Communicated by Graeme Mitchison =

Elastic Net Model of Ocular Dominance: Overall Stripe Pattern and Monocular Deprivation

Geoffrey J. Goodhill David J. Willshaw *Centre for Cognitive Science, University of Edinburgh,* 2 Buccleuch Place, Edinburgh EH8 9LW, UK

The elastic net (Durbin and Willshaw 1987) can account for the development of both topography and ocular dominance in the mapping from the lateral geniculate nucleus to primary visual cortex (Goodhill and Willshaw 1990). Here it is further shown for this model that (1) the overall pattern of stripes produced is strongly influenced by the shape of the cortex: in particular, stripes with a global order similar to that seen biologically can be produced under appropriate conditions, and (2) the observed changes in stripe width associated with monocular deprivation are reproduced in the model.

1 Introduction

Two well-documented phenomena associated with ocular dominance stripe formation in primary visual cortex are as follows. First, for the macaque monkey there is a global order to the stripe pattern (LeVay *et al.* 1985). Second, the relative widths of left- and right-eye stripes can change following monocular deprivation in the cat (Shatz and Stryker 1978) and in the macaque (Hubel *et al.* 1977). In this paper empirical results are presented for the elastic net model of ocular dominance, showing that it can reproduce both these phenomena under appropriate conditions.

The elastic net is an algorithm for finding neighborhood-preserving mappings between spaces of different dimensionalities (Durbin and Willshaw 1987). It was originally developed from a model for retinotopic map formation (Willshaw and von der Malsburg 1979), and has been applied to the problem of finding mappings that are both striped and topographic, such as the ocular dominance map (Goodhill and Willshaw 1990). The algorithm finds a mapping between a "feature" space and a "cortical" space. For the topography and ocular dominance problem, the feature space consists of all positions in both eyes, and here we refer to these feature points as LGN (lateral geniculate nucleus) units. Distances between LGN units in the space encode the "similarity" of units to each other, such that similar units lie close to each other. Similarity could be interpreted as the degree to which the activity of units is correlated in the feature space (Yuille *et al.* 1991).

Each LGN is represented as a two-dimensional sheet of points, and the two sheets lie atop one another separated by a small gap. The third dimension represents ocularity: distances in the ocularity dimension represent similarities according to the same metric as in the other two dimensions. The images of cortical points under the mapping are envisaged as an elastic sheet moving in the feature space: these points are referred to as cortical units. For a fuller discussion of this formulation of the problem see Goodhill (1991), Yuille *et al.* (1991).

Refer to the positions of LGN units as x_i and cortical units as y_i . The change in the position Δy_i of each cortical unit at each time step is given by

$$\Delta \mathbf{y}_j = \alpha \sum_i w_{ij} (\mathbf{x}_i - \mathbf{y}_j) + \beta k \sum_{j' \in N(j)} (\mathbf{y}_{j'} - \mathbf{y}_j)$$
(1.1)

The first term is a matching term that represents the "pull" of LGN units for cortical units, which is traded off with ratio $\alpha/\beta k$ against a regularization term representing a "tension" in the sheet, that is, a desire for neighboring cortical units to represent neighboring points in the feature space. N(j) refers to the set of points in the sheet that are neighboring to *j*. The "weights" w_{ij} are defined as follows:

$$w_{ij} = \frac{\Phi(|\mathbf{x}_i - \mathbf{y}_j|, k)}{\sum_p \Phi(|\mathbf{x}_i - \mathbf{y}_p|, k)}$$
(1.2)

where

$$\Phi(|\mathbf{x}_i - \mathbf{y}_j|, k) = \exp\left(\frac{-|\mathbf{x}_i - \mathbf{y}_j|^2}{2k^2}\right)$$
(1.3)

Over the course of a simulation, the scale parameter k is gradually reduced, so that the matching term comes to dominate the regularization term.

These equations can be interpreted as saying that each cortical unit has a gaussian receptive field at position \mathbf{y}_i in the feature space (Durbin and Mitchison 1990). The amount by which cortical unit *j* responds to input *i* at position \mathbf{x}_i is given by w_{ij} . The normalization of w_{ij} by the response of all other cortical units to input *i* implements a form of soft competition between cortical units. Although all cortical units are adapted toward input *i*, those that respond most strongly are adapted the most. The first term can therefore be seen as Hebbian. The second term says that cortical units are also adapted toward inputs that their neighbors respond to.

It was shown in Goodhill and Willshaw (1990) that stripe width is controlled by the ratio of the separation of corresponding units between the LGN sheets to the separation of neighboring units within each LGN sheet. A simple analysis in one dimension suggests that stripe width increases linearly with this ratio (Goodhill 1991). A much deeper analysis

Elastic Net Model of Ocular Dominance

of stripe width in the elastic net model can be found in Dayan (1993), where the relative influences of the input similarities and the cortical interaction function are determined. Interpreting similarity as correlation, stripe width for the elastic net *increases* as the degree of correlation between the two eyes *decreases*. Similar behavior is found in the competitive model of Goodhill (1993), where the prediction was made that stripe width should thus be wider in strabismatic cats than normal cats. This prediction has recently been confirmed experimentally (Löwel and Singer 1993).

2 Overall Stripe Pattern .

Naturally occurring ocular dominance stripes in the monkey exhibit global order: stripes remain roughly parallel over large distances along the dorsal-ventral axis. This result might not be expected from the operation of the purely local mechanisms that are present in most models. LeVay et al. (1985) provide a review of theoretical ideas regarding possible sources of an anistropic ordering influence, and hence how such global order might arise. Such ideas include elongation of geniculocortical arborizations (von der Malsburg 1979), anisotropic growth of the cortex (Swindale 1980), and differences in the strength of two orthogonal gradients of adhesiveness (Fraser 1985). LeVay et al. (1985) suggest that the effect could be due to the shape of primary visual cortex as compared to the shape of the LGNs. The basic geometry of the mapping in the macaque is that of two roughly circular LGN layers projecting to a roughly elliptical region with a ratio of major to minor axes of 2:1. Assume that the map is interdigitated into parallel stripes. Then, in order to fit both of the circular LGN regions into the elliptical region, each circular region will be less "stretched" if stripes are formed running parallel to the short axis of the ellipse, compared to the case of stripes running parallel to the long axis. This hypothesis was tested for the elastic net algorithm by comparing the mapping formed between two disks of LGN units and a sheet of cortical units that is (1) a disk and (2) an elliptical region as described above. The dimensions of the cortex were chosen such that the number of units was about the same as the total in both LGNs. Results are shown in Figure 1. It can be seen that the shape of the cortex exerts a strong influence on the overall stripe pattern: for a circular boundary there is no preferred stripe orientation, whereas for an elliptical boundary stripes are indeed aligned with the short axis, as seen biologically.

This boundary effect could in general provide another test of the adequacy of models for ocular dominance, for instance (Miller *et al.* 1989; Obermayer *et al.* 1992). It would not be expected to occur in models where there is no consideration of topography [such as Swindale (1980)], since the effect relies on the undesirability of stretching, that is, deformations in topography in certain directions. The cortical shape effect hypothesized by LeVay *et al.* (1985) has also recently been demonstrated in a different computational scheme by Jones *et al.* (1991). They defined a particular cost function measuring topographic distortion, and then exactly minimized this for the mapping between two LGNs and an elliptical cortex. However, their result was obtained by a brute-force minimization of the cost function, without a particular biological mechanism in mind.



3 Monocular Deprivation

If one eye is occluded or sewn shut during the critical period for ocular dominance development in the cat or monkey, it is found that substantially more of the cells in layer IV of primary visual cortex can be driven by the normal eye as compared to the deprived eye. The anatomical correlate of this is that ocular dominance stripes receiving input from the normal eye expand at the expense of the stripes from the deprived eye: however, stripe periodicity remains the same [see, e.g., for the cat Shatz and Stryker (1978) and for the macaque Hubel *et al.* (1977)].

It is the matching term in the elastic net which determines the amount of "pull" each LGN unit exerts on the cortical sheet. In equation 1.1 each LGN unit exerts the same total pull. We modeled monocular deprivation by a procedure analogous to that used in other models [e.g., Miller *et al.* (1989)]. The pull of all the units in one LGN was reduced by a fixed amount, corresponding to a decrease in competitive strength for that eye. This is most simply achieved by redefining the constant α so that it has a different value for each eye. The amount of deprivation, or "deprivation parameter," was defined to be the ratio of α for the deprived eye to that for the normal eye. The variation of stripe pattern with the size of this deprivation parameter is shown for the elastic net algorithm in Figure 2. It can be seen that the deprived eye takes over less of the cortex than the normal eye: the deprived-eye stripes become thinner. However, the stripe periodicity remains the same as in the normal case. Note that we have only changed α , all other parameters remaining the same.

Figure 1: Facing page. The effect of the shape of the cortex on overall stripe pattern. Each LGN was a unit disk of approximately 1750 units arranged in a hexagonal array. The disks were separated by a gap of 0.08. A small random component was added to each 3-D position to prevent any artefacts that might arise from complete regularity. The cortical sheet contained approximately 3500 units in a hexagonal array, bounded by either a circle (a) or an ellipse (b). Results are shown after 250 iterations: a slightly more efficient optimization procedure than steepest descent was used to reduce computation time [see, e.g., Durbin and Mitchison (1990); Goodhill (1991)]. The ocularity of cortical units is represented: each is colored white or black depending on which LGN is closer. All units have become monocular. In the circular boundary case (a) there is no preferred stripe direction, whereas in the elliptical boundary case (b) stripes tend to be aligned parallel to the short axis. Other parameters: $\alpha = 0.2$, β = 2.0, initial value of k = 0.2, factor by which the annealing parameter k is reduced at each iteration = 0.99. Initial conditions were defined by assigning each cortical unit an arbitrary ocularity value, and a topographic position was chosen randomly from a uniform distribution within 0.5 (i.e., half the width of the LGN sheets) of its "ideal" location.

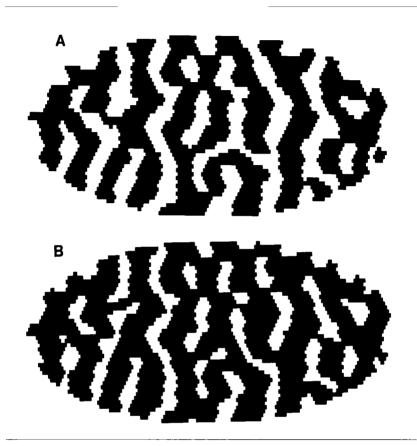


Figure 2: Effects of monocular deprivation. For the "black" eye, $\alpha = 0.2$. (a) Deprivation parameter = 0.75. (b) Deprivation parameter = 0.5. All other parameters (including initial conditions) as in Figure 1(b). Stripes representing the deprived eye become increasingly narrow as the size of the deprivation parameter is increased.

Acknowledgments ____

Funding: G. J. G. by an SERC postgraduate studentship (at Sussex University) and a Joint Councils Initiative in CogSci/HCI postdoctoral training fellowship; D. J. W. by MRC Programme Grant PG9119632. We thank the anonymous referees for useful suggestions, and Martin Simmen for helpful discussions.

References

- Dayan, P. S. 1993. Arbitrary elastic topologies and ocular dominance. *Neural Comp.* 5, 392–401.
- Durbin, R., and Mitchison, G. 1990. A dimension reduction framework for understanding cortical maps. *Nature (London)* 343, 644–647.
- Durbin, R., and Willshaw, D. J. 1987. An analogue approach to the travelling salesman problem using an elastic net method. *Nature (London)* **326**, 689–691.
- Fraser, S. E. 1985. Cell interactions involved in neural patterning. In *Molecular Bases of Neural Development*, G. M. Edelman, W. E. Gall, and W. M. Cowan, eds., pp. 481–507. Wiley, New York.
- Goodhill, G. J. 1991. *Correlations, competition and optimality: Modelling the development of topography and ocular dominance.* Ph.D. thesis, University of Sussex.
- Goodhill, G. J. 1993. Topography and ocular dominance: A model exploring positive correlations. *Biol. Cybernet.* **69**, 109–118.
- Goodhill, G. J., and Willshaw, D. J. 1990. Application of the elastic net algorithm to the formation of ocular dominance stripes. *Network* 1, 41–59.
- Hubel, D. H., Wiesel, T. N., and LeVay, S. 1977. Plasticity of ocular dominance columns in monkey striate cortex. *Phil. Trans. R. Soc. London B* 278, 377–409.
- Jones, D. G., Van Sluyters, R. C., and Murphy, K. M. 1991. A computational model for the overall pattern of ocular dominance. *J. Neurosci.* **11**, 3794–3808.
- LeVay, S., Connolly, M., Houde, J., and Van Essen, D. C. 1985. The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. *J. Neurosci.*, **5**, 486–501.
- Löwel, S., and Singer, W. 1993. Strabismus changes the spacing of ocular dominance columns in the visual cortex of cats. *Soc. Neurosci. Abstr.* **19**, 867.
- Miller, K. D., Keller, J. B., and Stryker, M. P. 1989. Ocular dominance column development: Analysis and simulation. *Science* **245**, 605–615.
- Obermayer, K., Blasdel, G. G., and Schulten, K. 1992. Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. *Phys. Rev. A* **45**, 7568–7589.
- Shatz, C. J., and Stryker, M. P. 1978. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. 281, 267–283.
- Swindale, N. V. 1980. A model for the formation of ocular dominance stripes. Proc. R. Soc. London B 208, 243–264.
- von der Malsburg, C. 1979. Development of ocularity domains and growth behaviour of axon terminals. *Biol. Cybernet.* **32**, 49–62.
- Willshaw, D. J., and von der Malsburg, C. 1979. A marker induction mechanism for the establishment of ordered neural mappings: Its application to the retinotectal problem. *Phil. Trans. Roy. Soc. B* **287**, 203–243.
- Yuille, A. L., Kolodny, J. A., and Lee, C. W. 1991. Dimension reduction, generalized deformable models and the development of ocularity and orientation. Harvard Robotics Laboratory Tech. Rep. no. 91-3.

Received April 20, 1993; accepted November 17, 1993.