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ABSTRACT 

We proposed a novel measure of conceptualizing dynamic functional 

network connectivity (FNC) in the human brain using flexibility of functional 

connectivity (fFC), which captures the variance of functional connectivity across 

time. In task-free fMRI scans (N = 122), this measure was demonstrated to 

correspond to the underlying structural connectivity (SC) within the default mode 

network (DMN), while static functional connectivity (sFC) did so to a relatively low 

degree. As SC likely does not develop to facilitate task-free brain function, but 

rather to integrate information during cognitive engagement, we argue that fFC 

can estimate the potential functional connectivity exhibited outside of the task-

free setting to a greater degree than sFC, and is better suited for examining 

behavioral correlates of FNC. In support of this, we showed that SC-fFC coupling 

was related to intelligence levels, while SC-sFC coupling was not. Further, we 

found that the DMN existed in a functionally disconnected state during a large 
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portion of the scan, raising questions about whether sFC is a meaningful 

quantifier of functional connectivity in the absence of a task, and scrutinizing its 

extrapolative power to real-world, cognitively engaging scenarios. Given that fFC 

is based on FNC variability across time rather than its average, it is largely 

unaffected by such contaminants. 
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CHAPTER 1: INTRODUCTION 

Background and Specific Aims 

 In trying to understand how brain activity is related to behavior and 

cognition, traditional neuroimaging data analyses have been focused on isolating 

brain regions that become “active” during the performance of experimental tasks. 

However, analyses focusing on regionally or temporally constrained aspects of 

function have limitations in advancing our understanding of the brain as a 

complex and dynamic system, no single part of which functions in a truly 

independent fashion. The knowledge base regarding functional and structural 

hierarchies of brain organization has grown tremendously over the past decade 

(Sporns et al. 2004; van den Heuvel and Hulshoff Pol 2010), in large part due to 

the potential realized in network-based approaches, particularly as applied to 

task-free scans. 

Task-free neuroimaging data are collected while the subject lies in the 

scanner and thinks of nothing in particular, staring at a cross on the screen or 

with eyes closed. As the brain is never “off,” the ongoing fluctuations of brain 

activity levels in the absence of task engagement are of particular interest, given 

their potential to reveal robust baseline functional processes that are not task-

specific and may serve as markers of neurological and psychiatric disorders. 

Conventional event-related analyses are not applicable to functional 

neuroimaging data that are not task-driven due to the lack of a priori temporal 

information that is needed for relating brain activity to behavior. Brain function in 

a task-free setting is not random, however, and has consistently been 
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demonstrated to exhibit highly organized inter-regional patterns of connectivity 

(Fox et al. 2005). The first such network was observed in fMRI data as a 

correlation between cross-hemispheric blood oxygenation level-dependent 

(BOLD) signals in the bilateral motor cortices (Biswal et al. 1995). Subsequent 

investigations of whole-brain connectivity patterns have shown that brain activity 

can be represented in terms of multiple spatially distributed networks that display 

high levels of intrinsic coherences and possess unique time courses. 

Particularly advantageous is the fact that such functional networks can be 

extracted by examining the spatiotemporal structures of functional data in the 

absence of tasks or other a priori information. Although several different well-

described network extraction techniques exist, all ultimately aim to reduce high-

dimensional neuroimaging data to several components, each one of which may 

involve several brain regions that work in synchrony. While such networks are 

defined by the high levels of intrinsic coherences that exist within them, they also 

display varying levels of weaker correlations between each other. Over the past 

several years, the number of analyses examining functional network connectivity 

(FNC) interactions has ballooned into a formidable sub-field of neuroscience, 

which has subsequently revolutionized our conception of the brain as a dynamic, 

hierarchical system of systems.  

A major challenge to reliable quantification of FNC measures and 

interpretation of any FNC relations to behavioral processes is the lack of 

knowledge about the structural and functional influences that generate, maintain, 

and guide FNC. Motivated by previous publications describing positive 
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relationships between functional connectivity and structure across regions that 

were pre-defined anatomically (Hagmann et al. 2008; Skudlarski et al. 2008; 

Honey et al. 2009), we examined the structure-function relationship across 

regions that were defined functionally. Specifically, we extracted functional 

networks within the broader default mode network from task-free scans, and 

examined the association between their underlying structural connections and 

inter-network functional connectivity (FC) levels. Further, we proposed a novel 

conceptualization of inter-network functional interactions by examining the 

variances that pairs of networks exhibit in their FC levels across time, and 

investigated the relationship between this FC measure and structure. The 

motivation behind the use of FC variances instead of averages was to circumvent 

addressing negative and positive FC between network pairs in relating them to 

structure. Finally, we examined the relationships between different types of 

structure-function coupling with individual differences in general cognitive ability. 

 

Default Mode Network 

The default mode network (DMN; Raichle et al. 2001) has been 

consistently shown to display prominent, intrinsically coherent activity in the 

absence of task engagement, and has received a great deal of attention following 

the inception of network-based analyses. Its name stems from its propensity to 

become active during a lack of cognitive engagement, as we dwell in a default 

state of cognition. Interestingly, the DMN exhibits decreased levels of activity 

during task engagement (Shulman et al. 1997; Mazoyer et al. 2001). The network 
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is broadly distributed across the cortex, and occupies the bilateral angular gyri, 

precuneus, medial and lateral prefrontal cortex, as well as the posterior cingulate 

cortices – regions that display synchronous activities, as detected by various 

neuroimaging modalities such as fMRI BOLD (Van Dijk et al. 2010), PET 

(Raichle et al. 2001), EEG (Fomina et al. 2015; Knyazev et al. 2016), and MEG 

(Brookes et al. 2011). 

While much research has focused on determining the functional role of the 

DMN, its exact purpose remains unknown. Generally, the network appears to be 

related to cognition regarding the self, including assessment of stimulus self-

relevance in both non-social (Qin et al. 2016) and social situations (Lee 2015; 

Soch et al. 2016). More interestingly, the network has been implicated in mind-

wandering about past or hypothetical future events (Karapanagiotidis et al. 2016; 

Kucyi et al. 2016), something that most healthy humans engage in without 

external preoccupation. Specifically, future planning and assessment regarding 

personal goals has been demonstrated to rely on the DMN (Xu et al. 2016). 

Although such self-reflective and long-term planning processes have long been 

considered to be strictly human attributes, the DMN has recently been described 

in other non-primate animals, such as dogs (Kyathanahally et al. 2015; Robinson 

et al. 2016) and rodents (2012; Gozzi and Schwarz 2016) – findings that 

challenge our previous conceptions of animal cognition and the purpose of the 

DMN in humans. 

Given the wide scope and demanding nature of the supposed DMN roles 

– as it must rapidly respond to the ever-changing shifts in cognitive demands and 
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constantly evaluate situational self-relevance – the functional spectrum that this 

network is capable of occupying would be expected to be broad. Indeed, the 

range of its connectivity potential to other networks is unusually high, with the 

DMN shifting from being highly synchronous with a particular network at one 

point in time, yet becoming nearly perfectly anti-correlated with it at another 

instance within the same scan. Recent findings further demonstrated the 

existence of smaller networks within the larger DMN, which in turn display 

functional heterogeneity within the DMN itself (Chen et al. 2017). In light of the 

high level of functional variance the DMN is capable of exhibiting, we focused on 

such within-DMN networks, and examined the structure-function relationship 

across their pairs.  

 Greicius et al. (2009) have previously demonstrated that FC within the 

DMN system does indeed reflect the structural connectivity (SC) that underlies it. 

The DMN is a particularly suitable candidate for considerations of such SC-FC 

relationships, as non-human primate anatomical studies have demonstrated that 

many of the within-DMN structural connections are monosynaptic (Lavenex et al. 

2002; Kobayashi and Amaral 2003; Mantini et al. 2011), mitigating the fact that 

SC analyses focused on direct connections between a pair of networks may miss 

intermediate connections (i.e., via a third region). Additionally, non-human 

primates have been shown to display FC during task-free scans that reflected SC 

even in the case of multi-synaptic paths within the DMN (Mantini et al. 2011). 

While the potential of such a relationship is promising and exciting, the (Greicius 

et al. 2009) human study utilized static functional connectivity (see section 6.2), 
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which is blind to fluctuations that network pairs inevitably exhibit in their 

connectivity strengths across time. Further, the functional network extraction 

method used to isolate the DMN was seed-based, which, while able to reveal 

spatially separate regions of the network, may fail to capture sub-components 

that are functionally distinct (Joel et al. 2011). In other words, the lack of a 

constraint upon which spatially separate DMN sub-components are isolated 

misses the system’s functional architecture, and, by extension, could result in 

decreased white matter tract specificities if these sub-components were used as 

regions of interest (ROIs) for structural tractography. In light of the potential 

structure-function relationship that has previously been described within the DMN 

system, the present study applies an advanced network extraction method called 

independent component analysis (ICA), which imposes maximal statistical 

independence onto the extracted functional networks within the DMN. 

 

Network Extraction Using Independent Component Analysis 

 Independent component analysis is a blind source separation algorithm 

that is used to find statistically independent information (Delorme et al. 2007) 

based on non-Gaussianity. It does so by estimating the components that linearly 

mix to form the observed signal (Jutten and Herault 1991; Comon 1994). An m x 

t matrix X of observed neuroimaging data across m locations and t time points 

can therefore be defined as 

X = AS , 
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where S is an n x t matrix containing n components’ true source data, and A is a 

static m x n mixing weights matrix that linearly combines source data S to form 

the observed signal X. With only X being known, both A and S are undetermined, 

and need to be estimated by ICA. This is achieved by learning weights in the un-

mixing matrix A-1, the inverse of A, such that when combined with the observed 

signal X, features of S are maximally mutually independent. Accordingly, the 

equation above can therefore be rearranged as: 

XA-1 = S . 

 Prior to ICA decomposition, data are commonly preprocessed using 

principal component analysis (PCA), which imposes statistical de-correlation onto 

the data up to the second statistical moment (Xi et al. 2000). Independent 

component analysis (ICA) then extracts networks from PCA-whitened data based 

on third or fourth order moments, depending on the algorithm used. Given that 

ICA operates on skewedness and kurtosis, however, it would be no more useful 

than PCA in separating two Gaussian components from their joint distribution 

(Dodel et al. 2000). 

The fMRI community has extensively utilized ICA in investigating functional 

brain networks. Given that fMRI offers more information in the spatial domain of 

the data, variants of spatial ICA are commonly used for network extraction. In 

selecting the ICA algorithm, the expected source distributions need to be 

considered, with fMRI sources of interest tending to be non-Gaussian. More 

specifically, focal fMRI activations have been shown to have super-Gaussian 

distributions, while artifact-related sources are often sub-Gaussian (McKeown 
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and Sejnowski 1998; Calhoun and Adali 2006). This discrepancy presents 

challenges for ICA algorithms that are partial to isolating sub- or super-Gaussian 

sources, as the former would produce a set of nuisance components, while the 

latter may yield cognition-related components that are contaminated with noise.  

An algorithm capable of dissociating components with low and high kurtoses is 

therefore desirable for fMRI decomposition, with the extended Infomax ICA fitting 

this criterion. Although Infomax is more computationally demanding than 

FastICA, this burden is negligible in practice due to the relatively small amount of 

fMRI data that is usually analyzed, at least in comparison to EEG/MEG. Indeed, 

both simulation and real fMRI examinations have shown extended Infomax 

outperforming algorithms like FastICA and JADE in both the estimation of true 

sources (Correa et al. 2005) and reliability across multiple runs (Correa et al. 

2007). Importantly, combinations of preprocessing steps involving PCA, 

clustering, and various ICA types have also been contrasted, showing that PCA 

coupled with spatial extended Infomax yielded the best results (Calhoun et al. 

2001). 

 

Structural Inter-Network Connectivity  

Structural connectivity analyses commonly operate on data obtained using 

diffusion weighted imaging (DWI), which measures diffusivity of water molecules 

in the brain (Douek et al. 1991). Given that neuronal axons, which congregate to 

form large white matter fiber bundles that connect spatially separated brain 

regions, are filled with fluid, Brownian motion of water within them is restricted by 
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their cell membranes and would be expected to display movement biased along 

the direction of the axon. Diffusion weighted imaging (DWI) is an MRI technique 

that can be used to detect the vector of such Brownian motion, producing images 

with intensities that reflect diffusion magnitudes (Stejskal and Tanner 1965). 

Specifically, the application of a diffusion-encoding gradient that is perpendicular 

to the diffusion direction results in highest intensity, while gradients applied in the 

direction of the neuronal axons are least sensitive to their water movement. 

Using a scan sequence that utilizes 3 orthogonal gradients therefore allows for 

the estimation of directionality within each voxel, producing isotropic (a. k. a. 

trace) DWI diffusion maps. 

 In order to track specific fiber bundles through the brain, however, one can 

utilize diffusion tensor (DTI) fitted data to determine the principal diffusion 

directions within a three-dimensional tensor ellipsoid within each voxel, which 

theoretically requires diagonalizing diffusion coefficients obtained from nine 

gradient-encoding directions (Dxx, Dxy, Dxz; Dyx, Dyy, Dyz; Dzx, Dzy, Dzz). However, 

in practice determining the principal diffusion directions of the tensor ellipsoid 

only necessitates a minimum of 6 gradient direction due to the redundancy 

between Dxy = Dyx, Dyz = Dzy, and Dxz = Dzx. The process of fitting tensors via 

diagonalization of multi-gradient data thus provides direction and magnitude of 

water diffusion within each voxel, allowing for applications of tractography 

methods to tensor data. 

Application of tractorgraphy to DTI data allows for detection of large white 

matter bundles between spatially separate ROIs. A number of fiber-tracking 
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algorithms exist, falling into broad categories of deterministic and probabilistic 

tractography techniques. Deterministic methods are concerned with estimating 

the most likely direction of the tract that traverses each location, reconstructing a 

single bundle that exists between seed ROIs by either fitting a uniform fiber 

direction within each voxel (Mori et al. 1999), tensorline (Weinstein et al. 1999), 

or interpolation methods. A major limitation of deterministic approaches is the 

assumption that only one tract passes through each voxel. Given that voxel size 

is much larger than individual neuronal axons, this assumption may be violated 

as multiple tracts may pass through a particular voxel in different directions. 

Probabilistic tractography techniques allow for modeling multiple directions of 

diffusion at each location across the entire distance between ROIs, selecting the 

most probable total path after voxel-wise estimations. Given that probabilistic 

tractography takes into account data from all of the voxels’ diffusion estimates 

across the entire path between ROIs, the method tends to reconstruct tracts with 

a greater degree of fidelity than deterministic techniques. A specific probabilistic 

white matter tracking method utilized in the present study was the multi-fiber field 

model (Behrens et al. 2007), applied using Functional MRI of the Brain (FMRIB) 

Software Library (FSL), which yields a count of streamlines that likely pass 

through each voxel, as well as a number of streamlines that have satisfied all 

tractography conditions (i.e. “made it” from seed to target ROI). 
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Static Functional Inter-Network Connectivity  

While brain networks exhibit strong within-network connectivity levels, as 

this is the main criterion on which they are derived, relatively weak associations 

also exist between different network time courses. This functional network 

connectivity can be obtained between every pair of networks extracted from a 

particular dataset, producing a network-pairwise connectivity matrix. The 

resulting holistic representation of each network’s propensity to communicate 

with every other network paints a useful picture of large-scale cognitive systems 

that supposedly function in synchrony, as well as those operating non-

reciprocally. 

Pearson r correlation is the most common method to assess FC between 

a pair of networks. Correlating two time courses across the entire time of the 

scan results in a single connectivity value for each pair of networks. A given 

dataset decomposed into n networks, therefore, can be summarized as a 

collection of n-choose-two r values. While these whole-scan correlations shed 

light on interesting relationships between various cognitive sub-systems, such as 

the default-mode network’s tendency to display activity that is generally anti-

correlated with the rest of the brain, the usefulness of inferences made from 

static long-term network interactions is beginning to fade. This is largely a 

product of the consensus that the brain does not exist in a temporally-stable state 

of connectivity, but rather exhibits dynamic, transient patterns of network 

interactions (Sporns et al. 2004).  
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In the investigation described herein, we included two measures of static 

functional connectivity (sFC): raw directional sFC (sFC(dir)) that included the sign 

of the SC-sFC relationship, and the magnitude of sFC (sFC(mag)) that was 

obtained by taking the absolute value of directional FC within each network pair 

and subject. The latter approach was taken in an attempt to address anti-

correlations that some network pairs were likely to exhibit. 

 

Flexibility of Functional Inter-Network Connectivity  

Changes in network connectivity strengths can be examined using 

dynamic functional network connectivity. This is achieved by calculating bivariate 

connectivity measures, such as Pearson r, between a pair of networks’ time 

courses across multiple windows that are shifted across scan time. Conducting 

such an analysis on a single pair of networks would produce a time course of 

connectivity strength between them, which in turn can be used as an 

experimental measure of interest. Much like any other signal, a connectivity time 

course for a particular network pair can be analyzed simply in terms of variables 

such a amplitude and variance, for example (Allen et al. 2012). 

A much more interesting approach considers a collection of such 

connectivity time courses between every possible combination of network pairs 

of interest in a particular dataset. Using methods such as k-means clustering, 

congregations of such time courses can be separated into several connectivity 

matrices that collectively explain a large portion of total connectivity variance, yet 

represent separate states of connectivity that are quasi-stable and reoccur 
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across time, existing for different durations that are referred to as dwell times. In 

other words, if one were to take a holistic connectivity snapshot of the brain at a 

random time point, she or he will likely find the brain in one of such states of 

connectivity. Connectivity states thus summarize the centroids of dynamic 

functional connectivity via several connectivity matrices that collectively reflect 

the single connectivity matrix obtained via static FC analyses.  

Here, we used the variance of the connectivity strengths distributed across 

such centroids for a given pair of networks within the DMN system to determine 

the pair’s flexibility of functional connectivity (fFC). The use of fFC as a measure 

of interest rather than static FC is motivated by the difficulties involved in a 

bivariate analysis between the always-positive SC and FC that can be both 

positive and negative. For a given network pair, we operationally define its fFC as 

the standard deviation of the FC strengths it displays across the different FC 

states across the duration of the scan.  

 

Hypotheses 

Our expectation for the relationship between structure and static 

connectivity between functionally defined networks was reflective of the 

previously described positive SC-sFC correlations between anatomically defined 

regions of interest: we expected SC to be positively correlated with sFC(dir) and 

sFC(mag). Further, we hypothesized that stronger structural connectivity 

between DMN networks would be associated with greater fFC as well. 

Specifically, DMN networks with stronger structural connections between them 
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were expected to exhibit higher standard deviations of FC across different 

functional states.  

 

CHAPTER 2: METHODS 

Participants and Behavioral Measures 

 One hundred twenty two volunteer participants were recruited via flyers 

from the University of New Mexico in Albuquerque and surrounding areas. The 

University’s institutional review board approved the study protocol in accordance 

with the ethics principles set by the Declaration of Helsinki. Subjects were 

presented with a consent form and given an opportunity to ask an investigator 

questions pertaining to the study prior to providing consent. Legal guardians 

signed approved assent forms for participants who were under the age of 18 

years old. 

 All individuals subsequently underwent intelligence testing by a trained 

investigator using the Wechsler Abbreviated Scale of Intelligence-II (WASI-II) 

battery. Specifically, vocabulary, block design, similarities, and matrix reasoning 

tests we used to estimate general intelligence levels. 

 

 fMRI Collection and Preprocessing 

Functional MRI scans were collected at the Mind Research Network, 

Albuquerque, NM, using a 3-Tesla Siemens Trio Tim MRI system. Functional T2
*-

weighted scans were obtained via a 32-channel radio frequency coil using an 

echo-planar imaging (EPI) of 32 ascending interleaved slices with the following 
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parameters: TR = 275 ms, TE = 30 ms, flip angle = 34o, slice thickness = 3.5 mm, 

distance factor = 33%, FOV = 240 mm, voxel size = 3.8 x 3.8 x 3.5 mm3. A total 

of 1352 EPI volumes were collected during each of the task-free scans, during 

which participants were instructed to look at the crosshairs in the middle of the 

screen in front of them and think of nothing in particular. Structural T1 volumes 

were reconstructed from 192 multi-echo MPRAGE slices obtained with the 

following parameters: TR = 2530 ms, TE = 1.64/3.5/5.36/7.22/9.08 ms, voxel size 

= 1 x 1 x 1 mm3, FOV = 256 mm. 

 The first 22 fMRI scans were discarded from each subject’s dataset in 

order to remove volumes with magnetic saturation effects. Preprocessing of the 

functional data was done using Statistical Parametric Mapping (SPM) 12 toolbox 

and custom MATLAB scripts. Following the conversion of DICOM files to NIfTI 

format, all volumes were corrected for slice timing effects. Volumes collected 

across time were then re-aligned to the first image within each subject, and a 

single mean image with spatial orientation representing the entire scan was 

produced for each participant. These subject-specific average volumes were 

subsequently co-registered to the corresponding individual structural T1 anatomy 

volumes, and the resulting spatial transformation matrices applied to all 1330 EPI 

volumes, aligning every person’s functional and structural data in space. Next, 

each individual’s T1 scan was normalized to the Montreal Neurological Institute 

(MNI) template using the tissue probability maps provided with the SPM toolbox. 

Individual T1-to-MNI spatial transformation matrices were then applied to all EPI 

volumes from each participant, producing functional data residing in common 
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MNI space for further group statistics. Lastly, all functional data were smoothed 

using a 6 mm kernel. 

 

fMRI Network Extraction and ROI Definition 

With the aim of obtaining multiple DMN networks that can be used to 

examine within-DMN structural and functional connectivity, we used a high-order 

fMRI decomposition model. Using the Group ICA of fMRI Toolbox (GIFT; 

http://mialab.mrn.org/software/gift), fMRI data were first whitened using 

expectation maximization principle component analysis (PCA) and reduced to 

100 principal components. The extended Infomax spatial ICA algorithm was 

subsequently utilized to reduce the aggregate data to 100 independent 

components with maximal statistical independence.  

Default-mode networks were identified in the resulting set of components 

by examining their spatial distributions and matching them with previously 

described DMN components. Specifically, Pearson r spatial correlation strengths 

between the t-maps of the obtained components and those described in Allen et 

al. 2012 were computed. Those with r values of 0.5 or higher were deemed as 

candidates for a match, and underwent further visual examinations to confirm 

positive identifications. As a safeguard against admitting artifact-related 

components into the final dataset, as well as to resolve ambiguities in the case of 

multiple components representing previously-described ones, low:high frequency 

signal ratios displayed by component activity histograms were also considered. 
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Components with high low:high frequency ratios were favored for positive 

identification, as low ratios are indicative of system noise (Allen et al. 2011). 

Once the DMN networks were identified, we thresholded them at the 80th 

percentile of their respective t distributions to define regions of interest (ROIs) for 

white matter tractography. The threshold was chosen with the goal of avoiding 

spatial overlap between ROIs, as well as capturing the centroids that contain 

most of the voxels that functionally contribute to their respective networks. 

Further, the produced ROIs were checked to ensure that they, while residing in 

the gray matter, did spatially protrude into the white matter for tractography 

purposes.  

With the ROIs defined in standard MNI template space, we then spatially 

transformed them to each participant’s native space. This was achieved by co-

registering the MNI template to the native volumes, and applying the resulting 

transformation matrices to the entire set of DMN ROIs. Within each subject, voxel 

coordinates of ROIs’ maximum values were then used to calculate the Euclidean 

distances, in millimeters, between every possible pair of networks. This produced 

122 subject-specific sets of inter-network distances that would be used as 

covariates to account for morphological variations, as well as examine any 

effects distance may have on structural and functional connectivity levels. 

Likewise, subject-specific ROI volumes, in voxels, were obtained for SC 

normalization further in the analysis. 
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Structural Connectivity 

 Diffusion weighted imaging (DWI) data were obtained on the same 

Siemens Trio scanner and visit as the functional and structural scans. The 

following parameters were used to obtain the EPI images: TR = 3600 ms, TE = 

110 ms, voxel size = 2.2 x 2.2 x 2.2 mm3, 66 slices, FOV = 229 mm, 150 diffusion 

directions with b = 1000–3000 s/mm2, 6 measurements with b = 0. Diffusion-

weighted scans were preprocessed using FSL. Following susceptibility artifact 

correction by removing the difference between diffusion weights obtained via 

scans in ascending and descending slice order, the data were further corrected 

for eddy currents. The diffusion tensor model was then fit to each subject’s data, 

and Bayesian estimation of diffusion parameters obtained using sampling 

techniques while modeling crossing fibers (BEDPOSTX; (Behrens et al. 2007)) 

was run on individual subjects’ data in native space. 

Regions of interest that were previously derived from functional networks were 

spatially transformed to every subject’s native space, and input as seeds and 

target regions into the probabilistic tracking function (PROBTRACKX2), which 

utilized bi-directional tracking algorithms. Each voxel within the seed mask 

emanated 5000 sample streamlines, and allowed for a maximum voxel-to-voxel 

streamline curvature of approximately 80 degrees. The built-in “loopcheck” option 

was used to exclude pathways that looped back onto themselves. The output of 

the tractography algorithm included the number of pathways that had satisfied 

the user-specified tracking conditions, and successfully spanned the space 

between the seed and target masks. This value was normalized by dividing it by 
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the total number of streamlines that were sampled out of each ROI, producing a 

fraction that represented the tracking “success rate” between each network pair. 

Given the positively-skewed distribution of the obtained fraction values, a log 

transform was applied to the produced structural connectivity data. 

 

Static Functional Connectivity and Flexibility of Functional Connectivity  

 In order to account for scanner drift, linear, quadratic, and cubic trends 

were removed from the identified DMN networks’ time courses. The time courses 

were de-spiked and low-pass filtered using a 1.25 Hz upper frequency limit, 

yielding a signal with a bandwidth that is conservative for fMRI data with a 

repetition time of 0.275 s, as per Nyquist-Shannon sampling theorem (Shannon 

1949). Temporal derivatives of subject-specific scan-to-scan x, y, and z 

translations as well as roll, pitch, and yaw motion parameters were regressed out 

of the networks’ time courses. Finally, time courses were normalized using 

variance normalization. For each subject, static functional connectivity (sFC) 

levels were obtained via Pearson r correlations between whole-scan time 

courses of network pairs.  

Dynamic connectivity time courses were obtained by calculating 

covariance matrices within a time window with a width of 22 TR (6.05 s) and a 3 

TR Gaussian taper (0.825 s) that slid across time in increments of 1 TR, 

producing pairwise network connectivity time courses with 1308 time points each. 

Using the GIFT dynamic functional connectivity toolbox, functional connectivity 

states among the DMN networks were then isolated by applying the k-means 
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clustering algorithm (Lloyd 1982) to the covariance matrices calculated for each 

window in the previous step. Rather than the Euclidean distance function (L2), 

the L1 norm was used as a similarity measure due to its increased effectiveness 

in high dimensional data (Aggarwal et al. 2001). We did not explicitly specify the 

number of clusters to be isolated, instead relying on the built-in gap and 

silhouette statistics cluster estimations, and using the average of the two as the 

final number of connectivity states to be estimated. Following cluster 

identification, the network pairs’ correlational strengths within each FC state were 

Fisher z-transformed in order to obtain normalized sets of recurring functional 

connectivity levels among DMN network pairs.  

Following the cluster analysis of ICA-derived functional networks’ time 

courses, individual subjects’ contributions to the group FC states were used to 

derive subject-specific FC matrices for every state. For every participant, the 

amounts of time that she or he spent in each FC state were then used to weight 

that subject’s corresponding FC states’ levels. This was achieved by dividing the 

number of time points spent in a state by the number of time windows sampled 

across the entire scan session (1308), and multiplying the result by every FC 

value in that particular state. Weighing FC states by dwell times thus 

incorporated the variability in FC state occurrences and dwell times across 

subjects, producing subject-wise values for every network-pair that represent the 

pairs’ general propensities to communicate. While the resulting scalars no longer 

represented true correlational FC values, they prevented subjects who reached 

certain states rarely and for short periods of time from over-contributing to our 
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main measure of interest – the flexibility of functional connectivity – defined as 

the standard deviation of these values for each network pair across all FC states. 

The fFC was calculated in this manner for every network pair on a subject-wise 

basis. 

 

Effects of Distance on Connectivity 

 We first examined the potential effects of inter-network distances on 

connectivity levels. Pearson r correlations between inter-network distance and 

structural connectivity, static functional connectivity, and flexibility of functional 

connectivity were calculated within each subject. The three resulting vectors of r 

values for the entire group were Fisher z transformed and entered into one-

sample t tests to obtain summary statistics for the relationships between distance 

and each type of connectivity. Similarly, separate summary statistics for the male 

and female groups were also calculated. Further, individual z values from the 

male and female groups were entered into two-sample t tests to examine gender 

differences in distance-connectivity relationships. Correlations between group-

averaged distances and levels of SC, sFC, and fFC were also obtained for the 

entire group, as well as males and females separately. Although the analysis 

cannot provide insight into individual within-subject relationships between 

distance and connectivity, we included it to examine the general sample-wide 

relationships of whether distance affects connectivity on average. 
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Relationship Between Structural and Functional Connectivity 

 The relationship between structural and static functional connectivity 

levels was assessed across all network pairs within each subject via partial 

correlations, adjusted for inter-network distances. The relationship was examined 

in two analogous analyses using raw directional sFC(dir) as well as sFC(mag), 

which was obtained by taking the absolute value of raw sFC values. The two 

approaches were taken in an attempt to account for competing fundamental 

assumptions of how SC may relate to sFC(dir). Specifically, it is yet to be clarified 

whether anti-correlations and positive synchronies that exist between functional 

networks are influenced by SC in the same manner. Linear relationships between 

sFC(dir) and structure imply that positive and negative functional connections 

depend on SC in an inverse fashion. That is, higher SC is related to stronger FC 

in networks that exhibit positive synchronies, yet results in weaker FC in anti-

correlated network pairs. Using sFC(mag) conversely assumes that the 

increased structural connections would be associated with higher levels of 

functional connectivity regardless of FC direction, in both positively and anti-

correlated network pairs. This discrepancy has been subjected to extensive 

discussion, and is a major motivator for the main aim of this study to consider the 

flexibility of dynamic network interactions in lieu of static directional FC 

measures. 

 Partial SC-sFC(dir), SC-sFC(mag), and SC-fFC correlations, adjusted for 

inter-network distances, were calculated among the identified DMN networks 

within each subject. The resulting individual r values were Fisher z transformed 
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and entered into three separate one-sample t tests in order to determine whether 

the group-level SC-sFC(dir), SC-sFC(mag), SC-fFC correlations significantly 

deviated from zero. A repeated measures analysis of variance (ANOVA) was 

used to assess the differences between the means of the three types of SC-FC 

coupling (SC-sFC(dir), SC-sFC(mag), and SC-fFC). A multivariate analysis of 

variance was utilized to assess the effects of gender, age, and IQ on each type 

of SC-FC coupling (SC-sFC(dir), SC-sFC(mag), SC-fFC). 

 

CHAPTER 3: RESULTS 

Demographics and Behavioral Measures 

 The distribution of participants’ ages displayed a positive skew and the 

variable was log transformed for all subsequent parametric statistical tests 

(Figure 1). The group mean age was 21.7 +/- 3.5 y. o. (57 males = 21.5 +/- 3.6 y. 

o., 65 females = 21.8 +/- 3.4 y. o.). The age difference between genders was not 

statistically significant (t(120) = 0.5724, p = 0.5681). Intelligence levels, as 

estimated via the WASI-II test, were normally distributed, with the whole group 

mean of 112 +/- 11 (57 males = 111 +/- 11, 65 females = 112 +/- 12; Figure 2). 

No significant difference in IQ levels between genders was detected (t(120) = 

0.4186, p = 0.6763). We note that the estimated intelligence levels in the 

described sample were nearly a whole standard deviation above the population 

mean of 100, which is an expected finding given that the majority of participants 

were university students. 
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Figure 1. Age Summary. Distributions of age are shown for the entire study sample (N = 122), the male 
group (n = 57), and the female group (n = 65). The age variable displayed a positive skew (top panel) and 
was log-transformed (bottom panel) prior to being subjected to parametric statistical tests further in the 
analysis pipeline. A two-sample t-test revealed no statistical age difference between genders (t(120) = 
0.5724, p = 0.5681). 
 

 

Figure 2. Intelligence Levels Summary. Distributions of intelligence quotient (IQ) are presented for the entire 
study sample (N = 122), the male group (n = 57), and the female group (n = 65). The difference between 
genders in terms of IQ was not statistically significant (t(120) = 0.4186, p = 0.6763). 
 

ICA Decomposition and Region of Interest Creation 

 The ICA decomposition of group aggregate fMRI data yielded 100 

independent components. Out of the resulting dataset, we identified 9 networks 

deemed to belong to the DMN. The selected networks were named according to 

the anatomical regions that their centroids occupied: anterior cingulate cortex 

(ACC), left angular gyrus (l-AG), middle frontal gyrus (MFG), posterior cingulate 
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cortex (PCC), inferior precuneus (prec1), superior precuneus (prec2), right 

angular gyrus (r-AG), right middle temporal gyrus (r-MTG), and superior frontal 

gyrus (SFG). The networks’ t distribution maps were thresholded at the 80th 

percentile to create ROIs suitable for tractography, and are presented in Figure 

3. Network volumes spanned a wide range and were therefore used for 

normalization of the subsequent tractography analyses (Figure 4). We note that 

these values should not be interpreted as anatomical volumetric measures of the 

described regions. While functional network nomenclature used herein is based 

on the regions that the networks centroids occupied, some networks did protrude 

beyond the borders of the anatomical structures that they were named after. 

Network distances displayed a normal distribution suitable for parametric tests, 

and are shown in Figure 5.  

 

 

Figure 3. Default Mode Networks. Examined default mode system networks shown in representative slices. 
The spatial distributions of the DMN networks are presented in different colors. Nine networks within the 
default mode network were selected out of the 100 components produced by independent component 
analysis. Each network’s t distribution was thresholded at the 80th percentile (shown) in order to create non-
overlapping ROIs for white matter tractography that also encompass the functional networks’ centroids. ACC 
– anterior cingulate cortex, l-AG – left angular gyrus, MFG – middle frontal gyrus, PCC – posterior cingulate 
cortex, prec1 – precuneus, prec2 – precuneus, r-AG – right angular gyrus, r-MTG – right middle temporal 
gyrus, SFG – superior frontal gyrus. 
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Figure 4. Volumes of Regions of Interest (ROIs). ACC – anterior cingulate cortex, l-AG – left angular gyrus, 
MFG – middle frontal gyrus, PCC – posterior cingulate cortex, prec1 – precuneus, prec2 – precuneus, r-AG 
– right angular gyrus, r-MTG – right middle temporal gyrus, SFG – superior frontal gyrus. 
 

 

Figure 5. Inter-Network Distances. Euclidean distances between maximum voxels of functional network 
pairs are presented. Inter-ROI distances averaged across subjects are presented in millimeters for the whole 
study sample (N = 122). The histogram on the right shows the distribution of inter-network distances, which 
was normal. ACC – anterior cingulate cortex, l-AG – left angular gyrus, MFG – middle frontal gyrus, PCC – 
posterior cingulate cortex, prec1 – precuneus, prec2 – precuneus, r-AG – right angular gyrus, r-MTG – right 
middle temporal gyrus, SFG – superior frontal gyrus. 
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Connectivity Measures 

 The raw streamline counts that were successful in connecting the seed 

networks to the target networks are presented in Figure 6. The fractions of 

successful streamlines out of the total number sampled displayed a positive 

skew, and were therefore log transformed. The resulting distribution is shown in 

Figure 6. Although cross-hemispheric connections to the angular gyri were 

successfully detected in these 150-directional scans, the SC strengths in these 

network pairs did display elevated levels of variance across subjects. Such 

findings are likely linked to the previously described challenges in tracking inter-

parietal fibers that encounter the corona radiata and the superior longitudinal 

fasciculus on the way. Even with the powerful imaging methodology employed 

herein, the trackability of such white matter pathways thus remains a concern.  

 Static directional functional connectivity levels are presented in Figure 7. 

Averaged sFC(dir) levels were largely positive, with only four network pairs (ACC 

– Prec2, l-AG – Prec2, MFG – Prec1, MGF – Prec2) displaying anti-correlations 

across the entire scan. Magnitudes of sFC across network pairs are shown in 

Figure 8. Both sFC(dir) and sFC(mag) measures were normally distributed. While 

we intended to additionally examine the SC-FC relationship in anti-correlated and 

positively correlated networks separately, the analysis proved to be unfeasible 

due to the low number of anti-correlated networks in the data. 

 Dynamic functional connectivity time courses were separated into six 

clusters, as suggested by the gap and silhouette estimations. The resulting FC 

states are presented in Figures 9-14. State 4 was the most prevalent across the 
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entire scan time, with participants spending nearly half of the time in this FC 

state. Of interest is that this particular state did not involve high levels of 

connectivity between any network-pairs, and can be described as a state of 

general disconnectedness. Conversely, state 6 was characterized by relatively 

high positive connectivity levels among all network pairs. Other states involved 

variable mixtures of both anti-correlated and positively correlated inter-network 

interactions. Although most of the time was spent in state 4, the remaining states 

were reached at similar rates, with subjects spending around 10% of the scan 

session in each one. The standard deviations of the dwell time-weighted 

correlations in each FC state, which represent our operational definition of FC 

flexibility, are presented in Figure 15. The obtained fFC values were normally 

distributed. 

 

Figure 6. Summary of Structural Connectivity. The box plot on the left summarizes group streamline counts 
that satisfied inter-network tractography conditions. Raw streamline counts were log-scaled for illustration 
purposes. For normalization, raw streamline counts were divided by the number of total streamlines sampled 
from each network seed, producing fractions of streamlines that succeeded in reaching their respective 
target masks. These streamline fractions were further log-transformed in order to get rid of the positive 
skew. The histogram on the right shows the distribution of normalized structural connectivity measures 
averaged across subjects. ACC – anterior cingulate cortex, l-AG – left angular gyrus, MFG – middle frontal 
gyrus, PCC – posterior cingulate cortex, prec1 – precuneus, prec2 – precuneus, r-AG – right angular gyrus, 
r-MTG – right middle temporal gyrus, SFG – superior frontal gyrus. 
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Figure 7. Directional Static Functional Connectivity. Levels of directional static functional connectivity 
(sFC(dir)) are summarized for each pair of DMN networks via box plots. The histogram shows the 
distribution of sFC(dir) levels averaged across subjects. ACC – anterior cingulate cortex, l-AG – left angular 
gyrus, MFG – middle frontal gyrus, PCC – posterior cingulate cortex, prec1 – precuneus, prec2 – precuneus, 
r-AG – right angular gyrus, r-MTG – right middle temporal gyrus, SFG – superior frontal gyrus. 
 

 

Figure 8. Magnitude of Static Functional Connectivity. Levels of static functional connectivity magnitude 
(sFC(mag)) are summarized for each pair of DMN networks via box plots. The histogram shows the 
distribution of sFC magnitudes averaged across subjects. ACC – anterior cingulate cortex, l-AG – left 
angular gyrus, MFG – middle frontal gyrus, PCC – posterior cingulate cortex, prec1 – precuneus, prec2 – 
precuneus, r-AG – right angular gyrus, r-MTG – right middle temporal gyrus, SFG – superior frontal gyrus. 
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Figure 9. Summary of Functional Connectivity State 1. The box plot presents group FC levels during the 
state in each network pair. The distribution of FC levels is shown in the histogram in the top right panel. The 
number of occurrences that the state exhibited in the entire group throughout the scan session is presented 
in the middle-right panel. The bottom-right histogram summarizes the number of subjects who spent various 
amounts of time in this state as a fraction of the entire scan session. The average percentage of the scan 
session that the entire group spent in this state is also presented. 
 

 

Figure 10. Summary of Functional Connectivity State 2. The box plot presents group FC levels during the 
state in each network pair. The distribution of FC levels is shown in the histogram in the top right panel. The 
number of occurrences that the state exhibited in the entire group throughout the scan session is presented 
in the middle-right panel. The bottom-right histogram summarizes the number of subjects who spent various 
amounts of time in this state as a fraction of the entire scan session. The average percentage of the scan 
session that the entire group spent in this state is also presented. 
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Figure 11. Summary of Functional Connectivity State 3. The box plot presents group FC levels during the 
state in each network pair. The distribution of FC levels is shown in the histogram in the top right panel. The 
number of occurrences that the state exhibited in the entire group throughout the scan session is presented 
in the middle-right panel. The bottom-right histogram summarizes the number of subjects who spent various 
amounts of time in this state as a fraction of the entire scan session. The average percentage of the scan 
session that the entire group spent in this state is also presented. 
 

 

Figure 12. Summary of Functional Connectivity State 4. The box plot presents group FC levels during the 
state in each network pair. The distribution of FC levels is shown in the histogram in the top right panel. The 
number of occurrences that the state exhibited in the entire group throughout the scan session is presented 
in the middle-right panel. The bottom-right histogram summarizes the number of subjects who spent various 
amounts of time in this state as a fraction of the entire scan session. The average percentage of the scan 
session that the entire group spent in this state is also presented. 
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Figure 13. Summary of Functional Connectivity State 5. The box plot presents group FC levels during the 
state in each network pair. The distribution of FC levels is shown in the histogram in the top right panel. The 
number of occurrences that the state exhibited in the entire group throughout the scan session is presented 
in the middle-right panel. The bottom-right histogram summarizes the number of subjects who spent various 
amounts of time in this state as a fraction of the entire scan session. The average percentage of the scan 
session that the entire group spent in this state is also presented. 
 

 

Figure 14. Summary of Functional Connectivity State 6. The box plot presents group FC levels during the 
state in each network pair. The distribution of FC levels is shown in the histogram in the top right panel. The 
number of occurrences that the state exhibited in the entire group throughout the scan session is presented 
in the middle-right panel. The bottom-right histogram summarizes the number of subjects who spent various 
amounts of time in this state as a fraction of the entire scan session. The average percentage of the scan 
session that the entire group spent in this state is also presented. 
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Figure 15. Flexibility of Functional Connectivity. The box plot presents the flexibilities of functional 
connectivity for each network pair. For every subject, fFC was obtained by weighting the network pairs’ 
functional connectivity values within each state by that state’s dwell time, and taking the standard deviation 
of the resulting values across all states for each network pair separately. 
 

Connectivity and Distance 

The relationship between SC and inter-network distance was 

homogeneously negative across the entire study group (Figure 16). All subjects 

displayed diminishing SC levels with increased distance (t(121) = -49.4263, p < 

0.001). The relationship between sFC(dir) and distance was overwhelmingly 

negative across the study sample, with increased inter-network distances 

associated with lower sFC(dir) (Figure 17). The majority of subjects displayed 

strong negative correlations between the two measures, but weaker positive 

associations were detected in several participants. The summary statistic for the 

distance-sFC(dir) relationship was statistically significant for the entire group 

(t(121) = -9.5644, p < 0.001). The magnitude of static FC (Figure 18) was not 

significantly correlated with distance (t(121) = 1.8258, p = 0.0703). Finally, 

distance and fFC (Figure 19) were significantly negatively correlated within the 
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entire cohort (t(121) = -7.2673, p < 0.001). While correlations of averages do not 

capture within-subject variances and should generally not be utilized for inferring 

relationships between the measures of interest on a subject level, we conducted 

such analyses for population-level demonstrative purposes. On average, 

increases in inter-network distances did predict lower levels of SC in the whole 

group (r(34) = -0.5833, p < 0.001). However, average distance was not predictive 

of average sFC(dir) (r(34) = -0.1759, p = 0.3049) or sFC(mag) (r(34) = 0.0544, p 

= 0.7525). Further, correlations of averaged inter-network distances and 

averaged fFC failed to reach statistical significance as well (r(34) = -0.2560, p = 

0.1319). 
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Figure 16. Relationship Between Inter-Network Distances and Structural Connectivity Levels. A. Correlations 
of distance and SC averages across subjects are shown for 36 pairs of DMN networks for the whole group 
(r(34) = -0.5833, p < 0.001), as well as for the 57 males and the 65 females separately. B. Individual within-
subject correlations between distance and SC using 36 pairs of DMN networks are shown. Correlation 
strengths are presented as Fisher-transformed z values. C. The box plots summarize the distributions of the 
within-subject correlations between distance and SC for the whole group, the male group, and the female 
group. A one sample t-test was used to compute the summary statistic of the distance-SC relationships for 
the whole group (t(121) = -49.4263, p < 0.001). 
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Figure 17. Relationship Between Inter-Network Distance and Directional Static Functional Connectivity. A. 
Correlations of distance and sFC(dir) averages across subjects are shown for 36 pairs of DMN networks for 
the whole group (r(34) = -0.1759, p = 0.3049), the 57 males, and the 65 females. B. Individual within-subject 
correlations between distance and sFC(dir) using 36 pairs of DMN networks are shown. Correlation 
strengths are presented as Fisher-transformed z values. C. The box plots summarize the distributions of the 
within-subject correlations between distance and sFC for the whole group, the male group, and the female 
group. A one sample t-test was used to compute the summary statistic of the distance-sFC(dir) relationship 
for the whole group (t(121) = -9.5644, p < 0.001). 
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Figure 18. Relationship Between Inter-Network Distance and the Magnitude of Static Functional 
Connectivity. A. Correlations of distance and sFC(mag) averages across subjects are shown for 36 pairs of 
DMN networks for the whole group (r(34) = 0.0544, p = 0.7525), the 57 males, and the 65 females. B. 
Individual within-subject correlations between distance and sFC(mag) using 36 pairs of DMN networks are 
shown. Correlation strengths are presented as Fisher-transformed z values. C. The box plots summarize the 
distributions of the within-subject correlations between distance and sFC(mag) for the whole group, the male 
group, and the female group. A one sample t-test was used to compute a summary statistic of the distance-
sFC(mag) relationship for the whole group (t(121) = 1.8258, p = 0.0703).  
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Figure 19. Relationship Between Inter-Network Distance and Flexibility of Functional Connectivity. A. 
Correlations of distance and fFC averages across subjects are shown for 36 pairs of DMN networks for the 
whole group (r(34) = -0.2560, p = 0.1319), the 57 males, and the 65 females. B. Individual within-subject 
correlations between distance and fFC using 36 pairs of DMN networks are shown. Correlation strengths are 
presented as Fisher-transformed z values. C. The box plots summarize the distributions of the within-subject 
correlations between distance and fFC for the whole group, the male group, and the female group. A one 
sample t-test was used to compute a summary statistic of the distance-fFC relationship for the whole group 
(t(121) = -7.2673, p < 0.001). 
 

Structural and Functional Connectivity 

 Structural connectivity within the DMN was negatively related to sFC(dir) 

in the whole group (t(121) = -7.1118, p < 0.001; Figure 20). Most of the subjects 

displayed such negative SC-sFC(dir) relationships, although several did show 

positive correlations. The relationship between SC and sFC(mag), on the other 

hand, displayed a positive correlation within the entire group (Figure 21), and 

reached statistical significance (t(121) = 2.9631, p = 0.0037) despite the lower 
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summary effect magnitude relative to the SC-sFC(dir) correlation. Individual SC-

sFC(mag) correlations did not display the level homogeneity across the entire 

cohort that was observed across the SC-sFC(dir) correlations, however. 

Structural connectivity predicted the flexibility of FC in a relatively consistent 

manner (Figure 22), with positive SC-fFC correlations detected in the majority of 

study participants, and the summary statistic indicated that the SC-fFC 

relationship was significant in the entire cohort (t(121) = 8.6100, p < 0.001).  

 In addition to the summary t statistics, we examined correlations between 

averaged SC and FC measures to estimate population-level relationships 

between the two measures. Although we present these findings, caution should 

be exercised in attempting to infer subject-level SC-FC relationship from the 

following results. Structural connectivity and sFC(dir) were, on average, not 

related (r(34) = 0.1768, p = 0.3096). Likewise, the relationship between SC and 

sFC(mag) failed to reach statistical significance (r(34) = 0.0855, p = 0.6253). 

Averaged SC and fFC, on the other hand, were significantly correlated within the 

whole group (r(34) = 0.3464, p = 0.0415). 

Given the negative overall SC-sFC(dir) relationship, the repeated 

measures analysis of variance was conducted in two ways. First, the raw subject-

wise SC-sFC(dir) values were used along with the SC-sFC(mag) and SC-fFC 

values (Table 1). The test, however, did not address our main question of interest 

regarding which FC measure is related to SC to the greatest degree regardless 

of the sign. Therefore, a second analogous analysis was conducted in which the 

signs of the individual subjects’ SC-sFC(dir) correlations were flipped, thus 
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forcing the group summary statistic into the positive direction while preserving the 

sample variance. This amounted to comparing the magnitudes of SC-sFC(dir), 

SC-sFC(mag), and SC-fFC relationships (Table 1). The latter test revealed a 

main effect of SC-FC type (F(2,242) = 9.082, p = 0.001). The pairwise contrasts 

indicated significant differences between SC-sFC(dir) and SC-fFC (MD = 0.049, 

SD = 0.025, p = 0.050) as well as SC-sFC(mag) and SC-fFC (MD = 0.099, SD = 

0.016, p < 0.001), with the magnitude of the SC-fFC relationship being greater 

than both SC-sFC(dir) and SC-sFC(mag). The difference between SC-sFC(dir) 

and SC-sFC(mag) was not statistically significant (MD = 0.050, SD = 0.027, p = 

0.070). 
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SC-FC Coupling (Raw) 

Main Effect df F Eta-Squared p 

SC-FC Type 2, 242 115.045 0.487 < 0.001 

Contrasts MD St. Dev 95% C. I. p 

SC-sFC(dir) vs SC-sFC(mag) -0.148 0.014 -0.175, -0.121 < 0.001 

SC-sFC(dir) vs SC-fFC -0.247 0.019 -0.284, -0.210 < 0.001 

SC-sFC(mag) vs SC-fFC -0.099 0.016 -0.131, -0.067 < 0.001 

 

SC-FC Coupling (Magnitude) 

Main Effect df F Eta-Squared p 

SC-FC Type 2, 242 9.082 0.070 0.001 

Contrasts MD St. Dev 95% C. I. p 

SC-sFC(dir) vs SC-sFC(mag) 0.050 0.027 -0.004, 0.104 0.070 

SC-sFC(dir) vs SC-fFC -0.049 0.025 -0.099, 7.927e-5 0.050 

SC-sFC(mag) vs SC-fFC -0.099 0.016 -0.131, -0.067 < 0.001 

Table 1. Summary of the Repeated Measures Analysis of Variance of SC-FC Coupling Types. The repeated 
measures analysis of variance was conducted in two ways: one using the variance from the raw, signed SC-
sFC(dir) relationships, and the other with the signs of individual SC-sFC(dir) flipped. The latter analysis was 
conducted in order to force the SC-sFC(dir) coupling mean in the same direction as SC-sFC(mag) and SC-
fFC coupling means while preserving variance, and contrast the structure-function coupling magnitudes. 
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Figure 20. Relationship Between Structural Connectivity and Directional Static Functional Connectivity 
Across Pairs of Networks Within the Default Mode Network. A. Partial correlations of SC and sFC(dir) 
averages across subjects, adjusted for mean inter-network Euclidean distances, are shown for 36 pairs of 
DMN networks for the whole group (r(34) = 0.1768, p = 0.3096), the 57 males, and the 65 females. B. 
Individual within-subject partial correlations between SC and sFC(dir), adjusted for inter-network Euclidean 
distances, using 36 pairs of DMN networks are shown. Correlation strengths are presented as Fisher-
transformed z values and were corrected for inter-network Euclidean distances. C. The box plots summarize 
the distributions of the within-subject correlations between SC and sFC(dir) for the whole group, the male 
group, and the female group. A one sample t-test was used to compute a summary statistic of the SC-
sFC(dir) relationship for the whole group (t(121) = -7.1118, p < 0.001). 
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Figure 21. Relationship Between Structural Connectivity and the Magnitude of Static Functional Connectivity 
Within the Default Mode Network. A. Correlations of SC and abs(sFC), or sFC(mag), averages across 
subjects are shown for 36 pairs of DMN networks for the whole group (r(34) = 0.0855, p = 0.6253), the 57 
males, and the 65 females. B. Individual within-subject correlations between SC and sFC(mag) using 36 
pairs of DMN networks are presented. Correlation strengths are presented as Fisher-transformed z values 
and were corrected for inter-network Euclidean distances. C. The box plots summarize the distributions of 
the within-subject correlations between SC and sFC(mag) for the whole group, the male group, and the 
female group. A one sample t-test was used to compute a summary statistic of the SC-sFC(mag) 
relationship for the whole group (t(121) = 2.9631, p = 0.0037).  
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Figure 22. Relationship Between Structural Connectivity and the Flexibility of Functional Connectivity Within 
the Default Mode Network. A. Correlations of SC and fFC averages across subjects are shown for 36 pairs 
of DMN networks for the whole group (r(34) = 0.3464, p = 0.0415), the 57 males, and the 65 females. B. 
Individual within-subject correlations between SC and fFC using 36 pairs of DMN networks are presented. 
Correlation strengths are presented as Fisher-transformed z values and were corrected for inter-network 
Euclidean distances. C. The box plots summarize the distributions of the within-subject correlations between 
SC and fFC for the whole group, the male group, and the female group. A one sample t-test was used to 
compute a summary statistic of the SC-fFC relationship for the whole group (t(121) = 8.6100, p < 0.001). 
 

Structure-Function Coupling and Individual Differences 

 The extents to which different types of SC-FC coupling were related to 

gender, age, and intelligence levels were examined next (Table 2). Directional 

SC-sFC(dir) was not significantly related to gender (F(1,116) = 0.296, p = 0.588), 

age (F(1,116) = 1.497, p = 0.224), or IQ (F(1,116) = 0.603, p = 0.439). The 

gender x age (F(1,116) = 0.932, p = 0.336) and gender x IQ (F(1,116) = 0.640, p 

= 0.425) interactions did not reach statistical significance. Figure 23 summarizes 
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the relationships between the behavioral measures and SC-sFC(dir) via partial 

correlation across gender. Analogously, SC-sFC(mag) was also not related to 

gender (F(1,116) = 0.074, p = 0.786), age (F(1,116) = 0.886, p = 0.349), or IQ 

(F(1,116) = 0.852, p = 0.358). The gender x age (F(1,116) = 0.564, p = 0.454) 

and gender x IQ (F(1,116) = 0.656, p = 0.420) interactions were not significant 

either. Figure 24 summarizes the findings via partial correlations across gender. 

The SC-fFC measure was not related to gender (F(1,116) = 0.836, p = 0.362) or 

age (F(1,116) = 0.819, p = 0.367), but a significant effect of IQ was observed 

(F(1,116) = 3.932, p = 0.050). Neither the gender x age (F(1,116) = 0.359, p = 

0.550) or the gender x IQ interactions (F(1,116) = 0.463, p = 0.498), however, 

reached statistical significance. The results are summarized via partial 

correlations across gender in Figure 25. 
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SC-FC Type Effect/Interaction df F Eta-Squared p 

SC-sFC(dir) Gender 1, 116 0.296 0.003 0.588 

 Age 1, 116 1.497 0.013 0.224 

 IQ 1, 116 0.603 0.005 0.439 

 Gender x Age 1, 116 0.932 0.008 0.336 

 Gender x IQ 1, 116 0.640 0.005 0.425 

SC-sFC(mag) Gender 1, 116 0.074 0.001 0.786 

 Age 1, 116 0.886 0.008 0.349 

 IQ 1, 116 0.852 0.007 0.358 

 Gender x Age 1, 116 0.564 0.005 0.454 

 Gender x IQ 1, 116 0.656 0.006 0.420 

SC-fFC Gender 1, 116 0.836 0.007 0.362 

 Age 1, 116 0.819 0.007 0.367 

 IQ 1, 116 3.932 0.033 0.050 

 Gender x Age 1, 116 0.359 0.003 0.550 

 Gender x IQ 1, 116 0.463 0.004 0.498 

Table 2. Relationship Between Behavioral Measures and Different Types of SC-FC Coupling. Multivariate 
analysis of variance results are summarized for the relationships between gender, age, and iq and SC-
sFC(dir), SC-sFC(mag), and SC-fFC coupling types. 
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Figure 23. SC-sFC(dir) Coupling, Age, and IQ. Top panel: correlations between SC-sFC(dir) coupling and 
age are presented for the entire study sample, the male group, and the female group. Bottom panel: partial 
correlations between SC-sFC(dir) coupling and IQ, adjusted for age, are shown for the total sample, the 
male group, and the female group.  
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Figure 24. SC-sFC(mag) Coupling, Age, and IQ. Top panel: correlations between SC-sFC(mag) coupling 
and age are presented for the entire study sample, the male group, and the female group. Bottom panel: 
Age-adjusted partial correlations between SC-sFC(mag) coupling and IQ are shown for the total sample, the 
male group, and the female group.  
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Figure 25. SC-fFC Coupling, Age, and IQ. Top panel: correlations between SC-fFC coupling and age are 
presented for the entire study sample, the male group, and the female group. Bottom panel: partial 
correlations between SC-fFC coupling and IQ, adjusted for age, are shown for the total sample, the male 
group, and the female group. 
 

CHAPTER 4: DISCUSSION 

Main Findings 

Using fMRI data obtained from a moderately sized sample, we showed 

that the flexibilities of between-network connectivity levels within the DMN are 

related to the strengths of the structural connections that underlie them. 

Networks pairs with stronger white matter connections between them tended to 

exercise more variable levels of functional connectivity. Further, we detected that 

this relationship between structural connectivity (SC) and the flexibility of 

functional connectivity (fFC), or SC-fFC coupling, was positively related to 

intelligence levels. Specifically, stronger SC-fFC coupling levels were associated 
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with higher IQ scores. This is suggestive of a positive relationship between 

structure-function efficiency within the DMN and cognitive ability.  

 

Structure and Static Connectivity 

The observed relationship between structural and raw directional static 

functional connectivity levels within the DMN was unexpected and inconsistent 

with other analyses that have examined SC-sFC correspondences across the 

whole brain. Specifically, we detected a negative SC-sFC(dir) relationship, while 

others have reported strong positive associations between the two variables 

(Hagmann et al. 2008; Skudlarski et al. 2008; Honey et al. 2009). Given that we 

did not examine the whole brain, it is difficult to draw conclusions about this 

discrepancy, as the SC-sFC(dir) relationship within the DMN may in fact be 

negative. Recent findings have suggested that within-DMN functional patterns 

may be more heterogeneous than previously thought (Chen et al. 2017). The 

system-specific structure-function relationship within the DMN described herein 

may therefore not be reflective of the patterns across the entire brain or other 

systems. 

Another compelling argument for the unexpected result pertains to the 

treatment of anti-correlations in task-free fMRI data. Figure 20-A elucidates the 

nature of the negative SC-sFC relationship, showing three network pairs with 

strong negative FC (anti-correlations) in the top quartile of the SC distribution, 

which in turn likely drove the slope of the correlation down. The subsequent 

analysis of the relationship between SC and sFC(mag) did, however, show a 
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significant positive correlation (Figure 21). Collectively, these results convey that 

the general relationship between SC and sFC is consistent across both anti-

correlated and positively correlated network pairs. Specifically, SC increases with 

strengthened positive sFC across network pairs. Likewise, SC increases as 

negative sFC levels become stronger, or more anti-correlated, as well. Previous 

reports, however, are not suggestive of this pattern, showing ROI pairs with 

highly positive sFC having very strong SC levels, yet those with highly anti-

correlated sFC possessing very weak SC (Honey et al. 2009). Such results 

convey that the SC-sFC relationship is inconsistent, perhaps even inversed, 

across region pairs that display positive and negative sFC levels. Given the 

existing reports’ use of very large numbers of ROIs that were derived 

anatomically, the dilemma described above may have failed to come to light due 

to the fact that the vast majority of ROI pairs exhibited positive sFC, as was the 

case in our data as well. We are therefore reluctant to draw further inferences 

from the SC-sFC(dir) analysis, and instead highlight that the observed SC-

sFC(mag) coupling, while positive, was relatively weak – an unexpected result in 

the light of strong positive whole-brain structure-function relationships reported 

by other groups. 

In addressing the unexpected SC-sFC(mag) relationship within the DMN, 

we emphasize that, in contrast to the anatomically-defined ROIs used in prior 

SC-sFC investigations, the present study used ICA-derived functional networks. 

This approach was fundamentally more advantageous, as it yielded networks 

that were maximally functionally independent from each other, and parsed out 
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redundant signal that would have contaminated any pair of small ROIs in seed-

based sFC analyses, particularly ones that are in proximity of each other. Raw 

BOLD activity levels in a particular voxel inevitably contain information about 

multiple simultaneous processes, and such signals cannot be considered to be 

uniquely representing any single brain region. This is effectively addressed by 

ICA, which decomposes each voxel’s aggregate activity into contributions to 

multiple ongoing processes in the brain. Inter-regional FC obtained from the 

resulting ICA-derived time courses thus effectively excludes contamination from 

other processes, which are left in seed-based FC measures. 

Further, we reiterate that, to our knowledge, the fMRI temporal resolution 

and the number of DWI gradient directions used in the present study superseded 

those utilized by all other structure-function investigations to date. Given the 

relatively high temporal resolution (TR = 0.275 ms) of our fMRI data and 150-

directional DWI sequence, coupled with a post-processing methodology that 

yields regional signals of high fidelity, we argue that the within-DMN SC-

sFC(mag) coupling during task-free scans may in fact be weaker than previously 

thought. The results from the decomposition of sFC into recurring FC states via 

clustering, discussed below, provides further insight into the reasons why this 

may be the case. 

 

Structure and Flexibility of Functional Connectivity  

Structural connectivity and the flexibility of functional connectivity 

displayed a strong positive relationship (Figure 22). Interestingly, the examination 
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of specific FC states provides insight into what was actually measured in the 

case of task-free sFC. Let us first acknowledge that the six isolated clusters used 

for the fFC analysis are derivatives of sFC, meaning that averaging across the 

FC states would approximate the aggregate sFC. In considering FC state 4 

(Figure 12), it is apparent that none of the networks exhibited substantial 

functional connectivity levels among them, thus forming a state of DMN-wide 

disconnectedness. Additionally, this particular state was occupied for nearly half 

of the entire scan time across subjects, meaning that the presence of this state in 

the data would substantially bias the observed sFC toward zero. This may 

account for the relatively weak relationship between structure and static 

functional connectivity that we reported. 

The DMN has been shown to reflect the structural and functional core of 

the human brain (Hagmann et al. 2008), with the ability to integrate information 

from other regions. We must not forget that task-free state scans do not provide 

much information for this core to operate upon. The nature of state 4 therefore 

provides compelling evidence that, during task-free scans, the DMN may not be 

utilized to its full potential in information integration. Static FC would thus be 

contaminated with such state of disconnectedness throughout the scan. This 

brings into question the power of task-free sFC to be extrapolated to other 

scenarios. In other words, task-free sFC may be quantifying what the brain is 

doing in the absence of cognitive engagement, and may not accurately reflect its 

potential capabilities under other, real-world situations.  
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Another explanation for the prominence and nature of state 4 may lie in 

the possibility that it reflects state-to-state transitional processes. As networks 

shift from one pattern of connectivity to another, they become functionally 

disconnected and deviate from the FC states detected via clustering, crossing 

the FC of zero as they alternate between being positively and negatively 

correlated. Given that such shifts likely occur at rates that are much more rapid 

than ones detectable with fMRI, which has relatively low temporal resolution, 

state 4 may be produced by periods of high-rate state-to-state shifts. If true, this 

particular state would be considered a mathematical artifact rather than stable 

periods of true disconnectedness within the DMN. Future studies could 

investigate this question by examining the time courses of state transitions. An 

application of graph theory to such data, for example, could determine whether 

state 4 acts as an intermediate transitional hub, which other states pass through 

as they shift between each other.  

In contrast to sFC measures, the fFC measure we proposed captures the 

variability of connectivity patterns that the brain exhibits in a task-free setting, and 

therefore may be more reflective of what the brain is capable of under other 

conditions. This is supported by the robust positive relationship between SC and 

fFC that we described. Taken collectively with the relatively weak link between 

SC and sFC, the findings are suggestive of the fact that brain structure is simply 

not designed to facilitate a state of cognitive disengagement, but rather to 

support the integration of cognition and rapidly incoming real-world information. 

Supporting this argument is the fact that the SC-sFC relationship was not 
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predictive of our behavioral measure, but the SC-fFC link was, which is 

discussed below. 

  

SC-FC Coupling, Gender, Age, and IQ 

The SC-sFC(dir) and SC-sFC(mag) measures were not related to age, 

intelligence levels, or gender, and SC-fFC coupling was not related to age or 

gender. Previous examinations of DMN connectivity have described substantial 

developmental effects on functional connectivity in children (Fair et al. 2008). 

Further, different region pairs may undergo non-parallel changes in terms of 

structural and functional connectivity. The link between prefrontal cortices and 

the posterior cingulate cortex, for example, appeared to be weak both structurally 

and functionally in young children and strengthening as a function of age. 

However, children displayed functional connectivity between the middle temporal 

lobe and the posterior cingulate cortex that was similar to that in adults, even 

though the structural connection between these regions was largely 

underdeveloped (Supekar et al. 2010). Despite such developmental effects in 

school-aged children, the lack of age effects on any of the three SC-FC 

relationship types in our analysis suggests that during young adulthood, the DMN 

system may exist in a relatively homeostatic state, with any ongoing changes in 

SC and sFC occurring in parallel. However, given the narrow age range of the 

analyzed cohort, we caution against making any inferences pertaining to the 

effects of age on SC-sFC coupling based on our null findings. 
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Intelligence levels did display a significant relationship with SC-fFC 

coupling. Specifically, IQ appeared to increase as the functional connections 

within the DMN were afforded more variance by the stronger underlying 

structure. Importantly, IQ was not related to either type of SC-sFC coupling, 

strengthening our argument that task-free sFC may be underpowered in 

providing insight into functional brain correlates of behaviors outside of the 

scanner. Further, the novel fFC measure may be reflective of white matter 

efficiency, which has been demonstrated to have a positive relationship with 

cognitive ability (van den Heuvel et al. 2009). In other words, the structural 

efficiency of pathways that the brain relies on to integrate information from other 

regions is predictive of intelligence levels. This relationship has additionally been 

shown to differ between genders. Global white matter efficiency was found to be 

predictive of cognitive ability in females, but no such relationship was detected in 

males (Ryman et al. 2016). Specifically, while females appeared to benefit from 

more direct white matter connections across the brain, males did not rely on 

them to achieve similar intelligence levels. However, we did not detect a 

significant interaction between gender and IQ in their influences on SC-fFC, 

raising the possibility that the gender discrepancy in the relationship between 

white matter efficiency and intelligence may not be homogeneous across 

different brain systems, such as the DMN. Previous findings suggesting that 

overall white matter efficiency is related to intelligence levels support the notion 

that structure is built to facilitate states of cognitive engagement rather than task-

free settings. The fact that the SC-fFC relationship is predictive of IQ, but the SC-
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sFC is not, demonstrates the extrapolative power that fFC holds over sFC for 

future analyses attempting to relate task-free functional connectivity to behavioral 

measures. 

 

On Global Signal and Anti-Correlations 

Functional connectivity state 4 has the potential to reflect global signal. 

However, we argue here that this is an unlikely possibility given the methodology 

employed, and that it may represent a true state of disconnectedness within the 

DMN. Also discussed is the fact that previously published examinations of the 

SC-FC relationship treated anti-correlations with skepticism, classifying them as 

potential artifacts, and went as far as exclude them from the investigations. 

However, we argue that anti-correlations present in the described data are 

genuine, and were legitimately retained in the conducted analysis. 

 This scrutiny of anti-correlations was warranted by the possibility of their 

artificial introductions via certain processing techniques. Specifically, the removal 

of global BOLD signal mean, which is defined as artifact-based signal that spans 

the entire brain, has been implicated in producing spurious anti-correlations in 

fMRI data (Fox et al. 2009; Murphy et al. 2009; Carbonell et al. 2011; Power et 

al. 2017). In contrast to GLM-based approaches that utilize contrasts, which 

effectively blind them to global effects, task-free data analyses rely on the 

spatiotemporal structures that are present in the data, and are thus sensitive to 

any potential global contaminants. Removing such signals is therefore a crucial 

pre-processing step in any attempt to investigate task-free brain activity. Global 
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signal regression is a common approach to doing so, particularly in the case of 

seed-based network extraction. However, if two positively correlated voxels with 

time courses A and B are regressed onto global signal C, the two resulting sets 

of residuals have the potential to be anti-correlated, particularly as vector C 

approaches the mean of vectors A and B. Such spurious anti-correlations have 

been shown to contaminate task-free data when global signal regression is 

utilized in seed-based approaches to quantifying fMRI FC (Murphy et al. 2009). 

The DMN has been of special interest in investigating potential spurious 

anti-correlations given that its defining feature is increased activity in the absence 

of a task, which decreases once the brain becomes cognitively engaged 

(Greicius et al. 2003). This attribute of the DMN has earned it the classification of 

a task-negative network, which stands in contrast to task-positive networks, 

which become activated when the brain is subjected to cognitive load. The DMN 

is therefore anti-correlated with task-positive networks, and the consistent initial 

descriptions of this relationship have been suggested to be due to global mean 

removal. The network has stood up to the test of time, however, having been 

isolated using multiple network extraction techniques, and displaying robust anti-

correlations with task-positive networks, as well as within itself (Long et al. 2008; 

Allen et al. 2011; Chen et al. 2017).  

Although seed-based task-free analyses carry the risk of detecting 

spurious anti-correlations via global mean regression, the network extraction 

methodology employed in the present study addresses global effects in a manner 

that is less susceptible to artifact introduction. With global BOLD signal never 



	

59	

explicitly regressed, we used PCA preprocessing coupled with ICA 

decomposition, which implicitly remove such global effects. Specifically, PCA 

was used to whiten the data prior to ICA, which yielded a mean global 

component that was subsequently removed from the data at each time point. 

Given the orthogonality that PCA imposes on the isolated principal components 

(PCs), the removed PC did not contribute to any other networks that were left in 

the data. This effectively removed the global mean without affecting data in 

networks of interest. Indeed, it has been demonstrated that task-free global 

activity, as derived by PCA, is uncorrelated to other brain-based networks, and 

may serve as a useful tool for removal of artifact-based signal without 

adulterating brain-based BOLD fluctuations (Carbonell et al. 2011). In addition to 

PCA preprocessing, ICA has also been suggested to be an effective way to 

circumvent global signal regression by excluding components deemed to 

represent noise and artifacts (Fox et al. 2009). Considering the methodology we 

employed, the anti-correlations in our data are likely to be genuine DMN 

processes, and were retained in the SC-sFC analysis.  

 

Other Limitations 

Given the bivariate nature of the analysis, it is yet to be determined 

whether stronger SC results in increased flexibility of FC, or vice versa. 

Analogous analyses in children and adolescent populations may elaborate on 

this question in future studies, however. Additionally, subsequent studies should 

attempt to extrapolate the findings presented here to the whole brain, as within-
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DMN connectivity relationships between structure and functional flexibility may 

not be reflective of other cognitive systems. Examining this relationship in the 

connections between the DMN and other networks would be of particular 

interest, since the DMN is known to fluctuate substantially in its FC to other 

networks as the brain switches from a task-free state to cognitive engagement.  

We note that modularity was not considered in the present analysis, 

focusing instead on direct tractography-based inter-network connections. It has 

been demonstrated that separate regions can in fact display synchronous activity 

levels in the absence of direct white matter projections (Greicius et al. 2009) – 

medial prefrontal cortex (MPFC) and middle temporal gyri in particular, which 

implies the involvement of other brain regions. While our ICA-based approach did 

not isolate MPFC proper as part of the DMN, the anterior cingulate and middle 

frontal gyri did show connections to other DMN networks. Nevertheless, it is a 

near-certain reality that intermediate regions, such as the thalamus, contribute to 

the synchronies exhibited by spatially separate network pairs. Although graph 

theoretical analyses have considered such interactions, the areas considered 

have so far been anatomically defined. As such, it would be of interest to 

examine the connections between functionally-defined networks using graph 

theory in future investigations. 
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CHAPTER 5: CONCLUSIONS 

 

We proposed a novel measure of dynamic functional network connectivity 

(FNC) using flexibility of functional connectivity (fFC), which captures the 

variance of functional connectivity across time. The novel measure was 

demonstrated to quantitatively reflect the underlying structural connectivity within 

the default mode network, while static functional connectivity (sFC) did so to a 

relatively low and inconsistent degree. As SC likely does not develop to facilitate 

brain function in task-free settings, but rather to integrate information during 

cognitive engagement, we argue that fFC can estimate the potential functional 

connectivity exhibited outside of the resting state to a greater degree than sFC, 

and is better suited for examining behavioral correlates of FNC. Supporting this 

notion, we showed that SC-fFC coupling was related to intelligence levels, while 

SC-sFC coupling was not. Further, we found that the DMN existed in a 

functionally disconnected state during a large portion of the resting scan, raising 

questions about whether sFC is a meaningful quantifier of functional connectivity 

in the absence of a task, and scrutinizing its extrapolative power to real-world, 

cognitively engaging scenarios. While the question of whether this state of 

disconnectedness reflects biological processes or is an artifact remains, fFC is 

based on FNC variability across time rather than its average, and is largely 

unaffected by such contaminants during rest. 
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