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INTRODUCTION

The method of characteristics has teen widely used in two- 

dimensional problems (i.e., one spacial dimension and time or two 

spacial dimensions for the steady state), and it was felt that this 
method, in all or part, could be applied to time-dependent, two- 
space hydrodynamics.

In this paper we have done the following:

1. Derived the two-dimensional, time-dependent, nonviscous 
Lagrangian Equations;

2. Discussed, in general, some aspects of the method of 
charac teri sties;

3. Applied the method to our Lagrangian equations; and
finally,

k . Proposed a possible application of our results to the 
numerical solution of the Lagrangian equations.

In general, Sections I and II are devoted to the restatement 
of the material in the references, while Sections III and IV contain 
the new results.
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I. DERIVATION OF THE TWO-DIMENSIONAL ISENTROPIC 
LAGRANGIAN EQUATIONS1r2

The problem of the dynamics of fluids has been approached in 

two ways. One method is to consider a stationary mesh, fixed in 

space and time, and the motion of the fluid is studied as it moves 
through this fixed mesh (this is called the Eulerian method); the 

other is to divide the fluid into particles and to follow the par­
ticle paths through space and time (this is called the Lagrangian 

method).
The coordinates of a particle at some reference time t will be 

called the Lagrangian coordinates of the particle and will be desig­
nated by (a,b,c). The coordinates of a particle at any time t will 
be designated by (x,y,z) and will be called the Eulerian coordinates. 
In general, we will have the relations x = x(a,b,c,t); y = y(a,b,c,t); 
z = z(a,b,c,t); and a = x(a,b,c,t ); b = y(a,b,c,tQ); c = z(a,b,c,tQ).

Let us assume that at time t we have a cell of fluid whose 
sides are Ax, Ay, and Az and whose center is at (x,y,z). If we con­

sider this cell to be made up of Lagrangian particles, the mass in 

the cell [defined by m = (p Ax Ay Az) ] remains constant in time. Let

2





us further assume that the problem is two-dimensional in the (x,y) 
plane (i.e., all quantities are independent of z).

z
A

■> y

Figure 1 .

Force is defined as the tine rate of change of momentum (i.e., 

(d/dt)mr), but since dm/dt = 0 for a Lagrangian cell, f  = m(dr/dt), 
or component wise,

F = rax, F = my, and F = mz. x y z

Now let us look at the cell in the x,y plane. Since we are 
considering isentropic flow, the only force acting on the cell is 
the isentropic pressure P.

3





y
A

Figure 2.

The force in the x direction at [x - (Ax/2)] is = P Ay Az, 

and at [x + (Ax/2)] the force in the x direction is F^ = [P + (dP/dx) 
x Ax] Ay Az. The net force in the x direction on our cell is the 
difference between these two forces,

F^ = P Ay Az - P Ay Az dP Ax Ay Az,

or

Fx Ax Ay Az.

k





But also equals mx; therefore,

mx = (p Ax Ay Az)x = b P  A  A  A- ^  Ax Ay Az,

or
d%c
at2

1 bP 
P s  • (1 .1 )

Likewise in the y direction,

t
dt
d y 1 bP 
2 ~ p 3 y (1.2)

Now x = x(a,b,t) and y = y(a,b,t); hence we can change variables 

so that

a = a(x,y,t) and b = b(x,y,t), 

provided that the Jacobian of the transformation

J =
bx by

U,y) _ S  3a
(a,b) dx by

33 3b

is not equal to zero. Expanding the determinant we get

_ bx by bx by
J = s i b ' s S -

5
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Nov let us do the following manipulation; since x = x[a(x,y), 

h(x,y)] and y = y[a(x,y), b(x,y)],

-■ dx _ dx da dx db
1 = S  = s : 5£ + 3b S  ’

Solving these two equations for da/dx and db/dx, ve have

Now returning to Equation 1.1 we obtain the equations of motion 
entirely in terms of the Lagrangian independent variables as follows

By the same method

SSF = ' j  5b and ^  = j
da 1 dx , db 1 dx

1 dP _ 1/dP da dP dbx
p dx ” p da dx cfo dx

1/dP da , dP db

but
da
d^

6
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therefore

dfx _ ,dP by _ bP b y , 
^.2 pj 'ĉ a ĉ b ĉ b ctei ( 1 . 3 )

Likewise, for Equation 1.2 we have,

p
b y  1 ,bP bx bP <3xx 
^ 2  = ~ pj cib ĉa ” <5a c5b * (1 .̂ )

Now let us derive the equation of continuity.

The following equation is a relationship between the Lagrangian 
and Eulerian differential volume elements.

Az Ax Ay = Az j(^) Aa Ab.21D

The mass of the rectangle in Figure 2 is given by p Ax Ay Az 
and so we can write,

p Az Ax Ay = p Az J Aa Ab.

Since the mass in a Lagrangian cell is always constant,

(p Az J Aa Ab )t=0 = (p Az J Aa Ab )t=tt>0 ; 

but J = 1 and p = p at t = 0, and therefore

7
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p Az Aa Ab = p J Az Aa Ab o
or

(1.5)

the equation of continuity.

Substituting Equation 1.5 into Equations 1.5 and I . k , we have

At constant entropy, 8p/6a = (dP/dp)(<3p/8a) and 8p/8b 
= (8P/8p)(c)p/8b), and furthermore it has been shown^ that for 

isentropic flow the sound speed, C, satisfies the following equation,

(Note: The sound speed is the speed of a signal with respect to
Eulerian coordinates.)

We can now write dP/da = C2(dp/da) and dP/db = C2(dp/db) and

substituting these results in Equations 1.6 and I.7 we have, after
2 2 2 2 dividing through by Cq and noting that (l/CQ)(o x/<M; ) can be

written 62x/6(CQt)2,

( 1 .6)

and

(I.T)

8





and

_ C2 , bp by bp b y \
d(c t f  ' p C 2 S l ' S S '  1o Ko o

S(cot ) 2

When the following definitions are made,

bx_____
_
U, by

sfcTT =
( 1 . 8 )

our equations become

and

du
3[cT7

bv
STcTy

(1.9)

(1.10)

9





II. METHOD OF CHARACTERISTICS3 A

In this section we will discuss the method of characteristics 

as applied to the determination of characteristic curves and surfaces 
for a family of quasi-linear differential equations. The domain of 

dependence and region of influence as related to these curves and 
surfaces will also be defined.

If we are given the following,

a df + B df + C = 0,

where the function f and the coefficients A, B, and C are all
functions of, and defined for, all (x,y).

This equation defines a derivative of f at any point (x ,y ) ino o
the direction defined by the equation

dx B(x x o
dy A(xq

Again, if one is given the pair of equations

10





\
(1) Ji 5 +Bi | tC1 5 tDi | t V °

(2) A2 S  + B2 3? + c2 S  + Ds 57 + E2 = 0

the coefficients 
> can all "be 
functions of x,y,u,v.

then one can attempt to find multipliers X^ and X^ (for 1 and 2, 

respectively) such that u and v are both differentiated in the same 
direction at any point (x^y^).

If there are two such directions the equations are called hyper­

bolic, if there is only one such direction the equations are called 

parabolic, and if no such direction exists then the equations are 
called elliptic.

The equations for these directions define a set of curves in the 
x,y space called characteristic curves, i.e.,

V S . + V 2 
V i  + V a

V i  + V 2 
V l  + V 2

dx
ay '

This method can he continued for k equations in k functions 
with n independent variables.

In particular we wish to develop the theory for nine equations, 
nine functions, and three independent variables (a, b, t) or symbol­
ically ,

11
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with

+ f = 0; d d
K = 1 , 2 , . . . 9 ,

v = 1,2,3,

. V . V / K X _ / K XA = A (u ,x ); f = f (u ,x ) .|JK |JK ' V p fi * v

(II.1)

Through any point we place a plane characterized by

a normal vector V  whose components are (I , I, , £, ).a D t
We call such planes "exceptional” if a linear combination

L = \ L of the differential equations L can be found such that d d d
L involves derivatives of the u only in directions lying in these
planes. The direction of the derivative of u is parallel to the
vector of whose components are \ AV . r  * d PK

The condition for an exceptional plane can be written as

$ - f  = \  = 0; n = 1 , 2 , ...9,
v = 1 , 2 , 3 .

We have nine homogeneous equations in nine unknowns 
condition for the existence of nontrivial multipliers \ 

determinant

\ , and the d
is that the

= 0 . (II.2)

12





This equation will give us a relationship between the components 
of the normal vector I*, and these vectors will form a "cone"'’ with 

vertex at (a-|_ » \ ) *
If we are given a surface where (a^b^t^) is any arbitrary 

point on this surface, then we call the surface "characteristic" if

(1) The surface is normal at (a^,b^,t^) to a vector determined 

by Equation II.2 originating at this point, and

(2) This is true for all points on the surface without exception. 

If we are using finite difference schemes, the characteristic

surface at (a^b^c^) is approximated by the cone which is the 
envelope of the exceptional planes at (a^,b^,c^). Such a cone will 

be called a characteristic cone.

Donain of Dependence^

In two dimensions let us assume we have a characteristic network 
C+ and C~ for a set of two hyperbolic equations and a curve S that is 
novhere a characteristic line.

13





— *4*Let C and C be the characteristic equations through point P.

These characteristic curves intersect S at points A and B, respectively.

It can be shown by the method of iterations that the solutions at P of

our equations are dependent only upon the solutions given on the line

segment AB of S.
7This proof can be extended to three dimensions where a char­

acteristic cone intersects a plane.

P

Figure

The domain of dependence of the point P is the area of the plane 

P enclosed by the curve C 1.
This means that only the values of our unknown functions given 

on C* and inside of C' contribute to the solution at point P.

Ik





Range of Influence

Again in two dimensions let us assume we have a characteristic
-f* M  “I" —•net C and C and a point P where the lines C and C intersect.

Range of Influence

Figure 5.

The area lying between C+ and C” is called the range of influence 
of the point P. This means that the values of the solutions of our 
equations in this area are dependent upon the solutions at point P.

Again expanding into three dimensions, the characteristic cone 
emanating from the point P encloses a volume that is the range of 
influence of the point P.

15
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Figure 6.

The concepts of the domain of dependence will "be used in the 
section on applications (i.e., Section IV).

16





III. APPLICATION OF THE METHOD OF CHARACTERISTICS 
TO THE LAGRANGIAN EQUATIONS

We are now ready to apply the method of characteristics to the 

Lagrangian equations to obtain an equation relating the components 

of the vectors I* which are normal to the exceptional planes at any 

point P, and then, from geometric considerations, show how to obtain 

points on the characteristic cone from this equation.

From Section I, Equations I.5, 1.8, 1.9, an& I.10, we have the 
following:

8u
W J ) C p C p o o  o o

( m . i )

bv
d(CQt) * # • >  * < # - > § 5  - » •C p C p o o  o o

(III.2)

8x
s[cyy - u = 0 , (HI.5)

by
a(ct]

0 n >1 (h i  A)

17





The equations (dx/da) - r = 0 and (dx/db) - s = 0 in Equation 1.8 

are not independent of Equation III.3, and in order to prevent the 
occurrence of a trivial characteristic determinant we either must 

take the partial derivative of both of the equations with respect to 

time, or one of them with respect to time and the other with respect 

to a space variable such that you have a cross derivative.

Example

= 0 d^x dr
3£“3b ~ 3b o .

If we assume x is continuous in its second-order partial derivatives, 

then we can interchange the order of differentiations, and we have

ds dr
s ; " 3b 0

and also
dx
3b " s = 0 d^x ds

&  5(cot) - = 0

(III.5)

du ds _
5b ' 5[c~tT = 0O

du ds _ _
5b ' 5TCTT - 0 (III.6)

Similarly, (dy/da) - w = 0 and (dy/db) - z = 0 in Equation 1.8 are 
not independent of Equation III. , and so we must use the above pro 

cedure for these equations.

18





Example

w = 0 —^8^y 8w
5 ^ b  - 5b 0 .

If we assume y has continuous second order partial derivatives, then 

we can interchange the order of differentiations, and we have

8z 8w .
5S ' 5b = 0 ’ (h i .7)

and also

- z = 0 -» 82y
5b 8'(c t )

5z ^ 8v 8z
5 ( F t y  = 0 ^  Sb '  5 rc~ tT  = 0 •v o o

5v 5z .
5b - 5(c~tT = 0 •O

(III.8)

Now our continuity equation, pQ = pJ = p(rz - sw), contains no 

derivatives of the new variables and, rather than solving for p and 
inserting this in our other equations, it is convenient to take the 
partial derivative of this equation with respect to any one of our 
independent variables.

Example

t \ i \ 8p , 8z 5r 8w 8sp(rz - sw) = po ^  (rz - sw) + pr ^  + pz ^  - ps ^  - pw ̂  = 0.

(rz - sw) ^  + pr ^  + pz ^  - ps ^  - pw ^  = 0 . (III.9)

19





If we now insert the coefficients of Equations III.l through

III.9 into Equation II.2, noting that 5 has become lp . , we gety V
the following determinant equation:

X y u V r s V z P
I I I . l 0 0 to

0 0 0 0 0 c2 fz l -
c2 p o o

I I I .  2 0 0 0 t0
0 0 0 0 C2 ( r lb - 

C p o o
m .  3 t0

0 0 0 0 0 0 0 0

i i i . ̂ 0 ! c tO
0 0 0 0 0 0 0

I I I .  5 0 0 0 0 -5b 5a 0 0 0

I I I .  6 0 0 0 0 _ lc to
0 0 0

I I I . 7 0 0 0 0 0 0 - 5b ?a 0

I I I .  8 0 0 0 6b 0 0 0 "^c t  o
0

I I I .  9 0 0 0 0 (pz£a> (-pwi&) <-Ps5a> (pH a ) (rz  - sw)Sa

which is a condition on the components of the vector l\ Expanding 
this determinant equation and simplifying, we get

^ 2 \Now let us examine the first term (i.e., ln . £,£ ). If thisu "tj D a  o
is equal to zero, we get an uninteresting solution (this will either

20





be a one-dimensional case or a nonphysical case); hence, the second

term must equal zero. These extraneous solutions arise from the

introduction of new variables that we did earlier, and if we try

all the possible cases other them the example given, we will again
7 h’ 2get an uninteresting first term (e.g., ^ £a , etc), but
o o

the second term will be the same. Therefore, the equation we want is

where I , , t and I are components of a normal vector 1*. (Note: o u a do
The length of if has not been defined; hence, there are no conditions 
on the components except Equation III. 10.)

This equation defines our "cone" of normals I*. Let us make a 
change of variables such that the point we are on becomes the origin. 

For example, if we are on point (a^b^jC^t^) an(̂  (&/b,Cot) is any 
other point, then

t = C t - C t o o o

b = b } (III.11)

a = a - ao

21





are our new variables. Note that the variables are all of the same

dimension. Equation III.10 becomes

(III.12)

and for t = constant / 0 this equation is of the form

2 2 2ax + fjxy + yy = k .

If p - bay < 0 , this is the equation of an ellipse. 

Testing Equation III.12 we have

,dx dy cfy\2
(S  3b + S  Sb)

i

which is indeed less than zero and so the curve of intersection of 
the vectors I* with a plane (t = constant / 0) is an ellipse (call it 

C).
oFrom the definition of a conical surface, we can now state 

that Equation III.12 is the equation of an elliptical conical 

surface or an elliptical cone.

22





t=k

t=0

For every vector V  there is a vector ^  normal to V  and lying 

in the plane formed ty the t axis and the vector V; the family of 

such vectors form the characteristic cone. Now let us do the 

following: choose any t plane and call it the t = k plane.

Figure 7 .

Given p = 90°; s = V a 2 + b2; s’ = V a 2 + b ‘2; tan20 = ~  = 

then we have the following relations true,
a2 a ' 2

23





therefore,

k s otan 7 = — f; tan a = —; hut a = 7 if 0 = 90 ;S K.

s' =

Prom Figure 7 , we see that

-a* , , , k— r hut s' = —
hence

a' = -k2a
a2+b2

and likewise 
h* - A

a2+b2
(III.13)

Now if (a,b) is a point of the curve C, then we see that (a',h*) 
is a point on the curve of intersection between t = k and the char- 
acteristic cone (call this curve C')* For a visual example of these 
relations see Figure 8 .

Now suppose we had a point whose coordinates are (a,b,C^t) and 
we wish to find out if this point lies inside or outside of the 
characteristic cone. We would proceed as follows. (Note: This
method will he used in Section IV.)

First, the point would he transformed using Equation III. 11, the 
values of a,h,t would he inserted into Equation III.I3 (where k = t) 
and a',h’ would he obtained.

2k
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Now assuming the values of the coefficients in Equation III. 12 

are known, insert a* = a into this equation and solve for t>. We 
will obtain two roots (b^ £ b^) . If b^ and b^ are real and if 

b^ > b f > b^, then the point (a,b,CQt) lies inside of the I* cone,and 

hence from geometric considerations (see Figures 7 and 8), it lies 

outside of our characteristic cone. If the above conditions are not 

satisfied, then the point lies inside of our characteristic cone.

It is also possible to calculate the radial distance that the 

point is inside or outside of the characteristic cone.

25
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Graphical Representation of a Particular V  Cone 
and the Related Characteristic Cone

a Characteristic cone

26
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IV. APPLICATION OF THE CHARACTERISTIC CONE AS A CONDITION
ON THE NUMERICAL SOLUTIONS OF THE TWO-DIMENSIONAL, 

ISENTROPIC LAGRANGIAN DIFFERENTIAL EQUATIONS

We will first present a simple method for the numerical solution 
of the two-dimensional isentropic Lagrangian differential equations 

and then discuss how the characteristic cone could he used as a 

passive condition on these solutions.
Let us assume we have a. difference mesh like that shown in 

Figure 9 with solutions at the intersections of the lines a^ and .

Now we will use Equations 1.6 and 1 .7 in the following form:

d(C t )2 p c 2 ‘5 $  *  ®v o * 0 0

djr____
S(cot)2

1 .dP dx 9P dx\

(iv.1 )

(iv.2)

Let us assume an ideal gas equation of state; therefore, we can 

write,

Pv = RT = e( 7 - l) (iv.3)

27
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c t

Figure 9.
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at the point (a^b ,CQt) where P, v, and e are the pressure, specific 

volume and internal energy, respectively, and y is a known constant 

of the material under study. Also assume pQ and Cq (the initial 

density and sound speed) are known.

The change in internal energy of an ideal gas at the point 

(a^,b^) un(̂-er isentropic conditions is given by

e(C t ) = e(C t _) - v o o' ' o -1 '
P(C t .) + p(C t ) v o -1 v o o [V(C0t-l) -

(IV.b )

where the last term is the pdv work done on our cell from t , to t .-1 o
Now suppose we are at the point (ao,bo,Coto) and that we know

p(C t .), v(C t ..), x(C t ), y(C t ), and e(C t _) at all of our ^' o -1 o-l o o  o o  o-l
points (a^b^).

The volume of the element in Figure 1 was Ax Ay Az, but in 
Section I it was shown that

V = Az Ax Ay = Az J Aa Ab

Therefore, the specific volume of our Lagrangian cell is given by

(iv.5)

29





At C t we have o o

dx, , \ I]
S fo ’V  = 2

rx(ax,bo) - x(ao,-bQ) x(ao,bQ) - xCa^.bJ
an - a

1 o a - a _o -1

(rv.6)

^ ( a0 >b0 ) = i -  x(a^ J  *(a„/bJ “ x(â ,b Jl-1 'b - h 1 o b - b o 1

(IV.7)

p ^ v V  * y(v V
a., - a 1 o

+ y(V bo} - y^.i^ob
a - a _ o -1

3

(IV.8)

o’bo) =
ary(v V  - ^ v V

bh  -
+ y(ao’bo} - y(a0’b-l}l

b -o

(IV.9)

Aa = Ab (IV.10)

[Note: This will center V , v , and e at the points (v V - ]
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Now insert Equations IV.6 to IV. 10 into Equation IV.5 and. we
have determined the volume v (a ,t> ,C t ).o o o o

Inserting this value in Equation I V . a n d  eliminating e(C t )

between this equation and Equation IV.3, we have an equation that
determines P(a ,b ,C t ).' o' o o o

Now at C t , o o'

cP = i
Sa 2

- p (a0 ’_ V
a., - a 1 o a -a., o 1

(IV.11)

dP
Sb

rr(ao,b1) -P(ao ,bo) P(ao ,bo) - P(ao,b_1)'
' 4" ‘h - b 1 o b - b o 1

(IV.12)

Let (AC t)+ = C t, - C t and (AC t)“ = C t - C t _. o '  o l  O O  v O O O  0 - 1
In Equation IV. 1 the value of the right hand side of the equation 

is a constant we can determine, and let us call it q.

at (a ,b ,C t ). Equation IV.1 can then be written, o' o' o o *
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x(a ,b ,C t ) - x(a ,C t ) x(a ,b ,C t ) - x(a ,b ,C t .) cr o7 o 1 _____ o’ o’ o o' ' o o o o o o^o-l
M c t f  v o A(CQt)- = T1

itA(Cot)+ + A(Cot)']

The only unknown in this equation is x(a ,h ,C t., ), and henceo o o 1 7
we can solve to get its value.

By a similar process we can obtain y^^b^C^t^) from Equation 

IV.2. Also, we can obtain the density p at p = p(aQ,bo,Cot^), 
because

p 3x 3y _ dx dy 3a 3b 3̂) 3a
from Equation 1.5 and we can evaluate the right hand term. We now 
have outlined a difference method for solving the Lagrangian diff­
erential equations.

It is appropriate to insert a brief discussion of the stability 
of difference methods at this point.

If we are given a partial differential equation in x and t, and 
we devise a difference method for solving the equation numerically, 
it is not true to say that, in general, the smaller Ax and At, the 
more accurate the solution. It has been shown1^ that for particular 

relative values of Ax and At, errors in the solution result that 
grow rapidly with time. This is called instability. Conditions on 
the relative values of Ax and At have been devised such that, if
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these conditions are met, the difference solution approaches the
exact solution ae Ax and At approach zero.

For our equations the conditions would he Ax/At £ c; Ay/At £ c.11
These are sometimes called the Courant conditions.

Suppose we have advanced the unknown x, y, and p to the CQt^

plane and we have done this for any point (ao ,bQ) using the information
at the points (ao,bQ); (a.^); (a^b^; and (a^b^) at

time C t . From Section II, these points should lie in the domain o o
of dependence of the point (a ,b ,C tn), but the stability conditiono o o 1
is such that it requires the points to lie outside of the domain of 
dependence. It is possible to calculate the distance from the 

boundary of the domain of dependence of the point (a ,b ,C t^) to 
the points (a^b^); (aQ,b ^); (a^,bQ); (a ,b ) from the discussion 
in Section III. If a point lies outside of the domain or on the 

boundary of the domain, then the distance will be labeled with a 
plus sign; if it lies inside the domain (in which case the problem 
is unstable), the distance will be labeled with a minus sign. This 
information can be tabulated for each point and used as a criterion 
for evaluating the dependability of the solutions at each point. In 
general, the farther outside the points lie, the less dependable the 

solution.
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V. CONCLUSIONS

In this paper we have been concerned with characteristic surfaces 

and their usefulness as a condition on ordinary difference schemes as 

applied to the Lagrangian equations of Section I. We have entirely 

neglected to try and put the differential equations into characteristic 

form to see if they simplify to any degree, and the reason for this 
is that the coefficients of the differential Equations III.l through 

III.9 are functions of the solutions of the equations themselves, and 
it is not clear that it could be done in any reasonable fashion.

The application given in Section IV may be tried on existing 
computer codes that solve the Lagrangian differential equations by 
difference methods.
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