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Abstract

A 1-factorisation of a graph G is a decomposition of G into edge-disjoint 1-factors
(perfect matchings), and a perfect 1-factorisation is a 1-factorisation in which the
union of any two of the 1-factors is a Hamilton cycle. We consider the problem of
the existence of perfect 1-factorisations of even order circulant graphs with small
degree. In particular, we characterise the 3-regular circulant graphs that admit
a perfect 1-factorisation and we solve the existence problem for a large family of
4-regular circulants. Results of computer searches for perfect 1-factorisations of
4-regular circulant graphs of orders up to 30 are provided and some problems are
posed.
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1 Introduction

A 1-regular spanning subgraph of a graph G is called a 1-factor, or a perfect matching,
of G. A 1-factorisation of a graph is a partition of its edge set into 1-factors. If a graph
G of order n admits a 1-factorisation, then n is even and G is r-regular for some positive
integer r. Thus, in this paper we only consider regular graphs of even order. If the
union of every two of the 1-factors of a 1-factorisation is a Hamilton cycle, then the 1-
factorisation is said to be perfect. We use the abbreviation P1F for perfect 1-factorisation.
A 1-factorisation {F1, . . . , Fm} is uniform if Fi∪Fj is isomorphic to Fk∪F� for all i, j, k, �
where 1 � i < j � m and 1 � k < � � m. We use the abbreviation U1F for uniform
1-factorisation. Observe that a P1F is a U1F.
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The problem of the existence and enumeration of 1-factorisations of complete graphs
is a classical problem; see [20] and [26] for a more complete study of the problem. In
1964, Kotzig [14] conjectured that the complete graph K2n admits a P1F for all n � 2.
Perfect 1-factorisations of K2n have been studied extensively over the past few decades,
but Kotzig’s conjecture is far from fully resolved. Perfect 1-factorisations of K2n are
known to exist when n is an odd prime [2] and when 2n− 1 is an odd prime [2, 13] and
for many other particular orders (see [22] for a survey of these results and [27] for an
up-to-date list of computational results). Perfect 1-factorisations of complete bipartite
graphs have also been studied for a number of years; see for example [7, 17]. A graph that
admits a P1F has also been called a Hamilton graph [13] and a strongly Hamilton graph
[15, 17, 28].

Cubic graphs that admit a P1F have been studied in [5, 6, 12, 13, 15, 19]. For every
even n � 4, there exists a cubic graph of order n that has a P1F (see for example [6]). In
[12] Kotzig proved that each cubic graph that admits a P1F can be constructed from the
graph consisting of two vertices with three edges between them by repeated application
of two modifications. An alternative description of this class of graphs was provided by
Bonvicini and Mazzuoccolo [5]. In 1978, Kotzig and Labelle [15] studied particular classes
of cubic graphs that admit a P1F and in 1979 [16] they listed a number of open problems
about graphs that admit a P1F. Problem 4 in [16] was to show that G admits a P1F if
and only if the line graph L(G) admits a P1F. They commented that the problem had
been resolved but not published. In 2008, Mazzuoccolo [19] provided a proof of Problem
4 of [16] in the case when G has degree 3. Problem 7 of [16] was to characterise cubic
bipartite graphs that admit a P1F, and Problem 9 of [16] was to characterise the 4-regular
graphs that admit a P1F.

The existence of 1-factorisations of circulant graphs was studied in 1980 by Stern and
Lenz [24] (see [18] for a survey of the Stern-Lenz theorem). Furthermore, in 1985 Richard
Stong [25] showed that every connected Cayley graph on a finite even order abelian group
has a 1-factorisation. A graph is said to be Hamiltonian if it contains a Hamilton cycle.
There is also a long-standing conjecture that every Cayley graph is Hamiltonian and it
is well known that the conjecture is true for Cayley graphs on abelian groups [9, 29]. In
[4] it was shown that a 4-regular connected Cayley graph on a finite abelian group can
be decomposed into two Hamilton cycles. However, this result does not guarantee the
existence of a P1F.

Here we initiate the study of P1Fs of Cayley graphs by considering the question Which
circulant graphs admit a P1F?. We provide a complete answer to this question in the case
of 3-regular circulant graphs. We answer this question for 4-regular circulant graphs that
are isomorphic to a circulant graph having connection set {1, 2} or {1, 3}, and observe that
having order congruent to 2 (mod 4) is a necessary condition for a circulant graph with
connection set {d1, d2} where d1 and d2 are both odd to have a P1F. The computer results
given in the last section of this paper demonstrate however that this necessary condition
is not sufficient. This leaves us with the interesting open problem of characterising the
4-regular circulant graphs that admit a P1F.
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2 Background and Notation

We only consider simple undirected graphs. We represent the vertex set, edge set, maxi-
mum degree and minimum degree of a graph G by V (G), E(G),Δ(G) and δ(G), respec-
tively. A graph G is r-regular if Δ(G) = δ(G) = r. We denote a path with n vertices
by P = [v1, v2, . . . , vn] and a cycle with n vertices by C = (v1, v2, . . . , vn). In any graph
with vertex set Zn, the edge {x, y} is said to have length k where k is the length of the
shortest path from x to y in the cycle (0, 1, 2, . . . , n− 1).

Let G be a group with identity e and S ⊆ G − {e} such that if s ∈ S then s−1 ∈ S.
The Cayley graph Cay(G, S) is the graph with vertex set G and edge set {{g, sg} | g ∈
G, s ∈ S}. The set S is called the connection set of Cay(G, S). A circulant graph is a
Cayley graph on a cyclic group. In particular, Cay(Zn, R) will be denoted by Circ(n, S)
where S = R∩{1, 2, . . . , �n

2
�}. In this paper, we consider 3-regular and 4-regular circulant

graphs, that is, Circ(n, {d1, d2}) where 1 � d1 < d2 � n
2
. The graph Circ(n, {d1, d2}) is

connected if and only if gcd(d1, d2, n) = 1. Every connected graph Circ(n, {d1, d2}) is
isomorphic to a graph Circ(n, {d′1, d′2}) for which gcd(d′1, d

′
2) = 1 (see for example [3]).

The following definitions are for undirected circulant graphs (there are analogous def-
initions in the directed case). Let Z∗

n denote the set of residues modulo n that are rela-
tively prime to n. Observe that |Z∗

n| = φ(n), where φ(n) is the Euler-phi function. Two
circulant graphs Circ(n, {d1, d2, . . . , dk}) and Circ(n, {d′1, d′2, . . . , d′k}) are said to be con-
jugate by a multiplier [21] if there exists an m ∈ Z

∗
n such that {md′1,md′2, . . . ,md′k} =

{±d1,±d2, . . . ,±dk} modulo n. In this case, the permutation x 	→ mx for x ∈ Zn is an
isomorphism between Circ(n, {d′1, d′2, . . . , d′k}) and Circ(n, {d1, d2, . . . , dk}). In 1967 Adam
conjectured that two circulant graphs are isomorphic if and only if they are conjugate by
a multiplier [1]. The conjecture is false in general (see for example [21]). However, in the
case where k = 2 we have the following result [10, 11].

Theorem 1. Two 3- or 4-regular circulant graphs Circ(n, {d1, d2}) and Circ(n, {d′1, d′2})
are isomorphic if and only if they are conjugate by a multiplier.

Laufer [17] attributes the following theorem to Kotzig [13], however it is stated in
Kotzig’s paper with different terminology and no proof. Wanless [28] provides a proof in
the setting of Latin squares.

Theorem 2. If G is a bipartite r-regular graph with r > 2 and G admits a P1F, then
|V (G)| ≡ 2 (mod 4).

We observe that for even n the circulant graph G = Circ(n, {d1, d2}) with d1, d2 both
odd is bipartite, where the odd and even labeled vertices form the partite sets of V (G).
Thus, we obtain the following corollary.

Corollary 3. Suppose n is even and G = Circ(n, {d1, d2}), where d1 and d2 are both odd.
If G admits a P1F, then n ≡ 2 (mod 4).
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3 Degree 3 Circulants

In this section we characterise the connected 3-regular circulant graphs that admit a P1F.
This characterisation is given in Theorem 8. A connected 3-regular circulant graph is a
graph of type Circ(n, {a, n

2
}) with n � 4 even, 1 � a < n

2
and gcd(a, n

2
) = 1.

Lemma 4. Suppose n � 4 is an even integer. If a is odd and G = Circ(n, {a, n
2
}) is a

connected circulant graph, then G is isomorphic to Circ(n, {1, n
2
}).

Proof. Since G is connected, gcd(a, n
2
, n) = 1. Since a is odd and n is even, if gcd(a, n) =

d �= 1, then d divides n
2
. Hence gcd(a, n) = 1 and by definition, a ∈ Z

∗
n. Since a is odd,

it follows that a× n
2
≡ n

2
(mod n), and hence {a× 1, a× n

2
} = {a, n

2
} (mod n). Thus G is

isomorphic to Circ(n, {1, n
2
}). �

Lemma 5. Suppose n � 6 is an even integer. If a is even and G = Circ(n, {a, n
2
}) is a

connected circulant graph, then G is isomorphic to Circ(n, {2, n
2
}).

Proof. Since G is connected, gcd(a, n
2
) = 1, hence n ≡ 2 (mod 4), as a is even. We show

that G is isomorphic to Circ(n, {2, n
2
}) by finding an m ∈ Z

∗
n such that {m× 2,m× n

2
} =

{a, n
2
} modulo n.

Case 1: Suppose a ≡ 0 (mod 4). We claim that m = n+a
2

satisfies the above conditions.
First, observe that since n ≡ 2 (mod 4), m is odd. So it is clear that {m × 2,m × n

2
} =

{n + a, n
2
} = {a, n

2
} modulo n. We wish to show that m ∈ Z

∗
n. Suppose not. Then

gcd(m,n) = d �= 1, so m = xd, n = yd for some integers x, y. Hence a = d(2x − y), so d
is a divisor of a. Since m is odd and d is a divisor of m, d is odd and therefore d divides
n
2
. Thus d is a common divisor of a, n

2
and n, which is a contradiction.

Case 2: Suppose a ≡ 2 (mod 4). We claim that m = a
2
satisfies the above conditions.

First, observe that m is odd and clearly {m× 2,m× n
2
} = {a, n

2
} modulo n. We wish to

show that m ∈ Z
∗
n. Suppose not. Then gcd(m,n) = d �= 1 and, since m is odd and d is

a divisor of m, d is odd and therefore d divides a and n
2
. Thus d is a common divisor of

a, n
2
and n, which is a contradiction.
Thus, in either case, G is isomorphic to Circ(n, {2, n

2
}). �

Lemma 6. Suppose n � 6 is an even integer. Then Circ(n, {1, n
2
}) admits a P1F if and

only if n ≡ 2 (mod 4).

Proof. If n ≡ 2 (mod 4), then define three 1-factors A,B,C as follows. Let A and B
consist of the alternate edges of the cycle formed by the edges of length 1 of G, and let C
consist of the set of all edges of length n

2
. It is easy to observe that this is a P1F.

Now let n ≡ 0 (mod 4), and suppose that Circ(n, {1, n
2
}) admits a P1F. Let the edges

of the three 1-factors be coloured red, blue and green. By definition, the union of each
distinct pair of 1-factors is a Hamilton cycle. For simplicity, we will call the Hamilton
cycle formed by the union of the edges coloured red and green, the red-green cycle, and
similarly for the other pairs of colours. It is easy to check that 1-factors A,B,C defined
above do not produce a P1F when n ≡ 0 (mod 4) and n > 4. Thus, not all edges of
length n

2
can belong to the same 1-factor. So, without loss of generality, edge {0, n

2
} is
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green and edge {1, n
2
+ 1} is red. Since the colours correspond to 1-factors, edges {0, 1}

and {n
2
, n
2
+ 1} are blue and edges {1, 2} and {n

2
+ 1, n

2
+ 2} are green. Hence {2, n

2
+ 2}

must be red or blue. If {2, n
2
+2} is red, then there is a red-green 4-cycle, a contradiction,

and if {2, n
2
+2} is blue, then there is a blue-green 6-cycle, which is again a contradiction.

Thus, Circ(n, {1, n
2
}) does not admit a P1F in the case n ≡ 0 (mod 4). �

We next consider the graph Circ(n, {2, n
2
}). When n ≡ 0 (mod 4), Circ(n, {2, n

2
}) is

disconnected, so we consider only the case when n ≡ 2 (mod 4). It is easy to observe that
Circ(6, {2, 3}) admits a P1F. For larger n, we have the following lemma.

Lemma 7. Suppose n > 6 and n ≡ 2 (mod 4). Then G = Circ(n, {2, n
2
}) does not admit

a P1F.

Proof. Suppose there exists a P1F and let the three 1-factors be coloured red, blue and
green.

We first prove that edges {i, n
2
+ i} and {i+2, n

2
+ i+2} belong to the same 1-factor for

i = 0, 1, . . . , n
2
− 1. Suppose this is not the case. Then there exists an i ∈ {0, 1, . . . , n

2
− 1}

such that {i, n
2
+ i} is red and {i+2, n

2
+ i+2} is blue (without loss of generality). Then

{i, i+2} and {n
2
+ i, n

2
+ i+2} are green, and hence {i+2, i+4} and {n

2
+ i+2, n

2
+ i+4}

are red. If {i+4, n
2
+ i+4} is blue, then there is a 4-cycle in the union of the red and blue

1-factors, which is a contradiction; if {i+ 4, n
2
+ i+ 4} is green, then there is a 6-cycle in

the union of the red and green 1-factors, a contradiction. Hence the edges {i, n
2
+ i} and

{i+ 2, n
2
+ i+ 2} belong to the same 1-factor for i = 0, 1, . . . , n

2
− 1.

Now observe that the edges of length 2 form two disjoint cycles C1 and C2 of length
n
2
, which is odd. If all edges of length n

2
belong to the same 1-factor, then the edges of C1

and C2 belong to two 1-factors, which is impossible since they are cycles of odd length.
Thus, without loss of generality, we may assume that edge {0, n

2
} is red and {1, n

2
+ 1}

is blue. It follows that {x, n
2
+ x} is red for x = 0, 2, 4, . . . , n

2
− 1 and {y, n

2
+ y} is blue

for y = 1, 3, 5, . . . , n
2
− 2. Thus, {n

2
− 2, n − 2} is blue and {n

2
, 0} is red, which is a

contradiction.
Therefore G does not admit a P1F. �

The preceeding four lemmas are now used to prove the following characterisation
result.

Theorem 8. Let n � 4 be an even integer and let a be an integer in the range 1 � a < n
2
.

Then Circ(n, {a, n
2
}) has a P1F if and only if one of the following cases occurs:

• n = 4 and a = 1;

• n = 6 and a = 1 or a = 2;

• n > 6, n ≡ 2 (mod 4), a is odd and gcd(a, n
2
) = 1.

Proof. Observe that the construction of a P1F for Circ(4, {1, 2}) and Circ(6, {a, 3}),
a = 1, 2 is trivial. The condition gcd(a, n

2
) = 1 is needed in order for Circ(n, {a, n

2
}) to be
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connected. If a is odd, then by Lemma 4, G is isomorphic to Circ(n, {1, n
2
}), which, by

Lemma 6 has a P1F if and only if n ≡ 2 (mod 4). If a is even, then by Lemma 5, G is
isomorphic to Circ(n, {2, n

2
}), which, by Lemma 7, does not admit a P1F. �

4 Degree 4 Circulants

In this section, we consider the 4-regular circulant graphs with connection sets {1, 3}
and {1, 2}. We prove the existence and non-existence of P1Fs for circulant graphs with
these two connection sets, respectively. We note that Circ(n, {1, 3}) is bipartite, hence,
by Corollary 3, it admits a P1F only if n ≡ 2 (mod 4).

Theorem 9. If n ≡ 2 (mod 4) and n > 6, then Circ(n, {1, 3}) admits a P1F.

Proof. Let G = Circ(n, {1, 3}). For t = 5, 6, 7, 8 and n � 10 define

Et = {{x, x+ 3}, {x+ 1, x+ 2} | x = 4k + t, k ∈ {0, 1, . . . , n−10
4

}},
where x + i is calculated modulo n. We construct four disjoint 1-factors A,B,C,D as
follows (see Figure 1).

A = {{0, 1}, {2, 3}, {4, 5}} ∪ E6;

B = {{1, 2}, {3, 4}, {5, 6}} ∪ E7;

C = {{n− 1, 2}, {0, 3}, {1, 4}} ∪ E5;

D = {{2, 5}, {3, 6}, {4, 7}} ∪ E8.

Notice that, in each 1-factor, the edges form a pattern that repeats every 4 vertices,
with the exception of three edges on 6 initial vertices. Since n − 6 ≡ 0 (mod 4), the
pattern fits into the remaining n − 6 vertices. The 1-factors A,B,C,D clearly form a
1-factorisation of G. We now check the six possible unions of these 1-factors.

1) A and B:
The union of the 1-factors A and B is the union of the paths P = [0, 1, 2, 3, 4, 5, 6] and

Qk for k = 0, 1, . . . , n−10
4

, where Qk = [6+4k, 9+4k, 8+4k, 7+4k, 10+4k] and all vertex
labels are computed modulo n. This forms a Hamilton cycle.

2) A and C:
The union of the 1-factors A and C is the union of the paths P = [n− 1, 2, 3, 0, 1, 4, 5]

and Qk for k = 0, 1, . . . , n−10
4

, where Qk = [5 + 4k, 8 + 4k, 7 + 4k, 6 + 4k, 9 + 4k] and all
vertex labels are computed modulo n. This forms a Hamilton cycle.

3) A and D:
If n = 10, then the union of the 1-factors A and D is the cycle (7, 4, 5, 2, 3, 6, 9, 0, 1, 8),

which is a Hamilton cycle. If n > 10 then the union of the 1-factors A and D is the union
of the paths P1 = [7, 4, 5, 2, 3, 6], P2 = [0, 1], Qk and Rk for k = 0, 1, . . . , n−10

4
, where
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Figure 1: A P1F of Circ(n, {1, 3}) when n ≡ 2 (mod 4).

Qk = [6 + 4k, 9 + 4k, 10 + 4k] and Rk = [7 + 4k, 8 + 4k, 11 + 4k] and all vertex labels are
computed modulo n. This forms a Hamilton cycle.

4) B and C:
If n = 10, then the union of the edges in B and C is the cycle (0, 3, 4, 1, 2, 9, 8, 5, 6, 7),

which is a Hamilton cycle. If n > 10 then the union of the edges in B and C is the union
of the paths P1 = [n− 1, 2, 1, 4, 3, 0], P2 = [5, 6], Qk and Rk for k = 0, 1, . . . , n−10

4
, where

Qk = [5 + 4k, 8 + 4k, 9 + 4k] and Rk = [6 + 4k, 7 + 4k, 10 + 4k] and all vertex labels are
computed modulo n. This forms a Hamilton cycle.

5) B and D:
The union of the 1-factors B and D is the union of the paths P = [1, 2, 5, 6, 3, 4, 7]

and Qk for k = 0, 1, . . . , n−10
4

, where Qk = [7+ 4k, 10+ 4k, 9+ 4k, 8+ 4k, 11+ 4k] and all
vertex labels are computed modulo n. This forms a Hamilton cycle.

6) C and D:
If n = 10, then the union of the 1-factors C and D is the cycle (1, 4, 7, 6, 3, 0, 9, 2, 5, 8),

which is a Hamilton cycle. If n > 10, then the union of the 1-factors C and D is the
union of the paths P = [n − 2, 1, 4, 7, 6, 3, 0, n − 1, 2, 5, 8] and Qk for k = 0, 1, . . . , n−14

4
,
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where Qk = [8 + 4k, 11 + 4k, 10 + 4k, 9 + 4k, 12 + 4k] and all vertex labels are computed
modulo n. This forms a Hamilton cycle.

Since each pair of 1-factors forms a Hamilton cycle, we have constructed a P1F of G.
�

Lemma 10. Suppose n is even and n > 10. There are exactly φ(n)
2

circulant graphs of
the form Circ(n, {d1, d2}) with 1 � d1 < d2 <

n
2
that are isomorphic to Circ(n, {1, 3}).

Proof. Suppose n is even and n > 10 and let G = Circ(n, {1, 3}). Since d1, d2 < n
2
, by

Theorem 1, the number of graphs of the form Circ(n, {d1, d2}) that are isomorphic to G is

at most φ(n)
2
. Suppose there are fewer than φ(n)

2
such graphs. Then there are two distinct

integers m and m′ belonging to the first half of the residues in Z
∗
n such that m �= ±m′, and

{m, 3m} = {±m′,±3m′} (mod n). Then m = ±3m′ and 3m = ±m′, so 9m′ = ±m′, and
since m′ is nonzero, this implies that 9 = ±1 (mod n). Hence n = 8 or 10, a contradiction,
and thus the result follows. �

Since Lemma 10 applies for n > 10, we briefly mention the smaller cases here. When
n = 6 the only 4-regular circulant graph is Circ(6, {1, 2}) and it is trivial to check that
it admits a P1F. When n = 10, Circ(10, {1, 3}), admits a P1F by Theorem 9. It is not
difficult to show that any other 4-regular circulant graph of the form Circ(10, {d1, d2})
does not admit a P1F (see also the computer search results in Section 5).

The next proof requires a new definition, similar to one given in [8]. Consider the
following set of edges of Circ(n, {d1, d2, . . . , dk}):

E = {{−di, 0}, {−di + 1, 1}, . . . , {−1, di − 1} | i = 1, 2, . . . , k}.
We observe that |E| = d1 + d2 + · · · + dk. Informally, E is the set of edges crossing

the dotted line segment L between vertices 0 and n− 1 (see Figure 2). We can similarly
define a set of edges crossing a dotted line segment between vertices 0 and 1, or 1 and 2,
etc. We call such a dotted line segment L a crossing line and we call the associated set
of edges E the crossing set of L.

Figure 2: A crossing line L between 5 and 0 in Circ(6, {1, 2}) with crossing set
{{0, 5}, {0, 4}, {1, 5}}.

the electronic journal of combinatorics 20(1) (2013), #P58 8



Theorem 11. Suppose n > 2 is even. The graph Circ(n, {1, 2}) admits a P1F if and only
if n ∈ {4, 6}.
Proof. It is clear that Circ(4, {1, 2}) and Circ(6, {1, 2}) each have a P1F. Suppose that
G = Circ(n, {1, 2}) admits a P1F and assume n > 6. Hence G is 4-regular. Let the edges
of the four 1-factors be coloured red, blue, green and yellow. By our assumption, the
union of each distinct pair of 1-factors is a Hamilton cycle. For simplicity, we will call the
Hamilton cycle formed by the union of the edges coloured red and green, the red-green
cycle, and similarly for the other pairs of colours.

Consider a crossing line L with crossing set E. We say that L has a k-configuration if
k distinct colours are used on the edges of E. Clearly |E| = 3 and these edges cannot all
be the same colour, since the colouring arose from a 1-factorisation. Thus L must have
either a 2-configuration or a 3-configuration. Notice that if L has a 2-configuration, the
two edges of E with the same colour must be the edges of length 2.

We first show that there exists a crossing line with a 3-configuration. Suppose there
does not. Let L be any crossing line, which necessarily has a 2-configuration and without
loss of generality, say the colours are red and green, where red is the colour of the edge
of length 1. Without loss of generality, let the red edge have end-vertices labeled 1 and
2, so that the green edges are {0, 2} and {1, 3} (see Figure 3). Now the edges {2, 3} and
{2, 4} must be coloured blue and yellow, and then the crossing line L′ that has {2, 3} in
its crossing set has a 3-configuration, which is a contradiction.

Figure 3: A 3-configuration must occur.

Now take L to be a crossing line inG with a 3-configuration. Without loss of generality,
we assume that the corresponding crossing set is E = {{1, 2}, {0, 2}, {1, 3}} with {1, 2}
coloured red, {0, 2} coloured blue and {1, 3} coloured green. It follows that {0, 1} and
{2, 3} are coloured yellow, {1, n − 1} is coloured blue, and {2, 4} is coloured green, see
Figure 4.

The edge {0, n− 1} must be coloured red or green. If it is red, then (0, n− 1, 1, 2) is a
red-blue 4-cycle, which is not Hamiltonian as n > 4. Hence {0, n− 1} is green. The edge
{3, 4}must be coloured red or blue. If it is red, then (1, 2, 4, 3) is a red-green 4-cycle, which
is not Hamiltonian. Thus {3, 4} is blue and we find a blue-green 6-cycle (0, n−1, 1, 3, 4, 2),
which is not Hamiltonian as n > 6. Therefore, it is proved that Circ(n, {1, 2}) with n > 6
does not admit a P1F. �
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Figure 4: This configuration must occur in Circ(n, {1, 2}).

It is clear that for n = 4, 6, the only possible uniform 1-factorisations of Circ(n, {1, 2})
are perfect 1-factorisations. For n > 6, we prove the following theorem.

Theorem 12. Suppose n is an even integer and n > 6. Then Circ(n, {1, 2}) does not
admit a uniform 1-factorisation.

Proof. Suppose that G = Circ(n, {1, 2}) admits a uniform 1-factorisation of some type.
Since n > 6, G is 4-regular. Let the edges of the four 1-factors in the uniform 1-
factorisation be coloured red, blue, green and yellow. By definition, the graphs with
edge sets given by the union of each distinct pair of 1-factors are all isomorphic. For
simplicity, we will call the graph formed by the red and green edges, the red-green graph,
and similarly for the other pairs of colours.

Consider a crossing line L with crossing set E. As in the proof of Theorem 11, there
exists a crossing line with a 3-configuration, and without loss of generality, we assume
that the corresponding crossing set is E = {{1, 2}, {0, 2}, {1, 3}} with {1, 2} coloured
red, {0, 2} coloured blue and {1, 3} coloured green. Since each colour corresponds to a
1-factor, it follows that edges {0, 1} and {2, 3} are yellow and edge {n− 1, 1} is blue, as
in Figure 4.

We claim that the yellow-blue graph is a Hamilton cycle. Suppose it is not. Let
C = (n − 1, 1, 0, 2, 3, c1, c2, . . . , ct) be the cycle in the yellow-blue graph that crosses the
crossing line L. Since C is not a Hamilton cycle, it follows that there is a set of vertices
A = {a1, a2, . . . , ak} that are not in the vertex set of C. Note that A ⊆ {4, 5, . . . , n− 2}.
Considering the path [3, c1, c2 . . . , ct, n−1] in the cycle C, it is clear that the set A cannot
contain a pair of consecutive vertices. Using only edges of length 2, it is impossible to
create a cycle on any subset of the vertices in A, and so the yellow-blue graph cannot
contain a second cycle. Thus C must be a Hamilton cycle, and since yellow and blue were
1-factors of a uniform 1-factorisation, it follows that the 1-factorisation is perfect. This
contradicts Theorem 11 and hence the result is proved. �
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5 Computer Searches and Conjectures

We ran computer searches using orderly algorithms based on the ideas in [23] to address
the question of the existence of perfect 1-factorisations of 4-regular circulant graphs. We
also used Theorem 1 to determine which of these circulant graphs are isomorphic. Table
1 summarises the results of the computer searches for P1F’s in circulant graphs of type
Circ(n, {d1, d2}) where 1 � d1 < d2 < n

2
with small order (n � 30). The table provides

one connection set for each relevant isomorphism class.

n {d1, d2} for which a P1F exists {d1, d2} for which a P1F does not exist
6 {1, 2} none
8 none all
10 {1, 3} {1, 2}, {1, 4}
12 none all
14 {1, 3} {1, 2}, {1, 4}, {1, 6}
16 none all
18 {1, 3}, {1, 5} {1, 2}, {1, 4}, {1, 6}, {1, 8}, {2, 3}
20 none all
22 {1, 3}, {1, 5} {1, 2}, {1, 4}, {1, 6}, {1, 8}, {1, 10}
24 none all
26 {1, 3}, {1, 5}, {1, 7} {1, 2}, {1, 4}, {1, 6}, {1, 8}, {1, 10}, {1, 12}
28 none all
30 {1, 3}, {1, 5}, {1, 7}, {1, 9}, {3, 5} {1, 2}, {1, 4}, {1, 6}, {1, 8}, {1, 10}, {1, 11},

{1, 12}, {1, 14}, {2, 3}, {2, 5}, {2, 9}, {5, 6}
Table 1: P1Fs of 4-regular circulants

Since n is even, if d1 and d2 are both even, then Circ(n, {d1, d2}) is disconnected.
Thus, the two cases to consider are when exactly one of d1 and d2 is odd and when they
are both odd. Recall that for even n, a circulant Circ(n, {d1, d2}) is bipartite if and only
if d1 and d2 are both odd. By Corollary 3, a bipartite circulant Circ(n, {d1, d2}) with
n ≡ 0 (mod 4) does not admit a P1F. The computer results indidicate that all 4-regular
bipartite circulants of order n ≡ 2 (mod 4) have a P1F for 8 � n � 28. This is not true
in general, however, since further computer searching showed that Circ(30, {1, 11}) does
not have a P1F. Thus, we pose the following problem.

Problem 13. Characterise the 4-regular bipartite circulant graphs of order 2 (mod 4)
that admit a P1F.

If Circ(n, {d1, d2}) is a 4-regular circulant and exactly one of d1 and d2 is odd, the
computer search indicates that G does not have a P1F for n � 30. Based on these results,
as well as the non-existence result in Theorem 11, we make the following conjecture.

Conjecture 14. Suppose n is even and n > 6. If G = Circ(n, {d1, d2}) is a 4-regular
circulant graph and one of d1, d2 is odd and the other is even, then G does not admit a
P1F.
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