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Abstract

We introduce a category-theoretic account of episodic memory as an outgrowth of an
existing mathematical theory of the semantics of neural networks. We propose that neu-
ral systems which can be said to have episodic memory represent sequences of events
and their associated information within a hierarchy of concepts, represented in their neu-
ral networks. In the categorical model presented here, the hierarchy is based upon col-
imits. Colimits “put everything together” mathematically, and appear throughout many
categories. The event-sequence colimits can be visualized as assemblies of categorical
structures known as spans and cospans. A string of cospans formalizes a hierarchy of
overlapping episode segments, with the segments increasing in length by adding a next
event as an episode progresses. The concept category can be mapped into a category that
expresses the structure and activity of a neural architecture. An episodic sequence is for-
malized as a string of cospans of its overlapping episodic segments. This kind of neural
structure supports the tracing of its event sequence in either the forward or reverse direc-
tion during recall, but it also does much more: It allows a holistic access to an episode
or entire segments of the episode, it maintains the continuity of that information which is
preserved between successive events, and, finally, the cospan cells serve as explicit repre-
sentatives of the temporal order of events, making a sequence available not only for recall
but also for direct access to subsequences of greatest interest. We end with a preliminary
sketch of the application of this episodic memory model to understanding the interaction
of the hippocampus with other structures of the mammalian medial temporal lobe.
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1 Introduction

In the work described here, we develop a mathematical theory of episodic memory which
we call the span-cospan model. This theory is part of a larger mathematical theory of con-
cept representation and learning in neural networks which we call the categorical neural
semantic theory (CNST). The CNST is based upon a branch of mathematics known as
category theory. It is applied here to explain in precise terms the structure and operation
of a network which learns and re-enacts temporal sequences of events.

The explanation is based upon four key properties which we propose an episodic mem-
ory system must have. For ease of labelling, we shall refer to our proposal that property X
is necessary, or key, in an episodic memory system as “Notion X”. The first and most obvi-
ous key notion (Notion 1) is that the neural structure must maintain the ability to re-enact
the events making up an episode in the order in which they happened when the episode
was first stored in memory; in particular, this aids in having a sense of the flow of time.
Notion 2 is that the neural structure must maintain access to an episode as a holistic entity.
That is, it must enable the episode to be called up as a single unit, not merely accessed a
single event at a time. Notion 3 is that the events in an episodic sequence must contain a
significant amount of shared information and this sharing must be explicitly represented
in the episodic neural structure. And, finally, Notion 4 concerns the flexibility in re-use of
an episodic memory. One aspect of flexibility is the ability to re-enact a temporal memory
sequence either forward or reversed in time and enter the sequence at more than one point
in time. Another aspect is the ability to extract significant information from an episode
concerning the objects and situations which appear in it. One aspect of this is that the
subsequence of events immediately preceding a particular event such as an encounter with
a predator must be immediately accessible, given that the event comprising the encounter
itself is active in memory. Another aspect is that information which is “stationary”, that
is, common to more than one episode, must be retained. An example is the retention of
knowledge about how to ride a bicycle, given the several episodes of past lessons in learn-
ing to ride. And finally, there must be neural cells which express in explicit form the event
sequence order. Note that this property is not the same as the ability to re-enact the se-
quence in order (Notion 1); instead, it requires declarative representations that state the
order, say, by expressing which event in a segment of an episodic sequence occurs in the
final position. There will be some overlap in the details of these four notions. Repeat-
ing for emphasis, we shall refer to these four properties—sequence order, holistic access,
the representation of shared information, and flexibility in re-use, as ”Notion 1”, ”Notion
2”,”Notion 3”, and ”Notion 4”, respectively.

The distinction between episodic and other forms of memory was first identified by
Endel Tulving [36]. In humans, episodic sequences in memory constitute an autobio-
graphical record of an individual’s life. In nonhumans, they might be useful in capturing
important information about the actions of predators, access to food sources, and other
information gleaned from experience. Significant information in an episodic memory ap-

1



UNM Technical Report: ECE-TR-17-0001

parently can be tranferred to semantic memory. This is the memory of objects and situa-
tions that omits most of the details of the episodic sequences from which the information
was initially captured by the memory system. Together, episodic and semantic memory
make up declarative memory. Declarative memory is so called because in humans it en-
ables recall, the consciously-accessible description of things experienced in one’s past.
Since consciousness is at present ill-defined in non-humans, declarative memory is stud-
ied in animal models by exploiting its other characteristics. Declarative memories can
be acquired based upon a single experience. By contrast, the acquisition of an implicit
memory—an acquired habit pattern or a learned skill—has a relatively slow time course,
requiring the repetition of similar behaviors over time for its encoding. Another char-
acteristic dissociating declarative and implicit memory is that declarative memories are
re-usable and flexible, subject to incorporation in future memories through imagination,
the construction of plans, or other ways in which the recall of declarative memories can
be used as components in the formation of new ones. Implicit memories are of single use
and are, hence, inflexible. Semantic and declarative memory are sometimes regarded as
one and the same, but herein we shall regard both the semantic and episodic functions as
two divisions of declarative memory.

The distinction between episodic and semantic memory, and their interactions, sug-
gests the existence of subnetworks in the brain effecting two interacting functions within
declarative memory. In humans, and also in other primates as well as rats, the hippocam-
pus and the adjoining brain structures in the medial temporal lobe (MTL) seem to be
essential to the declarative memory system. Representative work on episodic memory
and its neural substrate in the MTL can be found in many sources, some of which are cited
here—examples include ([37, 1, 25, 28]). Implicit memory appears to be supported mainly
within neocortex, where long-term memory acquisition requires repeated episodes of ha-
bituation or practice. Over time, the rapidly-acquired declarative information also appears
to become consolidated within neocortex but is thought to continue to require hippocampal
involvement for recall and reconsolidation.

The point of this paper is to introduce an episodic memory model based upon the
CNST. This model is one of events and their incorporation in episodes. We discuss
events, episodes, and the sensor-based and other information that forms the content of
the events in terms of concept representation, a way to think about the semantics of neural
networks. Certain issues other than concept representation that concern neural networks
are discussed often in the neural network and neuroscience literature. We do not address
those issues here. Specifically, we do not discuss dynamic systems, statistical learning,
probabilistic inference, or other issues which are not essential to a discussion of con-
cept representation. We also note that there is an intimate relationship between semantic
and episodic memory, wherein semantic objects are formed from repeated occurrences in
episodes and retained for later re-use in forming new episodic memories (note that this is
one of the aspects of Notion 4). In order to avoid an overly lengthy exposition in introduc-
ing this episodic model, we do not discuss in any detail the relationship between semantic
and episodic memory.
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In the remainder of this paper, we shall posit an account of episodic memory based
upon the aforementioned mathematical theory, the CNST. In previous work ([13, 19]), we
presented an initial effort in developing a theoretical model of episodic memory; although
partially incorporated in the present model, there are significant new developments. The
new model is introduced in Section 6. It provides a framework which we claim more
closely satisfies the criteria presented in the first paragraph. A proposed biological imple-
mentation of the new model is discussed in Section 7. The categorical background theory
and its application in the CNST is discussed in the Appendix and more extensively in the
literature, including ([22, 24, 14, 23]). There are other category-theoretic models of neural
structure and processing, each taking a unique approach (see for example [9, 12]).

2 How Can a Neural Network Represent an Episode?

2.1 A putative neural model

Let us begin with a hypothetical neural network architecture for the storage and recall of an
episodic memory which maintains the event sequence order. For this example the episode
consists of the three events e1, e2, e3 illustrated in Fig. 1 (a), discrete instances of visual
stimuli. The pictures illustrate the events, but mathematically, the events are descriptions
in a formal language of the items pictured (think of a very restricted form of language in
which the definitions of terms are unambiguous). We refer to these formal descriptions as
concepts, the same meaning of the word “concepts” used in the Introduction. Notice that
as the pictures illustrate, each event is made up of individual objects and their relationships
(e.g., a human figure throwing a ball); thus, the concepts have information content, and
this content originates either at the sensor level or through the autonomous (creative) con-
struction from the available sensor information. The events occur in a temporal sequence,
the steps in a human figure throwing a ball, a bowling ball for example. Questions such
as the “smoothness” of motion are not important here; to avoid picturing a “jerky” motion
proceeding in abrupt transitions, e1 to e2 and then e2 to e3, imagine that the time delay in
the perception of closely-spaced events is such that the superposition of e1 and e2, then e2
and e3, allows the brain to provide the illusion of motion flowing along a continuum. This
effect is of course the basis for cinema, where a succession of pictures depicting incre-
mental changes in spatial configuration of a set of objects is projected on a screen rapidly
enough to allow humans to perceive smooth motion. We shall call this initial episodic
neural network model the linear-event-string architecture.

A putative neural network for the storage in memory and recall of the episode is shown
in part (b) of Fig. 1. Arguably the simplest idea for an episodic network, it consists of
a string of neural cells connected in feedforward fashion through synaptically weighted
excitatory connections. Each cell represents the corresponding event in the time sequence
of the memory; for example, p1 represents e1. During recall cell p1, once active, sends a
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e2	e1	

Events	

e3	
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(a)		
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informa>on	content	of	events			

Figure 1: (a) An episodic memory shown as an event stream, e1, e2, e3. (b) A hypo-
thetical neural network whose cells represent the events e1, e2 and e3, activated in the
order p1, p2, p3 through the synaptic connections, first c1, then c2. The lobes at the
ends of the connections are excitatory synapses. Notice that the overall network sep-
arately represents items making up the content of the events, which are represented
through feedforward input.

signal to p2, then p2 sends to p3, evoking the events e1, e2, e3 in that order. Thus, the cell
p1 represents a human figure starting to throw a ball, p2 represents a human, presumably
the same one, at an intermediate stage of a throw, and p3 represents the human releasing
the ball.

We say that the event concepts e1, e2, and e3 illustrated in Fig. 1 (a) describe in unam-
biguous terms the semantics, or meaning, of the neural cells p1, p2 and p3 in Fig. 1 (b).
For convenience and to relate to the terminology used by some neuroscientists, we say the
the cells p1, p2 and p3 represent the concepts e1, e2 and e3, respectively. We would like to
say that the arrows between the event concepts are also descriptions and are represented by
the connections c1 and c2 between the correpsonding cells. But is any of this correct? For
example, how does a cell, which expresses only a level of activation potential, represent a
concept in all its complexity? The answer is that none of this is that simple. Neural cells
represent concepts only in that they become active when the concepts in question are rel-
evant in the current activity of the neural network. This relevance is brought about by the
presence of input connections to the event cells emanating from other neural cells which
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represent the information content of the events, that is, their semantics. These connections
convey activity from active cells that either sense items in the sensory environment, pre-
process the information that is sensed, or supply information that the network concocts
autonomously based upon processes operating in other parts of the network. This will be
discussed further in the following sections. For the moment, notice the arrows pointing
upward from the bottom in Fig. 1 (b), illustrating the presence of these “lower-level” inputs
to the event cells.

2.2 Deconstructing the neural model

Can this be a viable neural model of memory? Tempting as the parsimony of the model is
it is well to ask, for the model has shortcomings. Consider the four key notions we have
posited for the structure and operation of an episodic memory neral network.

First of all (Notion1), the neural network shown in Fig. 1 (a) does maintain the order
in which the events occurred; the feedforward connections transmit a stimulus from neural
cell p1, representing event e1, to p2, representing event e2, and so on along the string.
Supposedly, the synapses, or connection weights, in these connections are strong enough
to allow each cell to activate its successor, allowing re-enactment of the sequence in its
correct order.

However, the second property (Notion 2) is not maintained. The network does not
allow access to the episode either in whole or in part as a holistic memory, as would be
desired in recalling a familiar route to reach a goal. The network allows access to only
one event at a time, consecutively, in temporal order. Grossberg in his theory of human
memory [11] gives the example of deciding to take a familiar route from his office to the
cafeteria. Suppose cell p3 represents the event of reaching the cafeteria, the “goal” of the
episode. If one tries to explain to another person encountered on the way to the cafeteria
the reason for following the route, he cannot. This is because the reason, the “goal” of
reaching the cafeteria, cannot be retrieved from memory until either he has reached it, or
has retrieved and then described each intermediate event in order along the route he plans
to follow to reach it.

Third (Notion 3), in order for an event sequence to constitute an episodic memory,
the events must be intimately related. This means that they must share a great deal of
information concerning one or more objects and their relationships that are present in
successive parts of the episode: they cannot be a sequence of situations in which each
event comprises a unique collection of objects and relationships and is, hence, unrelated to
the other events. In each event of the episode in Fig. 1 (a), the human figure is configured
slightly differently for that particular stage of the throw, and the ball is at a different stage
of being thrown. However, even though the configurations of the two objects are somewhat
changed in each successive event, we understand immediately that the human and the
ball are the same two entities throughout the sequence. In this way, the events cohere in
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memory as a sequence constituting a single episode. But the putative episodic network
as shown does not contain an explicit representation of this information. Yet, we propose
that the network must have an explicit representation of the shared information in order
for an organism—or a neural-network-driven machine—to be exhibit behavior consistent
with the coherence of the events in an episode.

And, finally (Notion 4), the neural network in Fig. 1 does not provide the flexibility
that is supposed to be a property of declarative memory (for example, see [1], esp. sections
2 and 3). The fact that it does not allow access to the entire episode as a single entity is
part of the reason for this. In order to re-use the episodic memory in different contexts or
to extract information from it such as how one throws a bowling ball, it must be possible
to apprehend either the episode as a whole. Another reason for the lack of flexibility is
closely related to the foregoing: The linear connectivity of the string directed from p1 to
p3 dictates that activating any given cell, p1 for example, results in a spreading activa-
tion forward along the string to p2, then, without pause, p3. There is no representation
of an episodic segment, say e1e2, and no way to parse it, to observe that the event we
have labelled “e2” is the immediate successor to the one labelled “e1”. Reciprocals to the
connections along the string would allow discovering e1 through retroactivation beginning
with e2 given a stimulus to e2 through an afferent connection from outside the string. But
if instead the task were discovering that e2 precedes e3, a stimulus to e3 would gener-
ate a spreading activation executing the entire sequence in reverse. Recalling e2 as the
predecessor to e3 could not be done in isolation.

It would be desirable, for example, to be able to manipulate the memory so that when
the goal, e3 say, comes to mind, a familiar route to it expressed by the preceding partial
string e1e2 could immediately be retrieved as a unit without requiring that p1, the cell
representing its first constituent event e1, be active beforehand. Imagine an animal whose
memory has stored some representation of an episode resulting in its finding food, or else
encountering a predator but surviving the encounter. In either case, it would be advan-
tageous to be able to associate e3, the goal (finding food, or encountering a predator),
with the sequence of events, such as a route taken through the environment, that led to
e3. It would also be advantageous to activate any of the cells p1, p2 or p3 as a potential
goal without activating others, to contemplate one event at a time while maintaining the
option to transition to its immediate predecessor or successor. An explicit representation
of the predecessor-successor relationship would advantageous here. Of course, feedfor-
ward inputs from cells representing all of the objects making up the event could provide a
stimulus sufficient to activate its cell. However, as pointed out in the preceding paragraph
with the present network this activation would propagate through the remainder of the
episode due to the linear network structure. The presence of reciprocal connections would
cause a confusing parallel activation in the reverse direction as well. Of course, adding to
this network strong inhibitory connections from other cells could keep all but the desired
event cell from being active. In any case, more cells and connections would be required to
achieve the desired functionality.

6



UNM Technical Report: ECE-TR-17-0001

There are additional aspects of flexibility. Inferential memory judgements and reason-
ing with transitivity, such as the fact that with numbers A > B and B > C implies A > C,
require flexibility in the use of memory items [10]. Some authors have other perspectives
on this subject and have presented illustrative results [1]. To conclude, the point made in
this section is that simply connecting event cells in a feedforward string will not serve as
an episodic memory structure.

2.3 Adding detail to the events

Although the putative neural episodic model does not allow access to it as a holistic entity
(Notion 2), each of its individual events as shown in Fig. 1 would be a holistic entity were
its information content not supplied through the bottom-up feedforward input at the bottom
of the Figure. The absence of this information would be a serious drawback. As Barsalou
points out in [3], a representation that is entirely of a holistic nature does not allow the
represented entity to be accessible in any detail. That is, it does not allow the expression
of its semantics. An analous situation would occur if one could not discern any of the
details in a snapshot of a person throwing a stick for a dog. In such a case, the snapshot
would not make sense. This is because neither the person, the stick, the dog, the posture of
the person in the act of throwing the stick, the dog jumping into the air after the stick, the
grass making up the lawn, a house in the background—-none of these these things would
be perceived even though they appeared in the picture, since they would have no separate
representation in the neural system. It must be possible to understand each item separately
and in relation to the others to understand what the snapshot is about, and that requires
neural cells to represent these items separately as well as together. Hence forth, let us refer
to the objects and relations in an event collectively as “objects”.

Ensuring that the events are more than merely holistically represented is easily reme-
died by adding to the network the cells representing the objects of which they are made.
As part of this, each event cell is the target of feedforward connections from those cells.
Let us add feedback connections from the event cells to those cells as well. In our previ-
ous papers, we have discussed the importance of this feedback. It guarantees that all of the
cells whose representations make up the event are active, ensuring that they are accessible
along with the event cell itself. Similarly, the object cells are joined to their component
stimulus representations by feedforward/feedback representations. Given the activity in
all these cells, each event, and hence the episode, can be understood as a combination of
its constituents1. Referring back to the simple example of Fig. 1, objects labelled “Human
figure” and “Ball” are shown with arrows pointing to event e3 in part (a) of Fig. 2. We call
these objects grounding objects because they “ground” the event by allowing access to the

1The constituents of an event must be understood to include relationships between the objects as well as
the objects themselves. For simplicity, specific representations of object relationships are omitted from this
discussion, with the exception of the “blending” relationships expressed in categorical colimits, discussed in
the Appendix.
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sensor-derived information that is its semantic content. In this fashion, the separate items
and relationships, the grounding objects, comprise the information content of an event.
Correspondingly, feedforward/feedback connections from the cells representing these two
objects are shown as reciprocal pairs directed to/from event cell p3 in part (b) of Fig. 2.
These connections are strengthened when the event is first constructed in memory and aid
in the reactivation of the event cell when sufficient activity occurs in its constitutent rep-
resentations. Strong weights in the feedback connections ensure that its constituent object
cells are active as well when p3 is active, representing the details of the event during re-
call. Similar remarks apply to connections joining the object cells to the cells closer to the
sensor level representing their component stimuli. Fig. 3 illustrates the grounding objects
and events and the corresponding cells and connections from Fig. 2 with arrows indicating
that additional inputs are present. Notice that some of the connections emanating from
the bottom of Fig. 3 bypass the human-figure- and ball-object cells and synapse directly
upon the event cell p3. These connections aid in the activity of commutative diagrams in
a neural category, yet to be discussed (see the Appendix, and also [23]).

Let us refer to the neural network regions that represent the grounding objects in sup-
port of event representations as grounding regions. The processing in these regions con-
structs and maintains the representations of the objects, behaviors and spatiotemporal re-
lationships that “ground” the neural network by expressing its semantics in full detail.
These representations are then used by the various mechanisms for memory such as the
construction of the events.

2.4 The representation of grounding objects versus Notion 3: shared
information

Given this, the episodic network does have the needed representations of the objects in its
events. This allows the information content of the events to be made explicit, a require-
ment for declarative memory. As discussed in Section 5, the representation of the objects
includes information that is shared between events. Because of this, the putative episodic
network might seem to have all of the necessary architecture for representing the sharing
of the information. After all, the grounding object cells represent shared information as
well as the information unique to each event. Does this not answer the third requirement
of an episodic neural structure, that the continuity of information over successive events be
represented? As will be discussed in sections 4 and 5 and is explained in more detail in the
Appendix, the inclusion in the network of the shared representations among the grounding
cells does not in and of itself constitute a representation of the sharing of the information.
However, a remedy for this exists in the mathematics of category theory: the presence of
commutative diagrams, discussed in Section 5.
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Human		
figure	

Ball	
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Human		
figure	cell	
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Figure 2: (a) An event and its grounding objects, or stimuli. (b) Feed for-
ward/feedback connections between an event-representing cell and cells representing
its individual objects.

2.5 Attempting to address Notion 4: flexibility

We can also add to the putative episodic network with extrinsic connections to allow some
degree of flexibility. A modified episodic network is shown in Fig. 4 in which all feedfor-
ward connections have reciprocals. Also, the event string has been generalized to include
an arbitrary number of events, with a focus upon event e(n) and its immediately adjacent
events. As we proceed with this discussion, we shall switch to mathematical symbols with
subscripts where needed, such as en in place of e(n). Here the full string , which infor-
mally we would label as e1e2e3 . . . e(n - 2)e(n - 1)e(n)e(n + 1) . . . , we shall now denote
as e1e2e3 . . . en−2en−1enen+1 . . . .

To address flexibility, extrinsic connections from other neural network regions facili-
tate recall in both the forward and backward directions beginning with an arbitrary event
in the episodic sequence. To illustrate forward recall (see the top half of Fig.4), a cell
which we shall call a “selector cell” provides connections efferent to the cells for events
en and en+1 . The connection to the en+1 cell is excitatory, initiating the recall of that
event. Were that the only connection from the selector cell, a confusing mix of spreading
activation would occur, forward through the cells for en+1, en+2, . . . but also backward
through the cells for en+1, en, en−1, en−2, . . . . However, the connection to the en cell is
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Event	e3	

(a)		

Addi.onal	objects,	rela.ons	

(b)		

Addi.onal	cells,		
connec.ons	

		Cell	p3	(for	Event	e3)	

Figure 3: (a) There are additional grounding objects from which events and their
grounding objects are formed. Normally, only those necessary for illustration will be
shown. (b) Arrows indicate the neural network input connections corresponding to
these additional grounding objects.

inhibitory, with synaptic strength sufficient to block the activity in the en cell and, hence,
preventing the propagation of activity in the reverse direction. Thus, given the appropri-
ate selector cells and connections, forward recall can be enacted without the confusion
caused by a simultaneous backward flow of recall. Similar remarks apply to backward
recall using the extrinsic additions to the architecture (see the bottom half of Fig.4). The
excitatory afferent to the en−1 event cell stimulates recall activity beginning with its acti-
vation and proceeding backward through the reciprocal connections between the cells for
en−1, en−2, . . . , while the inhibitory connection to the en event cell blocks its activation,
thereby preventing a confusion of recall that would otherwise occur simultaneously in both
directions.

The two forms of recall enabled by selector cells with the appropriate connectivity
can support both recall through the re-enactment of an event sequence beginning at an
arbitrary event and a sort of retrospective recall as well. But two questions arise. First,
where do these selector cells reside and how are they selected? And how many of these
selector cells are required: Is it necessary to have specialized selector cells of the two
different functionalities, forward and backward recall, accompanying each event cell in an
episodic string? It would seem likely that more than one selector cell would be involved

10
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Grounding	
object	cells	

en	blocked	

Forward	recall	

Selector	cell	Backward	recall	

Start	at	en	-	1	
Block	+

-

en	blocked	

Start	at	en+1	

Selector	cell	

Block	 +

-

en	-	2	

en+2	

Figure 4: Extrinsic connections enable both forward and backward recall. The ex-
citatory afferent connection to the en+1 cell for forward recall, and to the en−1 cell
for backward recall, is labelled “+” and the inhibitory afferent to the en cell in either
case is labelled “ - ”. Note: To economize on space, the grounding objects and the
bottom-up arrows are shown only once for both the forward and backward recall
illustrations.

for a given selection, one providing the excitatory stimulus and the inhibitory blocking as
illustrated in Fig.4 and the other providing an inhibitory blockage at a different location
to limit the length of the spreading activation along the selected episodic segment in the
chosen direction. Also, are the selector cells based at a “higher” level of processing in
the overall neural network, or do they reside at a “lower” level, or both, the level being
determined in a situation-dependent manner? For example, the ability to recall solely a
short subsequence of events immediately preceding an event selected as a goal, such as an
awareness of a food source, would be advantageous. Other desirable properties that have
been mentioned are the ability to make inferential memory judgements and to reason with
numbers by applying properties such as transitivity. In any such cases, event sequences
must be enacted within limits upon the flow of memory. Evidently, flexibility in making
use of a stored episodic memory sequence requires a rather more complex architecture
than the simple linear event sequence shown in Fig. 1.

Second, how is the directionality of recall itself made explicit in the semantics of the
neural network? Suppose that recall in the reverse direction of a memory sequence is to
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be initiated beginning with some event selected as the current goal. Of course, recall can
occur in that direction with our current architecture, event by event through the feedback
connections in the string. But what feature of the neural network distinguishes the recall
operation going back in time from the recall operation going forward in time? Somewhere
in the neural network there must exist the machinery to initiate a “go backward” command
through the connections to the episodic memory event sequence discussed in the preced-
ing paragraph. But this requires a representation that explicitly expresses an event as a
successor to the preceding event in the sequence as opposed to the implicit information
about the predecessor/successor relation embodied in the reciprocal pathways in the event
cell string. An explicit representation of the predecessor/successor relation requires addi-
tional neural cells with the appropriate network connectivity. In fact, for full flexibility in
re-enacting the sequence at any point either forward or backward in time, a representation
of the predecessor/successor relationship must exist for every event and its predecessor.
That is, every event cell must have connection pathways shared with additional cells that
represent both that event and its immediate predecessor (and successor) cells. Otherwise,
how would the neural network express the semantics of “going backward (or forward) in
time” so that it could actually command the episodic architecture to initiate the operation?
And in humans, how would it be possible for this information to enter one’s awareness?

Some would argue that “causality” explains the representation of recall direction. That
is, the occurrence of event en depends upon the immediate past occurrence of event en−1 .
But saying that the semantics of causality are automatically explicit through the depen-
dence of one event upon another is like saying, “The neural network knows full well that
event en cannot happen without the immediate past occurrence of event en−1 , for the
latter depends upon the former—for example, one cannot have a ball rolling unless some-
thing has initiated the roll”. Obviously, this is common-sense knowledge. But it does not
address the question of how this knowledge is represented in the neural network. Further-
more, does “something caused the ball to roll” fully represent the directionality of recall,
making the direction of activating events in memory unambiguous? Would an organism
with this sequence-string architecture in its brain be aware that it was recalling events
backward? Or forward? We shall revisit this question along with all of the others in the
final episodic memory architecture to be presented.

3 An Architecture for Notion 2: Holistic Access to an
Episode

Let us next examine a reformulation of the episodic neural network architecture to address
Notion 2, the importance of access to an episode as a holistic item. Here, we ignore all of
the issues discussed previously and focus solely upon the holistic access notion. Fig. 5 (a)
illustrates a scheme for accessing an episodic memory as a holistic entity, E representing
the entire sequence e1e2e3 . Fig. 5 (b) shows a neural network layout for this scheme. The
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e1	

(a)		

(b)		

e2	 e3	

Episode E	

q	

p1	 p2	 p3	

Figure 5: (a) An episode organized as a hierarchy in which the separate events are
connected to a central entity, the episode. (b) A hierarchical neural network in which
a cell q representing the episode E connects separately with the cells p1, p2, p3 rep-
resenting its constituent events.

idea is simple: Instead of connecting the event cells in a string, connect the event cells
e1, e2 and e3 to the episode cell E . The cell E remains active during the recall of the
whole episode or any part of its time span, while the event cells are active when their time
segment relative to the whole is undergoing recall. The idea is not new (see for example
[11]) and was a part of the episodic network architecture presented in ([13, 19]).

Notice that the arrows connecting the E cell to its individual event cells e1, e2, e3 in
Fig. 5 (b) are double-ended, as are those between each event cell and its grounding cells
in Fig. 2 (b). This serves to illustrate that both the event cell/episode cell connections
and the grounding cell/event cell connections exist as reciprocating pairs. Having such
connections in both the feedforward and feedback directions enables activity to propagate
in both directions: for example, sufficient activity in the array of event cells stimulates
an episode cell, bringing it to an active state. Reciprocally, the feedback connections
are intended to have sufficient strength to enable an episode cell to activate its individual
event cells. On the other hand, the arrows connecting E with its events e1, e2, e3 in the
conceptual semantic illustration of Fig. 5 (a) point in only one direction, from each event to
the episode. Similarly, the arrows connecting each event with its grounding objects point
in only one direction, from each grounding object to the event in the conceptual semantic
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illustration of Fig. 2 (a). The idea here is that as we transition into the mathematics,
episodes such as E , events such as e1, e2, e3 , and the events’ grounding objects and, in
fact, all conceptual objects that are represented by neural cells, will become mathematical
objects which we shall refer to as concepts. As such, the human figure grounding object is
a subconcept of each event e1, e2, e3 , hence the upward direction of the arrows in Fig. 2
(a). Similarly, each event e1, e2 and e3 is a subconcept of the episode E . The next section
contains a more detailed discussion of these ideas.

Part (a) of the two Figs. 2 and 5 illustrates a revised model of episodic memory,
one which replaces the event-to-event string with a hierarchy in which the events relate
to the episode as subconcepts. Correspondingly, the neural architectures in part (b) of
each figure present a hierarchical picture of grounding object and event cells connected in
both feedforward and feedback fashion to their target cells, the event cells and the episode
cell, respectively. The feedback connections reciprocate the feedforward connections all
through the hierarchy and serve concept representation and other functions not addressed
here. The feedback connections enable the propagation of activity in either direction in an
episodic sequence; in many cases, they also enable cells to become fully active through
the recurrent trading of stimuli between source and target cells. As Barsalou points out,
reciprocal connections ensure concept stability [3]. This means that a cell’s fully-active
state occurs in parallel with the activity of its full complement of afferents which represent
the subconcepts of its concept. This ensures that its concept representation persists and
does not undergo either a catastophic or fluctuating degradation because doing so would
entail a concomitant change in its input sources.

Although it addresses the issue of holistic access to an episode, this architecture does
so at the cost of sacrificing the explicit enforcement of the order of events which was
inherent in the linear-event-string architecture. To accomplish the recall of events in order,
either forward or backward in time, a control mechanism for sequencing the events must
be added. As was the case with achieving flexible re-use of a stored memory in the first
episodic memory architecture, this architecture requires extrinsic connections to enact the
flow of events. A potential advantage of this second model, however, is that flexible re-
use is more readily achieved because activating an event cell will not automatically cause
activity to spread to other events. Activating the other events instead requires explicit
action, either by bringing the episode cell to full activity or by providing stimuli to the
other event cells by a different route.

The neural cells and connections required for such a control mechanism have the added
task of capturing the correct sequence order adaptively, for the information about the order
is not known to the neural network until the sequence first occurs. As a consequence, a
method such as a specialized sort of weight adaptation is required to capture the sequenc-
ing information; previous papers have addressed this to some extent using this same holis-
tic modeling approach (see the last paragraph of the Introduction). However, the question
of how sequence order is captured and made use of in this holistic architecture remains an
open question. As with the first neural episodic model, a great deal of infrastructure must
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be added, such as something functionally equivalent to the selector cells referred to ear-
lier. The loss of an explicit neural mechanism for sequence order complicates the need for
added structure. An approach to the problem of holistic access that respects the episodic
sequence order will be described in the presentation of the span-cospan model in a later
section.

4 Concepts as Objects, Concept Relationships as Mor-
phisms

Before continuing, a brief digression on the mathematical model is appropriate. The CNST
was developed as a means of expressing the semantics of neural networks with mathemat-
ical rigor. The Appendix contains a brief introduction to category theory and its use in this
semantic model. Here, we provide an overview.

Expressing the semantics of a neural network requires a form of mathematics allowing
human-understandable, precise descriptions of the meaning implicit in its structure and
activity. In formal logic, a precise mathematical description of a domain, or entities and
situations in which they play a role, is called a theory. We also refer to theories as concepts,
which is more suggestive of a description of the kind of stimuli that a particular cell in
a neural network responds to. A cell responds based upon its connectivity with other
cells, which may include sensor elements. This suggests that the concepts associated with
interconnected cells are related by virtue of their connectivity and the relative strengths of
the synaptic connection weights, whose magnitudes affect the transfer of stimulus activity.

Now, the mathematical expressions of the CNST are diagrammatic, diagrams being the
expressions of category theory. The diagrams are somewhat in the nature of figures such
as Fig. 5 (a), as they involve the objects and the arrows or morphisms in a category. Math-
ematically, arrows such as those in Fig. 5 (a) express concept inheritance relationships
in a concept category Concept which has concepts as objects. For ease of visualiza-
tion, we illustrate the concepts with drawings of the things they describe. A morphism
A→ B in the concept category expresses the truth-preserving transformation of a concept
A to a subconcept of a concept B . This formalizes the inheritance by B of the proper-
ties expressed in A , adapted to the form of expression in B . This formalism expresses
the descriptive statement of each domain as a theory in a formal logic, allowing a precise
symbolic description of the items and their properties. Similarly, a morphism formalizes
the inheritance of concepts from their subconcepts. By this means, the category formalizes
the notion of a concept hierarchy. For example, in the events e1, e2, e3 in the episode E
(see Fig. 6) of our running example, the concept of a ball becomes, say, the concept of a
bowling ball at the various stages of being thrown.

A particular neural cell, when active, is signifying that a particular stimulus to which
the cell responds is present, signifying the presence of a particular item in the neural net-
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work’s input environment. Alternatively, the stimulus could be autonomously-generated.
For example, a neural network with the capability to generate plans of action would syn-
thesize concept representations of objects and relationships at the various stages of a plan.
In either case, a concept associated with a cell describes the item at some level of detail;
this description is an explicit account of the cell’s semantics. To make the semantics of
neural processing fully explicit, categories Nw which we call neural categories formalize
a neural network’s structure and possible states of activity at a given stage of connection
weight adaptation, based upon the current array w of connection weights (or in a biolog-
ical neural network, synaptic strengths). A mapping between categories called a functor
can be used to fully formalize the semantics of the neural network. The functor does this
by mapping concepts and their relationships to states of neural activity in cells and the
instances of activity flow between cells. Formal transitions between neural categories and
functors express the learning that occurs through the synaptic adaptation. In neuroscience
terms, the concept category is a formalized version of the hierarchy of representation, from
sensor level to the “higher” levels at which recognition, recall and other cognitive opera-
tions take place. More mathematical detail is contained in the Appendix and a complete
exposition resides in some of the references, principally ([22, 14, 23]).

The hippocampus and its closely-related structures such as the entorhinal, perirhinal
and parahippocampal cortices making up the medial temporal lobe (MTL) evidently sup-
ports such a hierarchy for declarative memory ([26, 31]). Thus, the concepts and concept
relationships at this level of processing express the facts, events and episodes of declarative
memory. Other concepts and relationships express the items in nondeclarative or implicit
memory.

At this point, we issue a word of caution. The discussion from this point increases in
its intensity. Occasionally, to maintain a readable text, this intensity forces us to overload
certain symbols and phrases with multiple meanings. We shall try to avoid this, but some-
times it will happen. Thus, for accuracy we would like to distinguish between informal
discussions of the events and episodic segments on the one hand, and the concepts that
express them mathematically on the other. This seems unnecessary in this paper because
we are not providing a detailed expression of concepts and concept relationships as math-
ematical objects and morphisms in a category of theories; we simply mention the category
and define colimits, commutative diagrams, and spans and cospans in categories, largely in
the Appendix. More serious is the fact that the concepts, or events and episodic segments
and grounding objects, are encoded or represented by neural cells and their connectivity,
and sometimes the intensity of discussion makes it is difficult to distinguish concept and
relationship from neural cell and connection. Worse yet, the neural cells and connections
and their activity, taken together, are formalized mathematically as a category of neural ob-
jects and morphisms, and we sometimes discuss the neural network in categorical terms,
as in “cospan cells” or “En cell”. The cospans are in categories, not systems of episodic
segments and events or neural networks and connectionist activity, but we find it neces-
sary to simplify by merging the informal with the formal. Hopefully, this merging will be
noticeable only to those concerned with the subtleties in having a mathematical model.
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5 An Architecture for Notion 3: an Explicit Representa-
tion of Shared Information

Having proposed episodic models that address notions 1 and 2, we proceed to Notion
3. It is based upon the observation that the events in an episodic sequence are mutually
consistent. That is, they somehow cohere in memory: Successive events share information
by maintaining some grounding objects in passing from one event to the next. Imagine
what a memory of a sequence of events might be like if the grounding objects or their
relationships were to change abruptly in the transition from one event to another. Consider
an example:

Suppose that in event e1 a human started throwing a ball, but in event e2 the human
was replaced by a wagon and the ball became a goat towing the wagon with a rope. In this
example, the stringing-together of such images as e1 and e2 would of course result in utter
confusion, or else register as the kind of abrupt transition that occurs only in dreams or
surrealistic films. In the latter case, the human brain apparently maintains an expectation
that such transitions make sense in some way, perhaps in a symbolic interpretation. The
point here is that to make everyday sense as an episodic memory, an event sequence must
consist of events having grounding objects and their relationships in common, or at least
in a close similarity relationship. A transition between objects such as a human figure
becoming a wagon does not meet this criterion, nor does a transition between relationships
in which object A throwing object B becomes object A being pulled by object B .

A question then arises: How does a neural network dissociate related and unrelated
event pairs, and, hence, sequences that constitute episodes from those that do not? For
example, how can we be aware that a memory makes sense because it has continuity but a
dream sequence with abrupt transitions does not? Or distinguish memories that have been
formed before a sleep period from those that are formed after? Another consideration is the
ability of the brain to reconstruct images and other complex information as a contiguous
whole, attending to the overlap of shared information between components so that there is
no confusing duplication or uncertainty in the arrangment of the components.

In answer to these considerations, we hypothesize that successive events which are
closely related by content, such as the grounding objects shared by the events in Fig. 5 (a),
must be explicitly represented as such in a corresponding neural architecture—but this is
not apparent in the architecture of Fig. 5 (b). This suggests a principle which we might
call the shared subconcept principle, requiring that the common content of two concepts
be made explicit in their neural representation. This principle, a part of the CNST, is based
upon the category-theoretic structure called a colimit.

The architectures illustrated in Figs. 2 (b) and 5 (b) can be incorporated in an ar-
chitecture that addresses the shared subconcept principle. This architecture is suggested
conceptually in Fig. 6, where the grounding objects are shown as shared subconcepts of
all three events e1, e2 and e3 and these in turn are subconcepts of the episode E . Cor-
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Ball		

	Events	

		Episode		E			

Human	figure		

Grounding	
objects	

e1	 e2	 e3	

h	 b	

Figure 6: An episode organized as a hierarchy in which the grounding objects are
shared subconcepts of the separate events, which are in turn subconcepts of the
episode.

respondingly, one might expect there to be separate neural network connections for each
grounding object cell—the human figure, and the ball—to/from each event cell and for
each event cell to/from the episode cell. Now, this connectivity was mentioned previously;
we stated then that the fact of such connectivity of ground object cells to event cells was
not sufficient for an explicit representation of the sharing of grounding objects.

To address this insufficiency, notice first that (see Fig. 7) each grounding object cell
is connected through three different feedforward connection pathways to the episode cell.
For example, for the human figure concept cell, one pathway consists of its connection
with the e1 cell, p1 , and that cell with the episode E cell. The two connections actually
consist of reciprocating pairs, annotated with arrows to show the direction of signal prop-
agation in each connection (also, the lobes at the terminal ends of the connections show
the synapses, again indicating the direction of signal propagation). Together the recipro-
cating pairs comprise a feedforward path from the human figure cell to the E cell and
also the accompanying feedback path. Similarly, the human figure cell also connects with
the E cell through both p2 and p3 via the respective feedforward/feedback pathways.
In line with the discussion accompanying Fig. 3, additional objects and relationships and
their corresponding cells and connections which are not shared by the three events are not
shown.
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Episode	cell	

Human		
figure	cell	

Ball	cell	

p2	p1	 p3	

Event	cells	

Figure 7: An architectural layout for the episodic network, organized as a hierarchy
of cells through reciprocating pairs of connections.

How is the neural network in Fig. 7 to respect the human figure as a common presence
in the events if the event cells and the human figure cell are not all active simultaneously?
After all, the simultaneity of activity among cells is basic to a neural network’s repre-
sentation of objects that are part of a more complex whole. The required simultaneity of
activity is illustrated in Fig. 8 where the heavy arrows along the two paths (human figure
cell)e1(episode cell) and (human figure)e2(episode cell) is meant to indicate that the two
paths always act together. Given our use of notation, with the human figure denoted by
h , we can write the two paths from h to E as he1E and he2E . The implication of this is
that if e2 is the current event during either an original encoding of the sequence or during
recall, we require that there remain some persistent activity in the e1 cell while the cells
for h , e2 and E are active. This simultaneity of activity in two pathways with a com-
mon source and target corresponds to the mathematical notion of a commutative diagram
in a neural category. The notion of a commutative diagram is a general one in category
theory and is one of two requirements defining a colimit, of which our object sharing by
events is an example. The activity in the neural architecture corresponding to the heavy
arrows in Fig. 8 is illustrated by the arrows accompanying the appropriate connections in
Fig. 9. Of course, the ball cell will also be active, and so although this is not illustrated,
the simultaneous activity in the connections with the ball cell indicate that the two shared
objects, human figure and ball, are being highlighted simultaneously, as would happen in
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Figure 8: Simultaneous activity in the two pathways from the human figure cell to
the episode cell enforces the sharing of the human figure object between the events
e1 and e2. This property enables the architecture to address Notion 3: shared-object
representations.

the events in question. In fact, the commutative diagram for this episode extends to not
only the ball and its connection pathways with the episode cell, but also the connections
involving event e3 .

The important point is that in an episode in which a grounding object is present in more
than one event, the connections joining the grounding object cell to each such event cell
and the event cells to the episode cell are active simultaneously. Yet, the event cells are to
be active successively, not all at once. How is it possible, then, to claim simultaneity of
activation? As explained in [13], we have proposed an extended definition of simultaneity
for what we call temporal morphisms, as follows. The simultaneity of activity in a set of
pathways with a common source and target cell means that neural activity and signaling
through the connections occurs in each pathway of the set at some time during a time
interval that defines the set, while the common source and target cells of the pathways
are persistently active during the entire interval. The complete definition of the set of
pathways for the commutative diagram encompasses all the pathways for the episode in
our example, since they all have the same sources, the h and b cells. In summary, the
cells for h, b and E persist in activity during the entire time interval of the episode while
the pathway involving each individual event is active during the appropriate subinterval of
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Episode	cell	

Human		
figure	cell	

Ball	cell	

p2	p1	 p3	
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Figure 9: A neural architecture for Notion 3. Simultaneous activity in the two neural
network pathways from the human figure cell to the episode cell enforces the sharing
of the human figure object between the events e1 and e2. Notice that the pathways
referred to in the discussion have both feedforward and feedback connections active.

the time interval defining the episode. This example illustrates the third episodic memory
architecture, enacting both the holistic episode and the sharing requirement. This type of
architecture was described in [13], where it was pointed out that it utilizes the categorical
notion of colimits. A simulation model for it which incorporates a capable classification
network from the literature is described in [19], which also reports simulation experiments
carried out with the model. Commutative diagrams and colimits are explained in more
detail in the Appendix.

There is a final step in architectural design. This final architecture addresses all four
of the notions about episodic memory architectures. To review, these are the Notion 1,
the maintenance of the event representations in sequence; Notion 2, holistic access to an
episode; Notion 3, shared-object representations; and the notion not yet fully addressed in
concert with the others, Notion 4, flexibility. Notion 4 proposes the necessity of separate
access to partial event strings, or episodic segemtns, and requires that there be cells har-
boring an explicit representation of the predecessor/successor relationships between the
events in an episodic sequence. Our fourth design addresses all of these issues in a single
episodic memory architecture called the span-cospan model.
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6 A New Episodic Memory Architecture for Notion4: flex-
ibility

This section introduces the subject of this paper, the span-cospan episodic memory model.
Some reference will be made to mathematical structures including the objects and mor-
phisms that form a category, commutative diagrams, colimits, spans and cospans, and
functors that map one category into another. These will be explained in summary form as
they appear; some have already been introduced. For a more detailed exposition, see the
Appendix.

6.1 Spans and cospans

To address all of the shortcomings of the previous episodic memory models, we propose
a fourth. This model fully addresses Notion 1, 2, and 3, and also fully addresses Notion
4, flexibility in re-use. A key part of this is that it provides an explicit representation
of sequence order, the precedence-successor relationships between events. It does so by
taking advantage of two categorical structures which have not yet been introduced: spans
and cospans. For those not familiar with category theory, a reading of the sections of the

Cospan  	

Span  	

a	 b	

a	 b	

d	

c	
f1	

g1	 g2	

f2	

Figure 10: A span and a cospan.
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Appendix that refer to morphisms, commutative diagrams, and colimits will greatly aid in
following this discussion.

Examples of the two structures, span and co-span, are shown in Fig. 10. The structure
containing the three objects a, b, c and the two morphisms f1:c−→ a and f2:c−→ b is
called a span; it has two morphisms with the same domain c but different codomains a and
b . An example of a span in the category Set , where sets are the objects and functions are
the morphisms, is a relation R:a−→ b between sets a and b represented by functions f1
and f2 , with c ⊆ a× b . The structure containing a, b, d and the two morphisms g1:a−→
d and g2:b−→ d is called a cospan; it has two morphisms with different domains a and
b but the same codomain d . Interestingly, fusing the two structures in Fig. 10 along the
objects a, b produces a diagram with a diamond shape. This same shape characterizes a
simple type of colimit called a pushout, in which the diamond is a commutative diagram
(see Appendix). In fact, a pushout is shown in the Appendix as Fig. 19; here, the colimit is
shown with all of its cocone morphisms including the one directed up the diagonal of the
diamond shape. Since the diagram commutes and, hence, the diagonal morphism equals
the composition along either side of the diamond (i.e., the resultant morphisms of the two
compositions are equal) it is often not shown. It is worth showing it here because our
neural models include such diagonal morphisms explicitly as connections.

6.2 Episodic segments and overlapping colimits

The fourth episodic model consists of a neural sructure that represents an incremental
buildup of overlapping episodic segments. As shown in Fig. 11, the episode of our ball-
throwing example is formed incementally with the successive, overlapping colimit defin-
ing diagrams labelled Step 1 and Step 2. Another way of looking at this is illustrated in
Fig. 12. In similarity with the discussion in the preceding section, analyzing a pushout
as an overlapping span and cospan, the upper part of the diamond-shaped diagram of a
pushout (omitting the middle morphism from the picture) is a cospan. In this alternative
view, then, omitting for simplicity of illustration the lower half of each colimit diagram,
which are the spans involving the grounding objects with the events, yields a picture of
two overlapping cospans, labelled Cospan 1 and Cospan 2 in Fig. 12. Cospan 1 has at its
apex the first episodic segment, the first two steps in throwing the ball. Cospan 2 joins this
first segment with the final step in throwing the ball.

The span-cospan architecture has the following operational characteristics. First, at
each step in the formation of a new memory a cospan cell is recruited to be the apex of a
colimit defining diagram that blends an episodic segment (the previous episodic segment
cospan object) and the next event in order using the grounding objects as blending objects.
In the corresponding neural architecture, this yields a new episodic segment cospan cell
further along in the memory sequence. The new episodic segment serves as a holistic
representation of the memory sequence through that step. The corresponding neural cell
has access to the preceding episodic segment cospan cell as well as its terminal event cell
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via feedback through the reciprocals to its feedforward cospan connections from those
cells. This allows a memory to be parsed in either forward or reverse order, proceeding
iteratively through feedback and feedforward reciprocals. This allows an episodic segment
to be separated into its preceding segment and its final event for applications such as the
determination of what led to some important event.

Step 1	

E1	

e1	
e2	

h	 b	

Step 2	
E2	

h	 b	

E1	 e3	

Figure 11: The incremental formation of an episode in segments. The second colimit
builds upon the first.
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Cospan 1  	

Cospan 2 	

Spans containing  
grounding objects	

E1	

E2	

e3	

e1	 e2	

Figure 12: The result is a string of linked cospans. Each episodic segment incorpo-
rates the preceding one and adds in a new event.

This is illustrated in Fig. 13, where the episodic segment e1e2e3, or E2 , of Cospan 2 is
parsed into its two components, the Cospan 1 episodic segment e1e2, or E1 , and the event
e3. The same process can parse episodic segment E1 to recall e1 and e2 simultaneously
as separate representations. In this way, any of the holistic memory segments can be sepa-
rated into its end state and the episodic segment immediately preceding the end state. The
neural architecture corresponding to figs. 12 and 13 is illustrated in Fig. 14. Recall in the
forward direction involves the reverse process, with each event in turn stimulating through
its feedforward connection its cospan cell, followed by a cospan-to-cospan cell morphism
and the activation of the next event cell via the reciprocal to the cospan connection from
that cell. Both the forward and backward recall operations are illustrated in Fig. 15.

6.3 Holistic access, blending along shared concepts, and intrinsic flex-
ibility

The architecture in Fig. 14 maintains the episodic sequence order. It does this by allowing
recall through the feedforward connections between successive cospan cells and the abil-
ity to parse the represented segments by successively activating the cell representing the
terminal event of each segement via the feedback connections to the event cells. This feed-
forward/feedback interplay occurs in the direction of the episodic sequence order, thereby
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 Cospan 1 	 E1	

Cospan 2	 E2	

e3	Parse	 Parse	

Retrospective  
readout signal	

e1	 e2	

Figure 13: Parsing an episodic segment by separating the cospan representation E2 ,
then E1 , into their components. The episodic segment E2 separates into its prede-
cessor segment E1 and terminal event e3 . Next, E1 separates into its predecessor
segment, here consisting of the single event e1 , and its terminal event e2 .

addressing Notion 1. Based upon this parsing capability, each cospan cell provides holistic
access to each episodic segment, including the entire episode. This more than addresses
Notion 2. The presence of the spans, whose cells represent the grounding objects which are
the blending objects in each colimit diagram for an episodic segment, partially addresses
Notion 3, the representation of the shared information between events that enforces the
continuity of an episode. The representation of shared information is completed by the
fact that a cospan and the spans connected to it together form the defining diagram of a
colimit, illustrated in Fig. 21. This means that the diagram commutes, and therefore the
represented episodic segment is a properly-blended composite of the events within it along
their shared grounding objects.

Finally, the span-cospan episodic memory model transcends the first, second and third
models because of the intrinsic flexibility it has in the storage and recall of episodic mem-
ories, addressing Notion 4 as well as notions 1, 2 and 3. Adaptation to form the episodic
segment cospans in feedforward fashion allows a memory to be learned and stored in the
neural network. The memory can be recalled by activating the cell for a chosen event
through its afferent connections from grounding object cells, through a feedback connec-
tion from the episodic segment cospan cell with which it forms the cospan, or through a
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Figure 14: A neural architecture for the span-cospan episodic memory model. The
Cospan 2 cell represents Episodic segment E2 ; parsing E2 consists of tracing through
the feedback connections to activate the Cospan 1 cell (representing Episodic segment
E1 ) and also the cell p3 (representing the terminal event e3 ). Parsing E1 is done in
a similar fashion, activating the cells p1 and p2 (representing the events e1 and e2 ,
respectively). The cells and connections representing the grounding objects provide
input to the event cells; the arrows represent the reciprocal pairs of connections be-
tween the grounding objects and the event cells p1, p2 and p3 .)

connection from some other part of the network. Feedforward activity from cospan cell to
cospan cell activates the event cells via the reciprocals to their connections to the cospan
cells. Backward tracing of a memory through this reciprocal parsing strategy has already
been described. Finally, a sequence of cospans cells can be entered at any place in the
neural cospan array. One pathway for this is through feedforward connections from the
grounding objects cells to an event cell at that place, and then forward to the cospan cell
it joins. For example, seeing a familiar face might trigger an episodic recall at one or
more places in an episode in which the person was last seen. Another potential pathway
is through connections formed between an episodic segment cospan cell and cells in some
other part of the neural network.

Presently, we shall explain the major contribution of the span-cospan model, the ex-
plicit representation of concepts which express the episodic sequence order. This requires
a discussion of the episodic segments in the concept hierarchy of an episodic sequence and
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their representation by the cospan cells.

Before discussing the latter property of the span-cospan model, let us examine the
neural network and its operation in more detail. Notice that in the neural model illustrated
in Fig.14 all feedforward connections have reciprocals which enable the parsing of the
episodic segments. In the example, the episodic segment E1 of Cospan 1, which immedi-
ately precedes the goal state event e3, can be recalled separately from e3 once the e3 cell
has been stimulated into full activity by an extrinsic stimulus. Suppose that the e3 cell
receives an extrinsic stimulus, a command sent through a neural connection from some
other part of the neural network. This cell first stimulates the E2 cell for Cospan2. The
Cospan 1 cell is then stimulated via signaling activity through the reciprocal connection
from the Cospan 2 cell to the Cospan 1 cell representing E1 . This enables the E2 cell,
whose epsodic segment representation includes the goal state e3, to stimulate the E1 cell,
whose episodic segment precedes the goal state. By virtue of the other cospan reciprocal
connection, the E2 cell also reinforces the goal state e3 cell’s activity, or activates it in
case it was the E2 cell instead which received an extrinsic stimulus. Thus, as mentioned
before both the preceding episodic segment and the goal state can be recalled into working
memory simultaneously as separate representations in an enactment of the parsing strat-
egy. The “Retrospective readout signal” in Fig. 13 illustrates an exmaple in which it is the
E2 cospan cell that receives the extrinsic stimulus, which then parses the episodic segment
E2 into its two components E1 and e3 .

The forward and backward recall operations are illustrated for the general case begin-
ning at an arbitrary event en in Fig. 15. An excitatory connection is shown emanating from
a “Selector cell” in “Step 1”and terminating upon the en cell. In the “Forward recall” case
a separate, inhibitory connection terminates upon the cospan cell labelled “En−2 ”, block-
ing the activation of that cell and, hence, any progression in the backward direction along
the episodic sequence. In “Step 2”, the excitatory stimulus activates the en cell, allowing
it to activate its episodic segment En−1 cell through a feedforward connection. Further in
the feedforward direction in “Step 3” the En−1 cell stimulates the En cell, which then in
“Step 4” activates the cell representing its terminal event en+1 and separately through a
feedforward connection the En+1 cell, and so forth until an inhibitory input blocks some
further-along cell. Notice that in a separate branch of “Step 3” the En−1 cell attempts to
stimulate the En−2 cell through a feedback reciprocal to the feedforward En−2 → En−1
connection, but this is blocked by the inhibitory connection from the selector cell. The
operation of the network in the “Backward recall” case proceeds in an analogous fashon.
Retrospective memory can be seen as an elaboration of backward recall in which the acti-
vation of the selected event en cell activates the En−1 cospan cell, calling up its episodic
segment as before, but in this case recall is forced to proceed in the backward direction.
The Figure provides some indication of the full flexibility available in this fourth episodic
memory model.
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Figure 15: Two basic recall operations of the span-cospan episodic memory model.
For ease of reading the Figure, the word “cell” is omitted from the caption for each
cell, as for example “En ” in place of “En cell”.

6.4 The explicit representation of sequence order

The unique contribution of the span-cospan episodic memory model in transcending the
previously-described models is the explicit representation of sequence order. The cospan
cells represent episodic segments, which build up incrementally by adding the next event at
each step to form a new segment. This is the basis for an unambiguous, explicit represen-
tation of sequence order. First, the succession of cospans cells through their feedforward
connections to their successor cospan cells maintains the sequence order. The growing
accumulation of events during the formation of an episodic memory is represented by the
cospan cells, recruited successively as events occur. During this phase, some event cells
are themselves newly recruited, some event cells are re-used but have their representations
modified by new information, and some are simply re-used. During the learning of an
episode, each cospan cell represents not only the current event, but the episodic segment
recording the history of the episode up to that point in time. The addition of a new event at
each successive cospan corresponds to the successor operation. The feedback reciprocals
between cospan cells facilitate the parsing of each episodic segment into its predecessor
episodic segment and final event, where the feedback link to its predecessor is a manifes-
tation of the predecessor operation.
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However, the fact of an operable architecture does not in and of itself express the
sequence order explicitly, for this requires that the order relation be represented explicitly
in one or more concepts. Although an episodic segment concept is a colimit, the order
relation is not an intrinsic property of colimits. The event concepts are subsumed in the
episodic segment concepts but this is a superposition of concepts, not an ordered list. How,
then, can we claim that the span-cospan architecture provides an explicit representation of
sequence order as a concept?

Previously, we have stated that the cells which are afferent to a neural cell p must re-
main active at some level in order for its concept T to be fully represented. Any inputs that
are not active will cause their corresponding representations to be absent, resulting in the
representation of a part of T only in the most abstract fashion, that is, without any defining
detail. It is then correct to say that when some of its original inputs—for example, cells
representing some of the grounding objects for an event, or previous events and episodic
segments for a cospan cell—are inactive, the cell is not at that time representing T , but
an abstraction T ′ , a subconcept that has some of T ’s component objects represented with
less detail or not at all. This applies in particular to a colimit cell representation: its defin-
ing diagram cells, and in fact their inputs, must have persistent activity during the time
interval in which the colimit concept representation is active in the neural network in order
for all of the details of the colimit concept to be fully expressed. Each cospan cell En is
one such colimit cell. Hence, for its representation to be specific to En , the cells in its
defining diagram must persist in activity sometime during the interval of activity of the
cospan cell. The diagram cells include the cospan cell representing the previous episodic
segment En−1 , the cell representing the current event en+1 , which is the final event of En ,
and the grounding cells representing the concepts that En−1 and en+1 have in common.
That en+1 is represented separately from the previous episodic segment En−1 in the dia-
gram implies that the active cells represent not only the current episodic segment En , but
also, separately, its predecessor episodic segment En−1 and the current event en+1 . This
hierarchy is illustrated by the layout in Fig. 12. This is one way in which the sequence
order is made explicit: An episodic segment is displayed simultaneously with its terminal
event and the episodic segment that is its predecessor.

Further, previously we have defined temporal neural morphisms, which allow for the
separate connection pathways to be active one at a time during separate subintervals of
an interval in which the common source and target of the pathways is persistently active
(see for example [13]). This property therefore allows the sequential activation of the
pathways in the diagram for the cospan colimit cell representing En . This allows first the
En−1 cell and then the en+1 cell to become active during the activation of the En cell, yet
this sequential activity is regarded as simultaneous because of the persistent activity of the
En cell and the blending cells representing the grounding objects in its colimit defining
diagram. Nevertheless, the sequential activation of the En−1 and en+1 cells provides
a second expression of sequence order, occurring within the duration of their temporal-
morphism simultaneity.
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It is worth mentioning here that the activation of the En−1 and en+1 cells can co-
occur; an example of this is an overlap during the sequential activiaton of these cells.
Or, alternatively, the order of activation of the two cells can be reversed. Which of the
alternatives takes place depends upon the activity of other cells which have connections
terminating on the two in question. In fact, fluctuating activity in the grounding cells,
including those not in the colimit diagram for En , can cause the activities of the En−1 and
en+1 cells to oscillate. This does not imply that these cells alternately shut down and then
spring into full activity; although we have not yet discussed the graded nature of activity
possible in the cells, the oscillatory activity mentioned can occur in an increase/decrease
rather than on/off fashion.

In connection with the graded activity of neural cells, we mention a third mechanism
for the explicit representation of sequence order in the concepts forming the episodic seg-
ments. This mechanism is a progressive decrease in the specificity, or the amount of detail,
in the information that is the content of a neural cell’s concept representation when the ac-
tivity of a cell undergoes decay. It can occur as an episodic sequence is either learned
through synaptic connection-weight adaptation in an episodic network, or is explored
through recall. A decrease in the specificity of a concept corresponds to an increase in
its abstract nature. Neural mechanisms for an increasing abstraction in the concepts repre-
sented in an episodic sequence are discussed in the next two sections. Because the events
undergo increasing abstraction during later events as an episodic sequence is encoded in
memory, the earlier an event is in an episodic segment, the more abstract its representation.
To greater or lesser extent depending upon how rapidly abstracton occurs, this allows for
the representation of order in the events encoded in an episodic segment as a colimit.

6.5 Simultaneity and the sequential activation of cospan cells

Just as the activity of the En−1 cell of Fig. 15 requires the activity of the cells En−1 and
en+1 , sequential or otherwise, and persistent activity in the blending cells in its colimit
diagram, the activity of the En−1 cell requires the activity of the cells En−2 and en and
persistent activity in the blending cells of its diagram in turn. Utilizing the notion of
temporal morphisms, however, only the activity of the En−1 cell and its blending cells is
reqired during the entire interval of its activation. The foregoing argument applies also to
En−2 , which is a component in the colimit defining diagram of En−1 . The requirement for
simultaneity of activation would seem to lead to a chain of activity all along the string of
cospan cells as well as in the events contained in their diagrams and, hence, all grounding
objects, whether they are contained in all events or not. But again, by virtue of the temporal
morphisms, the entire hierarchy of cells does not have to be active at once; our extended
notion of simultaneity in a temporal morphism implies that each cospan cell, hence, the
blending cells in its diagram, are the only ones required to be active at once, and that only
for the duration of that cell’s colimit representation and its required presence during part
of the next cospan cell’s representation. Hence, the episodic sequence of cells need not all
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fire as one.

The question arises, however: Is it necessary for all of the cospan cells preceding the
En cell and their diagrams to become sequentially active if En is the current focus of atten-
tion, say, in determining what immediately preceeded the event en+1 ? The same question
arises in parsing the episodic sequence representation in the backward direction; would
the requirement for traversing the full sequence in the forward direction cause confusion?
The abstraction of concept representations through decreasing activity in cells provides
an answer. For, the full activation of a cospan cell, representing En , say, is not required
if we are willing to allow abstraction to occur in the events within the episodic segment
representation. One way this occurs is in the limitation of the length of a parsing in the
backward direction, where the operation starts at the En cell but ends at a cell representing
an earlier episodic segment En−k . This can be brought about through the inhibition of
the En−k cell by a selector cell; selector cells are extrinsic to the episodic sequence in the
neural network as shown in Fig. 15. Another way that abstraction can occur is through
the decay of an active neural cell’s activity. The farther back an event is in the episodic
sequence, the more abstract its representation by the En cell because that event cell is reg-
istering a low level of activity. Hence, in actuality the En cell is representing an episodic
segment E ′n whose events register this backward sense of increasing abstraction. If the
decay in activity of the cells is rapid, it will reach a sub-threshold level for earlier cells
and, hence, the actual length of an episodic segment can be reduced. Mechanisms for this
backward-decrease in activity of the cells representing an episodic sequence are discussed
in the next section.

6.6 Time and the abstraction-specialization hierarchy

The explicit representation of sequence order and the requirement for simultaneity in the
activation of preceding cospan cells when a cospan cell representing an episodic segment
is the focus of activity are two considerations we addressed in sections 6.4 and 6.5. In
addition to providing more detail, this section addresses yet another consideration: How
does a sense of the flow of time become associated with an episode? The latter issue can
be addressed with a proposal which if implemented also leads to an additional means of
addressing the simultaneity of activity in the components of an episodic segment.

One mechanism for the ”time-stamping” of the events within a single episodic seg-
ment is the decrease in the strength of each event’s representation within that segment.
The activity decay of active neural cells was used an earlier episodic model we published,
in which the cells represented the events ([13, 19]). This earlier episodic memory model
is a combination of those which address Notion 2: holistic access and Notion 3: the rep-
resentation of shared information, presented here (see Fig. 21). In the earlier published
model, the activity of a cell representing an early event in an episode has lower activity
at a later time than the activity of a later event (see Fig. 16). This results in a gradient of
activation over the events in which the cell activities increase with the events in order of
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Figure 16: An activation gradient over the event cells has been proposed as a way to
“time-stamp” the events in an episodic sequence.

occurrence, a recency gradient. This would affect the representation of a cospan cell in
that the event concepts would have different types of representation depending upon their
recency, the ones with less-active cells being more abstract at a given step in the event
sequence.

Other alternatives are available for the “time-stamping” of events in a cospan repre-
sentation via a gradient of abstraction backward in time. To illustrate such an alternative,
Fig. 17 shows the cospan cells in the span-cospan model interconnected by feedforward
connections with decreasing strength. The connection weight value 1/2 is used as an
example. Let the feedback connections have connection weight unity. Also, let the recip-
rocating connections between each event cell and the cospan cell it connects to have unit
weight as shown in Fig. 17. Then, a cospan cell receives only half the activation value of
its predecessor cospan cell as input (to simplify, we shall not be concerned with the con-
nection weight of its input from the relevant event cell). However, through the reciprocal
feedback connection, it supplies the full strength of its activation to its predecessor cospan
cell. The effect these weight values have is as follows. First, the cumulative weakening
of input from episodic segments further back in time through successive low-weight con-
nections establishes an effective recency gradient within each episodic segment. Second,
the full-strength feedback connections maintain the ability of each cospan cell to parse
its episodic segment into the previous segment and its final event by activating them with
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Figure 17: A hierarchical gradient of representation over the events within each
episodic segment results from the cumulative decrease effect due to weights of less
than unity strength between cospan cells. Notice the gradient of event representa-
tions from abstract to specific in each segment.

their full strength. The weakening effect of event representations further back in time oc-
curs because of the successive weak cospan-to-cospan connections; note that cospan cells
occuring in a string before a given one provide a lower level of activation input than does
its final event cell, which provides its input at full strength through a feedforward con-
nection with weight unity. This effects a separation into a fully specific representation of
a currently-active event cell and a more abstract representation of the preceding episodic
segment. Finally, we can claim that this hierarchical gradient in the representation of
events within an episodic segment corresponds to a notion of time, since it represents the
order of the events.

Taken together, there are three components of the episodic memory model for the ex-
plicit representation of the event sequence order in an episodic sequence. One lies in
the structure of the neural network, based upon the separate representations of En , En−1
and en+1 at each step of the sequence. The second is the sequential activation of events
along with the episodic segments that contain them during succeeding (even perhaps over-
lapping) subintervals of the interval of activation of the En cell. And in this section we
discussed a third component, which can be implemented through two mechanisms. One
mechanism is the decay in activity of neural cells representing earlier events in an episodic
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sequence. The second is a decrease in the transmission of activity from the cospan cell rep-
resenting the episodic segment En−1 to the cospan cell representing the epsiodic segment
En due to a connection weight strength less than unity, of magnitude 1/2, for example. This
decrease becomes compounded at the next stage; for example, in a linear model of activ-
ity transmission one could multiply wieghts and find the activty transmitted is at 1/4 its
original strength, and so on. The two mechanisms operating together would cause a rapid
progression of abstraction going backward along the episodic sequence. Based upon these
considerations, we claim that the information concerning the sequence order is explicitly
represented in accessible form at each step in an episode.

With holistic access, shared representations, an intrinsic flexibility in recall and, finally,
the explicit representation of sequence order, the span-cospan episodic memory model has,
as far as we are aware, capabilities that no other episodic model in the literature does. The
CNST expresses the correspondence between a span-cospan episodic memory structure
in the concept category and the neural architecture for it mathematically as a functor.
The functor maps the entire concept structure—sensor stimulus theories, grounding object
theories, event theories, and episodic segment theories and the morphisms connecting this
hierarchy of concepts—into a category representing a neural network which has all the
required neural structure at a given stage of synaptic learning. As noted earlier, functors
are discussed in previous papers.

To end this paper, we ask whether any of the neural network structures for episodic
memory are consistent with known neural science. For example, what about the human
brain and its declarative memory system?

7 Proposed Biological Correlates of the Span-Cospan
Episodic Memory Model

Based partly upon the span-cospan model of episodic memory architecture as proposed
here, and partly upon the available data from years of neuroscience research, we propose
the following, speculative biological model of episodic memory. We call it a speculation
because it is based upon evidence from neuroscience research on the hippocampus and
related structures which is at present, as far as we know, too sparse to confirm or deny
the span-cospan model. First, we present a ”broad-brush” overview of what is known
about the biology, and following that we ”take the plunge”, describing how we think our
categorical span-cospan model of episodic memory explains what the biology is doing.

7.1 The biology: a brief overview

For this section, we rely heavily on certain references which have provided us with a
relatively clear overview of contemporary structural and functional models of the medial
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temporal lobe (MTL) declarative memory system. It is fairly well established that the
hippocampus and its interactions with other brain structures are essential for the learning,
consolidation, and recall of declarative memory, that is, semantic and episodic memory
([34, 1, 25, 28, 6, 30, 35]). An overall description of the interconnection pathways within
the system comprising the entorhinal cortex (EC) and the hippocampus, and other infor-
mation about the the MTL and declarative memory, is in [35] and the other references
cited here (for example, see [26, 32, 31]). Our discussion of neuron-and-synapse function
and the dynamics of interaction of the hippocampus with its principle input/output region
in MTL relies heavily on the simulation model of [6].

In particular, the entorhinal cortex (EC), lying adjacent to the hippocampus in the me-
dial temporal lobe (MTL), provides the main cortical region for input and output connec-
tions to the dentate gyrus (DG) and CA1 and CA3 fields of the hippocampus. As such, EC
is the final convergence site (in the sense of Damasio [7]) for multimodal representations
of sensory-derived representations ([26, 32]) (visual, auditory, proprioceptive, somatosen-
sory, nociceptory (heat/cold, pain), gustatory and olfactory) and internal information from
the amygdala and certain other neocortical regions such as the prefrontal lobe. In fact,
the organization of information represented in the MTL appears to be hierarchical in na-
ture [31], with the stimuli to which the cells respond increasing in complexity going from
the convergence zones in neocortex to parahippocampal cortex (PHC), through perirhinal
cortex (PRC), the EC, then from there to the hippocampus. The hippocampus exclusively
contains the full richness of representation for the MTL declarative memory system. Prac-
tically all the connections from neocortex to PHC and PRC, from PHC to PRC, and from
these structures (mainly PRC) and the others mentioned to EC, have reciprocals, or feed-
back connections. In the CNST, these reciprocal connections are essential in representing
a concept hierarchy together with its dual, a hierarchy of the possible things that the neu-
ral network is sensing (e.g., objects in the environment of an organism) or creating (e.g.,
through forming a plan). There are also reciprocals for the direct connections from EC to
the hippocampus. We regard their role as the incremental learning of sequences of related
events in the form of the span-cospan system.

Fig. 18 accompanies the following discusssion; the references, principally [35], con-
tain much more comprehensive illustrations that more directly show the anatomical layout
of MTL. The hippocampus comprises the granule cell layer of the dentate gyrus (DG)
and the CA3, CA2 and CA1 pyramidal cell fields (some authors may disagree with our
assignment of the DG to the hippocampus proper). The granule and pyramidal cells are
called principle cells because they are the focus of the neural computations that enact the
functions performed by the anatomy; for example, their excitatory projections to other
principle cells across the various cell layers and regions bring about the spreading activa-
tion of the computations. That said, the many inhibitory interneurons that accompany the
pyramidal cells exert control over them and, hence, are essential to the functional roles
played by their activity.

The CA1 pyramidal cells and their connectivity with the EC (and probably the subicu-
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lum) are the nexus of the MTL declarative memory system and are the main output neu-
rons of the hippocampus. Projections from the EC to the hippocampus are organized in
two pathways (the perforant pathways). The monosynaptic input pathway (the direct path-
way) consists of connections emanating from cells within layer III of the EC and synapsing
directly upon the distal portion of the CA1 pyramidal cell apical dendrites, farthest from
the soma of each cell. The trisynaptic pathway (the indirect pathway) emanates from cells
within layer II of the EC and reaches the proximal portion of the CA1 dendrites, close
to the soma. The trisynaptic pathway is so called because it synapses first on the DG
granule cells in the dentate gyrus, then through connections called mossy fibers efferent
from the granule cells synapses upon the CA3 cell dendrites (there are also direct EC-to-
CA3 connections). Finally, the CA3 cells project to the CA1 cells through connections
called Schaffer collaterals, synapsing on the proximal portion of the CA1 dendrites. This
convergence of two input pathways upon CA1 neurons is suggestive of a convergence of
two kinds of information, and indeed it is variously described as an input/output or stim-
ulus/context association [26]. Because the layer III cells seem to be more directly related
to the current stimulus, the monosynaptic pathway is regarded as having the role of the
stimulus, whereas the substantial processing associated with the EC layer II, DG and CA3
cells and connectivity suggests that the trisynaptic pathway takes on the role of a specified
context for the stimulus. On the other hand, the timing of the arrival of the respective
EC-DG-CA3-CA1 and EC-CA1 inputs to the CA1 proximal and distal locations on the
apical dendrite of a CA1 cell, together with the dynamics of interaction between the pyr-
maidal cells and interneurons, seem to suggest that the direct EC inputs trigger a subset of
CA1 cells which then determine which of the subsequently-arriving CA3 inputs are rel-
evant (e.g., see [8]). The EC layer III inputs to the selected CA1 cells thus are regarded
as outputs of the hippocampus during future recalls, where the CA3 inputs become the
inputs. In the latter sense, the two pathways impinging upon CA1 could be associating a
spatial and/or temporal context with a stimulus. This suggests a representation of a new
event in consistency with the situation in which an episode is occurring, or an association
of facts with relevant background knowledge, which can be seen as the modification of a
concept representation or the formation of a new concept in declarative memory. Finally,
there are connections from CA1 to the deep layers V and VI of EC. Through internal EC
interconnectivity, these close the EC-CA1 processing loop.

Two cycles are essential in the timing of the two pathways of the EC-hippocampal
system: The theta rythm (4–7 Hz), which is most strongly implicated in learning, and
the gamma cycle (30–100 Hz), using values from Cutsuridis et al. [6]. Each theta cycle
has two half-cycles within which memory storage and recall alternate, and the gamma
rhythm serves as a sort of clock cycle for the hippocampus. The cells responsible for
storage and recall of items within a theta cycle are active within a particular gamma cycle.
Inhibitory interneurons mediate this process. The details of the dynamics of a theta cycle
are important but not essential to this presentation, more a consequence of the present state
of the span-cospan model than of current knowledge of the biology. Similarly, we shall
omit other details which can be found in the references given.
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Figure 18: A sketch of a biological model correlate for the span-cospan episodic mem-
ory model involving regions suchas as CA1 and CA3 of the hippocampus and the
entorhinal cortex (EC) and other regions of the medial temporal lobe and neocortex.
The dentate gyrus is not shown because of the incomplete state of associating its func-
tion with the span-cospan model, although it is thought to organize previous episodic
segment representations for CA3 which are then blended with the current event at
CA1.

The most important fact for relating the span-cospan model to the biology at present
is the apparent existence of closed loops in the connectivity between EC and CA1. Con-
nections from CA1 to EC have the characteristic of feedback projections, terminating in
the deep layers V and VI [26]. These together with connections from the deep to the
superficial layers II and III apparently serve to close parallel EC → CA1 → EC loops
([26, 32, 34]). Further, reciprocal connections between neocortex, PRC, PHC, and the EC
appear to extend these loops to involve neocortical object representations (The subiculum
is also involved and may well be important, but its functionality does not seem to be well
established at present.)

7.2 A span-cospan biological model

We think this has the following consequences (again, refer to Fig. 18). First, we note that
the layer II EC pyramidal cells are fairly large [4] and are the ones projecting to DG in the
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hippocampus. These include the EC cospan cells, with the event-encoding and possibly
also the blending cells (maintaining continuity between successive events) located in layer
III. The function of the DG cells in the trisynaptic pathway is obviously essential but is
not yet well enough understood (by us, at least) to include in the span-cospan model. The
connectivity of DG with EC layer II evidently provides a sort of working memory for the
string of cospan cells in CA3 encoding the currently-active episode. Thus, we posit that the
large pyramidal cells in EC layer II for the same recurrent loops that have been observed
in CA3, so that the string of segments in an episodic sequence eventually become resident
in EC, more or less permanently, yet mutable through recall and recoding. The CA3
cells encoding successive segments of the episode in concert with the cells in EC layer
II are connected by recurrent loops as mentioned. It is possible that during future recall
operations, Tulving’s “encoding specificity” [36] results in the modifications to episodic
memories that have been observed and that this recoding originates in the interaction of
EC layer III and DG-CA3 inputs to CA1. A selection of one or more CA1 pyramidal
cells are active in the current monosynaptic-trisynaptic interaction through EC layer III
input at the distal synapses on CA1 apical dendrites and layer II inputs from CA3 through
the Schaffer collaterals. Apparently, the selection of CA1 cells is driven by the fact that
only those CA1 cells have strong synapses at the connection terminals from a given set of
EC layer III cells. This would allow the active sensory representations in neocortex to give
rise to the current event representation contributing, via EC layer III, to the encoding of the
current episodic cospan representation. The encoding, which combines the current layer
III event representation with the preceding episodic segment cospan representation in layer
II via CA3, occurs through the monosynaptic-trisynaptic interaction on each selected CA1
cell’s dendrite. This encoding at the currently active CA1 cells results in the encoding of a
new (the “next”) episodic segment cospan representation by a newly-selected cell in layer
II. The encoding occurs through synaptic potentiation in the CA1-to-layer V, VI feeback
and layer V, VI-to-layer II connectivity. Thus, the completion of the EC-CA1-EC loops
enables the cells selected by inputs to layer III and persistent activity in layer II to have
their representations combined into new episodic segment cospans in newly-selected layer
II cells.

As we mentioned, there is much more biological detail that could be exposited here.
However, the foregoing is sufficient to the purpose of relating to the span-cospan model as
it exists at present. To summarize the CNST span-cospan episodic memory model, then,
we propose that the brains of at least some mammals—rodents and primates in particular—
have the following concept structure represented in their central nervous systems. First,
concept colimits and possibly limits (see the prior references for the CNST) are repre-
sented in neocortex. This and the MTL representations are modeled in the CNST as a
system of functors from the concept category to a neural category. Natural transforma-
tions between the functors model the interconnectivity of representations in different brain
regions via white-matter connections (we have referred to this aspect of representation as
knowledge coherence; see for example [22]). Different neural categories correspond to
the same neural network at different stages of synaptic learning, each neural category be-
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ing the target of a different system of functors and natural transformations. Recall that the
structure of a neural category depends upon both the neural cells and their connectivity and
the current values for the connection weights, or synaptic strengths, of the network. The
connectivity structure and connection weights of a neural network determine its possible
activity states in response to input stimuli, and this determines the corresponding neural
category. The span-cospan model for episodic memory is an outgrowth of these ideas.

The span-cospan episodic memory model is a continuation of the foregoing mathe-
matical model, but especially structured to capture the special properties of declarative
memory, such as instantaneous learning as opposed to gradual memory acquisition over
time and flexibility of subsequent use. Characteristics of declarative memory storage and
recall such as these require a rather special architecture. The hippocampal DG, CA1 and
CA3 cell fields and their interaction with the EC and via the EC with other structures fill
that requirement. We have proposed a somewhat sketchy, and definitely preliminary, for-
malization of this via the span-cospan model. We offer the model for consideration by
cognitive neuroscientists for their further investigations in episodic memory.
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APPENDIX: Category Theory and the CNST

A category C contains two kinds of entities: objects, which can be anything representable
mathematically, and arrows, also called morphisms, which are relatinships between pairs
of objects. A morphism f :a −→ b has a domain object a and a codomain object b , and
serves as a directed relationship between a and b . There can be many or no arrows in
either direction between a given pair of objects, depending upon the category, so it has an
underlying directed multi-graph. For example, sets are objects in a category called Set
in which the morphisms are functions, or many-to-one mappings, between sets. The sig-
nificance of this notion of a morphism, and what distinguishes a category from a directed
multigraph, is that a category has the property of compositionality. That is, in a category
C , each pair of arrows f : a −→ b and g : b −→ c (where the codomain b of f is also
the domain of g as indicated) has a composition arrow g ◦ f : a −→ c whose domain a
is the domain of f and whose codomain c is the codomain of g (note that the order of
appearance of the labels “ f ” and “g” is reversed in the “◦” expression). The compo-
sition of functions in Set is an example. If x is an element of the domain of f , then
(g ◦ f )(x) = g( f (x)) = y , yielding an element y of the codomain c of g . Another ex-
ample, if one were to regard people as mathematical objects, would be the descendant-of
relation: if John is a son of Maria and Domingo is a son of John, then John is a descendant
of Maria and Domingo is a descendant of John and, therefore, Domingo is a descendant
of Maria: the composition of two descendant morphisms yields a descendant morphism.
Some references for category theory are ([5, 27, 29, 33, 2]); the books by Lawvere and
Schanuel, Pierce, and Barr and Wells are the most accessible to non-mathematicians.

One of the two significant properties of composition is that it is associative, meaning
that for three arrows f :a −→ b , g:b −→ c and h:c −→ d , the result of composing them
is order-independent, with h ◦ (g ◦ f ) = (h ◦ g) ◦ f . The second significant property is
that for each object a there is an identity morphism ida:a−→ a such that for any arrows
f :a−→ b and g:c−→ a associated with an object a , ida◦g = g and f ◦ida = f . Thus,
composition distinguishes a category from a directed multi-graph. This fact is significant
in making category theory an appropriate mathematical modeling vehicle for knowledge
representation and semantics.

Any discussion of category theory involves commutative diagrams, graph-like struc-
tures containing objects and morphisms within which morphisms along different pathways
from one object to another are the same morphism under composition, and functors, map-
pings of one category to another which preserve commutative diagrams. For example, the
morphisms f :a−→ b , g:a−→ c and h:c−→ b form a diagram. The diagram commutes
if it happens that f = h◦g:a−→ b , that is, if the two pathways from a to b through the
diagram arrows yield one and the same morphism arrow.

In several papers including [22] and [14], we have shown how colimits model the
learning of complex concepts through the re-use of simpler concepts already represented
in the connection-weight memory of a neural network. Colimits and functors are both
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essential in the mathematical modeling of this idea. We shall omit categorical constructs
that have been described in detail in previous publications. This includes the detailed
description of limits, neural categories, and functors. However, it is important to include a
brief description of concept colimits. Finally, the roles of two categorical constructs, spans
and cospans, in concept representation in neural networks are introduced for the first time
here. They will be introduced in the section following as part of the episodic memory
model.

Colimits in a category of concepts

The categorical formalization of concepts and their neural representation begins with a
concept category. This is actually a category of theories and theory morphisms. The theo-
ries, expressed in a formal logic, are a mathematical formalization of the concepts which
we have been illustrating with figures. The concept morphisms are theory morphisms.
These express the subconcept-concept (subtheory-theory) relationships mathematically as
symbol mappings which preserve the logical properties of a subtheory as part of a theory.
Commutative diagrams and other categorical constructs involving theories are defined ac-
cordingly. For example, the concept Tcolim in Fig. 19 is more complex than the others,
which is not surprising in view of the fact that the latter are the domains of morphisms for
which Tcolim is the codomain. This expresses the inheritance by Tcolim of the information
in the theories T and T ′ . Likewise, both T and T ′ inherit the information in T` . But
of course there is more to be said about this hierarchical relationship among the theories,
for it is an example of “theory blending” and this involves a very important categorical
construct known as a colimit.

Briefly, a colimit is a special diagram of concepts and morphisms, part of which is
called its base diagram and the other part its cocone. In Fig. 19, the base diagram lies
inside the dashed box. The conelike structure is the cocone, an array of arrows having
the base diagram objects as their domains but all having a common codomain lying out-
side the base diagram. In this case, the common codomain is the colimit concept Tcolim .
The colimit concept is often called, simply, the “colimit”. The composite diagram (all of
Fig. 19) is called the defining diagram of the colimit. What makes this so special?

Mathematically, the defining diagram of a colimit is special because it has two key
properties. The two properties are that, first of all, the defining diagram commutes. In
the concept category, commutativity means that some base diagram concepts are merged
properly. Second, the cocone is initial. Initiality means that the colimit object represents
only that which is expressed in the base diagram objects and morphisms: It does not add
any extraneous information.

Together, the two properties of a colimit ensure that it expresses combinations of items
along with the information about how they are “pasted” or “blended” to create a single
item. In this example, a line segment L is an item in a concept which is mathematically
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p	

C	
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p'	

L'	

D	

τ2	ο s2		=	τ3	=		τ1	ο s1	

Figure 19: A correct scheme for combining concepts. The base diagram arrows s1
and s2 specify that the two concepts T and T ′ are to be merged along a common
subconcept T` in the colimit concept Tcolim .

expressed as a theory T` in the formal language. The line segment is mapped mathemati-
cally via the theory morphism s1:T` −→ T to the side C of the triangle R expressed in the
theory T . It is also mapped via the morphism s2:T`−→ T ′ to the side C′ of the triangle R′

expressed in the theory T ′ . Together, the three theory objects and the two morphisms form
the base diagram D in Fig. 19. The three morphisms τ1:T −→ Tcolim, τ2:T ′ −→ Tcolim
and τ3:T` −→ Tcolim and the theory object Tcolim at the apex form a cocone. A cocone
for the diagram D has the property that the two “triangle-shaped” diagrams involving the
cocone “leg” morphism τ3 and either τ1 and s1 or τ2 and s2 commute. The triangle with
sides τ1, s1, τ3 is highlighted with boldface objects and arrows in Fig. 20.

Since each of the “triangle-shaped” diagrams must commute and share a common edge
(the morphism τ3 ), we have τ1 ◦ s1 = τ3 and τ2 ◦ s2 = τ3 . This implies that τ1 ◦ s1 =
τ2 ◦ s2 ; that is, all three pathways having domain T` and codomain Tcolim are one and the
same morphism when we form the available compositions. This is important: It means,
mathematically, that the line segments C and C′ must be blended as one and the same line
segment L′ in the combination of the two triangles R and R′ because there is only one way
that the theory T` is mapped into the theory Tcolim . Therefore, the theory Tcolim expresses
the quadrilateral U with the two triangles blended together along the line segment L .
Finally, the initiality property mathematically implies that the apical object Tcolim of the
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Figure 20: One of the commutative triangle diagrams for the blending of the two
concepts T and T ′ is highlighted in boldface.

cocone expresses U and only U . The colimit concept Tcolim consists of the theories T
and T ′ blended around their shared subtheory T` . Because of the role it plays in the
colimit, we refer to T` as a blending object

To put this another way, the colimit object Tcolim is a sort of least upper bound in the
concept hierarchy for all concepts that include the concepts in D blended as described. If
a neural network can adapt its synaptic connection weights to form colimits of concepts it
already represents, it has a means of incrementally forming new, more complex concept
representations from its existing representations through adaptation based upon its current
stimuli.

Fig. 21 illustrates a mathematical formalization of the colimit for the third episodic
model previously illustrated in Fig. 6 as a conceptual model. One of the commutative
triangles is highlighted with boldface arrows. the events e1, e2, e3 are theories along with
the objects h (for human figure) and b (for ball) inside the base diagram (dashed box) of
the colimit. Appropriately, e1, e2, e3 are called event theories while h and b are called
blending theories. As indicated by the morphisms (solid arrows) inside the dashed box,
h, b are shared subtheories of e1, e2, e3 ; for example, the three base diagram morphisms
that have b as their shared domain are p:b −→ e1, q:b −→ e2 , r:b −→ e3 . The cocone
consists of the five morphisms i, j, k, l, m (dashed arrows, except for i and l which are
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Figure 21: The third episodic model as a colimit. The episode previously denoted
e1e2e3 is now the mathematical theory E . A typical commutative triangle of theories
and theory morphisms is highlighted.

in the highlighted commutative triangle), where i:e1 −→ E , j:e2 −→ E , k:e3 −→ E ,
l:h−→ E , m:b−→ E . Here E , the apical object of the cocone, is the formalization of the
episode (e1e2e3 in Fig. 6) as a theory. The requirement for a cocone is the commutativity
of the triangular diagrams within the resulting defining diagram; for example, for the high-
lighted commutative triangle i◦ p = m , so that the two pathways through the arrows from
b to E represent the same morphism. The cocone is shown as an initial cocone, meaning
as before that the colimit object E adds no extraneous information.

Specialization and abstraction

We refer to the concept colimit process, building new concepts from existing ones via
blending along shared subconcepts, as specialization. In the direction going “up” the hier-
archy, the concepts become more specialized because they contain more detailed descrip-
tions and, hence, apply to fewer and fewer instances in the neural network inputs because
of their increased complexity.

Another category-theoretic construct, the limit, is dual to the colimit. A limit is the
common domain of arrows directed into its base diagram as opposed to outward and,
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hence, these cone leg morphisms have the base diagram objects as their codomains. Again
the commutativity property characterizes the resulting defining diagram, but the initiality
property is replaced by terminality. In effect, this means that in the concept category a
limit concept is a sort of “greatest lower bound” for the base diagram. Another way to
look at this is that it constructs a concept that contains the maximum shared information
from an array of concepts. We therefore call the limit process abstraction. A limit concept
is abstract in that it has fewer details in its description and, hence, applies to a greater
number of neural network input instances. In a sense, specialization “pushes out” the
concept representation hierarchy of a neural network while abstraction “pulls back” on the
hierarchy. In this paper, we focus upon colimits, specialization through concept blending
in a hierarchy that begins at the level of simple stimuli and culminates in episodic event
sequences.

Neural categories and functors

Morphisms and commutative diagrams involve categories, and this brings us to the notion
of neural categories and a notion of simultaneity in neural processing. As these notions
are addressed in our previous writings, we present here a brief summary.

We posit that the learning of both the specialized and the abstract concepts occurs
through the incremental formation of colimits and limits in the brains of animals. This is
effected by synaptic potentiation and depotentiation based upon sensory input stimuli and
also upon autonomous activity within a brain’s neural network. As described in previous
papers, the CNST formalizes all this in expressions of colimits and limits in neural cat-
egories which consist of neural objects and neural morphisms (the name CNST appears
only in the more recent papers). A neural morphism between two neural objects formalizes
the simultaneous activity in connection pathways between a pair of neural cells. The con-
nection pathways of a neural morphism m between two cells p0, p3 are shown in Fig. 22.
The cells p1, p2 are intermediate cells along two of the paths each of which involves two
connections in this example. In every instance of persistent activity in any one of the path-
ways, all three must share in the activity. Notice the feedback connections from p3 to the
other cells defining the morphism; these connections aid in ensuring simultaneity.

Descriptions of neural colimits and limits and functors mapping the concept category
into neural categories to formalize the representation of concept structures in neural net-
works are described in some detail in ([15, 16, 17, 21, 20, 22, 18, 13, 14, 19, 23]). An
experiment in applying colimits to model the similarity judgements made by human sub-
jects viewing pairs of visual objects is described in [24]. Applications of concept and
neural colimits and limits to improve upon a well-known neural network from the litera-
ture are described in ([20, 38, 14]). A type of neural morphism expressing the sequential
activation of event representations is described in ([13, 19]). This type of morphism, called
a temporal morphism, extends the notion of simultaneity to any time interval during which
the source and target cells of the mutliple pathways of a neural morphism exhibit persistent
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Figure 22: A neural morphism with connection pathways c0, c1;c3, c2;c4 .

activity.
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