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PREFACE

This thesis is offered as an addition to the work presently being
done in the field of ultimate load design. It was prepared as the independent

work required for the Master of Science degree in civil engineering. While

practical conditions limited the extent of the study, it is hoped that further

efforts in this field will be aided to some extent.

All of the work described was concerned with behavior of aluminum
alloys stressed beyond the elastic limit. Of particular interest was the pre-
diction of moment distribution in indeterminate frames since conventional
elastic method cannot be used after any portion of the structure experiences
stresses beyond the elastic limit. For this purpose an approximate method
of reasonable simplicity and accuracy was used. The predicted values
were compared with test results run on a frame of the same dimensions
and material,

The writer would like to acknowledge the far reaching assistance

and cooperation of Dr., Eugene Zwoyer in making this paper possible.
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SYMBOLS AND NOTATIONS

width of section

modulus of plasticity

distance from neutral axis to extreme fiber
modulus of elasticity

total strain at point denoted by subscript

stress

depth of section

moment of inertia of section

stress intercept of assumed stress-strain curve

span

M
zk

bending moment
Ehp
2K
S pdM
proportional limit of assumed curve
5 pMdM
modular ratio -- L

E

radius of curvature

iv







shape factor

load

distance along member
distance from neutral axis

section modulus

total deflection

Eh

KM
4 Eh
.5 . ___2 . Q
' KM

unit strain

P

curvature

SUBSCRIPTS

compression or pertaining to distance to extreme fiber

tension

ultimate







INTRODUCTION

Methods follow materials. This is an unwritten rule that has been
true in creative work throughout the years. Each time a new material is

offered to the imaginative mind unique methods are derived to exploit its

different features. The process is continuous with refinements coming

one after another as a deeper study of the material is made.

In the structural field the methods of designing have been geared to
the development of materials. The advent of structural steel and reinforced
concrete was the most outstanding example of materials suggesting methods
in the modern age. With these two materials the designer was offered the
possibility of lightweight construction in large structures. But to make
this potential a reality construction methods had to be revised. To have
continued in the previous vein would have been to ignore all of the eco-
nomic and aesthetic possibilities implied in the new materials. Out of this
rejuvenation came systems for predicting the behavior of continuous beams,
two way slabs, beam-columns, and the endless other ways of using modern

construction materials.

In a more current appraisal we see steel and concrete being updated
still further. Pre-stressed concrete is a common sight in present day
construction work and, to a lesser extent, the educated eye sees rigid
frames designed to ultimate load criteria. Here again are cases where
materials are studied and found to possess characteristics that are adapt-
able to advanced methods. The key to all such improvements is the reali-

zation and the utilization of material properties.







While it can be said that '"nothing is new under the sun', in a practi-

cal sense '"new'' things are presented to us every day. In the materials

field the structures engineer is currently being offered products that would

not be called new in concept but are certainly different in application. In
one area we see the lightweight alloys and alloy steels. These two metal
groups are lumped together because of their purpose in reducing total

structural weight and in their behavior under load.







A compromise including all of the features mentioned is the aluminum
alloy 6061-T6. The T6 temper refers to a heat treatment and artificial
aging leading to a reasonably high yield strength. A yield and ultimate ten-
sile strength of 35 and 38 ksi respectively was suggested in the ASCE Pro-

1 2
ceedings . Review of the Mil-HDBK-5" shows these values to be the lowest

minimum guaranteed values for extruded shapes of 6061-T6. The other
recommendations such as corrosion resistance, weldability, etc., show

the material to be desirable from a standpoint of versatility.

The next phase in examining the material is a detailed investigation
of its behavior under load. Here we see a sharp variation from that of
structural steel, which has been a standard in past work. Figure 1 shows
a general comparison between the stress-strain curves of mild steel and

aluminum alloys.

i
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Mild Steel Aluminum







The elastic portions of both materials are followed by regions of
rapidly increasing strain resulting from only slight increases in stress.
In mild steel the assumed curve, in the range shown, depicts strain in-
creasing from the initial yield strain to several times that value without
an increase in stress. Tests demonstrate this to be a reasonable approxi-
mation. The aluminum alloys do not follow this pattern. From the pro-
portional limit to some excessive strain point approaching rupture, the
relation between stress and strain is constantly changing. The slope of
the stress-strain curve describing this relationship decreases continu-

ously from the proportional limit to failure.

This difference in behavior of mild steel and aluminum alloy as
described in Figure 1 outlines the complete purpose of this paper. Up
to the present time most structural design has been based on purely
elastic considerations or a combination of elastic and plastic strains as
they occur in mild steel. Beyond the proportional limit the assumption
is made that strain will increase without added stress. This latter recog-
nition forms the basis for the Plastic Design3 or Limit L.oad method now

being used in mild steel design and analysis.

Exception can easily be taken with the suggestion that plastic strains

of the type displayed by aluminum alloys have not been recognized and

4
utilized by many analysts and designers. Timoshenko presented a method

of determining the exact resisting moment in a material where the dissimi-

lar but known tension and compression stress-strain curves are available.

Panlili05 suggested that the increase of strain with load in continu-
ous light alloy beams was a definite advantage since all sections provided
positive moment resistance until collapse. He felt that this bonus per-
formance out-weighed the difficulty in realistically utilizing such behavior.
The point was well made but no method was given for determining, for a

general case, the safety factor against failure that one could expect.







Cozzone6 in 1943 published a very comprehensive and practical paper
on designing for ultimate load in light alloys. His method was primarily
concerned with insuring that stress levels at ultimate load did not exceed
a desired amount. The increased load carrying ability of the material was
recognized and accounted for by using an approximate stress-strain re-
lationship. Figure 2 shows the form of the assumed curve versus the
actual. Curve odbc gives the true stress-strain reaction of a material
to load, while oabc is the assumed shape. The fictitious stress fo is
chosen in conjunction with a desired fm to give a moment about the stress

axis equal to that of the true curve:

F
fo

Unit+ Strain

Figure 2

It can be seen that each change in fm would mean a change in fo.
This presents no undue hardship if only stress information at some arbi-
trary ultimate strain is desired. For a continuous review of structural
performance from the time the proportional limit is first reached in a
structure until ultimate load is reached several values of fo would be re-

quired.







Each of these contributions, along with numerous others, has im-
proved the insight into ultimate design in high strength-to-weight alloys.
In each, however, conditions of loading at a point in question are assumed
to be known. The area of broadest study has been concentrated on the
relationship of stress and strain at a point without including the redistri-
bution of resistance throughout the structure. If the assumed conditions
at a point can be verified by continuity considerations for the entire
structure, then the solution cannot be questioned. In most cases of an
indeterminate structure, stressed beyond the proportional limit, a trial
and error appraisal of assumed loading distributions becomes prohibitive-

ly lengthy.

One possible approach for relatively simple cases, indeterminate
to the first degree, can be established by using two boundary conditions.
First, the desired ''ultimate'' moment must be established for the par-
ticular alloy, and the size and shape of the section under investigation.
Secondly, an elastic moment distribution must be established noting the
point which is most highly stressed. With these two pieces of information
and the realization that the most highly stressed elastic point will also
reach the ultimate permissible strain no later than any other point, a
static solution can be achieved by simply introducing the ultimate moment
as the actual moment at that point. An example is shown in Figure 3.
The frame has pinned ends and is indeterminate to the first degree. Either
Mb or MC could cause the higher stress depending on the geometry and
comparison of section moduli and moments of inertia of the members.
Assuming the stress at B to be the larger, member AB could be removed
as a free body with Mult. at B and the horizontal reaction at A determined.
The frame is thus reduced to the determinate case. It should be noted
that the use of the most highly stressed elastic point as the location of

ultimate moment is only valid for structures whose members have roughly

the same reserve strength ( shape factor). Behavior of a structure using







Fis e
Figure 3

members with shape factors running from 1. 2 to 2.0 could not be handled

in so simple a manner.

The limitations of such a simplified method are numerous. Any
general approach should be able to include all shape factors, degrees of
indeterminance, and prediction of deflections as well as stresses at any

loading up to the desired ultimate point.

The difficulty in determining such information is all caused by the
variable relationship between stress and strain above the proportional
limit. Another approach at solving the problem is a mathematical one.
Most curves can be represented by some expression relating the vari-
ables. Indeed Young's Modulus is nothing more than such an expression.
The problem in the alloys centers around the complexity of such expres-
sions. Some of the most promising mathematical approaches were of-
fered by Wang7, Osgoods, Beilschmidt9 and Gilllo. Each of these authors
presented equations that related the variables, stress and strain. With
the proper choice of constants and exponents such equations could display
satisfactory agreement with stress-strain curves of a particular ma-

terial. Their shortcoming again centered around the complexity of a

system utilizing such equations.







11
Dwight *, in his work for The Aluminum Development Association,

reviewed proposed methods for dealing with alloys and detailed an ap-
proach based on use of a two slope or two moduli curve that approximates
the elastic and plastic behavior of a material. The idea is not new but
its application is, in defining the redistribution of moments beyond the
elastic range. The remaining presentation in this paper is a review

and extension of the work done by Dwight.
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MOMENT CURVATURE RELATIONS

Bending strains in the plastic range cannot be determined by using
all of the methods of conventional analysis but some relationships are
still quite valid. When a cross section is subjected to a known moment
its behavior, relative to a cross section a small incremental distance
away, can be predicted. This is true in the elastic range if the modulus
of elasticity is known and it is just as true in the plastic range if the
stress~-strain characteristics beyond the proportional limit are known.
As an example, consider a rectangular cross section with a known moment
applied. The tension and compression stress-strain curves are dissimi-
lar but available. As in the elastic range, stress-strain curves derived
from axial load tests are used to give tension and compression proper-
ties in bending. For the materials considered, this is a reasonable ap-

proximation. In Figure 4a the elastic distribution is given.

Jab- | Afil e oS b e
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Figure 4b shows the tensile stresses and strains in the plastic region. The
strain remains proportional to its distance from the neutral axis. This is
a graphic presentation of the reasonable assumption that plane sections
remain plane even beyond the proportional limit. Conditions of equili-
brium require that the summation of tensile forces equal the summation
of compressive forces and that the moment developed by these two equal
the imposed moment. For this to be true in the case of a material with
dissimilar tension and compression properties, the neutral axis must

be displaced from the geometric center line. Finally, in Figure 4c, a
critical strain is reached and the ultimate moment carrying capacity of
the member is developed. As stated previously, with the applied moment
known and the material properties available, a complete force and strain
picture is drawn for the cross section. The curvature at a particular

section can also be co-ordinated with moment, stress, and strain.
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In Figure 5 we depict two sections of a loaded member with a radius of
curvature R, and center line separation dx. Before loading, sections ab
and cd are parallel. After loading the relationships are as seen in Figure

5 and from similar triangles:

e
s N L
dx e o ey_dx
h'f
Dl
€ = = (1)
y R
-
t R
) (2)
e
€c—R

It can be seen that all of the foregoing expressions are presented in a general

sense with the single assumption that plane sections remain plane. The use

of a section other than rectangular would yield the same result.

Continuing with a general section, subjected to a given moment, we

see that the forces and moments on the fibers are:

Force on fiber = Teabavdy
Moment of the force = f*"b "y dy
Satisfying equilibrium:
“t %
F = S; ft bt dy = SO fc'bc dy (3)
c c

t ®
o f o . ol 2y f ° . o 4
M So t bt Yt o go ( bc y it L&







With equations (2), (3), and (4) and the stress-strain curves relating

€y to fy, a moment curvature diagram can be drawn.

At this point it is worthwhile to note some special circumstances
that considerably simplify the analytical task. In the general case for any
unsymmetrical cross section with dissimilar tension-compression proper -
ties the neutral axis for bending could move away from the centroid after
the proportional limit is exceeded. It could not only move once, but
could continue to move until the ultimate condition was reached. The
location must be known to establish the limits of equations ( 3) and ( 4).
With the variation of both stress and cross sectional dimensions for
each increment dy, the problem is rather involved. For practical pur-
poses a single stress-strain diagram for both tension and compression
could be used. The error involved when considering most structural
materials is quite small and very often outweighed by other assumptions
such as homogeneity of the material, members initially straight, and
material properties are minimum guaranteed. Secondly, the problem
of unsymmetricl cross sections can be relieved by noting that most
structural shapes, used to resist bending moments, have an axis of sym-
metry perpendicular to the plane of bending. If both of these special cases
apply, and it is reasonable to assume that they do in most cases, the
location of the neutral axis will continue to pass through the centroid

under all increments of load. The bending moment can be given as:

h
e
M:ZSO f*b°y"dy (5)

With these methods at hand we have the basis for determining the ultimate

moment that a section can resist.
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The moment-area relationships are quite often used in structural
analysis for determination of angular rotations and deflections. The physical
characteristic of the method is use of the % versus span diagram. As we
have shown, moment continues to be a meaningful quantity but elastic modu-
lus and moment of inertia lose their singular significance when strains
beyond the proportional limit are in evidence. With the same goal in mind

it is worthwhile to try and establish similar tools for determining rotation

and deflection without use of methods valid only for elastic conditions.

In Figure 6 we see a portion of a member loaded in bending much

the same as in Figure 5.

e

Figure 6
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The following geometric observations can be made:

B
c  2e
2e = df- c
1 Aot
P =R (by definition)

. df*c = pcdx

Summing up the incremental variation we have:

.6 57
So de = So pdx (6)

6 = Area under p versus x diagram

In this way we draw a parallel to the first moment area theorem. All of
the relationships leading to equation (6) are equally true for both elastic

and plastic conditions since strain rather than stress varies with change

in geometry.

Summing up the information at hand for solution of rotations and

deflections of determinate spans in either the elastic or plastic ranges

we have:

1. Moment diagram for span
Extreme fiber stress from equations (4) or (5)
Extreme fiber strain from suitable stress-strain curve
Curvature of a section from equation ( 2)

Construction of a curvature versus span diagram

S W N

Determination of rotation between stations as the area of the
curvature diagram between these same stations. This step can

be accomplished by use of equation ( 6) or graphic means.







Another way of presenting these steps can be shown in the following manner.

A span loaded only with end moments is used. Figure 7 shows the general

case.

B Mg

B ;I

AB:eABL

Figure 7

The second curvature-area theorem for deflection is also useful. It
states: '"The deflection of point B, from the tangent at point A, is equal
to the static moment about an axis through B of the area under the curva-

ture diagram between points A and B.'" Applying this to our example we

write:
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This can be shown to be true by further consideration of Figure 7.
AO eAB = BO GBA

0 = GAB + GBA = Area under p versus x diagram.

Solving these two equations:

BO
9AB " 9AB

AO
GBA B QAB

These values can be thought of in terms of a conjugate beam, the

loading being the p versus x diagram. As previously shown, the area and

therefore the total conjugate load is equal to §. From the relationships

between 0, QAB’ and eBA the reactions are eAB and GBA' The dimensions

Ak o) o 8
Sus s

Figure 8

AO and BO describe the centroid of the area . Looking again at equation

(7) we see that:

1
D

GBA 1l AO = moment of § about A

eAB L = 6 BO = moment of § about B.
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This substantiates the second curvature-area theorem.

It is desirable to rewrite equation (7) in terms of curvature and

moment. Looking at a free body of the member and realizing that AA
requires x to be measured from point A, we see:

My (Al 'i ) b

Ma= Mg Ma - Mg
L L
M = 0
M -M
A B
i MA. i [ ( L )X] -M =0
X p. 4
M MA(I-I—_‘) + MBI_4
>Ta L MA_M 15
Mg iy
L
dx . == dM
T
Rewriting equation ( 7) we have:
LZ QMB .MB
A = —_— S pMdM - M S pdM ] (8)
A 2 A
(MA-MB) e My
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M M

. B

pdM (8a)
A

Equations (8) and (8a) are general expressions that are appropriate for
both the elastic and plastic ranges. As proof of this condition we can substi-

M . ; ¥
tute p = == into equation ( 8a) for the elastic range.

EI
‘M M
2
e s [SMBM dM-MAgMBMdM]
(M, -M;)"EI A A
3 2
N 3 [ M |MB i M_'MB]
- 2 3 M, © AT 2 M
(M, -Mp)"EI A A
3
2 b [2m - ZMA3-3MAMB2 YR
6(M,-My )" EI
BRL. 2N (M S 2R MR
e A B A ""TATB B
& 2 2
6 EI M," - 2M, Mg + Mg
Sl 0L b 2N ) (8b)
" 6EI A B

Equation ( 8b) is recognizable as the slope-deflection expression for angu-
lar rotation in a member loaded only with end moments and unaffected by

sideswa-
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APPROXIMATION OF PLASTIC STRESS-STRAIN PROPERTIES

In reviewing approaches to simplification of stress-strain presen-
tation, the two slope curve appears to be the most practical. As previ-
ously stated, this was the conclusion of Dwight. He pursued the matter
and suggested a substitute curve. The data leading to such a recom-
mendation was gathered from load versus deflection curves for British

aluminum alloys D. T. D. 363A, HE15-WP, HE14-T, and NE7-M.

Slope 8

\ !
\I

Stress

Slope £

i
L

The shape of the curve is given in Figure 9.

Uni+ S+roin
Figure 9

Values of the various quantities are:

K - The average of stress values in tension and compression
taken at a 0.1% offset (€ = 0.001)

E - An average of Young's Moduli for the material in tension
and compression

B - The average slope of tangents to the tension and compression
curves drawn through a point on the stress axis equal to K

q - Stress at the intersection of the elastic and plastic curves.
For 6061-T6 the following values were found (see stress-strain curve
Figure 1 in Appendix) :
39. 4 x10° 1b. /in. -

Kl =
E = 10x10° 1. /in.‘2
B = 14x10°  Ib. /in.2







Zl

Using equation ( 4) and a curve, as shown in Figure 9, for a rec-
tangular beam, finite expressions for moment can be written. In this

case, with the depth of section equal to h, c is equal to 3 and:

2
h K Ebh>
X b = :
P > E-B 4 12 B (98)
2 3 3
h K Kbh Bbh K
Pz E-B i i, 2 2 > 1R
3p (E-B)

(see Figure 2 of the appendix)

At this point it appears desirable to depart from a straight mathematical
approach and associate deflections with material characteristics. For
this purpose some new terms are introduced to assist in keeping the

method general. First two letters representing integrals:

P = Sde i » gvadM

These two integrals appear in equation (8). Next, three more non-

dimensional quantities are offered as a means of using equation (9).

They are:
I .
T zK
Bl Ehp
2K
"
T E

One unique value that represents the knee of the assumed stress-strain
curve is given the symbol:

1
l-r

(see Figure 9)
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Using all of the suggested ratios, equation (9b) can be rewritten:

n<q nt s
g (10)
R

n

+ rn -

Nvjw B

n> q T =

Since we are interested in deflections we must return to the consideration

of quantities P and Q. We introduce two more dimensionless quantities:

M m
Eh 2 S Eh ,6 2 zg
SR - el Y dM = (z=)(—=)P = — d
(0 (ZK)(M) op (2 )(M) = onm
M m
Eh 3 ' Eh 3 3
6 = (Zg) {3 So pMam = (F) (1 e = | nmam
M M m

Using equation (10) in the expressions for ¢ and § and performing the

integration:
n< q ¢ s 6 = n = m
1 2 3 2
n> q (0 -E[rn e 2] (11)
n(l-r)
5 21
B R
52—1—[rn+2‘rn2+ - e 1
& 2 2 l-r n
m (l-r)
g e a2 B S0 g
2 l-r n 2 1—r2 e n

From equations (10), (11), and (12) a family of curves can be drawn for

materials with various values of E, B, and K.
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With a complete representation of the material at hand, we can
again return to the matter of structural analysis. Equation (8a) gives
an expression for §, a rotation caused by end moments. Extending this
expression to include the terms in equations (10), (11), and (12) and
adjusting the signs to accommodate clockwise moments (Figure 10), we

have:

m 3 ) e

Figure 10

eAB B iy [MB(PA—PB) + (QA+QB)]

(13)

6 2 —— [ -M, (P, -P_) + (Q,+Q.) ]
BA (MA+MB)Z A A B A B

For a span of constant depth and without material variations, (13) can be

further reduced remembering the values of P and Q:

LK
0 = [M_(M,¢, -M_¢_)
AB 2 B''"ATA "B'B
Eh(MA+MB)
2 2 2
+= (M, 86, + M_"8_)]
3 A A B B (13a)
LK
] = [ -M, (M, ¢, -M_o_)
BA Eh (M. +M )2 A'TATA B'B

+—§-(M T R R
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It should be noted that equation ( 8) was derived for the case of end
moments only. The form of equations (8) through (13a) would not be
changed by the inclusion of some lateral loading between the end points.
Indeed such inclusions would be necessary if spans selected had lateral
loads. Beyond the proportional limit superposition is not valid, as such,
and the effect of loading could not be added to that of end moments.

Equation (13a) is exactly the same as the slope-deflection
equations in that three unknowns, 6, MA’ and MB, are related. Such
equations could be written for each joint or sub-span of a structure.
Solving all of the equations simultaneously would result in a complete
description of moments and rotations at significant points. In practice
the problem is complicated by the rather involved relationship of ¢ and
0 to M. That is the reason for showing them (¢ and §) as separate

quantities in equation (13a).

For structures that experience deflections commonly called
sidesway, further alteration of equations ( 8) through (13a) would be

necessary. "Such considerations are not covered in this paper.
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EXPERIMENTAL WORK

Within the confines of rather limited facilities and expenditures, an
attempt was made to justify the use of equation (13a). While the ap-
paratus had to be simple, it also had to embody enough resemblance to
a practical problem to permit comparison. The selection was made of a
portal frame with fixed ends. A square cross section was selected to
simplify both the calculations and machining and to provide a member
with high reserve strength. It also eliminated the problem of buckling
and local crippling which are topics within themselves, The dimensions

are shown in Figure 11.

t. 008

/0.000 e

0,125 8

1005

O0.500 —+ | |+

1.008
0.500 ="l

\_
4
\__
r —
+, 008
e /0.000 -

Figure 11







Material was 6061-T6 aluminum plate 0. 500 inches thick, giving all
members a 0. 500 inch square cross section. The material orientation
put the top span parallel to the longitudinal grain direction. All inside
corners were given a radius of 0.125 inch to minimize stress concentra-

tion.

The point of load application was chosen as mid span as shown in

Figure 12.
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Figure 12

An elastic analysis for W = 100 1lbs. produced the moments shown in

Figure 13.

s\\\o/ < / M- 82337 "
Mo: 'GG_IG?I‘n,/L.

Figure 13
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All testing was done on a Baldwin Tate-Emery Testing Machine,
Type B. T.E., 120,000 lb. cap. using the 1,200 lb. and 6,000 lb. ranges
and a load rate of approximately 20 lbs. per minute. The test set up is
shown in Figure 8 of the Appendix. A dial indicator located directly
under the load and supported at the top of the two columns gave de-
flections of point 0 versus points A and B. A plot of load versus de-
flections is given in Figure 3 of the Appendix. The actual deflection

in the elastic range was slightly less than that predicted by conven-

tional methods as shown in Table 1 of the Appendix.

In predicting the deflections beyond the proportional limit, equation
(13a) was used. The steps were as follows:

1. Write equation for GA and set equal to zero.

B

2 2 2
[MB(MA¢A'MB¢B) LR R GB)] et

2. Choose values of MA and by trial and error satisfy the equation

with values of MB and from Figure 4 of the Appendix, ¢B and

GB . This could be done by solving equations simultaneously,

but it would be very difficult.

3. Knowing MA and MB solve for BB using equation (13a). Table

A
2 of the Appendix.

4. By symmetry we know that point 0 has zero slope before and
after loading. Therefore, the difference in slope between points
0 i ; '
B and 0 is equal to 9BA
Subtracting GOB from GBO (or GBA) we have:

L
Oam = 6 = 8 72 pr——— (P_ ~P
BO OB MO+MB B @)

)

Knowing both § and M_, we solve for MO again using Figure 4

B
of the Appendix. Table 3 of the Appendix.
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5. Solve for QOB’ the angle between a tangent to point 0 and a line

through B and O. Table 4 of the Appendix.

For small angles the deflection of point 0 is found by multiplying
the angle 90B by the length OB. Table 4 of the Appendix.

The results of the predicted deflections are shown on the same plot
as the actual results (Figure 3 of Appendix). As shown the predicted
plastic values are larger than actually developed. This was also pointed
out as being true in the elastic range. The discrepancy becomes more
pronounced beyond the proportional limit. In the elastic range the elastic
modulus and the exact cross sectional dimensions affect the results. Be-
yond this point these two values plus the assumed plastic modulus and
the q or transition value also come in to play. These latter two have much
the larger effect since they are arbitrary approximations. A re-run of
the calculations for altered values of B and K could bring the two curves
into line. Such altered values could then be used for any structural con-
figuration of the same material. K, of course, denotes a form of yield
point and can never be compared in percent deviation to something like
a modulus which varies only slightly from one run to another and from
one manufacturer to another. Part of the error resulting in the test
work can be laid to the fact that the stress-strain curve, Figure 1 of the

Appendix, was given as an average for the material.

The maximum load that the frame would accept was 1250 1lbs, At this
point, for all practical purposes, a plastic hinge was formed at points B,

O, and C and deflection continued with no increase in load.







CONCLUSIONS

The actual deflections versus the predicted values showed a variation
greater than the author had hoped. Reviewing the sources of error, how-
ever, shows that small corrections in assumed values could alter the
picture. The encouraging aspect is that the actual and predicted curves
took on very much the same shape. This would seem to indicate that the
method is adaptable with further attention to exact material properties.

In the final stages of deflection we see the actual values leveling off while
the predicted values continue to rise. This is a quite obvious result of

using B, the plastic modulus, equal to some value greater than zero.

6061-T6 in this regard turned out to be a poor choice for testing since

its elongation before rupture is several times that of some other avail-
able alloys such as 2014-T6. This point could be argued two ways. But
for the purpose of demonstrating that aluminum alloys resist the forma-
tion of collapse mechanisms common to mild steel, 6061-T6 was less

co-operative.

None of the secondary affects such as buckling, crippling, axial load,
etc....was covered. The slenderness of the members coupled with a
square cross section prevented their influencing the results to any pre-
dictable degree. These problems certainly exist, but they were con-

sidered beyond the scope of this paper.

Finally, it seems apparent that such a method with proper constants
and improved technique can be a valuable tool in providing information

on structural behavior beyond the elastic range.
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APPENDIX







Table 1

LOAD DEFLECTION - Inches
Pounds Actual Predicted
0 0 0
50 0.009 0.010
100 0.018 0.020
150 0.027 0.030
200 0.037 0. 040
250 0. 046 0.050
300 0.055 0. 060
350 0. 065 0.070
400 0.074 0.080
450 0.084 0. 090
500 0.093 0. 100
550 031103 0.110
600 0,113 0.120
650 023 0.130
700 0.134 0. 145
750 0. 147 0. 160
800 0.162 0.180
850 0 152 0.210
900 0198 0.230
950 0:.223 032105
1,000 05253 0. 340
1,050 0.289 0. 420
1,100 0:5532 0.520
1rEB0 0. 387 ol
1,200 0. 465






[able 2
\50/\//"7} For 684

0 D) & @ ) @ @) ) @ @ 4 @@ 3
m M Ty, M, M M -8) /M My + M, MG Bsa =
p o ¢8 53 p ’/:'/90_6 xB /o?: i ijg“ AX/UB P ?8 : 0 (M)':Z:%)t @x*/(?';@ @ (D xs.0728)
0.2z Joo 0122 | 0122 0.081 | 000122 50 0.0051 | 0 062 /50 9500 | ©./138 | 0.0098
0.294 200 0.2 | o.z%4 0650 | 6.00990 /00 0.09/0 | 0.9%0 F00 /14,10 [ 490 ) e S0 IE
0.366 300 0.3¢c | 03¢ 2.190 001095 | /SO e AT Lo 14 22,9000 3.6%9 | o.0/%4
0,988 <00 0.988 | 0488 $200 0.0195 200 0. 32% 3.700 oo 2 7.80 8. 780 0.0/92
0,607 S 00 0,607 | 0.609 /0./5D 0. 0301 250 0. €35 7600 750 /7.80 L7000 00810
0, 73} coo | 0.731 |0.7% | /7. 520 |a.0%2¢ 300 L | (/10 1/2.70 iad (200N 2048 10-0859
0,853 700 ©0.853 | 0.853 27.800 l0.05%¢ 3sD (.70 2080 | [0S0 Y. o O <900 1)0:03°6
[ooo | 82] | 1.900 [;.000 | 95000 lo.0820 | 4/0 | 2800 | 33,0 | y234 €.l 7Sl 0 O37F
1160 953 | /1./63 | /L./66 | 7050 lp1883 | 477 | | 4.%0 | 4490 | ;430 DO /e | 0. 0727
[.257 /030 /.R73 | }].280 w00 |o,/3/2 S/ 5. $50 €7.é0 /SIS <./ /SR.820 10,0504
139 | g0t | 1.392 V911 1420 |o.s5%0 | S5z| | 6.850 |ssw0 | /e 54 .65 W / TRGo0 | 0.0555
/.3%79 /148 /. %280 | /. 572 132,800 |o.1700 iad 7.690 27.500 | 1722 338 222,400 |0.057%
[able 3
Solving for Mp
[0) ® @ & %, B %) €) @ @) @ | @
foé' G0 | G- % MB ¢A Mg ¢8 Mo ¢o %Sé /%/a { ”g?ﬁr (e % }W: f{"é*%) %
0.0(92 | 0.988 400 0, 488 195 Koo Q. 975 7 o $E5 / 200 0. 988 | 480 0, 500
| 0.0290 | 0.610 500 0. 657 309 7?95 /.22 '} /218 viind /f9S 0,6/0 | 578 0.503
0.0284 | 0.722 €00 . 73/ 126 /195 /.70 | /683 yng? \Wres | a7Zz0 § (IE Q.529
0.033¢€ | 0.859 700 0.853 596 /250 /.-800 ,% 250 [0 5% /79527 0,859 780 9.5¢¢
0.03%75 | /.000 22/ /000 92/ /370 2,230 292/ | 2700 | 213/ /. 0 /4 g5% 0.¢¢7
00427 | /.oes | 950 | 7./¢3 (1os | /390 | 2.5¢0 | 34950 | z#80 | zz290 | 1.080 | 9/6 |0 909
00504 | 1.280 | s030 | /.273 | /372 /380 3.200 | 44/¢ | 3/09 | z9/0 | ).z89 | 6% | 0.77¢
0.0555 | 1.4/0 /,/09 /.392 /540 /208 3.600 | So58 | 35/8 | zs509 | /.90& | so0% 0.78¢
0.83%7 | ;.510 1,198 ;. 480 | ;700 /420 7.929 | s5¢0¢ | 286 | g5k | 7. 570 | 7027 wil b







Taoble 4

So/vn'nj For 603 QH(/ Aa

o

@ @ @ @ @ | @ @ €] ® | @D |@ B |\ | > |72
2ol Mp® Y ARCITNG, B 5 o
My | B | & |drisilgd B | B | & [EAE NS OCONen U n)itgniar &t
400 | 0988 | 0988\ ©0./63| 2.¢(08 800 | ©.9785 | 0.975 | 3200 /0| T0/92] [2oo /11,000| 2756 | 0,019 | 0.0%5
500 | 0.607| 0.60%| 0.203| 5.075| 995 | /.223 | |.RRC | Cogon| 50.585| (367/0| /495 | 22350 1.%3 | 0.029 |0./20
600 | 0.731 | 0.731| 0.29¢%| 8784 | 1145 | 1,470 | 1.500 | j00,950] /31103 | 223.299| 1745 | 301.505) 1,299 | 0.029 | 0. 175
700 | 0.853| 0.853| 2284 [/3.9/6 | 1250 | 1,800 | }.922 | /57,500 | 200,156 | 343.7%0| 1950 | 3,250 1.03¢ | 0.03¢ |0./80
82/ /.000 | /.000 | 0.333 22997 23/0 Z230 | 2150 | 279.5/¢ 2835, c7| S0 09) | 2131 | 454 ] 0.868 | 0.0453 |0 2/5
G50 | (.463 | /. /66 | 0,386 | 59.53¢ | /340 | 2.5%0 | 2.970 | 328850 | 355,579|644,593 2290 | 524910| 275 |0.049 |o. 275
4030 | |.R73| /.280 | 06.920 | 99558 ;350 | 3.200| 3.820 | 459,998| 195.0511595341| 2170 | sw.50| 0,078 |0.0¢/ |0.305
1109 | 1.392 | 1g// | 0,95 | 59.9¢8] 1908 | 3.600 |4.380 | 558 903|57¢ 5141079850 2503 | c29.508 0.68¢ |0.0¢8 |0 370
1148 | 1.980 | /.5/2] 0.478 | é2.205| /920 | 3920 |4 770 638.77751/.2/5‘42/7f787 25¢8 |659.9%|0.597 |o. 073 |03¢S
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Develonment of lioment for Zauation (90)

A area under stress distribution curve

B | plastic nodulus

b width of member

I elastic modulus

i stress

h depth of member

K stress intercent

M monent

R radius of curvature

V wvolume under stress distribution curve
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Figure 2
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