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NOMENCLATURE

x Absolute displacement of mess

J'::dx/dt Absolute velocity of mass

%=d%x/dt* Absolute sccelerstion of mass

m Masg of system

k Stiffness of restoring element

t Time

w Circular frequency - radians per second; quasi-natural frequency
of system

y, y(t) Ground or base displacement

y =d?y/dt* Acceleration of base

z Reletive displacement of mess with respect to system base

t =dz/dt Relative velooity of mass with respect to system base

i=d%z/dt> Relative ecceleration of mass with respect to system base

w Weight of mass of system

a, Acceleration of base in accelerations of gravity
¢ Stress

€ Strain

€ =de/dt Rate of strain

A Area

p One millionth of & quentity

Force

Velocity







INTRCDUCTION

Numerous treetises on the vibrations of systems with nonlinear spring
characteristics, may now be found in the literature. The majority of
these deal with either free or forced oscillations under steady state
conditions. Only e few investigators however, have examined the response
of a nonlinear system to a transient disturbance.

The objeet of the present transient motion study was not that of
investigetion of response of a nonlinear system alone, but was projected
to include the effect of a strain-rate sensitive, nonlinear restoring
element,

With the advent of the relatively recent introduction of the polyure-
thene and similer plastic materials, this problem has become increasingly
important. For these materials, widely used for shock mitigating, purposes;
exhibit strain-rate sensitivity to an important degree. Thus & compara-
tively new field of research has presented itself and thus far appears to
have received little attention in the literature.

At present, designers are confronted with numerous problems involving
transient motions. The response of the system to these transients may
easily be catastrophic if satisfactory methods are not available for
their prediction. These problems appear in a variety of physical applica-

tions. For instence, (e) the protection of electronic apparatus, (b) the

prevention of failures in structural members, and (c) the attempt, by

eliminating the shock hazard, to gain assurance of continued operation
of mechanical devices. The damaging phenomenon is invariably excessive

acceleration caused by improper selection of energy absorbing or energy







storing elements.

The crux of the problem is then, to develop & method that has the

following merits:

(a) Generality - It should be sufficiently generel to cover &
large variety of cushioning elements with dissimilar stress-
strain characteristics, and should not be limited as to the
form and duration of the trensient impulse.

Simplicity - It should be relatively simple to apply, so that
one may obtain solutions es quickly as possible.

(¢) Reliability - It must be reliable so that it may be used with
conf'idence.

This thesis develops & method that had as its primary objectives, these

ideals., The factors of generality and reliebility are present to a large

degree. Considering the complexity of the problem, the method may be

said to be reasonably simple.
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one” (by the authors) and it was applied to several nonlinear systems

of different charecteristics in combination with various shapes of

applied pulses. No significant work of similar nature seems to have

been accomplished until 1952 when Jacobsen (6) improved the phase-plane

method end extended its application to even a broader variety of problems.
The me jority of the work on strain-rate sensitive systems, outside

of material properties testing, seems to appear in the fields of creep

and relexetion. Several investigators (7) have performed theoretical

enalyses of nonlinear strain-rate sensitive elements in these areas.

The method usuelly considers the use of rheological models (such as those

of Maxwell, Voight, and Kelvin) to describe the phenomena. No work, with
one exception (8), on the response of nonlinear, strain-rate sensitive
systems to a transient disturbance was discovered in the literature

research of the writer.







CONCISE STATEMENT COF THE PROBLEM

The general problem has been described in the fore-going text,

More specifically, the problem is: (See Fig. 1)

Pig. 1

Predict the response of a mass (a), mounted on & nonlinear rate-sensitive
element (b), to an acceleration pulse applied at the base (c). The stress-
strain relations (at verious rates) of element (b), and the megnitude of
the pulse as & function of time having been previously determined. How-
ever, the method to be described is general, as previously stated, and is
not restricted to this particuler case but may be applied to meny other

cages,







DEVELOPKENT OF SOLUTION
Phase~Flene~Delta Analysis

The phase~-plene~-delte method of graphical solution will not be
discussed in great deteil here. For a detailed study, one is referred
to the references previously citeds Some review of the method is
necessary however, in order to clearly define its application to the
present problem.

In the phase-plene-delte method a point in the phase plene is
determinéd by the usual coordinates (kﬁb,x), where x is velocity,
&>=\f17;: and x is displacement. The phase trajectories, a step-wise
process, are described by a series of circular arcs with centers §,
located on the displacement axis only. It will be seen how & is defined,
as the principles are developed.

First write the differential equation describing the oscilletory
motion as,

mx + f(x,x,t) + kx=0 . (a)
After dividing by m, end setting k/m=w" one has,

¥ ¢ fx,x,t)/m +wx=0 . (b)
The above equation may be rewritten as,

¥ +0 (x ¢+ 8)=0 (e)
where the second parameter in the displacement term is,

§=1£(x,x,t)/k .
Introducing the phase plane coordinates

X =X; i,{;:v







end changing the independent variable,
X = dv/dt = w (dv/dx)(dx/dt )= w? dv/dx .
Equation (c) can be written as,
dx/dv=-v/(x + 8) . (d)
Integrating Equation (d), (& is treated as a constant throughout any
particular step), gives,
2

(x+6)z+v=C.

Now let C=r?, and Equation (e) is seen to be the equation of a circle

of radius, r.-:\/Zx - 6)2 + v » With its center located at (x + §) .
Fig. 2 illustrates the geometricel concepts evolved from Equations

(d) and (e).

Pig. 2

Considering the geometry of Fig. 2,

40 = ds/r= Vax* + dv® /V/v® + (x + 8)* =
[\/1 + (dv/dx)* //1 + (x + 6/v)2](d;§/v)=dx/v
which can be related to the tirme element by writing x-wv as,

dt = (1/w)- (ax/v) = (1/w)ae . ()

Integrating FEquation (f) for the duration of & step, one has,
the1 - tn:'(l/“xenﬂ. i en) ?

For the orientation of axes used, increasing time is proportional to the

counterclockwise enguler variation of the phase trajectory normal.







All of the parameters necessary for the stepwise construction of a

graphical solution of Equetion (e¢) have been reviewed.1 Applicetion to

the present problem is now considered.

Referring to the system in Fig. 3,

Fig. 3
Equation (c) may be written,

¥+w(x~-y(t) + §)=0
where, x - is displacement of the mass
y(t) - is the base displacement acting on the mass
through the restoring element
Introducing the relation,
z=y - x , where z is the displacement of
the mass relative to the base
into Equation (7) one obteins,
(y =2) +*(y =2z -y + 8)=0
-F s (=2 + 8+ ¥/)=0
itwt(z- [§+57] )=0

so that d,pp=0 + V/0* .

Now if y is expressed in g's (eccelerations of gravity) instead of

units of length/sec?, one has,

1Equations (a) through (f) were taken from reference (6), where a

discussion in even greater detail is given.

(g)

(h)






v/t = a,g/w'=8 g/ (ke/w) = 8, w/k (3)
where, &, - is acceleration of the base in g's
w - is weight of the mass in pounds
and Equation (8) becomes,
i+ w(z~-[8¢+a,/k])=0 (k)

Equation (h) or Equation (k) is used to solve the system in Fig.

2 the choice of the equation to be used being governed by the
acceleration units in which the driving term is expressed.

The phase-plene-delte method is especially suited to the present prob-
lem., It presents graphically the variation of wvelocity with displacement.
This is precisely the principle made use of in the present method.

The method will be described with the aid of Fig. L end Fig. 5.

Consider the set of stress~strain curves, for a rate sensitive

element, shown in Fig. L.

Ll
. M-
B

o m o
ion
Om. o

Fig. L4

These curves are first converted to load-displecement curves at various

velocities. Figs. 5 shows the load~displacement curves end & phese-plane
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disgram of the response of & meass, mounted on this element, to an impulse.

0
s £ TN e \\\<
Pac LAl bl

\\\' e T
\\\
\\\ ‘
oY & Al £ x.>>
F, F, 0 0 v, v,
Fig. 5

The set of load=displacement curves have been rotated 90° so that the
displacement will correspond to the displacement on the phase diagram.
Referring to Fig. 5, the restoring element is assumed to follow the
static streining curve (é=e, or v=v, ) until the phase trajectory indi-
cates the value va=v, . A jump (indicated by 'e' in Fig. 5) is then
made to the load-displacement curve of rate v=v, . This curve is
followed to point 'b' where v=v, , since the phase trajectory shows
that the mass does not reach the velocity v=v, « A jump is now made
back to the statio curve, which the restoring element follows until the
mass reaches maximum displacement.

The above procedure is repeated as often as necessary and the jumps
are mede to curves of increasing or decressing strain-rates accordingly,
as to whether the response velocity is increasing or decreasing. If a
judicious choice of jumps determined by & consideration of the geometry
of the load-displacement curves and the phase-plane trajectory is made,

the method will give good accuracy.






i3

In the solution, the phase-plane-delta analysis proceeds in the
usual menner. An initial loed-displacement curve is selected and from
it and the mess quentity, k and @ are determined. It should be pointed
out that the initial curve may not necessarily be the static one, for if
an applied pulse atteins lerge acceleration magnitudes in a small time
intervel, the phase trajectory for some systems may indicate & sharp
increase of velocity, initially,

Application of the method will be further illustrated by applying
it to a hypothetical problem.

Consider the set of load=-displecement curves shown in Fig. 6.

2

v=2 in./sec
v,=1 in./sec

- (sbatic) =0
/ V.

load - lbs
'

and let these apply to the system shown in Fig. 3. Now determine the
response of a mass, m=1, when & semi-sinusoidal pulse, y=2 sine 2%
in./%ec% is applied to the base.

Equation (h) is seen to be the appropriate one for this case, and
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the phase-plane construction is shown in Fig. 7. The details of plotting
will be omitted here.

Referring to Fige. 7, note that the load-displacement curve that the
system will follow initially, will be the static one, which it continues
to follow until the trace of the phase trajectory reaches a value #/o=1
in,/ secs A jump is now made to the load-displacement curve of rate
v, =1 in./sec. As the phese diagram proceeds using this curve, it is
readily seen that insufficient velocity will be attained to ceuse a further
Jjump to eanother rate curve before the yield point is reached. After the
vield point, velocity gradually decreases to 1 in./sec. where a Jump is
made back to the static curve.

The absolute acceleration of the supported meass mey be obteined by
either of two methods. First by relating the time back to the load=-
displacement curve used in the construotion of the phase-plene diegram.
Using Newton's second principle, the force is then divided by the mass of
the oscillatory system, and one obteins the absolute acceleration as a

function of time. This method is illustrated in Fig. 8 below.

g 3
§ et i 7
/|
o_ __|
o /
/
m T i e -_—/7|
o 55
(a) () (o) L AR

Pige 8 METHOD OF OBTAINING ABSOLUTE ACCELERATION DIRECTLY FROM PHASE DIAGRAM

*Note - % and ¥ will have different scales.
|
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In this illustration a squere wave is applied to the base of &
system (Fig. 8a) with a bilinear epring (Fige 8b)s The resulting accelera-
tion, X, of the mass is shown in Fig. 8d.
The second method of obteining the same result is as follows:
The phase trajectory will give directly, relative velocity as a functiom
of time. This may be graphically differentiated to give reletive eccelera-

tion. Then absolute acceleration may be obtained by the formula,

.x.a.};" .l. .

Analyticel Treatment

An analytical treetment is also possible by using the well-known
principle that any function can be epproximeted by a series of straight
line segments. Thus for the cushioning meterial, the load-displacement
curve being used is approximated by straight line segments. In order to
have & continuous function, the point at which two line segments join must
satisfy the differential equations of motion which uses each line as a para-
meter. This requires that the end point for the preceéding differential
equation determine the boundary conditions for the next differential equation.

This method is recommended only as a check for the phase-plene enalysis
or perhaeps as & more accurate analysis to be used after the phase-plane
method is accomplished. For one must plot displecement versus velocity in
order to determine the steps for a rate sensitive system. Furthermore,

the solution of a transcendentel equation (sometimes tedious) is involved
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for determining boundary conditions for some of the equations.
The method will be applied to the same problem used in the preceeding
analysis so that the results of the two methods may be compared. The

parameters are repeated in Fig. O.

n=1
A=2
B=2
w=V'k,/a=1

W=V K /m= V12=1.09

Fis. 9

The first differential equation that governs the relative motion is,
2 + (k,/m)z2=A singt , for |zl <z, (a-1)
which hes as its solution
2= (A" -A)(sin Bt ~(8/w) sinwt) (b=1)
when the boundary conditions are 2(0)=0, 2(0)=0 . Teking the
first derivative with respect to t, of Equation (b-1) and substituting
the problem parameters, one obtains,
t= =~ (L,/3)(cos 2t = cos t) (e=1)
which becomes

1~ (L/3) cos t = - (LL/3) cos 2t

ly cos t - 3=} cos 2t
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after z 1 is substituted., The value of the argument t, of immediate
interest,l that satisfies Bquation (d-1) is, t = 16.9° . Substituting
this value and the problem parameters in Equation (b=-1) one has,

g,== (2/3)(sin 2(L6.9°) - 2 sin L6.9°) =0.309 .
z(t, )=1, and 2(t, )=0,309, become the boundary conditions for

z ¢+ (k,/m)z = A sin Bt, for z, <|z|< 2,= 1
which is the next differential equation to be considered.
Its general solution is,

£=C - 8in Wt +C, - cos wt + (afo” -ﬂz)) sin £t

where a%=¢;:Z; .

Differentiating once, Equation (f-1) gives,

2= wl, cos Wt = w,C, sin wt + (A" -89 cos gt . (g-1)

From Equations (f-1) and (g-l) respectively, one gets the set,

0.779 C, + 0.627 C,= 1.007

0.68l4 ¢, - 0.850 C,= 0.693
after the problem parameters and boundery conditions are substituted.
From which,

C,=1.18 3 C,=0.126,
The solution of (f=1) is then,

£=1.18 8in 1,09t + 0,126 cos 1.09t = 0.71L sin 2t.

for L6.9<t<t, . (h-1)

IOthor roots of Equation (d=1) are not of interest for they will violate
the limits for z in Equation (e-1).

'Tho times t,, t,, t,, and t, will correspond respectively to the dis-
placements ¢z , 2,, 2,, and 3.,
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Equation (h-1) is now used to determine the boundary conditions for the
succeeding differential equaltion. Substituting z(ty)z z,= 1, one gets,
1 -1.18 sin 1,09t =0.126 cos 1.09t - 0,71, sin 2t (3-1)
from which t,==82.6o . Differentiating Equation (h-1) and substituting
the value t, yields,
z(t,)=1.285 cos 90° = 0.1375 sin 90° =~ (L/2.8) cos 165.2° = 1.243 .
The differential equation that now governs the motion is,

z + (k,/m)z,,=A sin 8t , for z,< |(zl<3, (k=1)
which has as its general solution,

z= - (8/8%) sinpt - Wiz, (t*/2) 4+ C t + C,,

for t<t< t, ="*90° (1-1)

Differentiation of Equation (1-1) gives,

2=~ (A8) cosft - wfz,t +C, for t, <t < 90 (m-1)
Substituting, z(t,) =1, z(t,)=1.2L3, (t,=82.6"= 1.4L2 rediens) into
Equetions (1-1) and (m-1) respectively, one has,

= =~ 0,500 sin 165.2° - 0.721(1.L42) (1.2) + 1.2 ¢C, +C,
1.243 = = cos 165.2° = 1.2(1.142) + C,
from which, C = 2,01, C,= = 0.52, end the solution becomes,
- 0,500 sin 2t = 0,60t* + 2,01t - 0.52) ,
for t,<t<t,= 90° (n=1)

The boundery conditions for the next differential equation describing

the motion are obtained from Equation (n-1) and the equation resulting

from teking its first Newtonien derivetive, and substituting t2=:90° in

*
Applied impulse vanishes at t,.
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each, The resulting equations are,

2,= = 0.60(1.57)° + 2.01(1.57) = 0.52L=1.16

z,= 1 = 1,20(1.57) + 2.01=1.13
Now the differentiel equation to be used is,

z + (k,/m)z,= 0, for z,< |zl< 2,
which has as its solution,

z=-wfz, (t°/2) 40t +C,
and the velocity equation becomes

z2=- wfzy t +C,
from which after substituting z(t,)=1.13, C = 3.01,
and from Equation (p-1), using z(t,)=1.16, one has,

1.16 = = 0.60(1.57)° + 3.01(1.57) + C,
from which C,= - 2,08, and the particular solution of Equatiton
(o=1) is,

2==- 0.,60t* + 3,01t - 2,08 , when 90 <t <t,.
Using z(t,)=1 in Equation (g-1) and substituting the value for C,
along with the problem parameters, one has,

1.00 = = 1.2t3 + 3,01

from which t,= 1.67 radiens = 96° .,
Likewise from Equation (p-1),

2= - 0.60(1.67)" + 3.01(1.67) - 2.08= 1,27
after substituting ts' the value for C,, and the problem parameters.
z(t,) = 1.27 and i(ta ) =1 are boundary conditions for the differen~
tial equation,

z 4 (ko/m):y.—. 0 , when 3,< |z|

(o-1)

(p-1)

(q-1)

(r-1)

(s-1)







which has the general solution
z=-wjz (¢%/2) +Cct+C,
and the expression for the velocity is,
z==wiz,t + C,
from which, after substituting z(t,)=1 and ©,=1, C,= 2,67,

Using Equation (t-1) end z(t;) = 1.27, one obtains,

1.27 = = 0,50(1.67)" + 2,67(1.67) + ¢,

from which C, = - 2,80 and the particular solution of Equation
(s=1) is,
2=~ 0.50t* + 2,67t - 2.80,
for t>96 = 1,67 redians. (v-1)
Sufficient equations for the solution of the response of the
mass in terms of displacement, velocity, or acceleration, have been
developeds The solution of this problem will consider only, the abso-
lute acceleration of the mass.
The equations for relative acceleration are:
z = (L4/3) (2 8in 2t - sin t), for 0<t<Lb.9°
i = L(0.714) sin 2t - (1.09)°(1.18 sin 1.09%
+ 0,126 cos 1.09t), for L6.G°< t<82,6°
I= 2 sin 2t = 1.2, for 82.6 = 1.l <t<90°= 1.57
£ = - 1,2, which holds for 90° = 1,57<t<96 = 1.67
although t does not eppear in the equation.
£= -1, when 96°=1.67<t
Equation (a-2) is obtained by differentiating once, Equation

(c=1). Equations (b-2), (¢-2), (d-2), and (e-2) are obtained by
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differentiating twice, Equations (h-1), (o-1), (r-1), and (v-1) res-
pectively.

The absolute acceleration is calculated from the formulsa,

X=¥-%.

Fig. 10 shows two curves of absolute acceleration of the supported
mass versus time, one obtained from the phase-plane anelysis of Fige. 7
and the other by the analytical approach. The two curves are in good
general agreement. The slight disagreement is caused by the more pro-
nounced effect of the jumps in the load-displacement curve of the phase-
plane solution, since & piecewise continuous smooth load-displacement
curve without jump discontinuities was assumed in the analytiecal

treatment.
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APPLICATION TO AN ACTUAL PROBLEM

The phase-plane method will be applied to an actual problem.

Problem: Predict the response of the supported mass of a system
with w/A = 0.9 1bs/in?, when subjected to a semi-sinusoidal pulse of
1,000 p sec. duration eand 1,500 g's maximum emplitude. The pulse is
applied to the end of the restoring element opposite the mass. The rate
sensitive element is a compounded plastic,65% Poly=-rubber 5021/Stafoam
760, 65/35.

The system end the acceleration impulse are shown in Fig 1l1. Stress-

strain characteristics of the restoring element were teken from reference

e B

l [
0 1000 p.see

h = 0.5 in. (length of restoring element)
w =1 1b (weight of mass)

A

1.11 in? (cross-sectional erea of restoring element)

(8) and are shown in Fig. 1l in the Appendix.

The perameters for use in Equation (k),

Z+0(z~- [6+a,/])=0 (x)
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the applicable one for this problem, are to be calculated.
Using the stress-strain ocurve for & =5,000 %/sec.,
k =o"A/2=120(1.11)/0.0125= 10,650 1bs/in.
where z=%e(h)-(10)"
and from Equation (Jj),
Vi/6S= 84, W/k=1,500(1)/10,650=0.1L in.

w=/k/m = (V' 10.65(0.386))(10 )3:—' 2.0L( 10)3 radians/sec.

One more parameter, d©, is needed for phase-plane plotting. The
sine pulse is divided into 18 parts so that dt= 55.5'Leeo. The average
acceleration over this time interval is used in the plotting.

From Equation (f),

d6=wdt = 2,04(55.5)(10) = 0.113 radians=6.50".
This is the basis for the compass swings on the phase-plane diagram
during the period of the pulse.

Values of z/w are calculated from the formula,

ifo= h(10)"¢é Jw= (o.5o)(1o)'zé/2.oh(1o)3
=2.1(10)"%

and are given in Table 1.
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Table 1. Velues of %/w for Various Strain-rates

z/w

é 2
%/sec in./sec in./sec

1,000 0.002
5,000 0.012
10, 000 0.02L
20,000 0.0L9
30,000 0.073
Lo, 000 0.098
50, 000 0.122

60, 000 0.147

The phase-plane diagram is shown in Fig. 12 and the results obtained
from it are shown in Fig. 13, where the applied pulse and absolute
acceleration of the mass are shown as functions of time. The developed

load-displecement curve is shown in Fig. 15 in the Appendix.
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RESULTS

The results obteined for the actual problem (Fig. 13) are in close
agreement with those obtained by a different method at The University of
New Mexico (8). The solution obtained by this second method is also
plottedl in Fig. 13. Similar problems have been verified experimentally

at The University of New Mexico, end the method presented in (8) egrees

well with the experimental results.

1Nuzmax‘ioal values for this curve were taken from reference (9).







CONCLUSIONS

The modified phase-plane-delta method accomplishes, to a large degree,
the objectives set forth in the Introduction. It has few limitetions and

for meny problems it yields rapid solutions. The method is simple to

apply end only requires a few ordinary drafting tools.

The analytical method has been shown to yield results comparable to
those obtained by the above method. Its usefulness is impaired by the
fect that it may become too lengthy. This will especially be true when
numerous differential equations are necessary to describe the motion of

a system.
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