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The effect of different kinds of weight normalization on the outcome 
of a simple competitive learning rule is analyzed. It is shown that 
there are important differences in the representation formed depending 
on whether the constraint is enforced by dividing each weight by the 
same amount ("divisive enforcement") or subtracting a fixed amount 
from each weight ("subtractive enforcement"). For the divisive cases 
weight vectors spread out over the space so as to evenly represent 
"typical" inputs, whereas for the subtractive cases the weight vectors 
tend to the axes of the space, so as to represent "extreme" inputs. The 
consequences of these differences are examined. 

1 Introduction 

Competitive learning (Rumelhart and Zipser 1986) has been shown to 
produce interesting solutions to many unsupervised learning problems 
[see, e.g., Becker (1991); Hertz et al. (199111. However, an issue that has 
not been greatly discussed is the effect of the type of weight normalization 
used. In common with other learning procedures that employ a simple 
Hebbian-type rule, it is necessary in competitive learning to introduce 
some form of constraint on the weights to prevent them from growing 
without bounds. This is often done by specifying that the sum [e.g., von 
der Malsburg (197311 or the sum-of-squares [e.g., Barrow (198711 of the 
weights for each unit should be maintained at a constant value. 

Weight adaptation in competitive learning is usually performed only 
for the "winning" unit w, which we take to be the unit whose weight 
vector has the largest inner product with the input pattern x. Adaptation 
usually consists of taking a linear combination of the current weight 
vector and the input vector. The two most common rules are 

w' = w + t X  (1.11 
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and 

WI = w + ( (X - w) (1.2) 

Consider the general case 

WI = nw + FX (1.3) 

where a = 1 for rule 1.1 and a = 1 - for rule 1.2. For a particular 
normalization constraint, e.g. llwll = L, there are various ways in which 
that constraint may be enforced. The two main approaches are 

w = wl/rr (1.4) 

and 

w = w’ - i jc (1.5) 

where c is a fixed vector, and (1 and /;’ are calculated to enforce the con- 
straint. For instance, if the constraint is llwll = L then (L = Ilw’ll/L. The 
simplest case for c is c, = 1 Vi. We refer to rule 1.4 as ”divisive” enforce- 
ment, since each weight is divided by the same amount so as to enforce 
the constraint, and rule 1.5 as ”subtractive” enforcement, since here an 
amount is subtrncted from each weight so as to enforce the constraint. 
It should be noted that the qualitative behavior of each rule does not 
depend on the value of a. It is straightforward to show that any case in 
which R # 1 is equivalent to a case in which n = 1 and the parameters 
t and L have different values. In this paper, therefore, we will consider 
only the case a = 1. 

The effect of these two types of enforcement on a model for ocu- 
lar dominance segregation, where development is driven by the time- 
averaged correlation matrix of the inputs, was mentioned by Miller (1990, 
footnote 24). Divisive and subtractive enforcements have been thor- 
oughly analyzed for the case of general linear learning rules in Miller 
and MacKay (1993, 1994). They show that in this case divisive enforce- 
ment causes the weight pattern to tend to the principal eigenvector of the 
synaptic development operator, whereas subtractive enforcement causes 
almost all weights to reach either their minimum or maximum values. 

Competitive learning however involves choosing a winner, and thus 
does not succumb to the analysis employed by Miller and MacKay (1993, 
1994), since account needs to be taken of the changing subset of inputs 
for which each output unit wins. In this paper we analyze a special case 
of competitive learning that, although simple, highlights the differences 
between divisive and subtractive enforcement. We also consider both 
normalization constraints C, w, = constant and C, 4 = constant, and 
thus compare four cases in all. 

The analysis focuses on the case of two units (Lee, two weight vectors) 
evolving in the positive quadrant of a two-dimensional space under the 
influence of normalized input vectors uniformly distributed in direction. 
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Table 1: Notation for Calculation of Weight Vectors. 

Parameter Description 

W Weight vector 
X Input vector 
hW Change in weight vector 
w 
hw 
0 
4 
U 

L 
d llxll (constant) 
€ Learning rate 

Angle of weight vector to right axis 
Change in angle of weight vector to right axis 
Angle of input pattern vector to right axis 
Angle of enforcement vector to right axis 
Angle of normal to constraint surface to right axis 
Magnitude of the normalization constraint 

Later it is suggested how the conclusions can be extended to various 
more complex situations. It is shown that, for uniformly distributed 
inputs, divisive enforcement leads to weight vectors becoming evenly 
distributed through the space, while subtractive enforcement leads to 
weight vectors tending to the axes of the space. 

2 Analysis 

The analysis proceeds in the following stages: (1) Calculate the weight 
change for the winning unit in response to an input pattern. (2) Calculate 
the average rate of change of a weight vector, by averaging over all 
patterns for which that unit wins. (3) Calculate the phase plane dynamics, 
in particular the stable states. 

2.1 Weight Changes. The change in direction of the weight vector 
for the winning unit is derived by considering the geometric effect of 
updating weights and then enforcing the normalization constraint. A 
formula for the change in the weight in the general case is derived, and 
then instantiated to each of the four cases under consideration. For con- 
venience the axes are referred to as "left" (y axis) and "right" ( x  axis). 
Figure 1 shows the effect of updating a weight vector w with angle w to 
the right axis, and then enforcing a normalization constraint. Notation 
is summarized in Table 1. A small fraction of x is added to w, and then 
the constraint is enforced by projecting back to the normalization surface 
(the surface in which all normalized vectors lie) at angle 4, thus defining 
the new weight. For the squared constraint case, the surface is a circle 
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Figure 1: (a) The general case of updating a weight vector w by adding a 
small fraction of the input vector x and then projecting at angle 4 back to the 
normalization surface. (b) The change in angle w, hw, produced by the weight 
update. 

centered on the origin with radius L. For the linear constraint case, the 
surface is a line normal to the vector (1, l), which cuts the right axis at 
(L.0) .  When E is very small, we may consider the normalization sur- 
face to be a plane, even in the squared constraint case. For this case the 
normalization surface is normal to the weight vector, a tangent of the cir- 
cle. For divisive enforcement, the projection direction is back along w’, 
directly toward the origin. For subtractive enforcement, the projection 
direction is back along a fixed vector c, typically (1.1). 
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Table 2: Value of 6w for winning unit. 

Constraint Enforcement Equivalences nw 

Referring to Figure la, consider hw = f x  - i-lc. Resolving horizontally 
and vertically and then eliminating i j l l c l l  yields 

sin(8 - 4) 
IlWl = - f I ~ X ~ I C O S ( f J  - 4) (2.1) 

Now referring to Figure lb, consider the change in angle w, hw: 

llw11hw = -11SWII cos(0 - w) 

which in conjunction with equation 2.1 gives 

(2.2) 

For the squared constraint case llwll = L, whereas in the linear constraint 
case 

fIIXII sin(0 - 4) cos(O - w) hw = ~ 

llwll cos( r -  4) 

L 
l l w l l  = ficos((r - d) 

For divisive enforcement d = w, whereas for subtractive enforcement 4 is 
constant. From now on we assume llxll = d, a constant. Table 2 shows the 
instantiation of equation 2.2 in the four particular cases studied below. 

An important difference between divisive and subtractive enforce- 
ment is immediately apparent: for divisive enforcement the sign of the 
change is dependent on sign(9 - w), while for subtractive enforcement 
it is dependent on sign(8 - 4). (Note that cos(w - (I,), cos(z - 4) and 
cos(: - w) are always positive for w, 4 E [O. 51.) Thus in the divisive case 
a weight vector only moves toward (say) the right axis if the input pat- 
tern is more inclined to the right axis than the weight is already, whereas 
in the subtractive case the vector moves toward the right axis whenever 
the input pattern is inclined farther to the right axis than the constraint 
vector. 
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2.2 Averaged Weight Changes. The case of two competing weight 
vectors w1 and w2 with angles w1 and w2, respectively, to the right axis 
is now considered. It is assumed that w1 < w2: this is simply a matter 
of the labeling of the weights. The problem is to calculate the motion of 
each weight vector in response to the input patterns for which it wins, 
taking account of the fact that this set changes with time. This is done 
by assuming that the learning rate f is small enough so that the weight 
vectors move infinitesimally in the time it takes to present all the input 
patterns. Pattern order is then not important, and it is possible to average 
over the entire set of inputs in calculating the rates of change. 

Consider the evolution of w,, i = 1.2. In the continuous time limit, 
from equation 2.2 we have 

Using the assumption that f is small, an average is now taken over all 
the patterns for which wi wins the competition. In two dimensions this 
is straightforward. For instance consider w1: in the squared constraint 
cases w1 wins for all 0 < (wl + w2)/2. In the linear constraint cases the 
weight vectors have variable length, and the condition for w1 to win for 
input H is now 

IlWlll cos(H - d l )  > IIw211 cos(0 - iJ2) 

where 

This yields the condition H < for wI to win for input H .  That is, in the 
linear cases the unit that wins is the unit closest to the axis to which the 
input is closest, and the weights evolve effectively independently of each 
other. (Note that we have only assumed w1 < w2, not dl < 7r/4.) 

First equation 2.2 is integrated for general limits 01 and H z ,  and then 
the particular values of 01 and 02 for each of the cases are substituted. 
We have 

(2.3) 

where the angle brackets denote averaging over the specified range of H ,  
and P( 0) is the probability of input 0. The outcome under any continuous 
distribution can be determined by appropriate choice of P(H). Here we 
just consider the simplest case of the uniform distribution P(H) = p ,  a 
constant. With some trigonometrical manipulation it follows that 

( O1 02) sin ( y) (2.4) (;if) = - sin 4 - - 2tdp cos(a - W i )  

((will C O S ( ~  - 41) 
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2.3 Stable States. 

2.3.1 Linear Constraints. Substituting the limits derived above for lin- 
ear constraints into equation 2.4 yields for the divisive enforcement case 

where for conciseness we have defined C = 2 ~ d p / L .  To determine the 
behavior of the system the conditions for which (&I)  and (&) are positive, 
negative, and zero are examined. It is clear that w1 moves toward the 
right axis for w1 > ~ / 8 ,  w2 moves towards the left axis for w2 < 3 ~ 1 8 ,  
and the stable state is 

?l 371 
q = - .  w 2 = -  

8 8 

Each weight captures half the patterns, and comes to rest balanced by 
inputs on either side of it. Weights do not saturate at the axes. This 
behavior can be clearly visualized in the phase plane portrait (Fig. 2a). 

For the subtractive enforcement case 

For (GI) < 0, that is w1 heading for the right axis, it is required that 
4 > x /8 .  Similarly for w2 to be heading for the left axis it is required that 
d, < 3x18. Thus the weights saturate, one at each axis, if x / 8  < d, < 3 ~ 1 8 .  
They both saturate at the left axis for d, < 7 r / &  and both at the right axis 
for 4 > 3 ~ / 8 .  Phase plane portraits for some illustrative values of 4 are 
shown in Figure 2b-d. 

2.3.2 Squared Constraints. Instantiating equation 2.4 in the divisive en- 
forcement case yields 

4 1 (G2) = Csin 
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0 2  

0 n/4 rd2 

C 

b 
0 2  

d 

Figure 2: Phase plane portraits of the dynamics for linear constraint cases. 
(a) Divisive enforcement: weights tend to ( i ~ / 8 , 3 ~ / 8 ) .  (b,c,d) Subtractive en- 
forcement for + = a/4,+ = ~ / 6 ,  and d = ~116 ,  respectively. For T / 8  < + < 37r/8 
weights saturate one at each axis, otherwise both saturate at the same axis. 

For (GI) < 0 we require 3wl > w2, for (ij2) > 0 we require 3w2 < w1 + 
K ,  and the stable state is the same as in the linear constraint, divisive 
enforcement case: 

K 3K 
L J 1 = - ,  w 2 = -  

8 8 

The phase plane portrait is shown in Figure 3a. 
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XI4 

a 
0 7  

b 
0 2  
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Figure 3: Phase plane portraits of the dynamics for squared constraint cases. 
(a) Divisive enforcement: weights tend to (s /8 ,3~/8) .  (b,c,d) Subtractive en- 
forcement for @ = s/4, @ = s/6, and @ = x/16 respectively. For 4 = ir/4 weights 
saturate at different axes. As @ moves from ~ / 4 ,  there is an increasing region 
of the (w1 , w2) plane for which the final outcome is saturation at the same axis. 

In the subtractive enforcement case we have 

1 
(&I)  = -c 

cos($ - w1) 
w1 + w2 + ") sin ( w 1 -  f: ") 

4 
1 

(W2) = c 
C O S ( 4  - w2) 

For (Wl) < 0 we require 

w1 + w2 4 > 4  
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Table 3: Convergence Properties of the Four Cases. 

Constraints Divisive Subtractive 

Linear Weights stable at Weights saturate at different axes for 
LJl =;. w * =  3. i<(b<? 

For C#J < both weights saturate at left axis 
For 9 > both weights saturate at right axis 
Weights saturate a t  different axes for 0, = i 
For i < Q, < weights may saturate at the 
same or different axes (see text) 
For other sb both weights saturate at same 
axis as in linear case 

Squared Weights stable a t  
w1 = i , w2 = 9 

Similarly for (ijz) > 0 we require 

ull + LJ2 + 7r o <  
If = 7r/4 both these conditions are satisfied for all but two initial 

states and weights saturate one at each axis, that is, the only stable at- 
tractor is (0.7r/2). The two points for which this is not true are the critical 
points (0,O) and (7r/2%7r/2). Here 2, = 0, ijz = 0, and these are unstable 
equilibria. 

If ~ / 8  < 4 < 7r/4, both (7r /2 .~/2)  and (0.7r/2) are stable attractors. 
Both weights can saturate at the left axis if they start sufficiently close to 
it. The size of the basin of attraction around (7r/2.7r/2) gradually increases 
as dj decreases, until for (lj < 7r/8 the point (0. n/2)  is no longer an attractor 
and all initial conditions lead to saturation of both weights at the left 
axis. Analogous results hold for 7r/4 < (/I < 31~18,  and cf) > 3 ~ / 8 .  Phase 
plane portraits for some illustrative values of (i, are shown in Figure 2f-h. 
We have not been able to find an analytic expression for the boundary 
between the different basins of attraction in this case. 

Convergence properties for each of the four cases of constraints and 
enforcement are summarized in Table 3. 

3 Discussion - 

3.1 Extension to More Units. Extending the above analysis to the 
case of more than two units evolving in two-dimensional space is straight- 
forward. Consider N units with weight vectors w,, indexed according to 
their angle with the right axis, so that the smallest angle with the right 
axis is LJI and so on. 
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For the squared constraint, divisive enforcement case the stable state 
is w1 = ~ 2 1 3 ,  WN = [(LdN-1+~)/3]. The weight vectors in between are stable 
when they are equidistant from their neighbors. The angle between each 
pair is thus (t = 7r/2N, and the angle between wl,  LJN and the right and 
left axes respectively is 0/2. 

For the linear constraint, divisive enforcement case the situation is 
different since it is the weight vector closest to the axis to which the input 
vector is closest that wins. First consider the case where ~ / 8  < w1 < 3 ~ 1 8 .  
Then w1 is the only vector that ever wins for H < 7r/4, and so is stable 
at L J ~  = 7r/8 as before while all other vectors j such that u', < 7r/4 remain 
in their initial positions. A similar situation holds in the upper octant. 
If wl < 7r/8 then it still eventually comes to rest at ull = 7r/8. However, 
if there are other vectors k such that wk < 7r/B then these will begin to 
win as u '1  passes by on its way to ~ / 8 .  Which unit wins changes as each 
progresses toward 7r/8, where they are all finally stable. Again, vectors 
with initial angles between 7~ /8  and 3 ~ / 8  remain in their initial states. 

By similar arguments, the situation is even more straightforward in 
the linear constraint, subtractive enforcement case. w1 saturates at the 
right axis and WN at the left axis as before (for appropriate O), and all 
other weights remain unchanged. The squared constraint, subtractive 
enforcement case is, however, more complicated. In general all weights 
vectors wi for which w, < 4 saturate at the right axis: an analogous result 
holds for the left axis. However, this is not quite true of the two initial 
weight vectors wj and wjtl, which are such that w, < (i, and w , + ~  > 4,. 
Assume wi+l is closer to q5 than wj. Then wi+l can win for inputs H < 05, 
and wj+l can eventually be pulled to the right axis. 

The effect of a conscience mechanism (Hertz et al .  1991) that ensures 
that each unit wins roughly the same amount of the time can thus be 
clearly seen. In the linear constraint, subtractive enforcement case, this 
would mean that eventually all weights would saturate at the axis to 
which they were initially closest. For instance, for H < ~ 1 4 ,  w1 would 
win for the first pattern, but then w2 would win for the next since wl is 
temporarily out of the running, and similarly for all weights. 

3.2 Higher Dimensions. In higher dimensional spaces, the situation 
immediately becomes much more complicated, for two main reasons. 
First, it is harder to calculate the new weight vector for the winning unit 
in terms of the old by the geometric methods we have used here. Second, 
the dividing lines between which unit wins for the set of inputs forms a 
Voronoi Tesselation (Hertz et al. 1991) of the constraint surface. The limits 
of the integral required to calculate (W) are thus hard to determine, and 
the integrand is more complicated. Empirical results have been obtained 
for this case in the context of a model for ocular dominance segregation 
(Goodhill 1993). Figure 4 shows an example for this model (discussed 
further below), illustrating that qualitatively similar behavior to the two- 
dimensional case occurs in higher dimensions. See Miller and MacKay 
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(1993, 1994) for analysis of linear learning rules in spaces of general di- 
mension. A more general analysis for the competitive case will be found 
in Barrow and Goodhill (1993, 1994). 

3.3 Representations. How do the representations formed by divisive 
and subtractive enforcement differ, and for what kinds of problems might 
each be appropriate? From the two-dimensional results presented here, it 
appears that divisive enforcement is appropriate if it is desired to spread 
weight vectors out over the space so as to evenly represent "typical" 
inputs, or, if the inputs are clustered, to find the cluster centers. Subtrac- 
tive enforcement on the other hand represents "extreme" inputs: instead 
of finding the centers of clusters, the weight vectors tend to the axes of 
the space to which clusters are closest. Subtractive enforcement can be 
thought of as making harsher decisions about the input distribution. 

These properties are illustrated for a high-dimensional case of a sim- 
ilar learning rule in the model of visual map formation and ocular dom- 
inance segregation of Goodhill (1991, 1993). Here, an array of "cortical" 
units competes in response to inputs from two arrays of "retinal" units. 
With divisive enforcement of a linear normalization rule, no ocular domi- 
nance segregation occurs unless only a small patch of retina in one eye or 
the other is active at a time (Goodhill 1990). However, with subtractive 
enforcement segregation does occur when all retinal units are simulta- 
neously active, with local correlations of activity within each retina and 
positive correlations between the two retinae (Goodhill 1991, 1993). This 
is illustrated in Figure 4. 

Two other points of note are as follows. (1) Whereas the stable state 
for divisive enforcement is invariant to affine transformations of the in- 
put space, it is not for subtractive enforcement. (2) A natural type of 
projection onto the constraint surface to consider is an orthogonal pro- 
jection. For squared constraints orthogonal projection corresponds to di- 
visive enforcement, whereas for linear constraints orthogonal projection 
corresponds to subtractive enforcement with c; = 1 tri in equation 1.5. 
Thus applying a rule of orthogonal projection leads to a very different 
outcome for squared and linear constraints. 

4 Conclusions 

A simple case of competitive learning has been analyzed with respect 
to whether the normalization constraint is linear or sum-of-squares, and 
also whether the constraint is enforced divisively or subtractively. It has 
been shown that the outcome is significantly different depending on the 
type of enforcement, while being relatively insensitive to the type of con- 
straint. Divisive enforcement causes the weights to represent "typical" 
inputs, whereas subtractive enforcement causes the weights to represent 



268 Geoffrey J. Goodhill and Harry G. Barrow 

"extreme" inputs. These results are similar to the linear learning rule 
case analyzed in Miller and MacKay (1993, 1994). 

Directions for future work include analysis of normalization in com- 
petitive learning systems of higher dimension, and studying the differ- 
ences in the representations formed by divisive and subtractive enforce- 
ment on a variety of problems of both practical and biological interest. 
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