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A means for establishing transformation-invariant representations of ob-
jects is proposed and analyzed, in which different views are associated
on the basis of the temporal order of the presentation of these views, as
well as their spatial similarity. Assuming knowledge of the distribution
of presentation times, an optimal linear learning rule is derived. Simu-
lations of a competitive network trained on a character recognition task
are then used to highlight the success of this learning rule in relation to
simple Hebbian learning and to show that the theory can give accurate
quantitative predictions for the optimal parameters for such networks.

1 Introduction

How might we learn to recognize an object irrespective of the precise rela-
tionship between viewer and object, characterized by viewing angle, dis-
tance, and translation? If we believe the view-centered approach to object
recognition (Tarr & Pinker, 1989; Bülthoff & Edelman, 1992), then the prob-
lem becomes one of associating together a series of different views of the
object that may share few, if any, of the features supporting the recogni-
tion. A broadly tuned feature-based system would be sufficient to perform
recognition over small transformations (Poggio & Edelman, 1990), and the
necessary receptive fields might be learned via a simple competitive net-
work using Hebbian learning. However, large-shape transformations would
require either separate prenormalization for size and translation or separate
feature detectors feeding into a final arbitration layer. This then raises the
question of how such a final layer might be trained, dismissing the use of
any form of supervised training signal.

The use of prenormalization and a final arbiter is in fact in contrast to the
evidence we have from the responses of real neurons implicated in object
recognition. Invariance seems to be established over a series of processing
stages, starting from neurons with restricted receptive fields and culmi-
nating in the types of cell responses found in inferior temporal (IT) cortex
(Perrett & Oram, 1993; Rolls, 1992). Cells in this region exhibit invariance
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to combinations of the types of transformations discussed here (Rolls, 1992;
Desimone, 1991; Tanaka, Saito, Fukada, & Moriya, 1991).

Miyashita (1988) has illustrated that arbitrary stimuli can be associated
together by a single IT neuron in primates. The key to the training he used
was the association of these images in time, not in space. The hypothesis
expressed here is that temporal relations in the appearance of object views
affect learning. In the real world, we see objects for protracted if variable
periods while they undergo any manner of natural transformations, such as
when we approach an object or rotate it in our hand. The consistent stream
of images serves as a cue that all of these images belong to the same object
and that it would be expedient to associate them together.

This idea has been described elsewhere (Edelman & Weinshall, 1991;
Földiák, 1991; Wallis & Rolls, 1997); in this article, we aim to build a theoret-
ical framework for analyzing the response of a neuron over time. From this
framework we then intend to derive the form of an optimal, local training
rule given the general probability function governing the length of each
exposure to images of the same object.

2 Mapping the Output of a Neuron to the Optimal Training Signal

The most obvious signal present in a neuron for performing learning is
the activity of the neuron itself. Unfortunately, this Hebbian training signal
will not typically be optimal for learning-invariant object recognition due
to erroneous classifications made by the neuron to spatially similar images
from different objects and spatially dissimilar images derived from the same
object.

A potentially useful piece of a priori knowledge to overcome this problem
is that objects tend to be viewed over variable but extended periods of time.
In this work the consequent temporal structure will be used to provide
information for improving the use of local neural activity as a training signal.
This is achieved here by using a weighted sum of previous neuronal activity
rather than by attending to the current neuronal output alone.

Assuming the neuronal output to be a signal described by the function
y(t), and the ideal training signal to be s(t), discrepancies between the two
signals can be regarded as due to some noise signal n(t). Couched in these
terms, the optimal recovery of s(t) from y(t) can be regarded as a classical
filtering problem.

The form of the optimal linear filter for retrieving s(t) can be derived by
Wiener filtering (Wiener, 1949; Press, 1992).1 The Wiener filter, φ(t), gives
an optimal estimate, s̃(t) (in the least-squares sense), of the true signal, s(t),
when applied to the noise-contaminated output, y(t). Adopting the con-

1 There are presumably innumerable, more optimal nonlinear filters, which are beyond
the scope of the Wiener filtering theory given here.



Learning in Invariant Object Recognition 885

vention that capital letters denote functions transformed into the frequency
domain, the theorem states:

S̃( f ) = Y( f )8( f ) (2.1)

8( f ) = |S( f )|2
|S( f )|2 + |N( f )|2 . (2.2)

Hence, the optimal filter φ(t) can be determined directly from the esti-
mated system noise n(t) and the true signal s(t). The following two sections
consider the predicted optimal filter for three different forms of s(t), each
describing a different regime for stimulus presentation.

2.1 Fixed-Length Presentation Times. As a simple first case, a set of
stimuli are assumed to appear in identical, fixed-length sequences. Possible
forms of the ideal training signal and neural output associated with this
training regime appear in Figure 1.

The form of s(t) is easily characterized, but there remains the question of
how to represent the noise signal n(t). In these calculations it is assumed to
be white, that is, uncorrelated across time, making N( f ) a constant for all f ,
denoted ρ. The validity of this assumption will be tested in the experimental
section that follows.

The power spectra of s(t) and n(t) are shown in Figure 2. The large low-
frequency bias of the training signal s(t) relative to the noise signal n(t)
strengthens the hypothesis that a low-pass filter would be effective in re-
moving noise in the training signal. Knowing the form of S( f ) and N( f )
leads to the following definition of the optimal filter 8( f ):

8( f, τ,T) =



τ 2

τ 2+ρ2T2 : f = 0;

4 sin2
(
πτ f

T

)
4 sin2

(
πτ f

T

)
+π2 f 2ρ2

: f ∈ Z, f > 0;

0 : otherwise,

(2.3)

where T represents the period of an entire training epoch, in which all stimuli
are seen once, τ corresponds to the period over which all versions of a single
stimulus are presented, and1 is the time for a single stimulus presentation.

Since the training signal is effectively sampled every 1 time units, all
signal frequencies above the Nyquist frequency fN= 1/21 are subject to
aliasing. Noise power is hence constrained to lie between zero and fN . Signal
amplitude above fN is assumed negligible, since in general a1 À afN .2

2 For example, if T = 1001 and τ = 101, a1 ≈ 50afN .
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Figure 1: (a) The ideal training signal s(t), which is one when the object is present
and zero when absent. (b) Example of a possible neural output signal y(t). (c)
Attempt to retrieve s(t) from y(t) by taking a weighted sum of the outputs y(t)
at previous times.

The first diagram in Figure 3 depicts the optimal filters derived from
the expression for 8( f ) over a range of noise values,3 for the example case
τ = 101 and T = 1001. Weightings at each time step are proportional to
the weighting of the cell’s activation at this time in the past, denoted φ̄(t).
The level of noise clearly affects the form of the Wiener filter. In practice, as
the neuron learns, its associated error rate will change, and with it, the form
of the optimal linear filter.

The large negative trough apparent in all of these filter profiles at time
T/τ results from fixing the ratio τ/T. In the next section, this trough is seen
to disappear when using variable-length presentation times.

3 ρ = 0.45 is equivalent to an error rate of 10 percent; ρ = 0.14 to an error rate of
1 percent.
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Figure 2: S( f ) and N( f ) for a system where presentation times are fixed. fN =
1/21 is the Nyquist frequency.
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Figure 3: Normalized Wiener filters φ(t) for the three presentation paradigms.
The vertical axis represents the weighting accorded to each sample of neural
activity; the horizontal axis represents the sample number in multiples of 1
time steps previous to the current sample at time zero.
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2.2 Variable-Length Presentation Times. In the real world one might
expect to see objects over variable periods of time rather than for the fixed
periods. Since presentation time is a scale parameter, it is reasonable to
propose that the presentation times are in fact Jeffrey’s distributed (P(τ ) ∝
1/τ or, equivalently, that log presentation times are uniformly distributed
(see Jaynes, 1983), which implies that objects tend to be seen for short periods
but are occasionally seen for much longer periods.

In this section, new optimal filters are derived from two different presen-
tation probability distributions. In the first, the maximum presentation time
for a stimulus, τ̂ , is set to be 1001, and the minimum presentation length
to be1. In the second, τ̂ is reduced to 101. The period T is now distributed
about a mean dependent on τ̂ ; hence the mean value of T is given the symbol
Tτ̂ .

Presentation-length probabilities are defined by a simple Jeffrey’s distri-
bution extending within the range1 < τ < τ̂ , such that P(τ )|τ=τ̂ = 0. If k is
the number of stimulus classes, then we have:

P(τ ) = Z−1
τ̂
(τ−1 − τ̂−1) : 1 ≤ τ ≤ τ̂ (2.4)

Zτ̂ =
τ̂∑

s=1
(s−1 − τ̂−1) : Z1001 = 4.187381

Z101 = 1.928971
(2.5)

Tτ̂ = k
τ̂∑

τ=1
τP(τ ) : T1001 = 11.82121k

T101 = 2.332851k .
(2.6)

The average optimal filter 〈φ(t)〉 is then:

〈φ(t)〉 =
τ̂∑

τ=1
P(τ ) φ(t) (2.7)

=
τ̂∑

τ=1

P(τ )
∞∑

f=0

8( f, τ,Tτ̂ ) cos
(

2π f t
Tτ̂

) . (2.8)

The second two graphs of Figure 3 show the filters for these two ran-
dom presentation distributions. Switching to variable-sequence presenta-
tion lengths sees the disappearance of the trough present in the fixed-
length presentation case. In addition, the shorter average presentation-time
paradigm yields temporal filters with shorter time constants.

2.3 The Trace Rule. This section describes a locally implementable learn-
ing rule that can realize the general form of all of the filters described in the
previous section. The learning rule produces a running average of neural
activity based on a weighted sum of the neuron’s previous activity. The sim-
ple recursive form of the learning rule may be important in that it lends itself
to implementation locally within a cortical neuron (Wallis & Rolls, 1997).
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Figure 4: Graphs showing the change in the predicted optimal value of η with
changing error rate (black lines and circles). Also shown are the least-mean-
squares fit errors at each noise level, shown above the vertical bars. The thick
arrows indicate the predicted optimal value of η over the range of noise values
shown.

The learning rule has a long history but was used most recently in invari-
ant object recognition for orthogonal images (Földiák, 1991) and nonorthog-
onal images (Wallis, 1996b), and can be summarized as follows:

1wij
(t) = αyi

(t).xj :
∑

j

wij
2 = 1 for each ith neuron (2.9)

yi
(t) = (1− η)yi

(t) + ηyi
(t−1) (2.10)

where xj is the jth input to the neuron, yi is the output of the ith neuron, wij
is the jth weight on the ith neuron, η governs the relative influence of the
trace and the new input, and yi

(t) represents the value of the ith cell’s trace
at time t.

The left-most diagram of Figure 4 represents the main result for this
section. The optimal value of the trace rule parameter η is plotted as the
dark line and varies as a function of the noise ρ. The vertical bars show
the relative quality of fit of the filter implemented by the trace rule to the
optimal filter as a least-mean-squares fit for the first 20 steps in the filter,
with actual fitting errors appearing on the top of each bar. The optimal value
of η gradually drops as the noise level drops but remains around 0.8 over
a very wide range of noise, suggesting that a constant trace rule could be
used throughout training.

The remaining two graphs of Figure 4 show the change in the best-fitting
value of η as a function of ρ, for the variable presentation times. The graphs
are similar to the fixed presentation time case, except that the optimal value
of η is a little higher for the slow-decaying case (between 0.8 and 0.9) and
somewhat lower for the fast-decaying case (0.7). The average fitting error is
also considerably smaller, indicating that the training rule fits the optimal
filter more closely under the two probabilistic presentation regimes. The
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Figure 5: Architecture of the network used in the simulations and the two sets
of digits used during training and testing.

accuracy of these and previous predicted optimal values of η is tested in the
next section.

3 Simulating the Predictions of the Wiener Filtering

A series of predicted optimal linear filters, parameterized for stimulus pre-
sentation length and the classification error rate of the neurons ρ, have now
been produced. To gauge the accuracy of the predictions, a series of simu-
lations were run.

3.1 Methods. A two-layer network was constructed (see Figure 5). The
first layer acts as a local feature extraction layer and consists of a 16×16 grid
of neurons arranged in 4×4 pools. Each pool fully samples a corresponding
4x4 patch of a 16 × 16 input image. All learning in this layer is standard
Hebbian. Above the input layer is a second layer, consisting of a single
inhibitory pool of 10 neurons, which fully samples the first layer. Neurons
in this layer are trained with the trace rule. Competition acts within each
pool in both layers and is implemented using the soft max algorithm (Bridle,
1990).

Digits from a character set used by LeCun et al. (1989) were presented to
the network. During learning, 100 digits—10 of each type—were presented
in permuted random sequence according to the three stimulus presentation
distributions described in the previous section. Such a stream of digits might
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Figure 6: Classification performance for the network at differing values of η for
the three presentation-length paradigms. The thick arrows indicate the optimal
value of η predicted by the earlier theory, which are seen to be in accord with
the optimal values to come out of the simulations.

be generated in the real world while observing a digit printed in a book, by
altering the reading distance or tilting a page.

Although we have chosen to concentrate on learning deformation in-
variance of digits here, this system has been shown to be able to cope with
other transformations of more natural stimuli, such as faces, undergoing
depth rotations, scale changes, and translations (Wallis & Rolls, 1997; Wal-
lis, 1996a).

Network performance was measured as both recognition of the 100 digits
from the training set and a 100 digit cross-validation set from the same
database. In addition to these two performance measures, the amount of
noise present in a neuron’s output signal when trained from start to steady
response was also recorded.

3.2 Results. The results shown in Figure 6 reveal the effect on overall
classification performance of changing the value of the trace parameter η
over 10 runs of the network. Under each of the three presentation paradigms,
the optimal value of η predicted in the previous section is seen to correspond
very closely to the peak in the performance graph displayed alongside (see
the dark arrows in each of the six graphs). Therefore, despite two possible
theoretical problems (the assumptions of independent errors and of lin-
earity), the predictions from the theory are very close to the results of the
simulations.

For η = 0 the results correspond to simple Hebbian learning. These
results are clearly much worse than those achieved using the optimized
trace rule. Further comparisons with other architectures and other learning
rules are described elsewhere (Wallis, 1996b).

The forerunning calculations depend on the errors’ being approximately
random. Figure 7 shows the average power spectrum recorded for a neuron
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Figure 7: Average log power spectrum for noise n(t)and ideal training signal s(t)
in the response of neurons under each of the three presentation-length training
paradigms.
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Figure 8: Optimal filters calculated from the measured neural noise under each
of the three presentation-length training paradigms. The noise signal used to
calculate the filters was assumed to be either “white,” that is, uniform across all
frequencies (dashed line), or the true low-frequency biased signal (solid line).

monitored from a random starting point to the point at which a steady-state
response had been achieved. The spectrum is averaged across all 10 output
cells and also across time, with the signals being binned into 100 consecutive
stimulus presentations. All three graphs show a peak in the low-frequency
end of the noise spectra, although the power of this signal is considerably
less than the signal power, and the spectrum is essentially flat for all higher
frequencies up to and beyond the point at which noise power exceeds signal
power, in accordance with the form of the graph in Figure 2.

Knowing the true noise signal permits recalculation of the optimal filters.
Figure 8 shows the optimal filters obtained using the true low-frequency
biased noise spectrum versus using a flat (white) spectrum, taken as the
average of the true noise power across all frequencies.

The optimal filter for the true noise case is very similar to the white noise
case, although the decay through time is consistently slightly faster. The
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fact that this difference is consistent may well be attributed to the fact that
one effect of the peak at low frequencies in the true noise signal is to shift
the frequency at which the noise and signal spectra cross in comparison
with the crossing point for the flat, white noise case. The white noise curve
would cross the signal curve at the same frequency as in the true noise
case if its power was reduced slightly, and so the change from white to
true noise can be thought of as a reduction of the effective white noise
amplitude. Figure 4 showed how lower noise values correspond to smaller
time constants, consistent with the shift seen in Figure 8.

Despite this shift, the stability of the optimal value of η with respect to
changes in noise (see Figure 4) ensures that the predicted optimal value of
η never differs by more then 0.05 between the white and true noise cases,
supporting the use of a flat noise spectrum in the theory section of this
article.

4 Conclusions

This article has proposed that objects encountered in the world are presented
in sequences of views of the same object, not randomly. This temporal reg-
ularity can then be used to help form invariant representations by training
on the basis of a signal generated from a weighted sum of previous neural
activity, the form of which can be determined by optimal filtering theory.
Further, if we make the reasonable assumption that the log of presentation
times is uniformly distributed, then this weighting can be achieved by a
simple local learning rule.

The validity of this theory has been tested on the recognition of digits,
demonstrating that optimal parameters were well predicted and that as-
sumptions about the form of the noise and system linearity were justified.

In cases where we have explicit labels for inputs, supervised learning
techniques may well be preferable, but in the natural world, the visual input
to the brain often does not have such labels. In this case, any regularity in the
input (spatial or temporal) should be exploited by an unsupervised system
to learn useful representations. Much work has concentrated on exploiting
spatial correlations. Here we show that temporal regularities can also be
exploited near optimally using the simple and local trace rule.
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