (G
′

). We say µ is fuzzy iso-
morphic to ν, denoted by µ ∼= ν, if and only if there exists an isomorphism
f : G → G

′

such that µ(x) > µ(y) ⇔ ν(f(x)) > ν(f(y)) and µ(x) = 0 ⇔
ν(f(x)) = 0.

Proposition 3.5.4 If µ ∼= ν then f(µ) ∼= f(ν).

Proposition 3.5.5 If µ ∼= ν in G
′

then f−1(µ) ∼= f−1(ν) in G.

Proof. Straightforward.
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Chapter 4

ON EQUIVALENCE OF FUZZY SUBGROUPS OF FINITE
ABELIAN p-GROUPS OF RANK TWO

4.1 INTRODUCTION

In the last few years, there has been a growing interest in the notion of a char-
acterisation of a fuzzy subgroup of a finite group. This has led to the study of
equivalence relations conducted by several researchers. It is a fact that without
any equivalence relation on a fuzzy subgroups of a finite group G, the number
of fuzzy subgroup is uncountable, even for the trivial group {e}. One of the
most important aspects that have been considered in this direction is the use
of an equivalence relation to classify fuzzy subgroups of a finite p-group. Thus
in [82], [84], [85] and [120], the number of distinct fuzzy subgroups for cyclic
groups of order pnqm (p, q primes) is determined, while [82] deals with this
number on a finite cyclic group of square-free order. Also, in [116] a recurrence
relation is obtained which can successfully be used to count the number of dis-
tinct fuzzy subgroups for two classes of finite abelian groups: (arbitrary) finite
cyclic groups and finite elementary abelian p-groups of the form Zp + Zp + Zp

where p is a prime number. An explicit formula is given for the first class in
[114]. For the case of finite hamiltonian groups, an interesting application has
been presented in [116]. Employing the equivalence relation studied in [81],
Saltürk and S,iap [103]managed to determine the nature and the number of
the fuzzy subgroups of the group of the form Zp + Zp + · · ·+ Zp for the same
prime number p. Remarkable results were obtained by S. Ngcibi in [94] and
[95] with an equivalence relation introduced in [81] to determine the number
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of fuzzy subgroups of a finite abelian p-group of rank two, specifically for the
forms Zpn + Zp and Zpn + Zpm for a fixed prime p and positive integers n and
m. This and others may be considered as a special case of our study.
The purpose of this chapter is first to review the studies conducted by Ngcibi
in [94] and [95] and further proceed with a brief discussion of the study per-
formed by Saltürk and S,iap [103]. This laid the foundation for our study. We
shall employ the natural equivalence relation introduced in [81] to determine
the number and nature of fuzzy subgroups of the group G = Zpn +Zp+Zp for
any fixed prime number p and n ∈ N. As a principle guide in determining the
number of these classes, we first find the number of maximal chains of G. We
also employ the definition of isomorphism given in chapter two to determine
the number of equivalence and non-isomorphic classes of fuzzy subgroups of
this group. We then compare the number of equivalence and isomorphic classes
for the group.

4.2 ON FUZZY SUBGROUPS OF p-GROUPS OF THE FORM
G = Zpn + Zp

4.2.1 Introduction

Before proceeding with the classification of the fuzzy subgroups ofG = Zpn + Zp,
we have to give a definition of a p-group and the notion of a cyclic p-group.
We also give two theorems on cyclic p-groups.

Definition 4.2.1 [43]. Let G be a group and p a prime. We say G is a
p-group if the order of every element of G is a power of p. That is, for all
g ∈ G, |g| = pk for some k depending on g.

Definition 4.2.2 [43]. Let G be a group and r be an element in G such that
G = {nr : n ∈ Z}, then G is referred to as a cyclic group. Such an element
r ∈ G is referred to as a generator of G and we denote such by G =< r >
which signifies that G is a cyclic group generated by r.

Definition 4.2.3 [43]. A cyclic p-group is a group G ∼= Zpn for some positive
integer n.
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4.2.2 On Maximal Chains and Fuzzy Subgroups of Zpn

The only maximal chain for a cyclic group Zpn is Zpn ⊃ Zpn−1 ⊃ Zpn−2 ⊃ · · · ⊃
{0}.
Here we will use the above maximal chain to show how non-equivalent fuzzy
subgroups are determined in this group. Now let us consider the maximal chain
Zpn ⊃ Zpn−1 ⊃ Zpn−2 ⊃ · · · ⊃ {0}. For 1 ≥ λ1 ≥ λ2 ≥ λ3 · · · ≥ λn−1 ≥ λn ≥ 0,
we define a fuzzy subgroup µ on Zpn such that: µ assumes λn on Zpn , λn−1 on
Zpn−1,λn−2 on Zpn−2,· · ·λ1 on Zp and 1 on 0. The above fuzzy subgroup is sim-
ply represented by 1λ1λ2λ3 · · ·λn−1λn. This group becomes Zp when n = 1 and
any fuzzy subgroup of Zp is equivalent to one of the following three: 11,1λ,10
by [81]. The trivial crisp subgroup Zp is denoted by 11 and the trivial sub-
group 0 by 10 whereas 1λ denotes the fuzzy subgroup µ(x) = 1 if x = 0 and
µ(x) = λ if x 6= 0.

Proposition 4.2.4 [81]. For any given natural number n, there are 2n+1 − 1
distinct fuzzy subgroup of Zpn .

Theorem 4.2.5 [43]. If a is a generator of a finite cyclic group G of order n ,
then the other generators ofG are elements of the form ra, where gcd (r, n) = 1.

Theorem 4.2.6 [43]. Every subgroup of a cyclic group is cyclic. Moreover ,
if | < a > | = n, then the order of any subgroup of < a > is a divisor of n, and
for each divisor k of n , the group < a > has exactly one subgroup of order k
which is < a

n
k >.

4.2.3 On Crisp Subgroups of G = Zpn + Zp

As a principle guide in classifying the number of distinct fuzzy subgroups of
the above group G, we first find the number of the crisp subgroups and the
maximal chains of G. We shall also give the number of non-isomorphic classes
of G.
We now use the examples below with specific prime numbers p= 2, 3, 5 and
positive integers n = 1, · · · , 4 as the starting point for our discussion.
For p= 2, 3, 5 and n = 1.
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Example 4.2.7 . (1) The group G = Z2+Z2 contains the following elements
{(0, 0), (0, 1), (1, 0), (1, 1)} and the following crisp subgroups: Z2+Z2, Z2+{0},
{0}+ Z2, < (1, 1) > and {(0, 0)}
(2) For G = Z3 + Z3, we have the following elements
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} and the following crisp
subgroups: Z3 + Z3, Z2 + {0}, {0}+ Z3 , < (1, 1) >, < (1, 2) > and {(0, 0)}
(3) The group G = Z5 + Z5 , has 25 elements and 8 crisp subgroups:
Z5 +Z5, Z5 + {0}, {0}+Z5 , < (1, 1) >, < (1, 2) >, < (1, 3) >, < (1, 4) > and
{(0, 0)}

From the above examples, we observed that the total number of crisp subgroups
in the group is being influenced by the prime p, n and the rank of the group.
Hence we have the following proposition.

Proposition 4.2.8 . The group G = Zp + Zp has np+ (n+ 2) crisp sub-
groups.

Proof. See [94]

4.2.4 The Number of Crisp Subgroups of G = Zp2 + Zp

Now let us enumerate the total number of crisp subgroups of the group above
where n = 2. We begin with p = 2 , 3 and 5
For p = 2 and n = 2, the group G = Z22 +Z2 has 8 elements and the following
subgroups: Z22 + Z2, Z22 + {0}, {0} + Z2 , < (1, 1) >, < (2, 0) >, < (2, 1) >,
< (2, 0), (0, 1) > and {(0, 0)}
For p = 3 and n = 2, G = Z32 +Z3, there are 27 elements and a total number
of 10 crisp subgroups, listed below:
Z32 + Z3, Z32 + {0}, {0} + Z3 , < (1, 1) >, < (1, 2) >, < (3, 0) >, < (3, 1) >,
< (3, 2) >, < (3, 0), (0, 1) > and {(0, 0)}
For p = 5 and n = 2, we have:
Z52 + Z5, Z52 + {0}, {0} + Z5 , < (1, 1) >, < (1, 2) >, < (1, 3) >, < (1, 4) >,
< (5, 0) >, < (5, 1) >, < (5, 2) >, < (5, 3) >, < (5, 4) >, < (5, 0), (0, 1) > and
{(0, 0)}
Next, we look at the crisp subgroups of G = Zp3 + Zp

For G = Z23 + Z2, there are 16 elements and 11 crisp subgroups: Z23 + Z2,
Z23 + {0}, {0}+ Z2 , < (1, 1) >, < (2, 0) >, < (2, 1) >, < (4, 0) >, < (4, 1) >,
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< (2, 0), (0, 1) >, < (4, 0), (0, 1) > and {(0, 0)} .
For G = Z33 + Z3, there are 81 elements and 14 crisp subgroups: Z33 + Z3,
Z33 + {0}, {0}+ Z3 , < (1, 1) >, < (1, 2) >, < (3, 0) >, < (3, 1) >, < (3, 2) >,
< (9, 0) >, < (9, 1) >, < (9, 2) >, < (3, 0), (0, 1) >, < (9, 0), (0, 1) > and
{(0, 0)}
For p = 5, we have the following crisp subgroups:
Z53 +Z5, Z53 + {0}, {0}+Z5 , < (1, 1) >, < (1, 2) >, < (1, 3) >, < (1, 4) >, <
(5, 0) >, < (5, 1) >, < (5, 2) >, < (5, 3) >, < (5, 4) >, < (25, 0) >, < (25, 1) >,
< (25, 2) > < (25, 3) > < (25, 4) >, < (5, 0), (0, 1) >, < (25, 0), (0, 1) > and
{(0, 0)}
Now let’s consider G = Zp4 + Zp and p = 2, 3 and 5. We obtain the following
crisp subgroups:
For p = 2: Z24 +Z2, Z24 + {0}, {0}+Z2 , < (1, 1) >, < (2, 0) >, < (2, 1) >, <
(4, 0) >, < (4, 1) >, < (8, 0) >, < (8, 1) >, < (2, 0), (0, 1) >, < (4, 0), (0, 1) >,
< (8, 0), (0, 1) > and {(0, 0)} .
For p = 3: Z34 + Z3, Z34 + {0}, {0} + Z3 , < (1, 1) >, < (1, 2) >, < (3, 0) >,
< (3, 1) >, < (3, 2) >, < (9, 0) >, < (9, 1) >, < (9, 2) >, < (27, 0) >,
< (27, 1) >, < (27, 2) >, < (3, 0), (0, 1) >, < (9, 0), (0, 1) > < (27, 0), (0, 1) >
and {(0, 0)}
For p = 5: Z54 + Z5, Z54 + {0}, {0} + Z5 , < (1, 1) >, < (1, 2) >, < (1, 3) >,
< (1, 4) >, < (5, 0) >, < (5, 1) >, < (5, 2) >, < (5, 3) >, < (5, 4) >,
< (25, 0) >, < (25, 1) >, < (25, 2) > < (25, 3) > < (25, 4) >, < (125, 0) >,
< (125, 1) >, < (125, 2) >, < (125, 3) >, < (125, 4) >, < (5, 0), (0, 1) >,
< (25, 0), (0, 1) >, < (125, 0), (0, 1) > and {(0, 0)}
Based on the above examples, we conjecture a generalisation for the total num-
ber of crisp subgroups of the group G = Zpn + Zp in the form of a theorem

Theorem 4.2.9 . The group G = Zpn + Zp has n(p+ 1) + 2 subgroups.

Proof. By induction on n. Let G = Zpn + Zp. Then G has the following maxi-
mal subgroups: Zpn−1 + Zp; Zpn + 0; < (k, 1) > for k = 1, 2, 3 · · · , p − 1. This
gives p + 1 maximal subgroups. Clearly the theorem is true for n = 1 since
Zp + Zp has p + 3 subgroups. Assume the theorem is true for any k < n. Let
G = Zpk+1 + Zp. So G has the maximal subgroups Zpk + Zp; Zpn +0; < (s, 1) >
for s = 1, 2, 3 · · · , p−1. By induction, Zpk+Zp has k(p+1)+2 subgroups. Each
cyclic maximal subgroup contributes only itself. Adding all the subgroups of G
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gives the total number of subgroups to be k(p+1)+2+p+1 = (k+1)(p+1)+2.
This completes the proof. ✷

4.2.5 On Maximal Chains of G = Zpn + Zp

Without maximal chains, it will be tedious if not impossible to determine the
total number of fuzzy subgroups in a group. We begin our discussion by first
defining a maximal chain and then proceed with specific examples based on
the above group. We also provide some few results in the form of lemmas.

Definition 4.2.10 . A chain of subgroups of the group G is said to be maxi-
mal if it cannot be refined any more or no more subgroups can be inserted in
the chain.

Definition 4.2.11 [89]. In a maximal chain δ on G, a subgroup that dis-
tinguishes the maximal chain from others is called a distinguishing factor. If
there is more that one such subgroups, they are called distinguishing factors.

EXAMPLES OF MAXIMAL CHAINS For p = 3 and n = 3, we obtain the
following maximal chains:
G ⊇ Z33 + {0} ⊇< (3, 0) >⊇< (9, 0) >⊇ {(0, 0)}
G ⊇< (1, 1) >⊇< (3, 0) >⊇< (9, 0) >⊇ {(0, 0)}
G ⊇< (1, 2) >⊇< (3, 0) >⊇< (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (3, 0) >⊇< (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (3, 1) >⊇< (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (3, 2) >⊇< (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇ {0}+ Z3 ⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (9, 1) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (9, 2) >⊇ {(0, 0)}.

For p = 5 and n = 3, we obtain the following maximal chains:
G ⊇ Z53 + {0} ⊇< (5, 0) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (1, 1) >⊇< (5, 0) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (1, 2) >⊇< (5, 0) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (1, 3) >⊇< (5, 0) >⊇< (25, 0) >⊇ {(0, 0)}
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G ⊇< (1, 4) >⊇< (5, 0) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 0) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 1) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 2) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 3) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 4) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇ {0}+ Z5 ⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 1) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 2) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 3) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 4) >⊇ {(0, 0)}.

For p = 3 and n = 4, we obtain the following maximal chains:
G ⊇ Z34 + {0} ⊇< (3, 0) >⊇< (9, 0) >⊇ 〈(27, 0) >⊇ {(0, 0)}
G ⊇< (1, 1) >⊇< (3, 0) >⊇< (9, 0) >⊇< (27, 0) >⊇ {(0, 0)}
G ⊇< (1, 2) >⊇< (3, 0) >⊇< (9, 0) >⊇< (27, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (3, 0) >⊇<⊇< (27, 0) > (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (3, 1) >⊇<⊇< (27, 0) > (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (3, 2) >⊇<⊇< (27, 0) > (9, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (9, 0) >⊇< (27, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (9, 1) >⊇< (27, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (9, 2) >⊇< (27, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (0, 1) , (27, 0) >⊇< (27, 0) >⊇

{(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (0, 1) , (27, 0) >⊇< (27, 1) >⊇

{(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (0, 1) , (27, 0) >⊇< (27, 2) >⊇

{(0, 0)}
G ⊇< (0, 1) , (3, 0) >⊇< (0, 1) , (9, 0) >⊇< (0, 1) , (27, 0) >⊇ {0} + Z3 ⊇

{(0, 0)}.
Note: 4.1.1. Looking at the maximal chains above, we observe that the
length of each maximal chain is given by n+ 2, where n ∈ N is the exponent
and 2 is the rank of the group.
For any natural number n, we have the following numbers of maximal chains:

Lemma 4.2.12 G = Zp + Zp has p+ 1 maximal chains.
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Lemma 4.2.13 G = Zp2 + Zp has 2p+ 1 maximal chains. (For n = 2)

Lemma 4.2.14 G = Zp3 + Zp has 3p+ 1 maximal chains. (For n = 3)

In general, for n ∈ N and any prime number p, we have the following:

Proposition 4.2.15 [94]. G = Zpn+Zp has (n− 1) (p− 1)+(p+ 1)+(n− 1)
maximal chains.

Proof. See [94].

4.2.6 On Keychains

In this subsection we examine what is called a keychain which inherently re-
sulted in the study of fuzzy subsets of a finite set X. These membership grades
of elements of X are considered in the unit interval. We will first recall the
basic definitions and some pertinent known results on keychains and then dis-
cuss usefulness of keychains in the counting of distinct fuzzy subgroups of a
group in this subsection.

Definition 4.2.16 By [82]. A collection of real numbers on [0, 1] of the form
1 > λ1 > λ2 · · · > λn−1 > λn, where the last entry may or may not be zero is
called a finite n-chain. This is usually expressed in the descending order as
1λ1λ2 · · ·λn.

Definition 4.2.17 [82]. The numbers 1, λ1, · · · , λn−1, λn are referred to as
pins. Observe that 1 occupies the first position whilst λi occupies the (i +
1)th position for i = 1, 2, 3 · · · , n. Thus the length of an n-chain is n+ 1, and
hence the n-chain contains n+ 1 available positions.

These positions will be indispensable in our further discussions.

Definition 4.2.18 . An n-chain is called a keychain if 1 ≥ λ1 ≥ λ2 ≥ λ3 · · ·
≥ λn−1 ≥ λn.
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Note: 4.1.2. The pins in a keychain may either be distinct or not. The
keychain with only pins 1 and 0 can be considered as a crisp set.

Definition 4.2.19 [83]. A flag on a finite group G is an increasing maximal
chain of n+ 1 subgroups of G starting with the trivial subgroup {0}.

Definition 4.2.20 [83]. Let ξ be a flag on G and ι be a keychain. The pair
{ξ, ι} is called a pinned-flag and we represent it as follows: 01 ⊂ Gλ1

1 ⊂ Gλ2

2 ⊂
Gλ3

3 ⊂ · · · ⊂ Gλn
n .

4.3 ENUMERATING NON-EQUIVALENT FUZZY SUBGROUPS

There are various techniques that are used in the counting of distinct fuzzy
subgroups of a finite group. These counting techniques are derived from the
interpretation of the definition of fuzzy equivalence relations used. In this
section we give a brief explanation of the two counting techniques used in
the enumeration of distinct equivalence classes of fuzzy subgroups. Maximal
subgroups, maximal chains (flags) of the group and distinguishing factors of a
flag play a pivotal role in the enumeration process. Basically the procedure is
to list down the maximal subgroups of the group first and then form maximal
chains of the group.
For instance, if we consider the following maximal chains
G ⊇ Z22 + {0} ⊇< (2, 0) >⊇ {(0, 0)}
G ⊇< (1, 1) >⊇< (2, 0) >⊇ {(0, 0)}
G ⊇< (0, 1), (2, 0) >⊇< (2, 0) >⊇ {(0, 0)}
G ⊇< (0, 1), (2, 0) >⊇< (2, 1) >⊇ {(0, 0)}
G ⊇< (0, 1), (2, 0) >⊇ {0}+ Z2 ⊇ {(0, 0)}

of the finite group G = Z22 + Z2, we notice the following:
(i). With n = 2, there are 2n+1 − 1 distinct equivalence classes of fuzzy
subgroups contributed by the first chain [81].
(ii) The next maximal chain contributes a number excluding those counted in
chain (i) and it follows in that order till we exhaust all the maximal chains.
We assert this idea in the following propositions:

Proposition 4.3.1 . Suppose G has the following maximal chains G = An ⊃
An−1 ⊃ An−2 ⊃ · · · ⊃ A0 (i), G = Bn ⊃ Bn−1 ⊃ Bn−2 ⊃ · · · ⊃ B0 (ii) and
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a third maximal chain G = Cn ⊃ Cn−1 ⊃ Cn−2 ⊃ · · · ⊃ C0(iii) distinct from
(i) and (ii), and suppose ∃j ∈ N such that Bj 6= Aj,Cj 6= Bj and Cj 6= Aj,
then the number of distinct fuzzy subgroups contributed by (ii) is equal to the
number contributed by (iii) for n ≥ 2

Proof. See [89]

Proposition 4.3.2 [89]. In the course of enumerating distinct fuzzy sub-
groups, let the first maximal chain have 2n+1 − 1 fuzzy subgroups. Suppose
chain (i) has a distinguishing factor, then the number of fuzzy subgroups of
maximal chain (i), i 6= 1 is equal to 2n+1

2
for n ≥ 3.

Proposition 4.3.3 [89]. In the process of counting fuzzy subgroups, let (k)
be a maximal chain G = Kn ⊃ Kn−1 ⊃ Kn−2 ⊃ · · · ⊃ K0 such that all the
Ki’s have appeared in some previous maximal chain (i) for i = 1, 2, 3, ..., k and
have been used as distinguishing factors. If a pair of subgroups in the chain
has not appeared in any previous chain, then the number of fuzzy subgroups
of (k) is equal to 2n+1

22
for n ≥ 3.

Note 4.1.4: If there is no distinguishing factor (new subgroup) in a maximal
chain (i) but there is a new pair or a distinguishing pair (not used in the i− 1
chains) then the number of fuzzy subgroups of the maximal chain (i) is equal
to 2n+1

22
. Inductively, if there is no distinguishing pair of subgroups but there is

a distinguishing triple of subgroups in (i), then the number of fuzzy subgroups
contributed by the maximal chain (i),is equal to 2n+1

23
. Thus this argument

continues inductively.

4.4 COMPUTATION OF DISTINCT FUZZY SUBGROUPS
USING KEYCHAINS APPROACH

INTRODUCTION. Here we will start by looking at how keychains are used
in determining the number of distinct fuzzy subgroups of a finite group. This
approach makes use of the crisp properties of a finite group G, amongst are
the maximal subgroups that are used to generate the maximal chains (flags),
followed by the lengths of the maximal chains of the group. This length al-
lows us to discover the number of pins or the levels in every keychain and
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lastly the number of maximal chains of the group. Through the levels, we are
then able to list down all the potential keychains that correspond to the fuzzy
subgroups. We know for a fact that every one of the keychains corresponds
to fuzzy subgroups, and the number of distinct fuzzy subgroups exclusively
depends on the number of flags of the finite group G as well as the nature of
the keychain itself. Moreover, we know that a flag with n levels can be char-
acterised by 2n − 1 keychains. This enumerating method requires that, once
the entire flags of the group G are cataloged , we choose a keychain and “run”
it on every maximal chain of the group G to obtain the number of distinct
fuzzy subgroups it contributes. Subsequently, we select a second keychain and
repeat the technique until the entire keychains are exhausted. This procedure
needs to be executed diligently to prevent over-counting. To obtain the total
number of the distinct fuzzy subgroups for the entire group, we sum all distinct
fuzzy subgroups obtained from every keychain. We use the example below to
explicitly illustrate this technique.

Example 4.4.1 . Consider G = Z3 + Z3 = {(0, 0), (0, 1), (0, 1), (1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (2, 2)} and let Z3 + Z3, Z2 + {0}, {0} + Z3 , < (1, 1) >,
< (1, 2) > and {(0, 0)} be the subgroups of G where (0, 0) is the identity ele-
ment. There are four maximal chains or flags for this group. These are:
Z3 + Z3 ⊇ Z3 + {0} ⊇ {(0, 0)}
Z3 + Z3 ⊇ {0}+ Z3 ⊇ {(0, 0)}
Z3 + Z3 ⊇< (1, 1) >⊇ {(0, 0)}
Z3 + Z3 ⊇< (1, 2) >⊇ {(0, 0)}
We notice that each maximal chain or flag is of length three, hence we can
characterise each fuzzy subgroup by a keychain with three pins and in fact we
have 23 − 1 = 7 such keychains, viz.
111 11λ 110 1λλ 1λβ 1λ0 100
Now to get the total number of distinct equivalence classes of fuzzy subgroups
we use all the seven keychains on the four flags as follows:
We define fuzzy subgroups µ,ν,γ, and φ on the 4 flags respectively to be repre-

sented by the keychain 11λ. Thus µ(x) =







1 if x = (0, 0)
1 if x ∈ Z3 + {0} \ {(0, 0)}
λ if x ∈ Z3 + Z3 \ Z3 + {0}

.
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ν(x) =







1 if x = (0, 0)
1 if x ∈ {0}+ Z3 \ {(0, 0)}
λ if x ∈ Z3 + Z3 \ {0}+ Z3

.

γ(x) =







1 if x = (0, 0)
1 if x ∈< (1, 1) > \{(0, 0)}
λ if x ∈ Z3 + Z3\ < (1, 1) >

.

φ(x) =







1 if x = (0, 0)
1 if x ∈< (1, 2) > \{(0, 0)}
λ if x ∈ Z3 + Z3\ < (1, 2) >

.

It is clear that all 4 fuzzy subgroups are distinct because they are defined
on distinct maximal chains although each is represented by the keychain 11λ.
Thus we say the keychain 11λ yields 4 distinct fuzzy subgroups. Similarly each
of the keychains 1λβ, 1λ0 and 110 yields 4 distinct fuzzy subgroups. Each of
the remaining 3 keychains 111, 1λλ and 100 yields only one fuzzy subgroup µi

as follows:
µ1(x) = 1 for all x ∈ G

µ2(x) =

{

1 if x = (0, 0)
λ otherwise

µ3(x) =

{

1 if x = (0, 0)
0 otherwise

Hence the total number of distinct fuzzy subgroups ofG is equal to 4+4+1+3 =
19.
This counting technique used in the above example can be very cumbersome.
Thus for the remainder of the dissertation we use the earlier counting tech-
nique.

4.5 COUNTING THE TOTAL NUMBER OF NON-EQUIVALENT
FUZZY SUBGROUPS OF G = Zpn + Zp FOR n ≥ 1

In this section we will look at how to generalise the counting of non-equivalent
fuzzy subgroups. First we list some useful results for a rank 2 abelian group.

Proposition 4.5.1 [94]. G = Zp + Zp has 4p+ 7 non-equivalent fuzzy sub-
groups.
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Proposition 4.5.2 [94]. G = Zp2 +Zp has 16p+ 15 distinct fuzzy subgroups.

Proposition 4.5.3 [94]. G = Zp3 +Zp has 48p+ 31 distinct fuzzy subgroups.

More generally, we have the following

Theorem 4.5.4 By [95]. Zpn +Zp has 2
n+1C(n, 1)p+ 2n+2 − 1 distinct fuzzy

subgroups.

4.6 ISOMORPHIC CLASSES OF FUZZY SUBGROUPS OF G =
Zpn + Zp

Before we start dealing with the isomorphic classes of fuzzy subgroups of Zpn+
Zp, let us recall that two or more flags or maximal chains are said to be
isomorphic if their lengths are equal and their corresponding components are
isomorphic subgroups.

Example 4.6.1 . Here we give an example for the case p = 5 and n = 4
which will facilitate our discussion on how to determine the number of non-
isomorphic classes of fuzzy subgroups in the group G = Zpn +Zp. Consider all
the maximal chains of G as listed below:
G ⊇ Z54 + {0} ⊇< (5, 0) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (1, 1) >⊇< (5, 0) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (1, 2) >⊇< (5, 0) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (1, 3) >⊇< (5, 0) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (1, 4) >⊇< (5, 0) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 0) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 1) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 2) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 3) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (5, 4) >⊇< (25, 0) >⊇< (125, 0) >⊇ {(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 0) >⊇< (125, 0) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 1) >⊇< (125, 0) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 2) >⊇< (125, 0) >⊇

{(0, 0)}
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G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 3) >⊇< (125, 0) >⊇
{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (25, 4) >⊇< (125, 0) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (0, 1) , (125, 0) >⊇< (125, 0) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (0, 1) , (125, 0) >⊇< (125, 1) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (0, 1) , (125, 0) >⊇< (125, 2) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (0, 1) , (125, 0) >⊇< (125, 3) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (0, 1) , (125, 0) >⊇< (125, 4) >⊇

{(0, 0)}
G ⊇< (0, 1) , (5, 0) >⊇< (0, 1) , (25, 0) >⊇< (0, 1) , (125, 0) >⊇ {0} + Z5 ⊇

{(0, 0)}

Looking closely at the above maximal chains, we can see that the first five
chains are isomorphic, so they can be collapsed and considered as one, and
consequently they yield 24+2 − 1 = 26 − 1 distinct fuzzy subgroups. The
next five maximal chains are distinguished from the first five by the subgroup
< (0, 1), (5, 0) > and they are isomorphic. Thus they can be collapsed into a
single maximal chain, yielding 25 distinct fuzzy subgroups by Proposition 4.3.2
and the discussion thereafter. The next five maximal chains are distinguished
from the first and the second five by the subgroup < (0, 1), (25, 0) > and they
too are isomorphic. Thus they can be collapsed into a single maximal chain,
yielding 25 distinct fuzzy subgroups by Proposition 4.3.2 and the discussion
immediately following the proposition. The remaining five maximal chains are
distinguished from the first fifteen by the subgroup < (0, 1), (125, 0) > and
are also isomorphic. So they too can be collapsed into a single maximal chain
yielding 25 distinct fuzzy subgroups as in the other cases. Hence the total
number of non-isomorphic fuzzy subgroups of G is 26 − 1 + 25 + 3.
Note: 4.1.5. In the group G = Zpn + Zp, we notice that there is only one
maximal chain up to isomorphism for n = 1, while for n ≥ 2, the group Zpn+Zp

has n maximal chains up to isomorphism. We state this fact as a theorem.
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Theorem 4.6.2 . The group G = Zpn + Zp has n non-isomorphic maximal
chains.

Proof. Let n = 1. Then G = Zp + Zp can only have one maximal chain up to
isomorphism. Suppose Zpk + Zp has k maximal chains. Let G = Zpk+1 + Zp.
Then the maximal subgroups ofG are Zpk+1+0 and Zpk+Zp up to isomorphism.
By induction, Zpk+Zp has k maximal chains while Zpk+1+0 has only 1 maximal
chain up to isomorphism. Thus G has k + 1 non-isomorphic maximal chains.
This completes the proof.

Theorem 4.6.3 . The total number of non-isomorphic fuzzy subgroups of
G = Zpn + Zp is equal to 2n+2 − 1 + (n− 1)2n+1.

Proof. Each maximal chain (up to isomorphism) of G has a single distinguish-
ing factor (subgroup). Thus the number of non-isomorphic fuzzy subgroups
is equal to 2n+2 − 1 + (n− 1)2n+1 since there are n maximal chains (up to
isomorphism) in total. This completes the proof.
Observe that for p = 5 and n = 4, the formula gives the number of distinct
fuzzy subgroups as 26 − 1 + 25 + 3 which agrees with the previous example
4.6.1.
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Chapter 5

CRISP SUBGROUPS AND MAXIMAL CHAINS OF
G = Zpn + Zp + Zp

5.1 INTRODUCTION

The counting of distinct (non-equivalent) fuzzy subgroups, as indicated earlier
in the previous chapters, uses maximal chains of crisp subgroups. In this re-
gard, there are more non-equivalent fuzzy subgroups in any group of order at
least 2, than crisp subgroups. Delsarte [30] in 1948 studied all subgroups of a
given group, Vogt [119] also studied the lattice of subgroups.
A group of the form (Zp)

n is called an elementary abelian p-group for a prime
number p. In our study of subgroups of Zpn + (Zp)

2, we will make use of the
well-known formulae
1. 1 + p + p2 + p3 + · · · + pdG−1 for the number of maximal subgroups of a
p-group G where dG is the rank of G. The rank of a group G is the minimal
number of generators of G.

2.
∏n−1

k=0
pm−k−1
pn−k−1

for the number of subgroups of order pn in a p-group G of

order pm. [106]
Thomas Stehling [109] in 1992 considered how to compute the number of sub-
groups of a finite abelian group. A new method of proving some classical
theorems of abelian groups was established by T ărnăuceanu [112] in 2007 and
subsequently he presented an arithmetic method of counting the subgroups of
a finite abelian group[113] in 2010. On the other hand, Grigore Călugăreanu
[16] also worked on the total number of subgroups of a finite abelian group.
Mario Hampejs and László T óth [50] worked on the subgroups of finite abelian
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groups of rank three and proposed that the total number of subgroups of

(Zp)
3 = Zp+Zp+Zp is given by s(p) =

∑3
k=0

[

3

k

]

= 2 (p2 + p+ 2) where

[

3

k

]

is

the Gaussian coefficient, for 0 ≤ k ≤ 3, and an arbitrary positive integer 1 ≤
p ≤ 50. M. T ărnăuceanu and L. Bentea [116] successfully used a recurrence
relation studied in [116] to count the number of distinct fuzzy subgroups for
two classes of finite abelian groups, namely finite cyclic groups and finite ele-
mentary abelian p-groups and have given an explicit formula for the number
of fuzzy subgroups of Zp + Zp + Zp where p is a prime. Esengul Salturk and
Irfan Siap [103] used the equivalence relation defined by Murali and Makamba
in [81] to study the structure of equivalence classes of fuzzy subgroups of Zn

p

for any given prime p and positive integer n indicating the rank of the group.
These studies however, centered only on the cases where the prime p is of an
exponent one (1). In this dissertation we use the equivalence relation studied
in [81] to study the structure of equivalence classes of fuzzy subgroups of a fi-
nite abelian group of rank three. Our focus is on the group G = Zpn +Zp+Zp

for n ≥ 1 and a fixed prime number p. In what follows, we manually list all
the crisp subgroups in this particular group using the prime number p = 2, 3, 5
and 7 and n = 1, 2, 3, 4 as representative, leading to a generalisation of the
crisp subgroups of the group G = Zpn + Zp + Zp for any natural number n.
We also construct their respective maximal chains and give a general formula
for the number of the maximal chains of G.

5.2 ON CRISP SUBGROUPS OF
G = Zpn + Zp + Zp

Proposition 5.2.1 The group G = Zp + Zp + Zp has 2p2 + 2p+ 4 subgroups.

Proof. By [94], the group Zp + Zp has p + 3 subgroups. Now any maximal
subgroup of G is isomorphic to H = Zp + Zp + 0 of order p2. The number of
such maximal subgroups is σ1 = 1 + p + p2 + p3 + · · · + pdG−1 with dG = 3.
Thus σ1 = 1 + p+ p2.

Next the number of subgroups of order p is σ1 =
∏n−1

k=0
pm−k−1
pn−k−1

. Now m = 3

and n = 1, thus σ1 = p3−1
p−1

= p2 + p + 1. Adding the two trivial subgroups 0

and G, the total number of subgroups of G is 2p2 + 2p+ 4. ✷
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Now we aim to find a simple formula for the number of subgroups of the group
G = Zpn + Zp + Zp. So next we consider the case when p = 2 and n = 2. We
manually computed the number of subgroups to be 27 = 2(2.2.2 + 2 + 1) +
3 + 2.
For p = 3 and n = 2, we manually computed the number of subgroups to be
50 = 3(2.3.2 + 2 + 1) + 3 + 2.
Proceeding inductively, the number of subgroups of G = Zp2 + Zp+ Zp is equal
to p(2pn+ n+ 1) + 3 + n.
In order to observe a clear pattern, we start by manually listing all the crisp
subgroups contained in the group G = Zpn +Zp+Zp for p = 2, 3, 5 and 7 when
n is 2.
Now for p = 2 and n = 2, the group G = Z22 +Z2+Z2 has 27 crisp subgroups,
as listed below:
Z22 +Z2 +Z2, Z22 +Z2 + {0}, Z22 + {0}+Z2, {0}+Z2 +Z2, Z22 + {0}+ {0},
{0}+ Z2 + {0}, {0}+ {0}+ Z2, < (0, 1, 1) >, < (1, 1, 1) >, < (1, 1, 0) >,
< (1, 0, 1) >, < (2, 0, 0) >, < (2, 0, 1) >, < (2, 1, 0) >, < (2, 1, 1) >,
< (1, 1, 1), (1, 1, 0) >, < (1, 1, 1), (1, 0, 1) >, < (1, 1, 1), (0, 1, 1) >,
< (1, 1, 0), (1, 0, 1) >, < (2, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (2, 0, 0), (2, 1, 0) >, < (2, 0, 0), (2, 0, 1) >, < (2, 1, 0), (0, 1, 1) >,
< (2, 1, 0), (2, 1, 1) >, < (2, 1, 1), (0, 1, 1) >, < (2, 1, 1), (2, 0, 1) >
and {(0, 0, 0)}
Now for p = 3 and n = 2, the group G = Z32 +Z3+Z3 has 50 crisp subgroups,
as listed below:
Z32 + Z3 + Z3, Z32 + Z3 + {0}, Z32 + {0}+ Z3, {0}+ Z3 + Z3,
Z32 + {0}+ {0}, {0}+ Z3 + {0}, {0}+ {0}+ Z3, < (0, 1, 1) >,
< (0, 1, 2) >, < (1, 0, 1) >, < (1, 0, 2) >, < (1, 1, 0) >,
< (1, 1, 1) >, < (1, 1, 2) >, < (1, 2, 0) >, < (1, 2, 1) >, < (1, 2, 2) >,
< (1, 1, 0), (1, 1, 1) >, < (1, 1, 0), (1, 2, 1) >, < (1, 1, 0), (1, 2, 2) >,
< (1, 1, 1), (1, 2, 0) >, < (1, 1, 1), (1, 2, 1) >, < (1, 1, 1), (1, 2, 2) >,
< (1, 1, 2), (1, 2, 0) >, < (1, 1, 2), (1, 2, 1) >, < (1, 1, 2), (1, 2, 2) >,
< (1, 2, 0), (1, 2, 1) >, < (3, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (3, 0, 0) >, < (3, 0, 1) >, < (3, 0, 2) >, < (3, 1, 0) >, < (3, 1, 1) >,
< (3, 1, 2) >, < (3, 2, 0) >, < (3, 2, 1) >, < (3, 2, 2) >,
< (3, 0, 0), (3, 0, 1) >, < (3, 0, 0), (3, 1, 0) >, < (3, 0, 0), (3, 1, 1) >,
< (3, 0, 0), (3, 1, 2) >, < (3, 1, 0), (3, 1, 1) >, < (3, 1, 0), (3, 2, 1) >,
< (3, 1, 0), (3, 2, 2) >, < (3, 1, 1), (3, 2, 0) >, < (3, 1, 1), (3, 2, 1) >,
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< (3, 1, 2), (3, 2, 0) >, < (3, 1, 2), (3, 2, 2) >, < (3, 2, 0), (3, 2, 1) >, and {(0, 0, 0)}.
For p = 5 and n = 2, the group G = Z52+Z5+Z5 contains 120 crisp subgroups,
as listed below:
Z52 +Z5 +Z5, Z52 +Z5 + {0}, Z52 + {0}+Z5, {0}+Z5 +Z5, Z52 + {0}+ {0},
{0} + Z5 + {0}, {0} + {0} + Z5, < (0, 1, 1) >, < (0, 1, 2) >, < (0, 1, 3) >,
< (0, 1, 4) >,
< (1, 0, 1) >, < (1, 0, 2) >, < (1, 0, 3) >, < (1, 0, 4) >, < (1, 1, 0) >,
< (1, 1, 1) >, < (1, 1, 2) >, < (1, 1, 3) >, < (1, 1, 4) >, < (1, 2, 0) >,
< (1, 2, 1) >, < (1, 2, 2) >, < (1, 2, 3) >, < (1, 2, 4) >, < (1, 3, 0) >,
< (1, 3, 1) >, < (1, 3, 2) >, < (1, 3, 3) >, < (1, 3, 4) >, < (1, 4, 0) >,
< (1, 4, 1) >, < (1, 4, 2) >, < (1, 4, 3) >, < (1, 4, 4) >,
< (1, 1, 0), (1, 1, 1) >, < (1, 1, 0), (1, 2, 1) >, < (1, 1, 0), (1, 2, 2) >,
< (1, 1, 0), (1, 2, 3) >, < (1, 1, 0), (1, 2, 4) >, < (1, 1, 1), (1, 2, 0) >,
< (1, 1, 1), (1, 2, 1) >, < (1, 1, 1), (1, 2, 2) >, < (1, 1, 1), (1, 2, 3) >,
< (1, 1, 1), (1, 2, 4) >, < (1, 1, 2), (1, 2, 0) >, < (1, 1, 2), (1, 2, 1) >,
< (1, 1, 2), (1, 2, 2) >, < (1, 1, 2), (1, 2, 3) >, < (1, 1, 2), (1, 2, 4) >,
< (1, 1, 3), (1, 2, 0) >, < (1, 1, 3), (1, 2, 1) >, < (1, 1, 3), (1, 2, 2) >,
< (1, 1, 3), (1, 2, 3) >, < (1, 1, 3), (1, 2, 4) >, < (1, 1, 4), (1, 2, 0) >,
< (1, 1, 4), (1, 2, 1) >, < (1, 1, 4), (1, 2, 2) >, < (1, 1, 4), (1, 2, 3) >,
< (1, 1, 4), (1, 2, 4) >, < (1, 2, 0), (1, 2, 1) >, < (1, 3, 0), (1, 3, 1) >,
< (1, 4, 0), (1, 4, 1) >, < (5, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (5, 0, 0) >, < (5, 0, 1) >, < (5, 0, 2) >, < (5, 0, 3) >, < (5, 0, 4) >,
< (5, 1, 0) >, < (5, 1, 1) >, < (5, 1, 2) >, < (5, 1, 3) >, < (5, 1, 4) >,
< (5, 2, 0) >, < (5, 2, 1) >, < (5, 2, 2) >, < (5, 2, 3) >, < (5, 2, 4) >,
< (5, 3, 0) >, < (5, 3, 1) >, < (5, 3, 2) >, < (5, 3, 3) >, < (5, 3, 4) >,
< (5, 4, 0) >, < (5, 4, 1) >, < (5, 4, 2) >, < (5, 4, 3) >, < (5, 4, 4) >,
< (5, 0, 0), (5, 0, 1) >, < (5, 0, 0), (5, 1, 0) >, < (5, 0, 0), (5, 1, 1) >,
< (5, 0, 0), (5, 1, 2) >, < (5, 0, 0), (5, 1, 3) >, < (5, 0, 0), (5, 1, 4) >,
< (5, 1, 0), (5, 1, 1) >, < (5, 1, 0), (5, 2, 1) >, < (5, 1, 0), (5, 2, 2) >,
< (5, 1, 0), (5, 2, 3) >, < (5, 1, 0), (5, 2, 4) >, < (5, 1, 1), (5, 2, 0) >,
< (5, 1, 1), (5, 2, 1) >, < (5, 1, 1), (5, 2, 3) >, < (5, 1, 1), (5, 2, 4) >,
< (5, 1, 2), (5, 2, 0) >, < (5, 1, 2), (5, 2, 1) >, < (5, 1, 2), (5, 2, 2) >,
< (5, 1, 2), (5, 2, 3) >, < (5, 1, 3), (5, 2, 0) >, < (5, 1, 3), (5, 2, 2) >,
< (5, 1, 3), (5, 2, 3) >, < (5, 1, 3), (5, 2, 4) >, < (5, 1, 4), (5, 2, 0) >,
< (5, 1, 4), (5, 2, 1) >, < (5, 1, 4), (5, 2, 2) >, < (5, 1, 4), (5, 2, 4) >,
< (5, 2, 0), (5, 2, 1) >, < (5, 3, 0), (5, 3, 1) >, < (5, 4, 0), (5, 4, 1) >,
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and {(0, 0, 0)}.
For p = 7 and n = 2, the group G = Z72+Z7+Z7 contains 222 crisp subgroups.
However, we do not list them here as they are too numerous.
Next we consider all the subgroups of the group G = Zpn + Zp + Zp for
p = 2, 3, 5, 7 and n = 3.
Now for p = 2 and n = 3, the group G = Z23 +Z2+Z2 has 38 crisp subgroups,
as listed below:
Z23 +Z2 +Z2, Z23 +Z2 + {0}, Z23 + {0}+Z2, {0}+Z2 +Z2, Z23 + {0}+ {0},
{0}+ Z2 + {0}, {0}+ {0}+ Z2, < (0, 1, 1) >, < (1, 1, 1) >, < (1, 1, 0) >,
< (1, 0, 1) >, < (2, 0, 0) >, < (2, 0, 1) >, < (2, 1, 0) >, < (2, 1, 1) >,
< (1, 1, 1), (1, 1, 0) >, < (1, 1, 1), (1, 0, 1) >, < (1, 1, 1), (0, 1, 1) >,
< (1, 1, 0), (1, 0, 1) >, < (2, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (2, 0, 0), (2, 1, 0) >, < (2, 0, 0), (2, 0, 1) >, < (2, 1, 0), (0, 1, 1) >,
< (2, 1, 0), (2, 1, 1) >, < (2, 1, 1), (0, 1, 1) >, < (2, 1, 1), (2, 0, 1) >
< (4, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (4, 0, 0) >, < (4, 0, 1) >, < (4, 1, 0) >, < (4, 1, 1) >,
< (4, 0, 0), (4, 1, 0) >, < (4, 0, 0), (4, 0, 1) >, < (4, 1, 0), (0, 1, 1) >,
< (4, 1, 0), (4, 1, 1) >, < (4, 1, 1), (0, 1, 1) >, < (4, 1, 1), (4, 0, 1) >
and {(0, 0, 0)}.
For p = 3 and n = 3, the group G = Z33 + Z3 + Z3 has 72 crisp subgroups, as
listed below:
Z33 +Z3 +Z3, Z33 +Z3 + {0}, Z33 + {0}+Z3, {0}+Z3 +Z3, Z33 + {0}+ {0},
{0}+ Z3 + {0},
{0}+ {0}+ Z3, < (0, 1, 1) >, < (0, 1, 2) >, < (1, 0, 1) >, < (1, 0, 2) >,
< (1, 1, 0) >, < (1, 1, 1) >, < (1, 1, 2) >, < (1, 2, 0) >, < (1, 2, 1) >, <
(1, 2, 2) >,
< (1, 1, 0), (1, 1, 1) >, < (1, 1, 0), (1, 2, 1) >, < (1, 1, 0), (1, 2, 2) >,
< (1, 1, 1), (1, 2, 0) >, < (1, 1, 1), (1, 2, 1) >, < (1, 1, 1), (1, 2, 2) >,
< (1, 1, 2), (1, 2, 0) >, < (1, 1, 2), (1, 2, 1) >, < (1, 1, 2), (1, 2, 2) >,
< (1, 2, 0), (1, 2, 1) >, < (3, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (3, 0, 0) >, < (3, 0, 1) >, < (3, 0, 2) >, < (3, 1, 0) >, < (3, 1, 1) >,
< (3, 1, 2) >, < (3, 2, 0) >, < (3, 2, 1) >, < (3, 2, 2) >,
< (3, 0, 0), (3, 0, 1) >, < (3, 0, 0), (3, 1, 0) >, < (3, 0, 0), (3, 1, 1) >,
< (3, 0, 0), (3, 1, 2) >, < (3, 1, 0), (3, 1, 1) >, < (3, 1, 0), (3, 2, 1) >,
< (3, 1, 0), (3, 2, 2) >, < (3, 1, 1), (3, 2, 0) >, < (3, 1, 1), (3, 2, 1) >,
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< (3, 1, 2), (3, 2, 0) >, < (3, 1, 2), (3, 2, 2) >, < (3, 2, 0), (3, 2, 1) >,
< (9, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (9, 0, 0) >, < (9, 0, 1) >, < (9, 0, 2) >, < (9, 1, 0) >, < (9, 1, 1) >,
< (9, 1, 2) >, < (9, 2, 0) >, < (9, 2, 1) >, < (9, 2, 2) >,
< (9, 0, 0), (9, 0, 1) >, < (9, 0, 0), (9, 1, 0) >, < (9, 0, 0), (9, 1, 1) >,
< (9, 0, 0), (9, 1, 2) >, < (9, 1, 0), (9, 1, 1) >, < (9, 1, 0), (9, 2, 1) >,
< (9, 1, 0), (9, 2, 2) >, < (9, 1, 1), (9, 2, 0) >, < (9, 1, 1), (9, 2, 1) >,
< (9, 1, 2), (9, 2, 0) >, < (9, 1, 2), (9, 2, 2) >, < (9, 2, 0), (9, 2, 1) >,
and {(0, 0, 0)}
For p = 5 and n = 3, the group G = Z53+Z5+Z5 contains 176 crisp subgroups,
as listed below:
Z53 +Z5 +Z5, Z53 +Z5 + {0}, Z53 + {0}+Z5, {0}+Z5 +Z5, Z53 + {0}+ {0},
{0} + Z5 + {0}, {0} + {0} + Z5, < (0, 1, 1) >, < (0, 1, 2) >, < (0, 1, 3) >,
< (0, 1, 4) >,
< (1, 0, 1) >, < (1, 0, 2) >, < (1, 0, 3) >, < (1, 0, 4) >, < (1, 1, 0) >,
< (1, 1, 1) >, < (1, 1, 2) >, < (1, 1, 3) >, < (1, 1, 4) >, < (1, 2, 0) >,
< (1, 2, 1) >, < (1, 2, 2) >, < (1, 2, 3) >, < (1, 2, 4) >, < (1, 3, 0) >,
< (1, 3, 1) >, < (1, 3, 2) >, < (1, 3, 3) >, < (1, 3, 4) >, < (1, 4, 0) >,
< (1, 4, 1) >, < (1, 4, 2) >, < (1, 4, 3) >, < (1, 4, 4) >,
< (1, 1, 0), (1, 1, 1) >, < (1, 1, 0), (1, 2, 1) >, < (1, 1, 0), (1, 2, 2) >,
< (1, 1, 0), (1, 2, 3) >, < (1, 1, 0), (1, 2, 4) >, < (1, 1, 1), (1, 2, 0) >,
< (1, 1, 1), (1, 2, 1) >, < (1, 1, 1), (1, 2, 2) >, < (1, 1, 1), (1, 2, 3) >,
< (1, 1, 1), (1, 2, 4) >, < (1, 1, 2), (1, 2, 0) >, < (1, 1, 2), (1, 2, 1) >,
< (1, 1, 2), (1, 2, 2) >, < (1, 1, 2), (1, 2, 3) >, < (1, 1, 2), (1, 2, 4) >,
< (1, 1, 3), (1, 2, 0) >, < (1, 1, 3), (1, 2, 1) >, < (1, 1, 3), (1, 2, 2) >,
< (1, 1, 3), (1, 2, 3) >, < (1, 1, 3), (1, 2, 4) >, < (1, 1, 4), (1, 2, 0) >,
< (1, 1, 4), (1, 2, 1) >, < (1, 1, 4), (1, 2, 2) >, < (1, 1, 4), (1, 2, 3) >,
< (1, 1, 4), (1, 2, 4) >, < (1, 2, 0), (1, 2, 1) >, < (1, 3, 0), (1, 3, 1) >,
< (1, 4, 0), (1, 4, 1) >, < (5, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (5, 0, 0) >, < (5, 0, 1) >, < (5, 0, 2) >, < (5, 0, 3) >, < (5, 0, 4) >,
< (5, 1, 0) >, < (5, 1, 1) >, < (5, 1, 2) >, < (5, 1, 3) >, < (5, 1, 4) >,
< (5, 2, 0) >, < (5, 2, 1) >, < (5, 2, 2) >, < (5, 2, 3) >, < (5, 2, 4) >,
< (5, 3, 0) >, < (5, 3, 1) >, < (5, 3, 2) >, < (5, 3, 3) >, < (5, 3, 4) >,
< (5, 4, 0) >, < (5, 4, 1) >, < (5, 4, 2) >, < (5, 4, 3) >, < (5, 4, 4) >,
< (5, 0, 0), (5, 0, 1) >, < (5, 0, 0), (5, 1, 0) >, < (5, 0, 0), (5, 1, 1) >,
< (5, 0, 0), (5, 1, 2) >, < (5, 0, 0), (5, 1, 3) >, < (5, 0, 0), (5, 1, 4) >,
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< (5, 1, 0), (5, 1, 1) >, < (5, 1, 0), (5, 2, 1) >, < (5, 1, 0), (5, 2, 2) >,
< (5, 1, 0), (5, 2, 3) >, < (5, 1, 0), (5, 2, 4) >, < (5, 1, 1), (5, 2, 0) >,
< (5, 1, 1), (5, 2, 1) >, < (5, 1, 1), (5, 2, 3) >, < (5, 1, 1), (5, 2, 4) >,
< (5, 1, 2), (5, 2, 0) >, < (5, 1, 2), (5, 2, 1) >, < (5, 1, 2), (5, 2, 2) >,
< (5, 1, 2), (5, 2, 3) >, < (5, 1, 3), (5, 2, 0) >, < (5, 1, 3), (5, 2, 2) >,
< (5, 1, 3), (5, 2, 3) >, < (5, 1, 3), (5, 2, 4) >, < (5, 1, 4), (5, 2, 0) >,
< (5, 1, 4), (5, 2, 1) >, < (5, 1, 4), (5, 2, 2) >, < (5, 1, 4), (5, 2, 4) >,
< (5, 2, 0), (5, 2, 1) >, < (5, 3, 0), (5, 3, 1) >, < (5, 4, 0), (5, 4, 1) >,
< (25, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (25, 0, 0) >, < (25, 0, 1) >, < (25, 0, 2) >, < (25, 0, 3) >, < (25, 0, 4) >,
< (25, 1, 0) >, < (25, 1, 1) >, < (25, 1, 2) >, < (25, 1, 3) >, < (25, 1, 4) >,
< (25, 2, 0) >, < (25, 2, 1) >, < (25, 2, 2) >, < (25, 2, 3) >, < (25, 2, 4) >,
< (25, 3, 0) >, < (25, 3, 1) >, < (25, 3, 2) >, < (25, 3, 3) >, < (25, 3, 4) >,
< (25, 4, 0) >, < (25, 4, 1) >, < (25, 4, 2) >, < (25, 4, 3) >, < (25, 4, 4) >,
< (25, 0, 0), (25, 0, 1) >, < (25, 0, 0), (25, 1, 0) >, < (25, 0, 0), (25, 1, 1) >,
< (25, 0, 0), (25, 1, 2) >, < (25, 0, 0), (25, 1, 3) >, < (25, 0, 0), (25, 1, 4) >,
< (25, 1, 0), (25, 1, 1) >, < (25, 1, 0), (25, 2, 1) >, < (25, 1, 0), (25, 2, 2) >,
< (25, 1, 0), (25, 2, 3) >, < (25, 1, 0), (25, 2, 4) >, < (25, 1, 1), (25, 2, 0) >,
< (25, 1, 1), (25, 2, 1) >, < (25, 1, 1), (25, 2, 3) >, < (25, 1, 1), (25, 2, 4) >,
< (25, 1, 2), (25, 2, 0) >, < (25, 1, 2), (25, 2, 1) >, < (25, 1, 2), (25, 2, 2) >,
< (25, 1, 2), (25, 2, 3) >, < (25, 1, 3), (25, 2, 0) >, < (25, 1, 3), (25, 2, 2) >,
< (25, 1, 3), (25, 2, 3) >, < (25, 1, 3), (25, 2, 4) >, < (25, 1, 4), (25, 2, 0) >,
< (25, 1, 4), (25, 2, 1) >, < (25, 1, 4), (25, 2, 2) >, < (25, 1, 4), (25, 2, 4) >,
< (25, 2, 0), (25, 2, 1) >, < (25, 3, 0), (25, 3, 1) >, < (25, 4, 0), (25, 4, 1) >,
and {(0, 0, 0)}.
For p = 7 and n = 3, the group G = Z73+Z7+Z7 contains 328 crisp subgroups.
However, the subgroups are too many to be listed here.
In what follows, we list all the subgroups of the group G = Zpn + Zp + Zp for
a fixed n = 4 and p = 2, 3, 5, 7.
Now for p = 2 and n = 4, the group G = Z24 +Z2+Z2 has 49 crisp subgroups.
We do not list them here.
For p = 3 and n = 4, the group G = Z34 + Z3 + Z3 has 94 crisp subgroups, as
listed below:
Z34 + Z3 + Z3, Z34 + Z3 + {0}, Z34 + {0}+ Z3, {0}+ Z3 + Z3,
Z34 + {0}+ {0}, {0}+ Z3 + {0}, {0}+ {0}+ Z3, < (0, 1, 1) >,
< (0, 1, 2) >, < (1, 0, 1) >, < (1, 0, 2) >, < (1, 1, 0) >, < (1, 1, 1) >,
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< (1, 1, 2) >, < (1, 2, 0) >, < (1, 2, 1) >, < (1, 2, 2) >,
< (1, 1, 0), (1, 1, 1) >, < (1, 1, 0), (1, 2, 1) >, < (1, 1, 0), (1, 2, 2) >,
< (1, 1, 1), (1, 2, 0) >, < (1, 1, 1), (1, 2, 1) >, < (1, 1, 1), (1, 2, 2) >,
< (1, 1, 2), (1, 2, 0) >, < (1, 1, 2), (1, 2, 1) >, < (1, 1, 2), (1, 2, 2) >,
< (1, 2, 0), (1, 2, 1) >, < (3, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (3, 0, 0) >, < (3, 0, 1) >, < (3, 0, 2) >, < (3, 1, 0) >, < (3, 1, 1) >,
< (3, 1, 2) >, < (3, 2, 0) >, < (3, 2, 1) >, < (3, 2, 2) >,
< (3, 0, 0), (3, 0, 1) >, < (3, 0, 0), (3, 1, 0) >, < (3, 0, 0), (3, 1, 1) >,
< (3, 0, 0), (3, 1, 2) >, < (3, 1, 0), (3, 1, 1) >, < (3, 1, 0), (3, 2, 1) >,
< (3, 1, 0), (3, 2, 2) >, < (3, 1, 1), (3, 2, 0) >, < (3, 1, 1), (3, 2, 1) >,
< (3, 1, 2), (3, 2, 0) >, < (3, 1, 2), (3, 2, 2) >, < (3, 2, 0), (3, 2, 1) >,
< (9, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (9, 0, 0) >, < (9, 0, 1) >, < (9, 0, 2) >, < (9, 1, 0) >, < (9, 1, 1) >,
< (9, 1, 2) >, < (9, 2, 0) >, < (9, 2, 1) >, < (9, 2, 2) >,
< (9, 0, 0), (9, 0, 1) >, < (9, 0, 0), (9, 1, 0) >, < (9, 0, 0), (9, 1, 1) >,
< (9, 0, 0), (9, 1, 2) >, < (9, 1, 0), (9, 1, 1) >, < (9, 1, 0), (9, 2, 1) >,
< (9, 1, 0), (9, 2, 2) >, < (9, 1, 1), (9, 2, 0) >, < (9, 1, 1), (9, 2, 1) >,
< (9, 1, 2), (9, 2, 0) >, < (9, 1, 2), (9, 2, 2) >, < (9, 2, 0), (9, 2, 1) >,
< (27, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (27, 0, 0) >, < (27, 0, 1) >, < (27, 0, 2) >, < (27, 1, 0) >, < (27, 1, 1) >,
< (27, 1, 2) >, < (27, 2, 0) >, < (27, 2, 1) >, < (27, 2, 2) >,
< (27, 0, 0), (27, 0, 1) >, < (27, 0, 0), (27, 1, 0) >, < (27, 0, 0), (27, 1, 1) >,
< (27, 0, 0), (27, 1, 2) >, < (27, 1, 0), (27, 1, 1) >, < (27, 1, 0), (27, 2, 1) >,
< (27, 1, 0), (27, 2, 2) >, < (27, 1, 1), (27, 2, 0) >, < (27, 1, 1), (27, 2, 1) >,
< (27, 1, 2), (27, 2, 0) >, < (27, 1, 2), (27, 2, 2) >, < (27, 2, 0), (27, 2, 1) >,
and {(0, 0, 0)}.
For p = 5 and n = 4, the group G = Z54+Z5+Z5 contains 232 crisp subgroups,
as listed below:
Z54 +Z5 +Z5, Z54 +Z5 + {0}, Z54 + {0}+Z5, {0}+Z5 +Z5, Z54 + {0}+ {0},
{0}+ Z5 + {0}, {0}+ {0}+ Z5, < (0, 1, 1) >, < (0, 1, 2) >, < (0, 1, 3) >,
< (0, 1, 4) >, < (1, 0, 1) >, < (1, 0, 2) >, < (1, 0, 3) >, < (1, 0, 4) >,
< (1, 1, 0) >, < (1, 1, 1) >, < (1, 1, 2) >, < (1, 1, 3) >, < (1, 1, 4) >,
< (1, 2, 0) >, < (1, 2, 1) >, < (1, 2, 2) >, < (1, 2, 3) >, < (1, 2, 4) >,
< (1, 3, 0) >, < (1, 3, 1) >, < (1, 3, 2) >, < (1, 3, 3) >, < (1, 3, 4) >,
< (1, 4, 0) >, < (1, 4, 1) >, < (1, 4, 2) >, < (1, 4, 3) >, < (1, 4, 4) >,
< (1, 1, 0), (1, 1, 1) >, < (1, 1, 0), (1, 2, 1) >, < (1, 1, 0), (1, 2, 2) >,
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< (1, 1, 0), (1, 2, 3) >, < (1, 1, 0), (1, 2, 4) >, < (1, 1, 1), (1, 2, 0) >,
< (1, 1, 1), (1, 2, 1) >, < (1, 1, 1), (1, 2, 2) >, < (1, 1, 1), (1, 2, 3) >,
< (1, 1, 1), (1, 2, 4) >, < (1, 1, 2), (1, 2, 0) >, < (1, 1, 2), (1, 2, 1) >,
< (1, 1, 2), (1, 2, 2) >, < (1, 1, 2), (1, 2, 3) >, < (1, 1, 2), (1, 2, 4) >,
< (1, 1, 3), (1, 2, 0) >, < (1, 1, 3), (1, 2, 1) >, < (1, 1, 3), (1, 2, 2) >,
< (1, 1, 3), (1, 2, 3) >, < (1, 1, 3), (1, 2, 4) >, < (1, 1, 4), (1, 2, 0) >,
< (1, 1, 4), (1, 2, 1) >, < (1, 1, 4), (1, 2, 2) >, < (1, 1, 4), (1, 2, 3) >,
< (1, 1, 4), (1, 2, 4) >, < (1, 2, 0), (1, 2, 1) >, < (1, 3, 0), (1, 3, 1) >,
< (1, 4, 0), (1, 4, 1) >, < (5, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (5, 0, 0) >, < (5, 0, 1) >, < (5, 0, 2) >, < (5, 0, 3) >, < (5, 0, 4) >,
< (5, 1, 0) >, < (5, 1, 1) >, < (5, 1, 2) >, < (5, 1, 3) >, < (5, 1, 4) >,
< (5, 2, 0) >, < (5, 2, 1) >, < (5, 2, 2) >, < (5, 2, 3) >, < (5, 2, 4) >,
< (5, 3, 0) >, < (5, 3, 1) >, < (5, 3, 2) >, < (5, 3, 3) >, < (5, 3, 4) >,
< (5, 4, 0) >, < (5, 4, 1) >, < (5, 4, 2) >, < (5, 4, 3) >, < (5, 4, 4) >,
< (5, 0, 0), (5, 0, 1) >, < (5, 0, 0), (5, 1, 0) >, < (5, 0, 0), (5, 1, 1) >,
< (5, 0, 0), (5, 1, 2) >, < (5, 0, 0), (5, 1, 3) >, < (5, 0, 0), (5, 1, 4) >,
< (5, 1, 0), (5, 1, 1) >, < (5, 1, 0), (5, 2, 1) >, < (5, 1, 0), (5, 2, 2) >,
< (5, 1, 0), (5, 2, 3) >, < (5, 1, 0), (5, 2, 4) >, < (5, 1, 1), (5, 2, 0) >,
< (5, 1, 1), (5, 2, 1) >, < (5, 1, 1), (5, 2, 3) >, < (5, 1, 1), (5, 2, 4) >,
< (5, 1, 2), (5, 2, 0) >, < (5, 1, 2), (5, 2, 1) >, < (5, 1, 2), (5, 2, 2) >,
< (5, 1, 2), (5, 2, 3) >, < (5, 1, 3), (5, 2, 0) >, < (5, 1, 3), (5, 2, 2) >,
< (5, 1, 3), (5, 2, 3) >, < (5, 1, 3), (5, 2, 4) >, < (5, 1, 4), (5, 2, 0) >,
< (5, 1, 4), (5, 2, 1) >, < (5, 1, 4), (5, 2, 2) >, < (5, 1, 4), (5, 2, 4) >,
< (5, 2, 0), (5, 2, 1) >, < (5, 3, 0), (5, 3, 1) >, < (5, 4, 0), (5, 4, 1) >,
< (25, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (25, 0, 0) >, < (25, 0, 1) >, < (25, 0, 2) >, < (25, 0, 3) >, < (25, 0, 4) >,
< (25, 1, 0) >, < (25, 1, 1) >, < (25, 1, 2) >, < (25, 1, 3) >, < (25, 1, 4) >,
< (25, 2, 0) >, < (25, 2, 1) >, < (25, 2, 2) >, < (25, 2, 3) >, < (25, 2, 4) >,
< (25, 3, 0) >, < (25, 3, 1) >, < (25, 3, 2) >, < (25, 3, 3) >, < (25, 3, 4) >,
< (25, 4, 0) >, < (25, 4, 1) >, < (25, 4, 2) >, < (25, 4, 3) >, < (25, 4, 4) >,
< (25, 0, 0), (25, 0, 1) >, < (25, 0, 0), (25, 1, 0) >, < (25, 0, 0), (25, 1, 1) >,
< (25, 0, 0), (25, 1, 2) >, < (25, 0, 0), (25, 1, 3) >, < (25, 0, 0), (25, 1, 4) >,
< (25, 1, 0), (25, 1, 1) >, < (25, 1, 0), (25, 2, 1) >, < (25, 1, 0), (25, 2, 2) >,
< (25, 1, 0), (25, 2, 3) >, < (25, 1, 0), (25, 2, 4) >, < (25, 1, 1), (25, 2, 0) >,
< (25, 1, 1), (25, 2, 1) >, < (25, 1, 1), (25, 2, 3) >, < (25, 1, 1), (25, 2, 4) >,
< (25, 1, 2), (25, 2, 0) >, < (25, 1, 2), (25, 2, 1) >, < (25, 1, 2), (25, 2, 2) >,
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< (25, 1, 2), (25, 2, 3) >, < (25, 1, 3), (25, 2, 0) >, < (25, 1, 3), (25, 2, 2) >,
< (25, 1, 3), (25, 2, 3) >, < (25, 1, 3), (25, 2, 4) >, < (25, 1, 4), (25, 2, 0) >,
< (25, 1, 4), (25, 2, 1) >, < (25, 1, 4), (25, 2, 2) >, < (25, 1, 4), (25, 2, 4) >,
< (25, 2, 0), (25, 2, 1) >, < (25, 3, 0), (25, 3, 1) >, < (25, 4, 0), (25, 4, 1) >,
< (125, 0, 0), (0, 1, 0), (0, 0, 1) >,
< (125, 0, 0) >, < (125, 0, 1) >, < (125, 0, 2) >, < (125, 0, 3) >, < (125, 0, 4) >,
< (125, 1, 0) >, < (125, 1, 1) >, < (125, 1, 2) >, < (125, 1, 3) >, < (125, 1, 4) >,
< (125, 2, 0) >, < (125, 2, 1) >, < (125, 2, 2) >, < (125, 2, 3) >, < (125, 2, 4) >,
< (125, 3, 0) >, < (125, 3, 1) >, < (125, 3, 2) >, < (125, 3, 3) >, < (125, 3, 4) >,
< (125, 4, 0) >, < (125, 4, 1) >, < (125, 4, 2) >, < (125, 4, 3) >, < (125, 4, 4) >,
< (125, 0, 0), (125, 0, 1) >, < (125, 0, 0), (125, 1, 0) >, < (125, 0, 0), (125, 1, 1) >,
< (125, 0, 0), (125, 1, 2) >, < (125, 0, 0), (125, 1, 3) >, < (125, 0, 0), (125, 1, 4) >,
< (125, 1, 0), (125, 1, 1) >, < (125, 1, 0), (125, 2, 1) >, < (125, 1, 0), (125, 2, 2) >,
< (125, 1, 0), (125, 2, 3) >, < (125, 1, 0), (125, 2, 4) >, < (125, 1, 1), (125, 2, 0) >,
< (125, 1, 1), (125, 2, 1) >, < (125, 1, 1), (125, 2, 3) >, < (125, 1, 1), (125, 2, 4) >,
< (125, 1, 2), (125, 2, 0) >, < (125, 1, 2), (125, 2, 1) >, < (125, 1, 2), (125, 2, 2) >,
< (125, 1, 2), (125, 2, 3) >, < (125, 1, 3), (125, 2, 0) >, < (125, 1, 3), (125, 2, 2) >,
< (125, 1, 3), (125, 2, 3) >, < (125, 1, 3), (125, 2, 4) >, < (125, 1, 4), (125, 2, 0) >,
< (125, 1, 4), (125, 2, 1) >, < (125, 1, 4), (125, 2, 2) >, < (125, 1, 4), (125, 2, 4) >,
< (125, 2, 0), (125, 2, 1) >, < (125, 3, 0), (125, 3, 1) >, < (125, 4, 0), (125, 4, 1) >,
and {(0, 0, 0)}.
For p = 7 and n = 4, the group G = Z74 + Z7 + Z7 contains 434 crisp sub-
groups. The above patterns of subgroups of G = Zpn + Zp + Zp lead us to the
following theorem:

Theorem 5.2.2 . The number of subgroups of the group G = Zpn + Zp + Zp

for n ≥ 1 is p(2pn+ n+ 1) + 3 + n for a prime p > 2.

Proof. By induction on n. For n = 1, there are 1 + p+ p2 maximal subgroups
of G since G has rank 3. Since n = 1, all these subgroups must be isomorphic
to Zp + Zp + 0 =< (1, 0, 0); (0, 1, 0) >. Each of the maximal subgroups has
only cyclic nontrivial proper subgroups of order p. Thus the total number of
subgroups of G is obtained by adding all the subgroups of the orders 1, p, p2

and p3. The subgroup H1 = Zp+Zp+0 has 1+ p proper nontrivial subgroups.
Next we consider H2 = Zp + 0 + Zp. The subgroup Zp + 0 + 0 of H2 has been
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counted in H1. So H2 has p proper nontrivial subgroups not counted earlier.
In H3 = 0 + Zp + Zp, the subgroups 0 + Zp + 0 and 0 + 0 + Zp have already
been counted in H1 and H2. Thus H3 has p − 1 proper nontrivial subgroups
not counted above, viz. < (0, r, 1) >, r = 1, 2, · · · , p− 1.
Next considerH4 =< (1, 0, 0), (0, 1, 1) >. The maximal subgroups< (1, 0, 0) >
and< (0, 1, 1) > have already been counted inH1 andH3. So the only new sub-
groups are: < (1, 1, 1) > ; < (1, 2, 2) >; < (1, 3, 3) >, ... , < (1, p− 1, p− 1) >,
p − 1 in total. Thus H4 has p − 1 proper nontrivial subgroups not counted
earlier.
In any of the remaining maximal subgroups of G, the only new subgroups (not
counted above) will be of the form < (1, r, s) > for r, s = 1, 2, · · · , p − 1 with
r 6= s. Thus the number of such subgroups is the permutation of p−1 distinct
symbols taken 2 at a time, i.e. (p−1)!

(p−3)!
= (p− 1)(p− 2).

Thus adding all the subgroups, 1 of order 1; 1 of order p3; 1 + p + p2 of
order p2 and 1 + p + p + 2(p − 1) + (p − 1)(p − 2) of order p, we have
2+1+p+p2+1+p+p+2(p−1)+(p−1)(p−2) = (3+4p+p2)+p2−2p+1 =
2p2 + 2p+ 4 = p(2p.1 + 1 + 1) + 1 + 3 is the total number of subgroups of G.
Hence the theorem is true for n = 1.
Now we assume that the theorem is true for all k < n. So the group Zpk +Zp+
Zp has p(2pk + k + 1) + 3 + k subgroups. The group G = Zpk+1 + Zp + Zp

has 1 + p + p2 maximal subgroups, and one of them Zpk + Zp + Zp has
p(2pk + k + 1) + 3 + k subgroups.
Subgroups of order pk+2 other than Zpk + Zp + Zp are all isomorphic. One
of them is H1 = Zpk+1 + Zp + 0 which has 1 + p maximal subgroups. These
subgroups are < (1, 0, 0) >; < (0, 1, 0) >; < (1, 1, 0) >; < (1, 2, 0) >; ... ;
< (1, p−1, 0) >. One, viz < (0, 1, 0) >, has already been counted in Zp+Zp+Zp.
Thus H1 gives p maximal subgroups not counted before.
Now consider H2 = Zpk+1 +0+Zp. One subgroup viz < (0, 0, 1) >, has already
been counted in Zp + Zp + Zp. Thus as above, H2 yields p maximal subgroups
not counted before.
The rest of the maximal subgroups not counted above are < (1, r, s) >,
r, s = 1, 2, · · · , p−1. So the number of such subgroups is (p−1)2 as in the case
n = 1 above. Summing the numbers of all the subgroups with the zero sub-
group already counted in Zpk+Zp+Zp, we have 2p+(p−1)2+(1+p+p2−1)+
[p(2pk+k+1)+3+k]+1 = 2p+p2−2p+1+1+p+p2−1+2P 2k+pk+p+3+k =
p[2p(k + 1) + (k + 1) + 1] + (k + 1) + 3 distinct subgroups. Thus the theorem
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is true for n = k + 1. ✷

5.3 ON MAXIMAL CHAINS OF
G = Zpn + Zp + Zp

Here we construct the maximal chains for the G = Zpn + Zp + Zp using the
above crisp subgroups and give its generalisation.

Example 5.3.1 Let us construct the maximal chains for the group G = Zpn+
Zp + Zp with n = 1 and p = 2, 3, 5, 7 in that order.
For p = 2, the group Z2 + Z2 + Z2 has the following 21 maximal chains:
Z2 + Z2 + Z2 ⊇ Z2 + Z2 + {0} ⊇ Z2 + {0}+ {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + Z2 + {0} ⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + Z2 + {0} ⊇ {0}+ Z2 + {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + {0}+ Z2 ⊇ Z2 + {0}+ {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + {0}+ Z2 ⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + {0}+ Z2 ⊇ {0}+ {0}+ Z2 ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ {0}+ Z2 + Z2 ⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ {0}+ Z2 + Z2 ⊇ {0}+ Z2 + {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ {0}+ Z2 + Z2 ⊇ {0}+ {0}+ Z2 ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇ {0}+ {0}+ Z2 ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇ Z2 + {0}+ {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇ {0}+ Z2 + {0} ⊇ {(0, 0, 0)}
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For p = 3 and n = 1, the group G = Z3 + Z3 + Z3 has the following 52
maximal chains:
Z3 + Z3 + Z3 ⊇ Z3 + Z3 + {0} ⊇ Z3 + {0}+ {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ Z3 + Z3 + {0} ⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ Z3 + Z3 + {0} ⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ Z3 + Z3 + {0} ⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ Z3 + {0}+ Z3 ⊇ Z3 + {0}+ {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ Z3 + {0}+ Z3 ⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ Z3 + {0}+ Z3 ⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ Z3 + {0}+ Z3 ⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ {0}+ Z3 + Z3 ⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ {0}+ Z3 + Z3 ⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ {0}+ Z3 + Z3 ⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇ {0}+ Z3 + Z3 ⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 1, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 1) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
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Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 2) >⊇ Z3 + {0}+ {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 1) >⊇ Z3 + {0}+ {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 1, 2) , (1, 2, 2) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z3 + Z3 + Z3 ⊇< (1, 2, 0) , (1, 2, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}

For p = 5 and n = 1 the group G = Z5 + Z5 + Z5 has the following 186
maximal chains:
Z5 + Z5 + Z5 ⊇ Z5 + Z5 + {0} ⊇ Z5 + {0}+ {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + Z5 + {0} ⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + Z5 + {0} ⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + Z5 + {0} ⊇< (1, 3, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + Z5 + {0} ⊇< (1, 4, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + Z5 + {0} ⊇ {0}+ Z5 + {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + {0}+ Z5 ⊇ Z5 + {0}+ {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + {0}+ Z5 ⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + {0}+ Z5 ⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + {0}+ Z5 ⊇< (1, 0, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + {0}+ Z5 ⊇< (1, 0, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ Z5 + {0}+ Z5 ⊇ {0}+ {0}+ Z5 ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ {0}+ Z5 + Z5 ⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ {0}+ Z5 + Z5 ⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ {0}+ Z5 + Z5 ⊇< (0, 1, 3) >⊇ {(0, 0, 0)}
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Z5 + Z5 + Z5 ⊇ {0}+ Z5 + Z5 ⊇< (0, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ {0}+ Z5 + Z5 ⊇ {0}+ {0}+ Z5 ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇ {0}+ Z5 + Z5 ⊇ {0}+ Z5 + {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 1, 1) >⊇< (1, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 1, 1) >⊇ {0}+ {0}+ Z5 ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 3, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 4, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (1, 0, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 3, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 4, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (1, 0, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 2) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 3) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 3) >⊇< (1, 2, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 3) >⊇< (1, 3, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 3) >⊇< (1, 4, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 3) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 3) >⊇< (0, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 4) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 4) >⊇< (1, 2, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 4) >⊇< (1, 3, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 4) >⊇< (1, 4, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 4) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 0) , (1, 2, 4) >⊇< (0, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 3, 4) >⊇ {(0, 0, 0)}
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Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 4, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 0) >⊇< (0, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 3, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 4, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 1) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 1) >⊇ {0}+ Z5 + {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (1, 3, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (1, 4, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 2) >⊇ Z5 + {0}+ {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 2) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 3) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 3) >⊇< (1, 2, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 3) >⊇< (1, 3, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 3) >⊇< (1, 4, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 3) >⊇< (1, 0, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 3) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 4) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 4) >⊇< (1, 2, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 4) >⊇< (1, 3, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 4) >⊇< (1, 4, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 4) >⊇< (1, 0, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 1) , (1, 2, 4) >⊇< (0, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 3, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 4, 1) >⊇ {(0, 0, 0)}
Z5 + Z3 + Z5 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (1, 0, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 0) >⊇< (0, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (1, 3, 0) >⊇ {(0, 0, 0)}
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Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (1, 4, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (1, 0, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 1) >⊇< (0, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 3, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 4, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 2) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 2) >⊇ {0}+ Z5 + {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 3) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 3) >⊇< (1, 2, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 3) >⊇< (1, 3, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 3) >⊇< (1, 4, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 3) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 3) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 4) >⊇< (1, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 4) >⊇< (1, 2, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 4) >⊇< (1, 3, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 4) >⊇< (1, 4, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 4) >⊇ Z5 + {0}+ {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 2) , (1, 2, 4) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 0) >⊇< (1, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 0) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 0) >⊇< (1, 3, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 0) >⊇< (1, 4, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 0) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 0) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 1) >⊇< (1, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 1) >⊇< (1, 3, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 1) >⊇< (1, 4, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 1) >⊇ Z5 + {0}+ {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 1) >⊇< (0, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 2) >⊇< (1, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 2) >⊇< (1, 3, 1) >⊇ {(0, 0, 0)}

76



Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 2) >⊇< (1, 4, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 2) >⊇< (1, 0, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 2) >⊇< (0, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 3) >⊇< (1, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 3) >⊇< (1, 2, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 3) >⊇< (1, 3, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 3) >⊇< (1, 4, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 3) >⊇< (1, 0, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 3) >⊇ {0}+ Z5 + {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 4) >⊇< (1, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 4) >⊇< (1, 2, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 4) >⊇< (1, 3, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 4) >⊇< (1, 4, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 4) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 3) , (1, 2, 4) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 0) >⊇< (1, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 0) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 0) >⊇< (1, 3, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 0) >⊇< (1, 4, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 0) >⊇< (1, 0, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 0) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 1) >⊇< (1, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 1) >⊇< (1, 3, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 1) >⊇< (1, 4, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 1) >⊇< (1, 0, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 1) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 2) >⊇< (1, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 2) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 2) >⊇< (1, 3, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 2) >⊇< (1, 4, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 2) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 2) >⊇< (0, 1, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 3) >⊇< (1, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 3) >⊇< (1, 2, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 3) >⊇< (1, 3, 2) >⊇ {(0, 0, 0)}
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Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 3) >⊇< (1, 4, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 3) >⊇ Z5 + {0}+ {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 3) >⊇< (0, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 4) >⊇< (1, 1, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 4) >⊇< (1, 2, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 4) >⊇< (1, 3, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 4) >⊇< (1, 4, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 4) >⊇< (1, 0, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 1, 4) , (1, 2, 4) >⊇ {0}+ Z5 + {0} ⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 2, 0) , (1, 2, 1) >⊇< (1, 2, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 2, 0) , (1, 2, 1) >⊇ {0}+ {0}+ Z5 ⊇ {(0, 0, 0)}

Z5 + Z5 + Z5 ⊇< (1, 3, 0) , (1, 3, 1) >⊇< (1, 3, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 3, 0) , (1, 3, 1) >⊇< (1, 3, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 3, 0) , (1, 3, 1) >⊇< (1, 3, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 3, 0) , (1, 3, 1) >⊇< (1, 3, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 3, 0) , (1, 3, 1) >⊇< (1, 3, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 3, 0) , (1, 3, 1) >⊇ {0}+ {0}+ Z5 ⊇ {(0, 0, 0)}

Z5 + Z5 + Z5 ⊇< (1, 4, 0) , (1, 4, 1) >⊇< (1, 4, 0) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 4, 0) , (1, 4, 1) >⊇< (1, 4, 1) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 4, 0) , (1, 4, 1) >⊇< (1, 4, 2) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 4, 0) , (1, 4, 1) >⊇< (1, 4, 3) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 4, 0) , (1, 4, 1) >⊇< (1, 4, 4) >⊇ {(0, 0, 0)}
Z5 + Z5 + Z5 ⊇< (1, 4, 0) , (1, 4, 1) >⊇ {0}+ {0}+ Z5 ⊇ {(0, 0, 0)}

For p = 7 and n = 1 the group G = Z7+Z7+Z7 has 456 maximal chains, but
it is too cumbersome to list them here.
Our observation of the above examples shows that:

Proposition 5.3.2 For any given prime number p the group Zp+Zp+Zp has
(p+ 1)[p2 + p+ 1] maximal chains.
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Proof. The group G = Zp + Zp + Zp has 1 + p + p2 maximal subgroups and
each such subgroup is isomorphic to Zp+Zp, which has p+1 proper nontrivial
subgroups by the rank 2 theory that was discussed in the previous chapter.
Hence the proposition follows. ✷

Example 5.3.3 . Next, we construct the maximal chains of the group G =
Zpn + Zp + Zp, where n = 2, beginning with prime 2,3,5 and 7 respectively. ✷
For p = 2 and n = 2, the group Z22 + Z2 + Z2 has the following 51 maximal
chains:
Z22 + Z2 + Z2 ⊇ Z22 + Z2 + {0} ⊇ Z22 + {0}+ {0} ⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + Z2 + {0} ⊇< (1, 1, 0) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + Z2 + {0} ⊇< (2, 0, 0) , (2, 1, 0) >⊇< (2, 0, 0) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + Z2 + {0} ⊇< (2, 0, 0) , (2, 1, 0) >⊇< (2, 1, 0) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + Z2 + {0} ⊇< (2, 0, 0) , (2, 1, 0) >⊇ {0}+ Z2 + {0} ⊇

{(0, 0, 0)}
Z22 +Z2+Z2 ⊇ Z22 +{0}+Z2 ⊇ Z22 +{0}+{0} ⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + {0}+ Z2 ⊇< (1, 0, 1) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + {0} + Z2 ⊇< (2, 0, 0), (2, 0, 1) >⊇< (2, 0, 0) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + {0} + Z2 ⊇< (2, 0, 0), (2, 0, 1) >⊇< (2, 0, 1) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇ Z22 + {0} + Z2 ⊇< (2, 0, 0), (2, 0, 1) >⊇ {0} + {0} + Z2 ⊇

{(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (1, 1, 0) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (1, 0, 1) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇< (2, 0, 0) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇< (2, 1, 1) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 0) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 1) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
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Z22 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (2, 0, 0), (2, 0, 1) >⊇< (2, 0, 0) >⊇
{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (2, 0, 0), (2, 0, 1) >⊇< (2, 0, 1) >⊇

{(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (2, 0, 0), (2, 0, 1) >⊇ {0}+{0}+Z2 ⊇

{(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (1, 1, 1) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (1, 0, 1) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (2, 0, 0), (2, 1, 0) >⊇< (2, 0, 0) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (2, 0, 0), (2, 1, 0) >⊇< (2, 1, 0) >⊇

{(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (2, 0, 0), (2, 1, 0) >⊇ {0}+Z2+{0} ⊇

{(0, 0, 0)}
Z22+Z2+Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (1, 1, 1) >⊇< (2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇ Z22 + {0} + {0} ⊇< (2, 0, 0) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇< (2, 0, 0) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇< (2, 1, 1) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 0, 1) >⊇<

(2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 0, 1) >⊇<

(2, 0, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 0, 1) >⊇ {0}+

{0}+ Z2 ⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 1, 0) >⊇<

(2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 1, 0) >⊇<

(2, 1, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 1, 0) >⊇ {0}+

Z2 + {0} ⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇<
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(2, 0, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇<

(2, 1, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 0, 0), (2, 1, 1) >⊇<

(0, 1, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 0), (2, 0, 1) >⊇<

(2, 1, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 0), (2, 0, 1) >⊇<

(2, 0, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 0), (2, 0, 1) >⊇<

(0, 1, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 0), (2, 1, 1) >⊇<

(2, 1, 0) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 0), (2, 1, 1) >⊇<

(2, 1, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 0), (2, 1, 1) >⊇ {0}+

{0}+ Z2 ⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 1), (2, 0, 1) >⊇<

(2, 1, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 1), (2, 0, 1) >⊇<

(2, 0, 1) >⊇ {(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (2, 1, 1), (2, 0, 1) >⊇ {0}+

Z2 + {0} ⊇ {(0, 0, 0)}
Z22+Z2+Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+Z2+Z2 ⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z22 + Z2 + Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+ Z2 + Z2 ⊇ {0}+ Z2 +

{0} ⊇ {(0, 0, 0)}
Z22 +Z2+Z2 ⊇< (2, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+Z2+Z2 ⊇ {0}+ {0}+

Z2 ⊇ {(0, 0, 0)} .
For p = 3 and n = 2, the group Z32 +Z3 +Z3 has 136 maximal chains. We do
not list the chains here.
For p = 5 and n = 2, the group Z52 + Z5 + Z5 has the following 516 maximal
chains:
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇ Z52 + {0}+ {0} ⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (1, 1, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (1, 2, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
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Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (1, 3, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (1, 4, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (5, 0, 0) , (5, 1, 0) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (5, 0, 0) , (5, 1, 0) >⊇< (5, 1, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (5, 0, 0) , (5, 1, 0) >⊇< (5, 2, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (5, 0, 0) , (5, 1, 0) >⊇< (5, 3, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (5, 0, 0) , (5, 1, 0) >⊇< (5, 4, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + Z5 + {0} ⊇< (5, 0, 0) , (5, 1, 0) >⊇⊇ {0} + Z5 +

{0} {(0, 0, 0)}
Z52 +Z5+Z5 ⊇ Z52 +{0}+Z5 ⊇ Z52 +{0}+{0} ⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0}+ Z5 ⊇< (1, 0, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0}+ Z5 ⊇< (1, 0, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0}+ Z5 ⊇< (1, 0, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0}+ Z5 ⊇< (1, 0, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0} + Z5 ⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0} + Z5 ⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0} + Z5 ⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0} + Z5 ⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0} + Z5 ⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇ Z52 + {0} + Z5 ⊇< (5, 0, 0), (5, 0, 1) >⊇ {0} + {0} + Z5 ⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
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Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 0) >⊇
{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇ {0}+{0}+Z5 ⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 1, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 3, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 4, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 0, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 1, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 2, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 3, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 4, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 1, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 3, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 4, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 0, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
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Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 1, 2) >⊇
{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 2, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 3, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 4, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (0, 1, 2) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (1, 1, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (1, 2, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (1, 3, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (1, 4, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (1, 0, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 1, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 2, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 3, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 4, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (0, 1, 3) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (1, 1, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (1, 2, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (1, 3, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (1, 4, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (1, 0, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 1, 4) >⊇

{(0, 0, 0)}
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Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 2, 3) >⊇
{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 3, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 4, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 0), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (0, 1, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 1, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 2, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 3, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 4, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 0, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 1, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 2, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 3, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 4, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (0, 1, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 1, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 3, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 4, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 0, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 1, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 2, 0) >⊇

{(0, 0, 0)}
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Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 3, 0) >⊇
{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 4, 0) >⊇

{(0, 0, 0)}
Z52 +Z5+Z5 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇ {0}Z5+{0} ⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (1, 1, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (1, 3, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (1, 4, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇ Z52 + {0} + {0} ⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 1, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 2, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 3, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 4, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (1, 1, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (1, 2, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (1, 3, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (1, 4, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (1, 0, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 1, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 2, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 3, 1) >⊇
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{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 4, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (0, 1, 2) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (1, 1, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (1, 2, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (1, 3, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (1, 4, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (1, 0, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 1, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 2, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 3, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 4, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 1), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (0, 1, 3) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 1, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 2, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 3, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 4, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 0, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 1, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 2, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 3, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 4, 2) >⊇
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{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (0, 1, 3) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (1, 1, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (1, 3, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (1, 4, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (1, 0, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 1, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 2, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 3, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 4, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (0, 1, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 1, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 3, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 4, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 0, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 1, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 2, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 3, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 4, 0) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 0) >⊇ {0}+Z5+{0} ⊇
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{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (1, 1, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (1, 2, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (1, 3, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (1, 4, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (1, 0, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 1, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 2, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 3, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 4, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (1, 1, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (1, 2, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (1, 3, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (1, 4, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇ Z52 + {0} + {0} ⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 1, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 2, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 3, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 4, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 2), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (0, 1, 2) >⊇

{(0, 0, 0)}
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Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (1, 1, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (1, 2, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (1, 3, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (1, 4, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (1, 0, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 1, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 2, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 3, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 4, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (0, 1, 2) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (1, 1, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (1, 3, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (1, 4, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇ Z52 + {0} + {0} ⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 1, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 2, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 3, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 4, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (0, 1, 3) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (1, 1, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
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Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (1, 3, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (1, 4, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (1, 0, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 1, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 2, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 3, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 4, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (0, 1, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (1, 1, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (1, 2, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (1, 3, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (1, 4, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (1, 0, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 1, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 2, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 3, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 4, 0) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 0) >⊇ {0}+Z5+{0} ⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (1, 1, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (1, 2, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (1, 3, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
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Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (1, 4, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (1, 0, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 1, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 2, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 3, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 4, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 3), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (1, 1, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (1, 2, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (1, 3, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (1, 4, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (1, 0, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 1, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 2, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 3, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (5, 4, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 0) >⊇< (5, 0, 0), (5, 1, 1) >⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (1, 1, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (1, 3, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (1, 4, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (1, 0, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
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Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 0, 0) >⊇
{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 1, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 2, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 3, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (5, 4, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇< (0, 1, 2) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (1, 1, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (1, 3, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (1, 4, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (1, 0, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 1, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 2, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 3, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (5, 4, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 2) >⊇< (5, 0, 0), (5, 1, 3) >⊇< (0, 1, 3) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (1, 1, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (1, 2, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (1, 3, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (1, 4, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇ Z52 + {0} + {0} ⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 0, 0) >⊇
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{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 1, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 2, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 3, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (5, 4, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 3) >⊇< (5, 0, 0), (5, 1, 4) >⊇< (0, 1, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (1, 1, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (1, 2, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (1, 3, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (1, 4, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (1, 0, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 1, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 2, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 3, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 0) >⊇< (5, 4, 0) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 1, 4), (1, 2, 4) >⊇< (5, 0, 0), (5, 1, 0) >⊇ {0}+Z5+{0} ⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 1) >⊇
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{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇ {0}+{0}+Z5 ⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (1, 3, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (1, 3, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (1, 3, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (1, 3, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (1, 3, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 2) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 3, 0), (1, 3, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇ {0}+{0}+Z5 ⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (1, 4, 0) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (1, 4, 1) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (1, 4, 2) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (1, 4, 3) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (1, 4, 4) >⊇< (5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 0) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 1) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 2) >⊇
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{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 3) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇< (5, 0, 4) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (1, 4, 0), (1, 4, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇ {0}+{0}+Z5 ⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇<

(5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇<

(5, 0, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇<

(5, 0, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇<

(5, 0, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇<

(5, 0, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 0, 1) >⊇ {0}+

{0}+ Z5 ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇<

(5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇<

(5, 1, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇<

(5, 2, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇<

(5, 3, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇<

(5, 4, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 0) >⊇ {0}+

Z5 + {0} ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇<

(5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇<

(5, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇<
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(5, 2, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇<

(5, 3, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇<

(5, 4, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 1) >⊇<

(0, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇<

(5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇<

(5, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇<

(5, 2, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇<

(5, 3, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇<

(5, 4, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 2) >⊇<

(0, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇<

(5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇<

(5, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇<

(5, 2, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇<

(5, 3, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇<

(5, 4, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 3) >⊇<

(0, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇<

(5, 0, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇<

(5, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇<
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(5, 2, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇<

(5, 3, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇<

(5, 4, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 0, 0), (5, 1, 4) >⊇<

(0, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 1, 1) >⊇<

(5, 1, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 1, 1) >⊇<

(5, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 1, 1) >⊇<

(5, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 1, 1) >⊇<

(5, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 1, 1) >⊇<

(5, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 1, 1) >⊇ {0}+

{0}+ Z5 ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 1) >⊇<

(5, 1, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 1) >⊇<

(5, 2, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 1) >⊇<

(5, 3, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 1) >⊇<

(5, 4, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 1) >⊇<

(5, 0, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 1) >⊇<

(0, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 2) >⊇<

(5, 1, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 2) >⊇<

(5, 2, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 2) >⊇<
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(5, 3, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 2) >⊇<

(5, 4, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 2) >⊇<

(5, 0, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 2) >⊇<

(0, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 3) >⊇<

(5, 1, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 3) >⊇<

(5, 2, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 3) >⊇<

(5, 3, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 3) >⊇<

(5, 4, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 3) >⊇<

(5, 0, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 3) >⊇<

(0, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 4) >⊇<

(5, 1, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 4) >⊇<

(5, 2, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 4) >⊇<

(5, 3, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 4) >⊇<

(5, 4, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 4) >⊇<

(5, 0, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 0), (5, 2, 4) >⊇<

(0, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 0) >⊇<

(5, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 0) >⊇<

(5, 2, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 0) >⊇<
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(5, 3, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 0) >⊇<

(5, 4, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 0) >⊇<

(5, 0, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 0) >⊇<

(0, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 1) >⊇<

(5, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 1) >⊇<

(5, 2, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 1) >⊇<

(5, 3, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 1) >⊇<

(5, 4, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 1) >⊇<

(5, 0, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 1) >⊇ {0}+

Z5 + {0} ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 3) >⊇<

(5, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 3) >⊇<

(5, 2, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 3) >⊇<

(5, 3, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 3) >⊇<

(5, 4, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 3) >⊇<

(5, 0, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 3) >⊇<

(0, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 4) >⊇<

(5, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 4) >⊇<

(5, 2, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 4) >⊇<
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(5, 3, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 4) >⊇<

(5, 4, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 4) >⊇<

(5, 0, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 1), (5, 2, 4) >⊇<

(0, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 0) >⊇<

(5, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 0) >⊇<

(5, 2, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 0) >⊇<

(5, 3, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 0) >⊇<

(5, 4, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 0) >⊇<

(5, 0, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 0) >⊇<

(0, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 1) >⊇<

(5, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 1) >⊇<

(5, 2, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 1) >⊇<

(5, 3, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 1) >⊇<

(5, 4, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 1) >⊇<

(5, 0, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 1) >⊇<

(0, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 2) >⊇<

(5, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 2) >⊇<

(5, 2, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 2) >⊇<
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(5, 3, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 2) >⊇<

(5, 4, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 2) >⊇<

(5, 0, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 2) >⊇ {0}+

Z5 + {0} ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 3) >⊇<

(5, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 3) >⊇<

(5, 2, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 3) >⊇<

(5, 3, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 3) >⊇<

(5, 4, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 3) >⊇<

(5, 0, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 2), (5, 2, 3) >⊇<

(0, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 0) >⊇<

(5, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 0) >⊇<

(5, 2, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 0) >⊇<

(5, 3, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 0) >⊇<

(5, 4, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 0) >⊇<

(5, 0, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 0) >⊇<

(0, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 2) >⊇<

(5, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 2) >⊇<

(5, 2, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 2) >⊇<
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(5, 3, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 2) >⊇<

(5, 4, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 2) >⊇<

(5, 0, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 2) >⊇<

(0, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 3) >⊇<

(5, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 3) >⊇<

(5, 2, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 3) >⊇<

(5, 3, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 3) >⊇<

(5, 4, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 3) >⊇<

(5, 0, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 3) >⊇ {0}+

Z5 + {0} ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 4) >⊇<

(5, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 4) >⊇<

(5, 2, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 4) >⊇<

(5, 3, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 4) >⊇<

(5, 4, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 4) >⊇<

(5, 0, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 3), (5, 2, 4) >⊇<

(0, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 0) >⊇<

(5, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 0) >⊇<

(5, 2, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 0) >⊇<
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(5, 3, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 0) >⊇<

(5, 4, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 0) >⊇<

(5, 0, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 0) >⊇<

(0, 1, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 1) >⊇<

(5, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 1) >⊇<

(5, 2, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 1) >⊇<

(5, 3, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 1) >⊇<

(5, 4, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 1) >⊇<

(5, 0, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 1) >⊇<

(0, 1, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 2) >⊇<

(5, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 2) >⊇<

(5, 2, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 2) >⊇<

(5, 3, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 2) >⊇<

(5, 4, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 2) >⊇<

(5, 0, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 2) >⊇<

(0, 1, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 4) >⊇<

(5, 1, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 4) >⊇<

(5, 2, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 4) >⊇<
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(5, 3, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 4) >⊇<

(5, 4, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 4) >⊇<

(5, 0, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 1, 4), (5, 2, 4) >⊇ {0}+

Z5 + {0} ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 2, 0), (5, 2, 1) >⊇<

(5, 2, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 2, 0), (5, 2, 1) >⊇<

(5, 2, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 2, 0), (5, 2, 1) >⊇<

(5, 2, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 2, 0), (5, 2, 1) >⊇<

(5, 2, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 2, 0), (5, 2, 1) >⊇<

(5, 2, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 2, 0), (5, 2, 1) >⊇ {0}+

{0}+ Z5 ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 3, 0), (5, 3, 1) >⊇<

(5, 3, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 3, 0), (5, 3, 1) >⊇<

(5, 3, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 3, 0), (5, 3, 1) >⊇<

(5, 3, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 3, 0), (5, 3, 1) >⊇<

(5, 3, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 3, 0), (5, 3, 1) >⊇<

(5, 3, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 3, 0), (5, 3, 1) >⊇ {0}+

{0}+ Z5 ⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 4, 0), (5, 4, 1) >⊇<

(5, 4, 0) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 4, 0), (5, 4, 1) >⊇<

(5, 4, 1) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 4, 0), (5, 4, 1) >⊇<
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(5, 4, 2) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 4, 0), (5, 4, 1) >⊇<

(5, 4, 3) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 4, 0), (5, 4, 1) >⊇<

(5, 4, 4) >⊇ {(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (5, 4, 0), (5, 4, 1) >⊇ {0}+

{0}+ Z5 ⊇ {(0, 0, 0)}
Z52+Z5+Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+Z5+Z5 ⊇< (0, 1, 1) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+Z5+Z5 ⊇< (0, 1, 2) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+Z5+Z5 ⊇< (0, 1, 3) >⊇

{(0, 0, 0)}
Z52+Z5+Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+Z5+Z5 ⊇< (0, 1, 4) >⊇

{(0, 0, 0)}
Z52 + Z5 + Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+ Z5 + Z5 ⊇ {0}+ Z5 +

{0} ⊇ {(0, 0, 0)}
Z52 +Z5+Z5 ⊇< (5, 0, 0), (0, 1, 0), (0, 0, 1) >⊇ {0}+Z5+Z5 ⊇ {0}+ {0}+

Z5 ⊇ {(0, 0, 0)} .

For p = 7 and n = 2 the group G = Z72 + Z7 + Z7 has 1296 maximal chains,
but it is too bulky to list them here.
The above observation leads to:

Proposition 5.3.4 For n = 2, the group Zpn + Zp + Zp has (p + 1) + (3p +
2)[p2 + p] maximal chains for any given prime number p.

Proof. The group G = Zpn + Zp + Zp has 1 + p + p2 maximal subgroups.
The subgroup Zp + Zp + Zp has 1 + p + p2 maximal subgroups, giving rise
to (1 + p)(1 + p + p2) maximal chains. Each of the subgroups isomorphic to
Zp2 + Zp gives rise to (n − 1)(p − 1) + p + 1 + n − 1 = p − 1 + p + 1 + 1 =
2p + 1 maximal chains. Thus the total number of maximal chains is equal to
(1 + p)(1 + p+ p2) + (p+ p2)(2p+ 1) = (p+ 1) + (3p+ 2)[p2 + p]. ✷
Next we construct the maximal chains for the group Zpn + Zp + Zp for n = 3.
To avoid bulkiness, we focus mainly on the prime numbers p = 2, 3, since
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prime numbers p ≥ 5 yield bulky chains.

Example 5.3.5 . For p = 2 and n = 3, the group Z23 + Z2 + Z2 has 93
maximal chains which are not listed here.
For p = 3 and n = 3, the group Z33 + Z3 + Z3 has the following 256 maximal
chains:
Z33+Z3+Z3 ⊇ Z33+Z3+{0} ⊇ Z33+{0}+{0} ⊇< (3, 0, 0) >⊇< (9, 0, 0) >⊇
{(0, 0, 0)}
Z33 +Z3 +Z3 ⊇ Z33 +Z3 + {0} ⊇< (1, 1, 0) >⊇< (3, 0, 0) >⊇< (9, 0, 0) >⊇

{(0, 0, 0)}
Z33 +Z3 +Z3 ⊇ Z33 +Z3 + {0} ⊇< (1, 2, 0) >⊇< (3, 0, 0) >⊇< (9, 0, 0) >⊇

{(0, 0, 0)}
Z33 + Z3 + Z3 ⊇ Z33 + Z3 + {0} ⊇< (3, 0, 0) , (3, 1, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇ Z33 + Z3 + {0} ⊇< (3, 0, 0) , (3, 1, 0) >⊇< (3, 1, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇ Z33 + Z3 + {0} ⊇< (3, 0, 0) , (3, 1, 0) >⊇< (3, 2, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+Z3+{0} ⊇< (3, 0, 0) , (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+Z3+{0} ⊇< (3, 0, 0) , (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >⊇<

(9, 1, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+Z3+{0} ⊇< (3, 0, 0) , (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >⊇<

(9, 2, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+Z3+{0} ⊇< (3, 0, 0) , (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >⊇

{0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇ Z33 + {0} + Z3 ⊇ Z33 + {0} + {0} ⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 +Z3 +Z3 ⊇ Z33 + {0}+Z3 ⊇< (1, 0, 1) >⊇< (3, 0, 0) >⊇< (9, 0, 0) >⊇

{(0, 0, 0)}
Z33 +Z3 +Z3 ⊇ Z33 + {0}+Z3 ⊇< (1, 0, 2) >⊇< (3, 0, 0) >⊇< (9, 0, 0) >⊇

{(0, 0, 0)}
Z33 + Z3 + Z3 ⊇ Z33 + {0} + Z3 ⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇ Z33 + {0} + Z3 ⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇ Z33 + {0} + Z3 ⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 2) >⊇<
(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+{0}+Z3 ⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+{0}+Z3 ⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >⊇<

(9, 0, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+{0}+Z3 ⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >⊇<

(9, 0, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇ Z33+{0}+Z3 ⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >⊇

{0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 1, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (3, 0, 0) >⊇<
(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (1, 0, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 0, 0) >⊇

{(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 1, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 2, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 1, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (1, 0, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 1, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 2, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >
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⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 0), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 1, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 2, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (1, 0, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 1, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 2, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 1, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (3, 0, 0) >⊇<
(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (1, 0, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (3, 1, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (3, 2, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >

⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >

⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >

⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >

⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (1, 1, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇ Z33 + {0} + {0} ⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 1, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 2, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >
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⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 1), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 1, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 2, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (1, 0, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 1, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (3, 2, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 0) >⊇< (3, 0, 0), (3, 1, 1) >⊇< (9, 0, 0), (9, 1, 1) >

⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (1, 1, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (3, 0, 0) >⊇<
(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇ Z33 + {0} + {0} ⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 1, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (3, 2, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇< (9, 0, 0), (9, 1, 2) >

⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 1, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 2, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (1, 0, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (3, 1, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (3, 2, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >
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⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >

⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >

⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 1, 2), (1, 2, 2) >⊇< (3, 0, 0), (3, 1, 0) >⊇< (9, 0, 0), (9, 1, 0) >

⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 0) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (1, 2, 2) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 0) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 1) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (3, 0, 2) >⊇<

(9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (1, 2, 0), (1, 2, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇< (9, 0, 0), (9, 0, 1) >

⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇<

(3, 0, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇<
(3, 0, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇<

(3, 0, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇<

(9, 0, 0), (9, 0, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇<

(9, 0, 0), (9, 0, 1) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇<

(9, 0, 0), (9, 0, 1) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 0, 1) >⊇<

(9, 0, 0), (9, 0, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇<

(3, 0, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇<

(3, 1, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇<

(3, 2, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇<

(9, 0, 0), (9, 1, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇<

(9, 0, 0), (9, 1, 0) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇<

(9, 0, 0), (9, 1, 0) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 0) >⊇<

(9, 0, 0), (9, 1, 0) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇<

(3, 0, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇<

(3, 1, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇<

(3, 2, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇<

(9, 0, 0), (9, 1, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇<

(9, 0, 0), (9, 1, 1) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇<
(9, 0, 0), (9, 1, 1) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 1) >⊇<

(9, 0, 0), (9, 1, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇<

(3, 0, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇<

(3, 1, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇<

(3, 2, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 0, 0), (3, 1, 2) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 1, 1) >⊇<

(3, 1, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 1, 1) >⊇<

(3, 1, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 1, 1) >⊇<

(3, 1, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 1, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 1, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 1, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 1, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 1) >⊇<

(3, 1, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 1) >⊇<

(3, 2, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 1) >⊇<
(3, 0, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 2) >⊇<

(3, 1, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 2) >⊇<

(3, 2, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 2) >⊇<

(3, 0, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 2) >⊇<

(9, 1, 0), (9, 2, 2) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 2) >⊇<

(9, 1, 0), (9, 2, 2) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 2) >⊇<

(9, 1, 0), (9, 2, 2) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 0), (3, 2, 2) >⊇<

(9, 1, 0), (9, 2, 2) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 0) >⊇<

(3, 1, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 0) >⊇<

(3, 2, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 0) >⊇<

(3, 0, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 0) >⊇<

(9, 1, 1), (9, 2, 0) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 0) >⊇<

(9, 1, 1), (9, 2, 0) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 0) >⊇<

(9, 1, 1), (9, 2, 0) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 0) >⊇<
(9, 1, 1), (9, 2, 0) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 1) >⊇<

(3, 1, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 1) >⊇<

(3, 2, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 1) >⊇<

(3, 0, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 1), (3, 2, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 0) >⊇<

(3, 1, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 0) >⊇<

(3, 2, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 0) >⊇<

(3, 0, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 0) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 0) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 0) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 0) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 2) >⊇<

(3, 1, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 2) >⊇<

(3, 2, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 2) >⊇<

(3, 0, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
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Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 2) >⊇<
(9, 1, 2), (9, 2, 2) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 2) >⊇<

(9, 1, 2), (9, 2, 2) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 2) >⊇<

(9, 1, 2), (9, 2, 2) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 1, 2), (3, 2, 2) >⊇<

(9, 1, 2), (9, 2, 2) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 2, 0), (3, 2, 1) >⊇<

(3, 2, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 2, 0), (3, 2, 1) >⊇<

(3, 2, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 2, 0), (3, 2, 1) >⊇<

(3, 2, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 2, 0), (3, 2, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 2, 0), (3, 2, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 2, 0), (3, 2, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (3, 2, 0), (3, 2, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 0, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 0, 1) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33 + Z3 + Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0) >⊇<

(9, 0, 0), (9, 0, 1) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 0, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 0) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 0) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 0) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
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Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<
(9, 0, 0), (9, 1, 0) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 1) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 1) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 1) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (9, 0, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 0, 0), (9, 1, 2) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 1, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 2, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 2, 2) >⊇< (9, 1, 0) >⊇ {(0, 0, 0)}
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Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<
(9, 1, 0), (9, 2, 2) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 2, 2) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 0), (9, 2, 2) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 0) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 0) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 0) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 0) >⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇< (9, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 1), (9, 2, 1) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (9, 0, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 2), (9, 2, 0) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 2), (9, 2, 2) >⊇< (9, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 2), (9, 2, 2) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 1, 2), (9, 2, 2) >⊇< (9, 0, 2) >⊇ {(0, 0, 0)}
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Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<
(9, 1, 2), (9, 2, 2) >⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇< (9, 2, 0) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇< (9, 2, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇< (9, 2, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇<

(9, 2, 0), (9, 2, 1) >⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇

{0}+ Z3 + Z3 ⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇

{0}+ Z3 + Z3 ⊇< (0, 1, 2) >⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇

{0}+ Z3 + Z3 ⊇ {0}+ Z3 + {0} ⊇ {(0, 0, 0)}
Z33+Z3+Z3 ⊇< (3, 0, 0), (0, 1, 0), (0, 0, 1) >⊇< (9, 0, 0), (0, 1, 0), (0, 0, 1) >⊇

{0}+ Z3 + Z3 ⊇ {0}+ {0}+ Z3 ⊇ {(0, 0, 0)}

This exercise leads us to the following proposition:

Proposition 5.3.6 The group Zpn +Zp +Zp has a total number of (p+ 1) +
(6p+ 3)[p2 + p] maximal chains, for n = 3 and any given prime number p.

Proof. The group G = Zpn + Zp + Zp has 1 + p+ p2 maximal subgroups. The
subgroup Zpn−1 + Zp + Zp has p + 1 + (3p + 2)(p2 + p) maximal chains while
the subgroup Zpn +Zp has (n−1)(p−1)+p+1+n−1 maximal chains. Thus
the total number of maximal chains is equal to p+1+ (3p+2)(p2+ p)+ (p2+
p)(2(p− 1) + p+ 3 = (p+ 1) + (6p+ 3)[p2 + p]. ✷
We have also constructed the maximal chains for Zp4 +Zp +Zp for p = 2, and
we obtained 147 maximal chains. We do not list the maximal chains here to
avoid bulkiness. We obtained the following result:

Proposition 5.3.7 The group Zpn + Zp + Zp has (p + 1) + (10p + 4)[p2 + p]
total number of maximal chains, for n = 4 and for any prime number p.
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Proof. Similar to the the case n = 3.
Now we characterise all the maximal chains of the group Zpn +Zp +Zp in the
theorem that follows.

Theorem 5.3.8 . The number of maximal chains of G = Zpn + Zp + Zp is

(p+1)+(p2+p)[n(n+1)
2

p+n] for a natural number n ≥ 1 and any prime number
p.

Proof. We use induction on n. For n = 1, G = Zp + Zp + Zp.
One maximal chain of G is G ⊇ Zp +Zp + {0} ⊇ Zp + {0}+ {0} ⊇ {(0, 0, 0)}.
Zp+Zp+{0} is a maximal subgroup of G of order p2 and rank 2. All maximal
subgroups ofGmust be of order p2 and rank 2. There are 1 + p+ · · ·+ prank(G) − 1
such subgroups, see [106]. Thus there are 1 + p+ p2 maximal subgroups, since
rank(G) = 3. Each maximal subgroup has maximal subgroups of order p and
rank 1, so there are only 1 + p such subgroups for each maximal subgroup.
Thus there are (1 + p+ p2)(1 + p) maximal chains of G.
(1+p+p2)(1+p) = 1+p+p2+p+p2+p3 = 1+2p+2p2+p3. In the formula,
if n = 1, then we have p+ 1 + (p2 + p)(p+ 1) = p + 1 + p3 + p2 + p2 + p =
1 + 2p+ 2p2 + p3. Therefore the formula is true for n = 1.
Suppose now that the formula is true for n = k, i.e. Zpk + Zp + Zp has

p+1+(p2+p)[k(k+1)
2

p+k] maximal chains. We show that if G = Zpk+1+Zp+Zp,

then G has p + 1 + (p2 + p)[ (k+1)(k+2)
2

p + k + 1] maximal chains. Now max-
imal subgroups of G are isomorphic to Zpk + Zp + Zp or Zpk+1 + Zp + {0}.
Thus they are of rank 3 or rank 2. Total number of maximal subgroups is
1 + p+ p2 + · · ·+ prank(G)−1 = 1+ p+ p2. Therefore there are p+ p2 of rank 2
and 1 of rank 3 maximal subgroups.
By induction, the subgroup Zpk + Zp + Zp of rank 3 yields p + 1 + (p2 +

p)[k(k+1)
2

p + k] maximal chains. The p+ p2 maximal subgroups of rank 2 of
G = Zpk+1+Zp+Zp yield (p+ p2)[(k+1)p+1] maximal chains, since a group
Zpn + Zp has np+ 1 maximal chains by [94]. Therefore the total number of

maximal chains of Zpk+1 + Zp + Zp is equal to p + 1 + (p2 + p)[k(k+1)
2

p + k] +

(p2 + p)[(k + 1)p+ 1] = (p+ 1) + (p2 + p)[ (k+1)(k+2)
2

p+ k + 1]. Thus the result
is true for n = k + 1 and this completes the proof. ✷

123



Chapter 6

DISTINCT AND NON-ISOMORPHIC FUZZY SUBGROUPS

In this chapter, we use one of the two counting techniques discussed in chapter
3 to classify all non-equivalent fuzzy subgroups of the group G = Zpn +Zp+Zp

for a fixed prime integer p and n ∈ N. We present a formula for the number of
distinct fuzzy subgroups of G in the form of a theorem with a detailed proof.
We begin this chapter with the classification of both the isomorphic and non-
isomorphic maximal chains of this group and characterise them in the form of
theorems. The chapter is organised as follows: In Section 1 we use only the
maximal chains to enumerate all non-equivalent fuzzy subgroups of G. Section
2 deals with isomorphic and non-isomorphic maximal chains.

6.1 COMPUTATION OF NON-EQUIVALENT FUZZY
SUBGROUPS USING MAXIMAL CHAINS

As stated in the preceding chapter, fuzzy subgroups are in fact pinned-flags. In
a series of papers, Murali and Makamba [81],[82],[83] have defined an equiva-
lence on the set of fuzzy subsets of a given group and meticulously classified the
number of fuzzy subgroups of some finite abelian p-groups. The same authors
have also studied the fuzzy subgroups of a group of the form Zp1+Zp2+· · ·+Zpn

for some positive integer n and distinct prime numbers p1, p2, · · · , pn.
Ngcibi [94] classified the fuzzy subgroups of finite Abelian groups of the form
G = Zpn + Zp for any prime number p and n = 1, 2, 3. T ărnăuceanu and
Bentea [116] have developed an explicit formula to compute the number of
fuzzy subgroups of Zp + Zp + Zp where p is a prime integer. Later, Esengul
Salturk and Irfan Siap [103] used the equivalence relation defined by Murali
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and Makamba in [81] to study the structure of equivalence classes of fuzzy
subgroups of Zn

p for a fixed prime integer p and a positive integer n indicating
the rank of the group. Employing the equivalence relation studied in [81], one
calculates the total number of all fuzzy subgroups of any given finite abelian
p-group. The study in [103] only treated the case where the prime integer p
assumes an exponent of one (1) throughout. This study is however different
from the studies discussed above since we have treated the case where the first
fixed prime integer p in Zpn + Zp + Zp is of an exponent n ≥ 1 and it is a
remarkable achievement of this dissertation.
Now let us use the maximal chains that follow to illustrate how to compute
non-equivalent fuzzy subgroups of G. Our examples are only for p = 2 and
n = 1, 2. Thereafter we give a characterisation in the form of a theorem for
any fixed prime integer p and any natural number n.

Example 6.1.1 Let G = Z2 + Z2 + Z2. In order to compute the number of
fuzzy subgroups of the finite group G, firstly we construct and write down all
the maximal chains or flags of the finite group G as follows:
Z2 + Z2 + Z2 ⊇ Z2 + Z2 + {0} ⊇ Z2 + {0}+ {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + Z2 + {0} ⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + Z2 + {0} ⊇ {0}+ Z2 + {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + {0}+ Z2 ⊇ Z2 + {0}+ {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + {0}+ Z2 ⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ Z2 + {0}+ Z2 ⊇ {0}+ {0}+ Z2 ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ {0}+ Z2 + Z2 ⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ {0}+ Z2 + Z2 ⊇ {0}+ Z2 + {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇ {0}+ Z2 + Z2 ⊇ {0}+ {0}+ Z2 ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 0, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 0) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 0), (1, 1, 1) >⊇ {0}+ {0}+ Z2 ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇< (0, 1, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (0, 1, 1) >⊇ Z2 + {0}+ {0} ⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (1, 1, 1) >⊇ {(0, 0, 0)}
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Z2 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇< (1, 0, 1) >⊇ {(0, 0, 0)}
Z2 + Z2 + Z2 ⊇< (1, 1, 1), (1, 0, 1) >⊇ {0}+ Z2 + {0} ⊇ {(0, 0, 0)} .

The chains are of length 4, thus the first chain contributes 24−1 distinct fuzzy
subgroups. The second chain contributes a further 24

2
= 23 distinct fuzzy

subgroups since it has at least one subgroup not appearing in the first chain.
Similarly, a total of 12 chains each has a unique (not used a a distinguishing
factor elsewhere) subgroup. Thus these give 12× 23 distinct fuzzy subgroups,
while the remaining 8 chains each has a unique pair of subgroups, thus they
contribute 8 × 22 distinct fuzzy subgroups. Thus our group G has 24 − 1 +
12× 23 + 8× 22 = 143 distinct fuzzy subgroups.

Proposition 6.1.2 The number of distinct fuzzy subgroups ofG = Zp+Zp+Zp

is equal to 24 − 1 + 23(2p2 + 2p) + 22p3

Proof. First we consider maximal subgroups of G. One of them is H1 =
Zp + Zp + 0. From the proof of the formula for the number of subgroups of G
in chapter 4, we know that H1 has 1+ p maximal subgroups and the length of
each maximal chain is 4. Thus all the maximal chains that contain H1 yield
24−1+23p distinct fuzzy subgroups. The maximal subgroup H2 = Zp+0+Zp

has a maximal subgroup Zp + 0 + 0 already appearing in H1. However, each
maximal chain involving H2 has a distinguishing factor (new subgroup) not
appearing in other maximal chains since H2 itself does not appear in the max-
imal chains of H1. Thus H2 yields 23(1 + p) distinct fuzzy subgroups.
The maximal subgroup H3 = 0 + Zp + Zp has maximal subgroups 0 + Zp + 0
and 0 + 0 + Zp already appearing in H1 and H2 respectively. Thus there is a
maximal chain containing H3 with no distinguishing factor, but only a pair of
distinguishing factors. Therefore H3 yields 23p+ 22 distinct fuzzy subgroups.
The rest of the maximal subgroups contribute only the (p − 1)2 subgroups
< (1, r, s) >, r, s 6= 0, not appearing earlier, as in the proof of the theorem
on the number of subgroups of G = Zpn + Zp + Zp, and this yields 23(p − 1)2

distinct fuzzy subgroups. The number of the remaining distinguishing factors
not yet used is now (1+p+p2−3), yielding a further 23(1+p+p2−3) distinct
fuzzy subgroups.
We have now exhausted all the distinguishing factors. So the rest of the
maximal chains can only have pairs of distinguishing factors. The number
of the remaining maximal chains is [p + 1 + (p2 + p)( (1+1)

2
p + 1) − 3(p +
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1) − (p − 1)2 − (1 + p + p2 − 3)], where p + 1 + (p2 + p)( (1+1)
2

p + 1) is
the number of all the maximal chains as given in chapter 4. This yields
22[p+ 1+ (p2 + p)( (1+1)

2
p+ 1)− 3(p+ 1)− (p− 1)2 − (1 + p+ p2 − 3)] distinct

fuzzy subgroups.
Hence the total number of fuzzy subgroups of G is equal to 24−1+23p+23(1+

p)+23p+22+23(p−1)2+23(1+p+p2−3)+22[1+p+1+(p2+p)( (1+1)
2

p+1)−
3(p+1)−(p−1)2−(1+p+p2−3)] = 24−1+23[p+1+p+p+(p−1)2+1+p+
p2−3]+22[1+p+1+(p2+p)(p+1)−3p−3− (p2−2p+1)2−1−p−p2+3] =
24 − 1 + 23[p+ 1+ p+ p+ p2 − 2p+ 1+ 1+ p+ p2 − 3] + 22[p+ 2+ p3 + 2p2 +
p− 3p− 3− p2 + 2p− 1− 1− p− p2 + 3] = 24 − 1 + 23(2p2 + 2p) + 22p3. ✷

Proposition 6.1.3 The number of distinct fuzzy subgroups of G = Zp2 +Zp+
Zp is equal to 25 − 1 + 24(4p2 + 3p) + 23(3p3 + p2).

Proof. First we consider maximal subgroups of G. One of them is H1 =
Zp + Zp + Zp. All the maximal chains of G are of length 5. Thus by the above
proposition, H1 yields 25 − 1 + 24(2p2 + 2p) + 23p3 distinct fuzzy subgroups.
Consider H2 = Zp2 + Zp + 0 which has 1 + p maximal subgroups: Zp + Zp + 0;
Zp2 ; < (1, r, 0) >, r = 1, 2, · · · , p − 1 >. The proper subgroups of all these
subgroups < (1, r, 0) > of H2 have all been counted in H1 or in Zp2 +0+0. So
H2 yields 24(p + 1) distinct fuzzy subgroups, corresponding to the subgroups
H2 and < (1, r, 0) >, r = 0, 1, 2, · · · , p− 1 > .
Next consider H3 = Zp2 + 0 + Zp which has 1 + p maximal subgroups, similar
to H2. The proper subgroups of all the subgroups of H3 have all been counted
in H1 or H2. Thus < (1, 0, r) > , r = 1, 2, · · · , p− 1 >, are the only uncounted
proper subgroups of H3. So H3 yields 24p+ 23 distinct fuzzy subgroups.
The rest of the maximal chains yield (p − 1)2 and (1 + p + p2 − 3) new sub-
groups to be used as distinguishing factors, see above proposition. This yields
a further 24[(p− 1)2 + (1 + p+ p2 − 3)] distinct fuzzy subgroups.
Now the total number of maximal chains is p+1+(p2+p)(3p+2), see chapter
4. Thus maximal chains not used above yield a further 23[p+1+(p2+p)(3p+
2) − p − 1 − (p2 + p)(p + 1) − 2(p + 1) − (p − 1)2 − (1 + p + p2 − 3)] distinct
fuzzy subgroups. Hence the total number of distinct fuzzy subgroups is equal to
25−1+24(2p2+2p)+23p3+24(p+1)+24p+23+24[(p−1)2+(1+p+p2−3)]+23[p+
1+(p2+p)(3p+2)−p−1−(p2+p)(p+1)−2(p+1)−(p−1)2−(1+p+p2−3)] =
25 − 1 + 24(4p2 + 3p) + 23(3p3 + p2). ✷
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Theorem 6.1.4 . The number of distinct fuzzy subgroups of G = Zpn +Zp+
Zp is equal to

2n+3 − 1 + 2n+2[p(2pn+ n+ 1)] + 2n+1[p+ 1 + (p2 + p)(n(n+1)
2

p+ n)−
p(2pn+ n+ 1)− 1].

Proof. By induction on n. The above two propositions prove the cases n = 1
and n = 2. Assume the theorem is true for k < n and let G = Zpk+1 +Zp+Zp.
The maximal subgroup H1 = Zpk + Zp + Zp of G satisfies the formula of the
theorem with n = k by assumption. Now proceed as in the above proposition
to work with maximal subgroups of G = Zpk+1 + Zp + Zp and use them and
the above propositions to show that the formula of the theorem is true for
n = k + 1. ✷

6.1.1 On Isomorphic and Non-isomorphic Fuzzy Sub-
groups of G = Zpn + Zp + Zp

Recall: 1. Two fuzzy subgroups µ and ν of a group G are isomorphic if there
is an isomorphism f : G → G such that for x, y ∈ G, µ(x) > µ(y) if and only
if ν(f(x)) > ν(f(y)) and and µ(x) = µ(y) if and only if ν(f(x)) = ν(f(y)).
If the two fuzzy subgroups are not isomorphic, then they are non-isomorphic.
2. Two maximal chains of a group G are isomorphic if they have the same
length and corresponding subgroups in the chains are isomorphic.
For example if G = Zp + Zp + Zp, then all the maximal chains of G are iso-
morphic. When computing the number of non-isomorphic classes of fuzzy
subgroups, it surfices to collapse all isomorphic maximal chains into 1 and
then use the techniques of distinct fuzzy subgroups to calculate the number
of non-isomorphic classes of fuzzy subgroups. Thus in G = Zp + Zp + Zp, the
number of non-isomorphic classes of fuzzy subgroups is 24 − 1 = 15.

Example 6.1.5 Using the maximal chains in Example 5.2.5 for p = 3 and
n = 3, we discuss how to determine the number of isomorphic and non-
isomorphic classes of fuzzy subgroups in the group G = Zpn + Zp + Zp. The
group Z33 + Z3 + Z3 has 256 maximal chains.
Looking closely at the maximal chains, we can observe that the first three
chains are isomorphic, so they can be collapsed and considered as one and
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hence they yield 2n+3−1 i.e 26 − 1 non-isomorphic fuzzy subgroups. The next
three maximal chains are distinguished from the first three by the subgroups
generated by < (3, 0, 0), (3, 1, 0) >, hence they are isomorphic and can be
collapsed into a single maximal chain yielding 25 non-isomorphic fuzzy sub-
groups. The next four maximal chains that follow are distinguished from the
first and the second three by the subgroups generated by < (9, 0, 0), (9, 1, 0) >,
hence they are isomorphic and can be collapsed into a single maximal chain
yielding 25 non-isomorphic fuzzy subgroups. The remaining blocks that have
the same number of maximal chains as the first 10 are either isomorphic to
the first three chains that count 26 − 1 or the next three chains that count 25

or the next four chains that count 25 non-isomorphic fuzzy subgroups, hence
they are all regarded as part of the ten chains that have already been counted.
Next, we examine the maximal chains produced by the maximal subgroup
of the form < (3, 0, 0), (0, 1, 0), (0, 0, 1) >. This subgroup is isomorphic to
the group Z32 + Z3 + Z3 and it is distinguished from those considered, hence
the first three chains on the block are collapsed into one chain and yield 25

non-isomorphic fuzzy subgroups. The next four chains have been distinguished
from the first three by the subgroups generated by < (9, 0, 0), (9, 0, 1) >, hence
they are isomorphic and can be collapsed into a single maximal chain, yielding
24 non-isomorphic fuzzy subgroups. Finally, we look at the maximal chains
produced by the group generated < (9, 0, 0), (0, 1, 0), (0, 0, 1) > which is iso-
morphic to the group Z3 +Z3 +Z3. This group is different from those consid-
ered above, all the chains under this group are regarded as a single chain and
give a count of 25 non-isomorphic fuzzy subgroups. Hence in total we have
[26 − 1 + 25 + 25] + [25 + 24 + 25] = 26 − 1 + 4 ∗ 25 + 24 = 63 + 128 + 16 = 207
non-isomorphic classes of fuzzy subgroups. This agrees with the theorems that
follow.

Theorem 6.1.6 . The number of non-isomorphic maximal chains of sub-
groups of the group G = Zpn + Zp + Zp is equal to n(n+1)

2
.

Proof. By induction on n. For n = 1 all the maximal chains are isomorphic
and each chain is of length 4. Thus there is only one maximal chain up to
isomorphism. The formula n(n+1)

2
with n = 1 also gives 1 maximal chain up to

isomorphism.
Now assume the result is true for all k < n. Let G = Zpk+1 + Zp + Zp.
Then G has 2 non-isomorphic maximal subgroups viz. Zpk + Zp + Zp and
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Zpk+1 +Zp+0. By induction, Zpk +Zp+Zp has
k(k+1)

2
non-isomorphic maximal

chains. In chapter 3 we showed that Zpn + Zp has n maximal chains. Thus

G has k(k+1)
2

+ k + 1 = (k+1)(k+2)
2

non-isomorphic maximal chains. Hence the
theorem is true for n = k + 1. ✷

Theorem 6.1.7 . The number of non-isomorphic classes of fuzzy subgroups
of the groupG = Zpn+Zp+Zp is equal to 2

n+3−1+2(n−1)2n+2+ (n−1)(n−2)
2

2n+1.

Proof. By induction on n. For n = 1 we have only one maximal chain up to iso-
morphism, giving 24−1 non-isomorphic fuzzy subgroups. Now assume the the-
orem is true for all k < n. LetG = Zpk+1+Zp+Zp, thenG has 2 non-isomorphic
maximal subgroups viz. H1 = Zpk + Zp + Zp and H2 = Zpk+1 + Zp + 0. By in-

duction, H1 yields 2
k+4−1+2(k−1)2k+3+ (k−1)(k−2)

2
2k+2 non-isomorphic fuzzy

subgroups and H2 yields 2 new subgroups up to isomorphism viz Zpk+1+Zp+0
and Zpk+1 +0+ 0. Hence the total number of non-isomorphic fuzzy subgroups

is equal to 2k+4 − 1 + 2(k− 1)2k+3 + (k−1)(k−2)
2

2k+2 + 2.2k+3 + [ (k+1)(k+2)
2

− 1−

2k − (k−1)(k−2)
2

]2k+2 = 2k+1+3 − 1 + 2(k + 1 − 1)2k+1+2 + (k+1−1)(k+1−2)
2

2n+1.
Hence the theorem is true for n = k + 1. ✷
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Chapter 7

CONCLUSSION

In this dissertation we have successfully used an enumeration technique intro-
duced in [84] and an equivalence relation introduced by Murali and Makamba
in [81] to investigate and classify distinct fuzzy subgroups of a finite abelian
p-group of rank 3 of the form G = Zpn + Zp + Zp for any prime integer p and
any positive integer n, a milestone and a core of this study. We started by
reviewing formulae for the number of subgroups, maximal chains of subgroups
and distinct fuzzy subgroups of the rank-2 group Zp2 + Zp, see chapter 4. In
the same chapter, we computed the number of non-isomorphic classes of fuzzy
subgroups.
Chapter 4 thus prepared the ground for the classification of fuzzy subgroups
of the rank-3 group G = Zpn + Zp + Zp. We began this study by determining
user-friendly formulae for the number of subgroups of this group G. We had
the general formula p(2pn+ n+ 1) + 3 + n for the number of subgroups of G.
This then enabled us to count the maximal chains of subgroups of G. So we
obtained the formula (p+1)+ (p2+ p)[n(n+1)

2
p+n] for the number of maximal

chains of subgroups of G.
The counting of distinct fuzzy subgroups requires maximal chains and how we
distinguish them. We proceeded inductively to count the number of distinct
fuzzy subgroups and finally obtained the formula
2n+3 − 1 + 2n+2[p(2pn+ n+ 1)] + 2n+1[p+ 1 + (p2 + p)(n(n+1)

2
p+ n)

- p(2pn+ n+ 1)− 1] for this number.
By collapsing all isomorphic maximal chains into one, we obtained the formula
n(n+1)

2
for the number of non-isomorphic maximal chains and 2n+3 − 1+ 2(n−

1)2n+2 + (n−1)(n−2)
2

2n+1 for the number of non-isomorphic fuzzy subgroups of
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G. Our research would not have been successful without specific examples
involving specific primes and exponents. So we looked laboriously at all sub-
groups of a specific G, maximal chains of subgroups and how to distinguish
them. Painstakingly, we counted all distinct fuzzy subgroups. After many
such examples, we started looking for patterns. There seems to be no way of
guessing the results without looking first at specific cases.
Further research: The group G = Zpn + Zp + Zp can still be extended to
G = Zpn + Zpm + Zpk for any positive integers n,m and k. This should
be a further research for a doctoral degree. We have done a lot of good
work for a Masters degree. One could also extend G = Zpn + Zp + Zp to
G = Zpn +Zp+Zp+ · · ·+Zp, i.e. we can attach any number of the summands
Zp to Zpn . There is also the possibility of varying the primes, for example
using G = Zpn + Zq + Zq, where p and q are distinct primes. In fact there are
many different possible permutations of the primes.
Finally we used the technique of starting with maximal chains of subgroups
and then associating each maximal chain with all possible classes of keychains.
This technique seems friendlier to handle than other techniques. The equiva-
lence relation used in our classification of fuzzy subgroups seems more complex
to handle compared to others available in literature, hence we are confident
that our results on the maximal chains of subgroups, distinct fuzzy subgroups
and non-isomorphic classes of fuzzy subgroups of G = Zpn +Zp +Zp have not
been obtained before.
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