University of New Mexico UNM Digital Repository

Knee

Orthopedics

4-11-2016

Sensitivity of bone mineral density measurements to axial rotations and scan analysis in dual energy xray absorptiometry of the lateral distal femur

Jodie Gomez

Rachel Tufaro

Ashkan Pourkand

David Grow

Christina Salas

Follow this and additional works at: https://digitalrepository.unm.edu/knee

Recommended Citation

Gomez, Jodie; Rachel Tufaro; Ashkan Pourkand; David Grow; and Christina Salas. "Sensitivity of bone mineral density measurements to axial rotations and scan analysis in dual energy x-ray absorptiometry of the lateral distal femur." (2016). https://digitalrepository.unm.edu/knee/1

This Poster is brought to you for free and open access by the Orthopedics at UNM Digital Repository. It has been accepted for inclusion in Knee by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Sensitivity of Bone Mineral Density Measurements to Axial Rotations and Scan Analysis in Dual Energy X-Ray Absorptiometry of the Lateral Distal Femur

Jodie Gomez, BS^{1,3}; Rachel Tufaro, BS^{2,3}; Ashkan Pourkand, MS⁴; David Grow, PhD^{3,4}; Christina Salas, PhD^{1,2,3}

1. Department of Mechanical Engineering; 2. Center for Biomedical Engineering; 3. Department of Orthopaedics and Rehabilitation The University of New Mexico, Albuquerque, USA 4. Department of Mechanical Engineering NM Institute of Mining and Technology, Socorro, USA

INTRODUCTION

Dual energy x-ray absorptiometry (DXA) is the current standard for measuring bone mineral density (BMD) as it offers quick scan times with low radiation

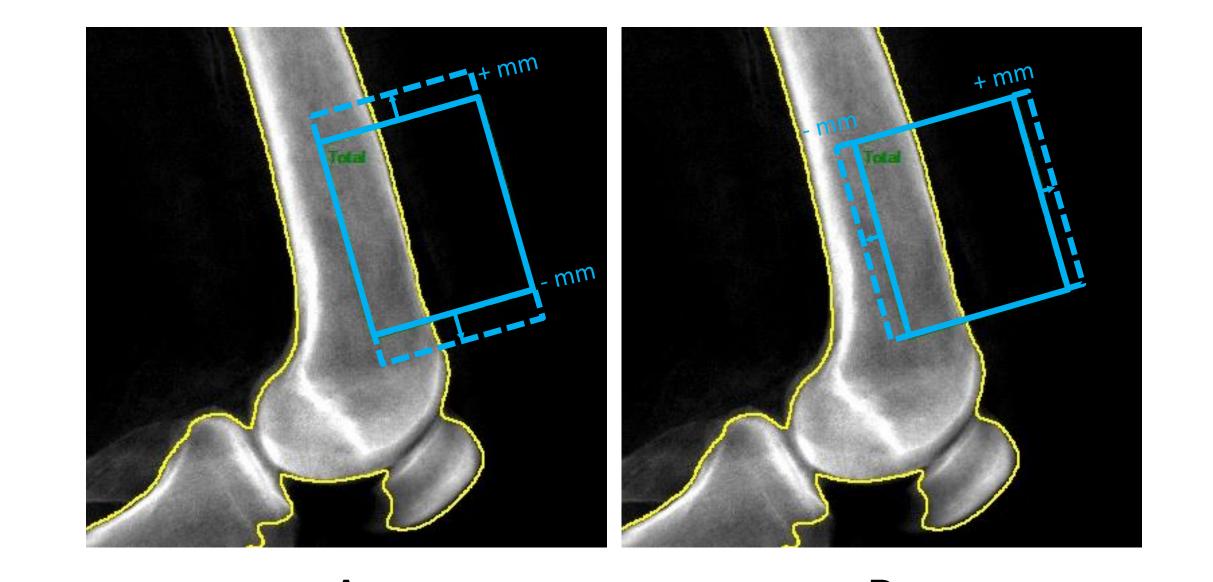
METHODS

To determine the effects of axial rotation:

Specimens were then scanned at 0, 1, 2, 5, and 10 degrees of internal and external rotation using a GE Healthcare Lunar iDXA System

RESULTS				
Но	orizontal R	Ol Displ	lacements	3
01	0.1	L.	6	
	H	Horizontal R	Horizontal ROI Disp	Horizontal ROI Displacements

dose


When scanning the hip or spine of non- or minimallyambulatory patients, surgical implants or severe contractures can limit the ability to produce accurate and repeatable measures for tracking BMD over time The lateral distal femur is being studied as an alternative scanning location, particularly in pediatric patients, to avoid these problems^[1] (Fig. 1)

- The DXA scan was analyzed using a region selected following the protocol by Henderson et al^[2] (Fig. 2B)
- A paired t-test with significant level of 0.05 was used to determine a difference between the neutral position and each axial rotation (+/- 1, 2, 5, 10)

To determine the effects of ROI selection:

- The ROI was translated in a vertical direction by +/- 1, 2, 3, 4, and 6 mm from the initial position (Fig. 3A)
- The ROI was translated in a horizontal direction by +/-1, 2, 3, and 4 mm from the initial position (Fig. 3B)
- A paired t-test was used to determine a difference between the initial ROI position and each horizontal and vertical displacement

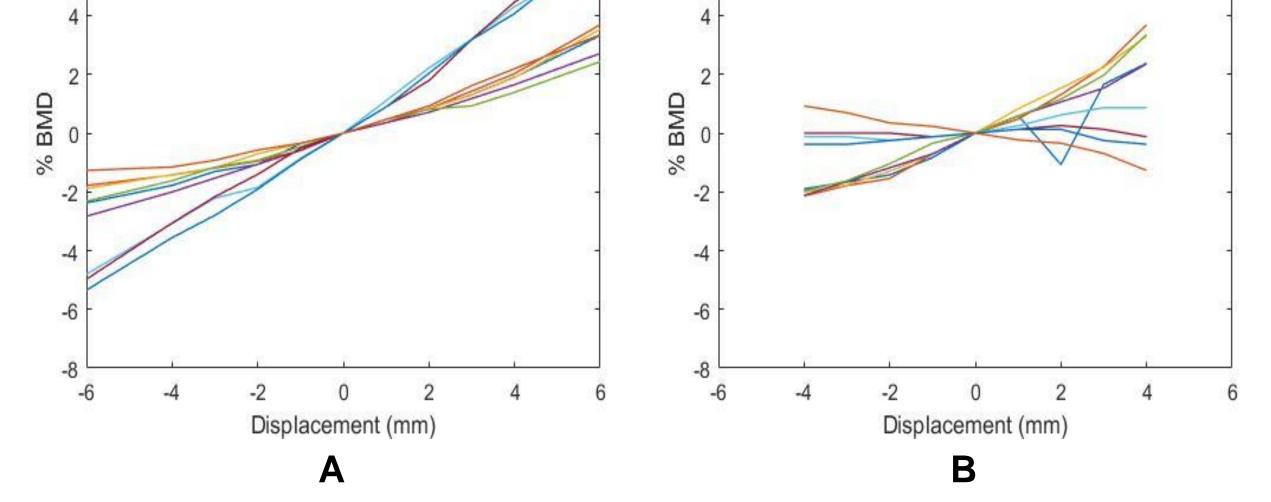


Figure 5: Percent change in BMD for each specimen for translations of the region of interest in the A. vertical, and B. horizontal direction.

- A significant difference in BMD was found between the initial ROI position and each of the vertical ROI displacements (all displacements p<0.001)
- No significant difference in BMD was found between the initial ROI position and each of the horizontal ROI displacements
- Mean percent change in BMD was 1.9+/-1.4% and 1.1+/-0.86% for vertical and horizontal displacements, respectively

Figure 1: Current method of positioning pediatric patients for lateral bone mineral density scanning of the distal femur.

PURPOSE

To determine the sensitivity of BMD measurements using DXA in a cadaveric study: i) due to the effect of axial rotations of the femur that occur when positioning the patient; and ii) due to the effect of selecting the region of interest (ROI) when analyzing the DXA scan

METHODS

- Eight fresh frozen cadaver legs from mid-femur to foot were used in this study
- The femoral canal was fitted with a 9-axis orientation sensor to measure axial alignment (Fig. 2A)
- The femur is positioned lateral side down on the DXA table, considered 0 degrees (neutral)

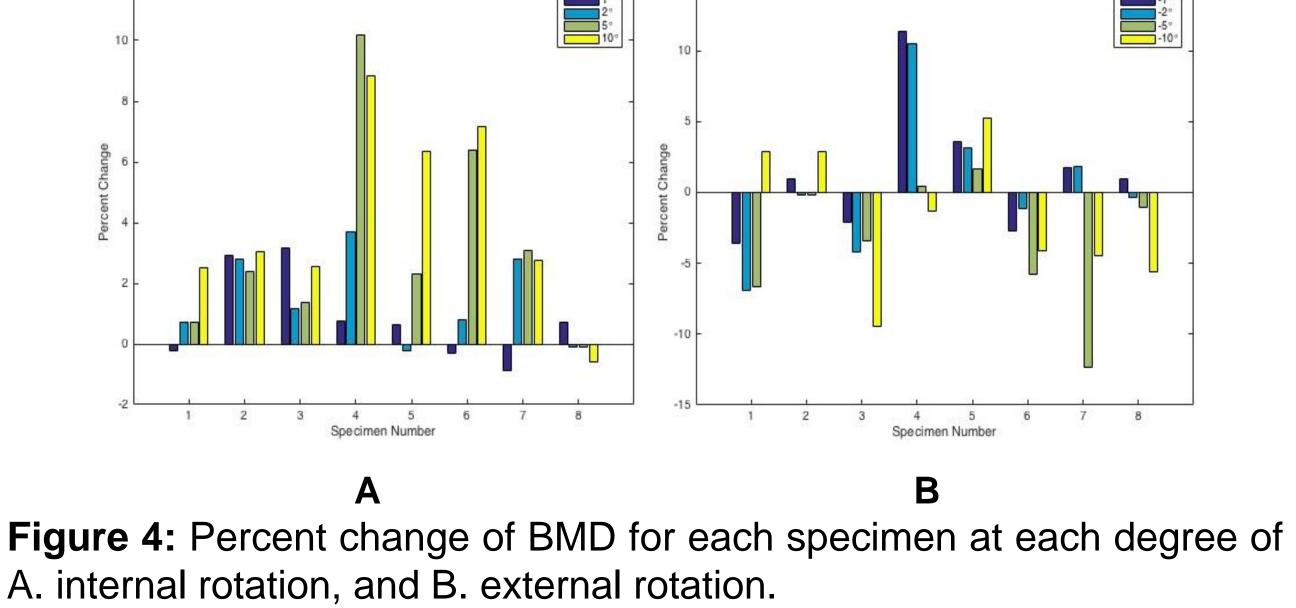
Figure 3: One-directional translation (dashed lines) of the region of interest from the initial position (solid line) in the A. vertical, and B. horizontal directions.

RESULTS

- A significant difference in percent change in BMD was found between the neutral position and 2, 5 and 10 degrees of internal rotation (p=0.04, p=0.05, p=0.01, respectively)
- No significant difference in BMD was found between the neutral position and any of the external rotations
- Mean percent change in BMD was 2.4+/-0.89% and 0.88+/-0.22% for internal and external rotation, respectively

CONCLUSIONS

Bone mineral density measurements are affected by the apparent change in projected cross-sectional area caused by axial rotations of the femur and by the positioning of the ROI during scan analysis


CLINICAL RELEVANCE

- Variability in patient positioning and ROI selection by the DXA technician may affect the BMD measures in longitudinal studies of pediatric patients
- This may affect course of treatment defined by the physician
- This study supports the need for a bracing system that can assist with repeatability in patient positioning for longitudinal scans

REFERENCES

■ [1] Harcke HT, Taylor A, et al. Pediatr Radiol.

Figure 2: A. Cadaver set-up for achieving axial rotations of the distal femur. B. Region scanned by DXA with a region of interest selected to encompass the anterior portion of the lateral distal femur.

1998;28(4):241-246. [2] Henderson RC, Henderson BA,, et al. J Clin Densitom. 2015; 18(1):102-108.

ACKNOWLEDGEMENTS

This project was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1TR001449. Special thanks to Vanessa Garcia for her assistance on this project.