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Abstract

Semiconductor membranes offer an interesting materials and device development

platform due to their ability to integrate dissimilar materials through a print, stamp

and transfer process. There is a lot of interest in integrating antimonide based type-II

superlattices (T2SL) onto inexpensive substrates, such as Si, to not only undertake

fundamental studies into the optical, electronic and structural properties of the su-

perlattices but also to fabricate wafer-level infrared (IR) photodetectors. An effective

approach to transfer type-II superlattice membranes (T2SL-M) onto alternate sub-

strates is based on membrane release from the native GaSb substrate followed by

the transfer to a new host substrate. In this work, I have transferred InAs/GaSb

and InAs/InAsSb T2SLs with different in-plane geometries from a GaSb substrate

to a variety of host substrates, including Si, polydimethylsiloxane and metal coated

surfaces. Electron microscopy shows structural integrity of transferred membranes

with thicknesses ranging from 100 nm to 2.5 µm and lateral sizes from 24x24 µm2
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to 1x1 cm2. Atomic force and electron microscopy reveal the excellent quality of the

membrane interface with the new host. The crystalline structure of the membrane is

not altered by the fabrication process, and minimal elastic relaxation occurs during

the release step, as demonstrated by X-ray diffraction and mechanical modeling. I

have also used the antimonide superlattice membranes to realize wafer level infrared

detectors on silicon substrates without using conventional Indium-bump hybridiza-

tion. In this approach, PIN superlattices are grown on top of a 60 nm Al0.6Ga0.4Sb

sacrificial layer on a GaSb host substrate. Following the growth, I have transferred

the individual pixels using an epitaxial lift-off technique, which consists of a wet-etch

to undercut the pixels followed by a dry-stamp process to transfer the pixels to a

silicon substrate prepared with a gold layer. I have done structural and optical char-

acterization of the transferred pixels using an optical microscope, scanning electron

microscopy, and photo luminescence. The interface between the transferred pixels

and the new substrate is abrupt, and no significant degradation in the optical quality

is observed. Next, I have fabricated an indium-bump-free membrane detector using

this approach. Spectral response measurements and the current-voltage character-

istics of an infrared photodetector, based on the InAs/InAsSb superlattice, bonded

to Si demonstrates the functionality of transferred membranes in the infrared range.

The performance of the membrane detector is compared to a control detector using

the as-grown epitaxial material. The proposed approach to fabricate Indium-bump

free detectors could pave the way for wafer-level integration of photonic detectors

on silicon substrates, which could dramatically reduce the cost of these detectors.

Since the release of T2SL-M is achieved using a high etch selectivity between the

active region and the Al-containing sacrificial layers, a poor selectivity between the

sacrificial layers and a variety of T2SL active regions will result in significant dam-

age to the active layer of an IR detector. I have developed a novel two-step etching

process to protect the T2SL-M while the sacrificial layer is etched away. In this

process, both the top surface and the sidewalls of the membrane are coated with
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a hard-baked polymer film (i.e., photoresist), and therefore they are unexposed to

the chemical etchant. For Al and Ga containing compounds, with no membrane

isolation, this process leads to rough sidewalls which are expected to increase surface

recombination in the membrane and therefore increases the dark current density of

an IR detector. I have quantified this effect by characterizing T2SL IR detectors

fabricated on isolated and non-isolated mesas. A comparative analysis of the dark

current density measured for the two devices signify the effect of having exposed

sidewalls during membrane release. These experimental results are consistent with

theoretical calculations which show a relative enhancement of surface recombination

with increasing roughness of the membrane sidewalls. The development of these Sb

based T2SL membranes opens up new exciting prospects for material science studies

and device architecture integration.
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Chapter 1

Introduction

1.1 Background

Epitaxially grown single-crystalline semiconductor membranes offer a new platform

for fundamental science and advanced technology. Progress in membrane fabrication

has already significantly altered the landscape, as it relates to properties and applica-

tions of group IV [2, 3, 4, 5, 6] and III-V semiconductors, [3, 7, 8, 9, 10, 11, 12, 13, 14]

III-nitrides [3, 15, 16] and various oxide materials. [16, 17, 18, 19, 20] Despite the nu-

merous demonstrations of membrane technology applied to III-V materials, Sb-based

compounds in membrane form has not been investigated. Furthermore, epitaxially

grown Sb compounds have recently received increasing attention as functional layers

in infrared detectors [21, 22, 23, 24] and sources, [25, 26, 27, 28, 29] high mobility

transistors, [30, 31, 32] resonant tunneling diodes [33, 34, 35] and low-power analog

and digital electronics.[30, 36]

In this work, I establish a versatile process to release and transfer these structures

from their epitaxial growth substrate to any host substrate. The focus, specifically,

will be on Sb-based type II superlattices (T2SLs) which are currently used as ab-
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Chapter 1. Introduction

Figure 1.1: Fundamental material study and technological problems of grown materi-
als on GaSb conducting substrate and advantages of transfering Sb-based membrane
to insulating substrates.

sorbers in IR detectors. [21, 22, 23, 24] IR imagers will benefit from the release

and transfer InAs/(In,Ga)Sb stacks from an epitaxial growth substrate to any host.

Figure 1.1 summarizes the problems with GaSb substrate and the advantages of

the Sb-based membrane. Furthermore, in the next two section, I will explain the

challenges more in detail.
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Chapter 1. Introduction

1.1.1 Fundamental material study

One major challenge is that fundamental properties of T2SL absorbers, such as

background carrier concentration and vertical carrier mobility, have not yet been

very well characterized. Background carrier concentration determines the minority

carrier lifetime and diffusion lengths, whereas vertical and lateral carrier mobilities

affect the extraction of the photo-generated electron-hole pairs. Electrical trans-

port measurements in T2SLs are challenging due to the semiconducting nature of

the native growth substrate, namely GaSb. Transfer of Sb-based T2SLs to insu-

lating materials will enable a thorough investigation of electrical transport in the

heterostructure via Hall and van Der Pauw measurements, which are not applicable

to T2SLs supported by GaSb substrates. In addition to these fundamental questions,

a number of technological challenges exist in the fabrication of IR detectors based

on T2SLs.

1.1.2 Technological challenges

Typically, T2SLs are epitaxially grown on GaSb substrates. While these substrates

provide mechanical support during device fabrication, they are undesirable in IR

cameras. GaSb substrates absorb much of the incoming radiation in the IR range,

thus reducing the signal-to-noise ratio (SNR). [37, 38] In addition, T2SLs/GaSb sub-

strates are hybridized to a Si read-out integrated circuit (ROIC) to realize infrared fo-

cal plane arrays (FPAs). As the detectors-ROIC combination is cryogenically cooled

down to 77 K for better performance, the large thermal mismatch between the GaSb

substrate (7.75 ppm/◦C at room temperature) and the Si ROIC (2.6 ppm/◦C at

room temperature) results in structural failure of the imaging device, via cracking of

the absorber or delamination of the detectors from the ROIC. [39, 40] To overcome

these issues, the GaSb substrate is routinely removed by chemical-mechanical pol-

3



Chapter 1. Introduction

ishing (CMP) [41] and selective etching, [42, 43] thereby increasing manufacturing

costs, and decreasing yield by damaging either the detectors or the ROIC. Transfer

of Sb-based SLs on Si will enable fabrication of IR detectors and ROICs on the same

type substrate, which eliminates the large thermal mismatch between the GaSb and

the Si substrate at low temperature. Si substrates have the additional advantage of

being transparent to the incoming radiation, yielding a good SNR for T2SL-based

detectors. Moreover, IR focal plane array detectors are realized using an expensive

fabrication process, in which, part of the processing, including mesa delineation,

surface passivation, metal deposition, and indium deposition is wafer-level on the

host substrate. This process is followed by a die-level fabrication involving dicing,

flip-chip bonding to a silicon read-out integrated circuit, substrate thinning/removal,

and packaging.[44] The aforementioned die-level steps are low-yield processes[45] that

dramatically increase the cost and fabrication time for the focal plane arrays. One of

the reasons for the low cost of microbolometer detector arrays is that the entire fab-

rication and packaging is done at a wafer level.[46? ] Thus Sb-based membranes po-

tentially enable wafer-level processing of FPAs using a die-to-wafer or wafer-to-wafer

bonding. Moreover, transferring Sb-based membranes to any substrate, including a

flexible host, will pave the road to fabrication of flexible IR imagers.

An additional benefit of membrane technology applied to T2SLs is the possibility

to engineer strain distributions, which are not obtainable within the limitations of

epitaxial growth processes. For instance, a Sb-based structure will undergo elastic

deformation during the release process, redistributing strain intrinsic to the deposi-

tion process between different layers in the SL. Furthermore, Sb-based compounds

may be bonded and conformed to patterned surfaces of various shapes and sizes to

induce local strain of different types and amplitudes. As strain modifies electronic

band structure, electronic transport, optoelectronic properties, and phonon struc-

ture, one might harness it to obtain unique characteristics not present in the relaxed

material.
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Chapter 1. Introduction

1.2 Outline of dissertation

In dissertation I report my progress to develop a versatile release and transfer tech-

niques including one-step etch and two-step etch processes, which enables integration

of any Sb-based heterostructure on a variety of hosts, including Si, polydimethylsilox-

ane and metal coated substrates. This novel method of detector fabrication solves

the fundamental and technical issues of the-state-of the art in Sb-based photodetec-

tor and is also applicable for a wide range of materials. Utilizing this method enable

wafer-lavel processing for Sb-based detectors and enormously reduce the cost and

increase the yield in IR-detector technology.

Chapter 2 provides the detailed information about the theory and design of the

heterostructures, including material design and strain engineering. Next, The ma-

terial growth method, different fabrication steps and various analytical techniques

which are used to evaluate the quality of the material before and after transfer is

illustrated.

In Chapter 3 two different material systems for IR application are described.

First system is InAs/GaSb type II superlattice (T2SL) or Ga containing and second

is InAs/InAsSb type II superlattice or Ga free. More details about advantages and

disadvantages of each system are discuss in the chapter.

Chapter 4 demonstrates a versatile release and transfer technique, which enables

integration of any Sb-based heterostructure with a variety of hosts, including Si,

polydimethylsiloxane and metal coated substratesincludes the wet and dry transfer

of InAs/GaSb and InAs/InAsSb T2SLs using one-step etch process. Moreover, in

this chapter, different material characterisation techniques which are used to show

the crystalline structure of the membrane are not altered by the fabrication process,

are explained. The chapter is wrapped with using mechanical modeling to show

that the strain distributions in elastically relaxed membranes. Chapter 5 covers a
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Chapter 1. Introduction

novel method which isolates Sb-based T2SLs in the form of free-standing membranes

while releasing. In this process which includes two step of etch, both the top surface

and the sidewalls of the membrane are coated with a hard-baked polymer film (i.e.,

photoresist), and therefore they are unexposed to the chemical etchant. Two-step

etch technique is a very effective for Al and Ga containing structures. Since sacrificial

layer also contains Al, the selectivity of the etchant is not high between active layer

and sacrificial layer. Finally, devices are fabricated and characterized using two-step

etch process and compared to the devices that transfer without isolation.

In Chapter 6, transfer and device fabrication on InAs/InAsSb (Ga free) T2SL is

explained. Dark current and spectral response of the device has been measured and

resuls compared to a single pixel device which is processed in a conventional method

on growth substrate.

The thesis concludes in Chapter 7 with a summary and analysis of the work as

well as considerations about future stages of this research.

1.3 Contributions of this work

1- For the first time, release and transfer of T2SL membbrane from growth substrate

to any host substrate is demonstrated.

2- Structural and optical properties of the materials before and after process is

studied, using XRD, SEM, PL, EDS, XPS, TEM. This comperehensive study shows

the crystalline structure of the membrane is not altered by the fabrication process,

and a minimal elastic relaxation occurs during the release step, as demonstrated by

X-ray diffraction and mechanical modeling. Further, In-bump free InAs/InAsSb IR

photodetectors fabricated and characterized.

3- Mechanical modeling is utilized to show that the strain distributions in elas-
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tically relaxed membranes can be controlled and optimized by tuning the relative

thicknesses and elastic symmetry of the layers within the SL.

4- Two-step etch process for Al and Ga containing structures grown on Al com-

pound sacrificial layers is developed. In those type of materials there were difficulties

due to the low selectivity of the etchant between active and sacrificial layer.

1.4 Publications

My achievements in Sb-based membrane transfer project are published in:

Invention Disclosures

1- B. Klein, M. Zamiri, F. Cavallo and S. Krishna, ”Two step etch for release and

transfer of membranes”, STC Ref No.2016-013, http://stcunm.flintbox.com/public/

project/29636/

2- S. Krishna, F. Cavallo, M. Zamiri and B. Klein, ”Mixed group-V sacrificial lay-

ers for release and transfer of membranes”, STC Ref No.2016-011, http://stcunm.flintbox

.com/public/project/29635/

3- S. Krishna, M. Zamiri, A. Kazemi, P. Zarkesh-Ha, C. Kadlec, B. Klein and

F. Cavallo, ”Wafer Level Gate Modulation Enhanced Detectors”, STC Ref. No.

2016-079-01.

Patent Pending

1- S. Krishna, F. Cavallo, M. Zamiri and B. Klein, ”Mixed group-V sacrificial

layers for release and transfer of membranes.”, US Patent, Docket No. 0023.0181-

PCT.

Journal Papers
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1- M. Zamiri, F. Anwhar, B. Klein, A. Rasoulof, T. Schuler-Sandy, N. Dawson,

C. Deneke, S. Ferreira, F. Cavallo and S. Krishna, ”Sb-based superlattice membrane

for infrared applications.” (PNAS)

2- M. Zamiri, B. Klein, V. Dahiya, S. Nezhadbadeh, F. Cavallo and S. Krishna,

”Two-Step Etching for Release and Transfer of Type II Superlattice Membranes.”

(to be submitted to Applied Physics Letters)

3- M. Zamiri, B.Klein, T. Schuler, V. Dahiya, S. Myers, F. Cavallo, and S. Kr-

ishna, ”Indium-bump-free Antimonide Superlattice Membrane Detectors on Silicon

Substrat.” Applied Physics Letters,108.9 (2016): 091110.

4- A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M.

Zamiri et al. ”Barrier selection rules for quantum dots-in-a-well infrared photode-

tector”, IEEE Journal ofQuantum Electronics, 48(10), (2012): 1243-1251.

5- A. Kazemi, M. Zamiri, J. O. Kim, T.SchulerSandy, and S. Krishna, ”Colloidal

and Epitaxial Quantum Dot Infrared Photodetectors: Growth, Performance, and

Comparison” Wiley Encyclopedia of Electrical and Electronics Engineering. (2014):

1-26.

Conferences

1- M. Zamiri, F. Anwar, B. A. Klein, F. Cavallo, and S. Krishna, ”Superlattice

Nanomembrane for Potential Mid-Wave Infrared Applications”, Oral presentation at

57th Electronic Material Conference, Ohio, June 2015.

2- M. Zamiri, B.Klein, T. Schuler, S. Myers, F. Cavallo, and S. Krishna, ”In

bump free Antimonide Superlattice Membrane Detectors on Silicon Substrate”, Oral

presentation at Defense, Security, and Sensing, Maryland, April 2016.

3- M. Zamiri, B. Klein, S. Nezhadbadeh, F. Cavallo and S. Krishna, ”Two-Step

Etching for Release and Transfer of Type II Superlattice Membranes”, Oral presen-
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tation at 58th Electronic Material Conference, Delaware (June 2016).

4- M. Zamiri, B. Klein, T. Schuler, S. Myers, F. Cavall oand S. Krishna, ”Anti-

monide Superlattice Membrane Detectors on a Silicon Substrate”, Poster presenta-

tion at 74th Device Research Conference, Delaware, June 2016.

5- B. Klein, M. Zamiri, F. Anwar, V. Dahiya, F. Cavallo, S. Krishna, ”InAs/GaSb

TYPE-II Superlattice Membrane Transfer for Doping Density Determination”, Oral

presentation, 31st North American Molecular Beam Epitaxy Conference, Mexico,

October 2015.

6- M. Zamiri, E. Plis, J. O. Kim, S. C. Lee, A. Neumann, S. Myers, S. R. J.

Brueck and S. Krishna, ”MWIR superlattice detectors integrated with substrate

side-illuminated plasmonic coupler”, Oral presentation at Defense and Commercial

Sensing, Maryland, April 2014.

7- A. Kazemi, M. Zamiri, F. Anwar, J. Ghasemi, T. G. Habteyes, F. Cavallo, S.

Krishna, ”Lateral transport in Graphene/Ge field effect transistor”, Poster presen-

tation at Material Research Society, Fall Meeting and Exhibit, Boston, December

2015.

8- J. Montoya, S. C. Lee, A. Barve, S. Myers, M. Zamiri, S. R. J. Brueck and S.

Krishna, ”Quantum Dot and Quantum Well Detectors with Plasmonic Resonators”,

Oral presentation at Quantum Structure Infrared Photodetector, France, June 2012.

9



Chapter 2

Materials and methods

This chapter describes the materials and methods used in the study of Sb-based

superlattice membrane. Figure Fig. 2.1 exhibits the research methodology of my

dissertation. This diagram includes three main parts. First step shows the theory

and design of the heterostructure. In this project, I have used InAs/GaSb and

InAs/InAsSb, two well-known Sb-based superlattice, membrane for transfer study

and designed the sacrificial layer. Later, I have used mechanical model to calculate

the strain distribution in elastically relaxed membrane with different thickness ratio

of the layers. Second part is the material growth and characterization including

growth method, various structural and optical techniques that are used in this work.

Finally, the device fabrication flow and characterization setups are illustrated
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Figure 2.1: Research methodology

2.1 Theory and Design of Heterostructures

2.1.1 Material Design

Thickness and composition of the sacrificial layer were selected to satisfy three re-

quirements: 1) sufficiently good etching selectivity between the sacrificial layer and

the T2SL to enable release of the active layer; 2) pseudomorphic growth of the

sacrificial layer on the selected growth substrate, namely GaSb; 3) sufficiently high

thickness to enhance lateral access of the etching solution, resulting in a faster release

process. In general, a sacrificial layer with a relatively high Al content are removed

with a high selectivity compared to our selected active layers. In this work we used

mixed group V digital alloy AlAsxSb1−x and ternary AlxGa1−xSb as acrificial layer.

AlAsxSb1−x sacrificial layer

use of Mixed Group-V Sacrificial Layer(s) (MGV-SL) to enable the release and trans-

fer of a large variety of III-V membranes on any substrates. In mixed group V digital
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alloy AlAsxSb1−x sacrificial layer, there are stacks of very thin layers of AlAs (...ML

) and AlSb (...ML) superlattice which enable to grow a fairly thick lattice matched

sacrificial layer to the growth substrate (GaSb). Mixed group V sacrificial layer

contains Al in both layers of the superlattice that enhance the etch rate of the layer.

AlxGa1−xSb sacrificial layer

However, a high Al fraction in AlxGa1−xSb results in an increasing lattice mismatch

with the GaSb substrate, thereby reducing the critical thickness of the film. Based

on the required characteristics of the sacrificial layer, we performed a growth study to

determine the kinetic critical thickness of AlxGa1−xSb. For this purpose AlxGa1−xSb

of various thicknesses were grown onto GaSb substrates. As-grown samples were

inspected by digital image contrast microscopy (DICM) to detect cross-hatching. To

obtain a reasonable starting point for our experiment, we selected an Al fraction

x=0.4, and we calculate the critical thickness of Al0.4As0.6Sb on GaSb using the

equation below [47]

hc ∼
a2

2(a0 − a)′
(2.1)

where a and a0 are the lattice constant of the Al0.4Ga0.6Sb and the substrate, re-

spectively. Our calculation yielded a starting thickness of 152 nm. Cross-hatching

was observed by DICM on a 152 nm-thick Al0.4As0.6Sb grown onto a GaSb substrate.

The Al0.4As0.6Sb thickness was reduced in 10 nm increments until cross-hatching was

no longer visible. The maximum thickness of the Al0.4As0.6Sb layer without causing

cross-hatching was found to be 60 nm.
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2.1.2 Strain Engineering

Strain in the released multilayer structures

Consider the heterostructure shown in Figure Fig. ??. Elastic strain sharing analysis

can be extended to n-layer systems as long as the mismatch strain distribution at

each interface and the elastic properties of each of the layers are known.[48, 49] The

coherency conditions at the interfaces are

εm1 = ε2 − ε1

εm2 = ε3 − ε1 (2.2)

where εmi is the mismatch strain at a given interface and εi is the strain in that

layer. If we assume perfect adhesion between the layers of the multilayer structure,

εmi will be constant in the as-grown and transferred structure.

The in-plane residual strain in the released multilayer structure can be calculated

using a force balance model. This model states at the equilibrium the sum of all

mechanical forces in the system is zero∑
i

Fi =
∑
i

niMiεiti = 0 (2.3)

where Fi is the mechanical force acting on the i-th layer of the multilayer, ni is the

number of the layer, M is the biaxial modulus, εi is the in-plane strain and t is the

layer thickness.[48, 49]

For a trilayer, force equilibrium is [49]

n1M1ε1t1 + n2M2ε2t2 + n3M3ε3t3 = 0 (2.4)

If we substitute the misfit strain in the above equation for a trilayer we will have

n1M1ε1t1 + n2M2(εm1 + ε1)t2 + n3M3(εm2 + ε1)t3 = 0 (2.5)
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Dividing the left side and the right side of the equation by M1t1 we obtain

n1ε1 + n2
M2

M1

(εm1 + ε1)
t2
t1

+ n3
M3

M1

(εm2 + ε1)
t3
t1

= 0 (2.6)

If we substitute M2/M1 = η1, M3/M1 = η2, t2/t1 = γ1 and t3/t1 = γ2 we have

n1ε1 + n2η1(εm1 + ε1)γ1 + n3η2(εm2 + ε1)γ2 = 0 (2.7)

By solving this equation, the residual strain in layer 1, ε1, is obtained.

Figure 2.2: Strain distribution in multilayer structure after release

Strain in bent membrane

We use the continuum elasticity theory to calculate the residual strain due to bending

in a quantum well or trilayer. Figure Fig. 2.3 shows the trilayer quantum well

structure. It contains a quantum well layer (material B) with symmetric barrier

layers (material A) on both sides.

In this model, we assume that all layers are perfectly bonded and no plastic

deformation occurs while the film is curved in a defect-free sphere with inner radius

R (see Figure Fig. 2.3). Local in-plane strain is obtained by

εixx = εiyy =
aixx − au0,bulk

au0,bulk

(2.8)
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Figure 2.3: Section of a membrane undergoing spherical bending with a radius of curvature
R.

where aixx = ain(1 + z/R) is the local lattice constant at point z and ain the inner

lattice constant of the structure while it is curved in a defect-free sphere with inner

radius R The superscript i identifies the various layers within the heterostructures.

The three strain components are related by the plane strain condition

εizz = −c
i
12

ci11

(εixx + εiyy) (2.9)

and the strain energy density per each layer is

U i =
Y i

νi2 + 1
(εixx

2
+ εiyy

2
+ 2νiεixxε

i
yy) (2.10)

The strain energy per unit area is obtained by integrating U i over the layer thickness,

ti.

The total strain energy in a trilayer is calculated as

Utotal =
3∑

i=1

∫ ti

0

Y i

νi2 + 1
(εit

2
+ εil

2
+ 2νiεitε

i
l)dz (2.11)

The equilibrium strain state for the curved film is obtained from the solution of

dUtotal/dain = 0.
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Using the attained ain from derivation, we calculate the 3 components of the

across the thickness of the trilayer. Average strains are obtained by integrating the

calculated strain distributions over the layer thickness.[2, 48, 50]

2.2 Material growth and characterization

2.2.1 Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) is crystal growth technique for high quality mate-

rials. Over the last few decades MBE has evolved as one of the most prominent

epitaxial growth methods for the synthesis of advanced high-quality semiconductor

heterostructures. In fact, majority of most pioneering works on semiconductor het-

erostructures and devices has been realized by MBE due to its high level of growth

control, high purity and feasibility of fabricating complex multilayer structures. [51]

MBE takes place in high vacuum or ultra-high vacuum (108 - 1012 Torr). Shutters

covering the sources allow the user to finely control the growth thickness atomic layer

by layer. [52]

Multilayer structures including Sb-based superlattices (SLs) and AlGaSb sacrifi-

cial layers were grown in a VG-80 MBE reactor on n-type (Te-doped with n ∼ 5×1017

cm−3) epi-ready GaSb (0 0 1). The substrate is mounted on Mo plates and loaded

into the machine through a load lock. Later, the substrate is transferred to the

preparation chamber which is under UHV, where they are baked to remove any

impurities such as water vapor. After the bake, the substrates are moved to the

main growth chamber, which has heated III-V sources, As2 and Sb2 valved cracker

sources. Once a substrate has been loaded into the growth chamber, it is heated

while under group V flux to remove these oxides prior to growth. Indium and gal-

lium growth rates were 0.5 ML/s for Ga (which corresponds to a beam equivalent
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pressure (BEP) of 1.46 × 10−7 Torr) and 0.45 ML/s for In (which corresponds to

a BEP of 1.46 × 10−7 Torr). Growth rates were determined by monitoring inten-

sity oscillations in the reflected high-energy electron diffraction (RHEED) patterns.

Group-V fluxes were adjusted using a conventional ion gauge to satisfy a group V/III

BEP flux ratio equal to 7.5 and 3.8 for for GaSb and InAs, respectively. The sub-

strates were initially outgassed in vacuum, and the surface oxide was removed under

Sb flux at 535 ◦C. The transition between the (1 3) and the (2 5) surface recon-

struction on GaSb was observed by RHEED. The temperature corresponding to this

transition was taken as a reference for all the growth temperatures. Four different

active layers were grown for this work: 1) a 100 nm T2SL, which consisted of 17

periods of 8ML InAs/ 8ML GaSb; 2) a 1.6 µm InAs/GaSb SL including 237 periods

of 8ML InAs/ 8ML GaSb; 3) a 2.5 µm InAs/InAsSb SL comprising 340 periods

of 14ML InAs/12ML InAs0.81Sb0.19; 4) the p-i-n homojunction SL which consisted

of 14ML InAs/12ML InAs0.81Sb0.19. The n-type layers (515 nm) were Te-doped to

2 × 1018cm−3, while the absorber (2060nm) and the p-type layers (158 nm) were

Be-doped at 3 × 1016cm−3 and 21018cm 3, respectively. The InAs/GaSb T2SLs are

grown as strain-compensated structures by inserting 0.75ML InSb at each InAsGaSb

SLs interface. In addition, a Sb soak is at the InAs/GaSb interface to reduce ma-

terials interdiffusion. The InAs/InAsSb SL growth conditions were optimized with

respect to the substrate temperature and As/Sb beam equivalent pressure (BEP)

ratio. The results of this optimization process showed that a substrate temperature

of 420 ◦C with an As/Sb BEP ratio of 8.4 resulted in the best optical and electrical

quality SL material. The InAsSb digital alloy layer, composed of 1.7ML InAs0.3ML

InSb, was grown by keeping the In shutter open and alternating the As and Sb

shutters to provide the desired layer thicknesses.
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2.2.2 Scanning Electron Microscopy

The scanning electron microscope (SEM) uses a focused beam of high-energy elec-

trons to generate a variety of signals at the surface of solid specimens. The signals

that derive from electron-sample interactions reveal information about the sample

including external morphology (texture), chemical composition, and crystalline struc-

ture and orientation of materials making up the sample. In most applications, data

are collected over a selected area of the surface of the sample, and a 2-dimensional

image is generated that displays spatial variations in these properties. [53] Areas

ranging from approximately 1 cm to 5 microns in width can be imaged in a scan-

ning mode using conventional SEM techniques (magnification ranging from 20X to

approximately 30,000X, spatial resolution of 50 to 100 nm). Precise measurement

of very small features and objects down to 50 nm in size is also accomplished us-

ing the SEM. The SEM is also capable of performing analyses of selected point

locations on the sample; this approach is especially useful in qualitatively or semi-

quantitatively determining chemical compositions (using EDS), crystalline structure,

and crystal orientations (using EBSD). [53] In this work, SEM images were taken

by a JEOL 5800LV system in high vacuum mode using a secondary electrons (SE)

detector. A cross-section of the InAs/InAsSb T2SL/bulk Si was prepared in a FEI

Q3D ESEM/FIB dual-beam system with Ga ions source.

2.2.3 Energy Dispersive x-ray Spectroscopy

EDS is an analytical technique used for the elemental analysis or chemical character-

ization of a sample. It relies on an interaction of some source of X-ray excitation and

a sample. Its characterization capabilities are due in large part to the fundamental

principle that each element has a unique atomic structure allowing a unique set of

peaks on its electromagnetic emission spectrum. [54] In this work chemical analy-
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sis via energy dispersive x-ray spectroscopy (EDS) was accomplished on the JEOL

2010F in STEM mode. The measurement was performed using the X-MaxN 80T, 80

mm2 detector (Oxford Instruments) with a resolution 50000 cps at 200 kV. Aztec

software provides the power to acquire and process the EDS data.

2.2.4 Transmission/Scanning Transmission Electron Microscopy

A TEM can be modified into an STEM by the addition of a system that scans the

beam across the sample to form the image, combined with suitable detectors. With

it, the electrons pass through the specimen, but, as in scanning electron microscopy,

the electron optics focus the beam into a narrow spot which is scanned over the

sample in a raster. In this work, TEM characterization was performed in a JEOL

2010F high resolution TEM/Scanning-TEM with field emission e-beam accelerated

at 200kV.

2.2.5 Photoluminescence Spectroscopy

Photoluminescence spectroscopy is a contactless, nondestructive method of probing

the electronic structure of materials. Light with energy above the bandgap is directed

onto a sample, where it is absorbed and imparts excess energy into the material in

a process called photo-excitation. One way this excess energy can be dissipated by

the sample is through the emission of light, or luminescence. In the case of photo-

excitation, this luminescence is called photoluminescence.[52]

Photo-excitation causes electrons within a material to move into permissible ex-

cited states. When these electrons return to their equilibrium states, the excess

energy is released and may include the emission of light (a radiative process) or may

not (a non-radiative process). The energy of the emitted light (photoluminescence)
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relates to the difference in energy levels between the two electron states involved in

the transition between the excited state and the equilibrium state. The quantity of

the emitted light is related to the relative contribution of the radiative process.

Figure 2.4: Photoluminescence setup schematic. In this setup, laser light is modulated
by an optical chopper and focused on the sample using a focusing lens. In PL procedure,
the emitted photon from the laser is absorbed by the sample, and then the sample re-
emits photons at a wavelength corresponding to its bandgap. This emission from the
sample gets collected and directed to a monochromator by series of lenses and mirrors.
The monochromator has different grating for specific wavelength range. It scans through
a requested wavelength range, and the intensity at each wavelength is measured by the
detector. The detector signal and the frequency of the chopper are sent to the lock-in
amplifier, which measures the intensity of signals only if they have the same frequency as
the chopper. This intensity information is then sent to a computer which plots the PL
intensity verses wavelength.[52]
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In this work, Photoluminescence (PL) spectroscopy is conducted using a 1.5 W

argon laser (514 nm) as excitation source that is directed through a chopper (spinning

at 215 Hz) and is focused onto the sample. The emitted PL is collected using CaF2

lenses and Al mirrors and focused into a monochromator with a grating optimized

for a 2.6 - 6 µm wavelength range. The PL intensity was measured through an InSb

detector (5.5 m cut-off wavelength), positioned at the output of the monochromator.

A schematic of the PL setup is shown in figure Fig. 2.4.

In this measurement, we modulate the incident laser light using chopper and

expect that the detected sample emission by InSb detector has the sample frequency.

The signal from detector is sent to the Lock-In amplifier which locks on to the

frequency specified by the chopper. This signal data is then sent to a computer to be

saved and plotted. In this setup, for low-temperature PL measurements, the sample

is mounted in the crystat, vacuumed to 10−7 Torr and cooled down. For room-

temperature PL measurements a sample holder has been used to hold the sample in

atmosphere pressure and room temperature.

2.2.6 X-ray Diffraction

XRD is one of the most important tool to characterize superlattices and other layered

structures materials and gives a large amount of information related to the strain

and crystalline quality of the structures.

Consider a crystalline material made up of atoms arranged in a pattern periodic

in three dimensions. It has been shown that there is a clear relationship between

the diffraction pattern that is observed when X-rays are diffracted through crystal

lattices and the distance between atomic planes (the inter-planar spacing) within the

material. By altering the inter-planar spacing different diffraction patterns will be

obtained. Changing the wavelength of the X-ray beam will also result in a different
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diffraction pattern. The inter-planar spacing of a material that is free from strain

will produce a characteristic diffraction pattern for that material. The diffraction of

X-rays by crystals is described by Braggs Law , nλ = 2d sinθ

Figure 2.5: X-rays diffraction through crystal lattices and the distance between atomic
planes within the material

When a material is strained, elongations and contractions are produced within

the crystal lattice, which change the inter-planar spacing of the lattice planes. This

induced change in d will cause a shift in the diffraction pattern. By precise measure-

ment of this shift, the change in the inter-planar spacing can be evaluated and thus

the strain within the material deduced.

Strains which cause a change in the Bragg angle for x-ray diffraction may be

determined quantitatively from a plot of the diffracted x-ray intensity normalized to

the incident x-ray intensity (the reflecting power) versus deviation of angle from the

Bragg peak of an unstrained crystal.[55]

Each XRD spectrum has a peak for the substrate, in our case the GaSb, and

a main or zeroth order peak for the superlattice. The amount by which the peak

locations differ indicate the lattice mismatch and incidentally strain in the structure.

The breadth of the main peak is an indicator of the roughness of the interfaces be-

tween each layer and thus the Full-Width-at Half-Maximum (FWHM) is often quoted
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when describing the crystalline quality of a superlattice. Also, the XRD pattern for

a superlattice sample includes several satellite peaks due to the numerous repeating

period layers. The spacing between these peaks indicate the period spacing of the

different layers which is useful to confirm growth conditions and layer thicknesses.[56]

The amount of strain can be related to the initial dimensions of the body, and is

defined as the strain, ε

ε =
al − a0

a0

(2.12)

where al and a0 are the deformed and initial body lengths, respectively.

Grazing-incidence X-ray diffraction (GIXD) is a powerful method for probing

crystalline structures in thin films. When an X-ray is incident onto a flat matter

at a grazing angle, it is totally reflected since the refractive index of matter in the

X-ray region is slightly less than unity. At this moment, an evanescent wave prop-

agating parallel to the surface of the matter is generated. If there are diffracting

planes perpendicular to the surface and they satisfy Bragg law with the evanescent

wave, a diffracted X-ray emerges at a grazing angle nearly the same as the incident

wave. Using this phenomenon, the in-plane crystalline order and the orientation

distribution of the crystals can be probed.[57]

Co-planar and grazing-incidence X-ray diffraction (GI-XRD) measurements were

carried out at the XDR beam line of the Brazilian Synchrotron Light Facility (LNLS)

using a beam energy of 10 keV (wavelength λ = 1.24093 Å) with a 6-circle diffrac-

tometer. Sb-based SLs were investigated by XRD before and after transfer to a new

host, namely Si. Co-planar measurements, were performed around the GaSb (004)

reflection. GI-XRD measurements were performed with an incident angle of 0.2 at

the (220) reflection. Diffraction patterns of the co-planar measurements were fitted

by a commercial software package resulting in a structure based on the initial growth

recipe.
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2.3 Device fabrication and characterization

Following crystal growth of the device structures and material characterization, I

processed the material into functional detectors and mounted onto chip carriers for

characterization. For all type of materials two sets of device is fabricated. One set is

transferred and fabricated on Si substrate and second set is fabricated on the growth

substrate (GaSb). Finally, the performance of both sets are compared.

2.3.1 Device fabrication

Once grown, I have processed the material into detectors. This process involves the

following steps, which are performed in the cleanroom. Standard photolithography is

used to define the patterns in photoresist for every step. Detailed device fabrication

process has been given in Chapters 4, 5 and 6.

Mesa etching

This is the first step, which involves inductively coupled plasma (ICP) etching for

vertical sidewalls. The mesa etching for most of this work was done using BCl3 gas

in the ICP chamber. The sidewalls may be further smoothened by wet chemical

etching using phosphoric acid based solutions to reduce the surface roughness.

Membrane transfer

Upon selective removal of the sacrificial layer layer via chemical etching, the mem-

brane becomes freestanding, and it can be transferred to the alternative host using

Polydimethylsiloxane (PDMS) or thermal release tape (TRT).
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Passivation

Passivation is indispensable for T2SL photodiodes. Surface leakage current is a

technological challenge in T2SL detector system. The sidewalls of the mesa can be

protected with a number of passivation schemes as provided in (references). In this

work, I used CVD method to deposit SiNtextx passivation layer.

Contact metallization

For T2SL detectors, both P and N ohmic contacts are made with Ti/Pt/Au (500/500/3000Å).

It is important to do a premetallization acid dip in (1:10) (HCl:H2O) to remove native

oxide. Afterwards, the sample should be cleaned and put in the metal evaporation

chamber immediately.

2.3.2 Dark current density

The current that flows through the detectors in the absence of any photon flux is

called the dark current. In T2SL detectors, major sources of dark current are mi-

nority carrier diffusion current, SRH current (G-R current), tunneling (trap assisted

and band to band) current, and surface leakage current. Dark current data provides

crucial information about the dominant dark current mechanism in the device.

Dark current data also provides crucial information about the dominant dark

current mechanism in the device. Several studies on T2SL dark current has shown,

the inverse of the dynamic resistancearea product (R0A) at zero bias is a function

of the perimeter-to-area ratio at 77 K. The surface dependence of (R0A) can be

approximated as

1

R0A
= (

1

R0A
)bulk + (

1

rsurface
)
P

A
(2.13)
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where (R0A)bulk is the bulk R0A contribution (ω cm2 ), rsurface is the surface

resistivity (ω cm), P is the diodes perimeter, and A is the diodes area. The slope

of the function given by Eq. 2.13 is directly proportional to the su rface-dependent

leakage current of the diode.[58, 59]

In this work, the current-voltage characteristic of the photodetector were mea-

sured at 77 K by a JANIS ST-500 micro-manipulated probe station. The sample

was placed in a 105Torr vacuum during electrical characterization. The probe sta-

tion was equipped with a Scientific Instruments M9700 temperature controller, and

the measurements are carried out with a Keithley 2400 source measure unit (SMU).

2.3.3 Spectral response

The spectral response is a very important characterization method for evaluating the

performance of a photodetector. This characteristic defines the responsivity, specifies

as the generated photocurrent per unit optical power, of the device along with the

wavelength variation. The photodetector responsivity is primarily dependent on the

device material, structure and the operating conditions in terms of bias voltage,

temperature, and wavelength of the incident radiation. Hence, it is crucial to have

a complete understanding of the effects of these parameters in order to design and

fabricate an optimal photodetector.

Here, to acquire the spectral response or photocurrent spectrum of the fabricated

infrared (IR) detector the light frequency of a broad spectrum IR light source (Hawk

Eye IR-18), was modulated by a chopper and sent through a monochromator with

an optimized grating for a 3-9 µm wavelength range. A JANIS JPF-100 cryostat was

used to cool the detector to 77 K. The device is biased by a pre-amplifier with 103

gain and 0.01 V bias. A lock-in amplifier was used to measure the resulting electrical

response of the device. Figure Fig. 2.6 shows the schematic of the explained setup.
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Figure 2.6: Spectral response setup schematic. In this setup, the light frequency of a
broad spectrum IR light source is modulated by an optical chopper and sent through a
monochromator with an optimized grating for a 3-9 µm wavelength range and focused on
the sample using a focusing lens. A JANIS JPF-100 cryostat was used to cool the detector
to 77 K. The device is biased by a pre-amplifier with 103 gain and 0.01 V bias. A lock-in
amplifier was used to measure the resulting electrical response of the device.
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T2SL material system and

applications

This chapter provides the foundation to understand InAs/GaSb type-II strained layer

superlattices. Before diving into the details of IR detectors, a description of the elec-

tromagnetic spectrum is provided, detailing the different parts of the infrared range.

This is followed by applications of infrared detectors, a discussion of the different

sensing techniques, and types of infrared sensors. Finally, InAs/GaSb strained layer

superlattices are discussed, including a brief history, its best performance metrics,

and its advantages and challenges.

3.1 Infrared detectors and applications

Infrared detector technology includes two primary types, which are photon detec-

tors and thermal detectors. Thermal detectors include Golay cells, thermopiles, and

bolometers. Photon detectors are further divided into two categories namely photo-

conductors and photovoltaics. Each of these can be made of semiconductor materials,
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the most prominent being indium antimonide, mercury cadmium telluride, and gal-

lium arsenide and aluminum arsenide based quantum well detectors.[60]

The infrared can be further segmented by atmospheric transmission windows,

sections of the IR spectrum which are transmitted through earths

atmosphere. The near-IR (0.75 µm - 1.4 µm), short-wave IR (1.4-3 µm), mid-

wave IR (MWIR) (3-5 µm), long-wave IR (LWIR) (8-12 µm), and very-long wave IR

(30 µm - 1mm). For example, the near- and short-wave IR is often used for fiber-

optic communication, while MWIR and LWIR are of interest for infrared cameras.

Humans beings also emit IR, with a peak intensity corresponding to approximately

9.2 µm. Thus, the ability to sense photons in the LWIR allows us to observe people

in ways that would otherwise indiscernible by cameras operating in the visible. There

are numerous applications for IR detectors, including night vision, navigation, secu-

rity and surveillance, atmospheric monitoring, and astronomy. IR detectors are used

in multi-spectral imaging which allows monitoring of vegetation health or amount of

water, from satellite views of the earth. The atmospheric composition can be moni-

tored by IR sensors, search and rescue utilizes IR cameras to find missing people, and

defects in fruit can be observed long before the fruit shows signs of decay in the vis-

ible wavelengths. Because IR detectors have so many uses, many different methods

for sensing IR have been developed. Thermal IR detectors, such as thermometers,

Golay cells, pyroelectric detectors, and Bolometers, operate by absorbing photons

which heats up the detector and changes some measurable physical property of the

detector[52]. Photon detectors work by incident photon interaction with electrons

of numerous structures (bulk semiconductor, quantum well, quantum dot, quantum

dot-in-well, and superlattices) and materials (InSb, HgCdTe, Si:X). Each of these IR

detectors has its own drawbacks as well as advantages. Thermal detectors are much

slower and less responsive than photon detectors, as it takes time for them to heat.

Photon detectors, especially for MWIR and LWIR, often have to by cryogenically
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cooled in order to operate. Rivalries between photon detectors also exist. HgCdTe

and InSb are mature, dominant detector technologies for MWIR (InSb, HgCdTe)

and LWIR (HgCdTe) applications, but are followed closely in device performance by

younger technologies utilizing quantum confinement and heterostructure engineering.

One such material, InAs/GaSb strained-layer superlattice (SLS) has the potential to

beat the dominant technologies. Many of the optoelectronic devices we know to-

day could not have been made without the realization of heterostructures. At their

simplest, heterostructures are semiconductors made of two different materials joined

together at an abrupt junction; this configuration consists two materials of dissimilar

bandgap. A classic example is AlGaAs and GaAs, which forms the basis for one type

of semiconductor laser. This concept of a heterostructure seems rather simple, yet

was revolutionary at its inception. An abrupt transition from one semiconductor ma-

terial to another offered superior control of junction location, which was unattainable

with dopant atoms. Further, the refractive index was also abruptly changed with the

heterojunction; not only could spatially abrupt junctions be formed, but also could

be doubly used as waveguides. The concept of heterostructures paved the way for

many new types of semiconductor materials, such as quantum wells, quantum wires,

quantum dots, and superlattices.

3.2 T2SL Ga containing structure

The most common form of SLS is the InAs/Ga(In)Sb material system. In this mate-

rial, thin layers of InAs and GaSb are alternated periodically to form a superlattice

(SL). Since this material is grown on GaSb substrates, a thin InSb layer is often

added to compensate for the strain induced by the InAs material. As noted before,

the bandgap of the SL will be determined by the layer thicknesses. In a superlat-

tice, the Brillouin zone splits into smaller minizones consisting of a series of allowed
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and forbidden energy bands.[61] This occurs due to the superlattice period being

significantly thicker than the crystal lattice constant. The bandgap of a superlat-

tice is determined by the separation between the upper edge of the valance band

and the lower edge of the conduction band. This can be tuned over a range of 3m

to 30m by changing the layer thicknesses, and thus the SL period, and the layer

compositions.[62, 63, 64] The downside to this capability is that the optical absorp-

tion capabilities of the SL material are reduced as the layer thicknesses increase.

This occurs due to the fact that absorption in an SL structure requires an overlap

of electron and hole wavefunctions, which occurs primarily at the interfaces between

the two materials. The overall effect is that the amount of absorption per period will

be lower for SLs designed to operate at longer wavelengths.[64] A major benefit of

the SLS material is that it suppresses interband tunneling and Auger recombination

due to the strain inherent in the system. The Auger recombination can be further

reduced through careful band engineering. Since the InAs-GaSb SL material has a

larger electron effective mass ( 0.04 m0) than bulk MCT, the tunneling currents are

lower than those in MCT detectors with the same bandgap. Furthermore, the SLS

is capable of producing better uniformity over the surface of a wafer as well as lower

leakage currents. This indicates that it is possible for SL materials to improve on

the performance demonstrated by their MCT counterparts. However, despite recent

progress made in the growth and fabrication of SL materials[65, 66, 67, 68] and band

structure engineering, SL materials have not yet sufficiently improved upon the per-

formance of MCT detectors. The dark current present in InAs-GaSb SL systems is

limited by G-R dark current attributed to the presence of Shockley-Read-Hall (SRH)

centers in the material. These defects are currently associated with the GaSb layer,

and have been theorized to be due to the large difference between optimal T2SL and

GaSb growth conditions. It has been demonstrated that the SRH rate approaches a

maximum when the energy level of the trap centers approach midgap.[69] Analysis

of the formation energy of defects dependent on the location of the Fermi level stabi-
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lization energy has demonstrated midgap defects can form in GaAs and GaSb due to

the fact that the stabilized Fermi level is located near the valence band or midgap,

but not in InAs, wherein the stabilized Fermi level is located above the conduction

band edge.[? ] This indicates that SRH recombination through midgap trap levels

can occur in GaAs and GaSb, but not in InAs. Presuming this is true, the carrier

lifetime in InAs should be greater than that in GaSb. This has been experimentally

demonstrated in a study that found that the carrier lifetime decreased with increas-

ing thickness of the GaSb layer. Further detail on carrier lifetimes in InAs-GaSb SL

materials can be found in previous theses. The large difference between the carrier

lifetimes in InAs and GaSb has motivated investigation into the InAs-InAsSb, or

Gallium-free, SL material.[52, 56, 64]

3.3 T2SL Ga free structure

The InAs-InAsSb (or Ga-free) SL was developed initially for use in infrared lasers in

the 1990s. These lasers were able to demonstrate continuous-wave (CW) operation,

indicating some promise in the material. Initial structural characterization was per-

formed via scanning tunneling microscopy (STM), and demonstrated mostly sharp

interfaces between the two layers, with some intermixing occurring primarily on the

boundary where InAs was grown on InAsSb. This incorporation is due to the inter-

mixing of Sb into the surrounding InAs layers. The material was later proposed for

use in IR detectors. The Ga-free SL has shown a type-IIb band alignment, which is

the same alignment shown by the InAs-GaSb SL. The Ga-free SL has shown consid-

erable potential as an IR detector material. This is due to the SRH carrier lifetime

in this SL being considerably longer than that in the InAs/Ga(In)Sb SL. The length

of the SRH lifetime is expected to result in a considerably lower G-R dark current

level, and thus, presuming the Ga-free SL is G-R dominated, a lower overall dark
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current. This belief is reinforced by studies demonstrating that the Ga-free SL ma-

terial shows good Auger suppression. Since many of the lifetime studies depend on

photoluminescence measurement, the effect of AlSb barriers on the carrier lifetime

in Ga-free SLs has been studied. Due to this, some groups have begun to develop

Ga-free SL detector devices. Also, the bandgap range over which the superlattice

can be tuned has been shown to be reasonably wide. Most research has focused on

the creation of nBn devices, which have shown a very low dark current, but also a

low quantum efficiency (QE) [56]. PIN structure devices show relatively high dark

current, which isnt entirely unexpected due to the lack of a barrier, but have also

shown a higher quantum efficiency in MWIR and VLWIR. More recent research has

shown that a restoration etch may improve the dark current level in these devices.

One two-color (MWIR/LWIR) nBn-based device has been demonstrated as well.[64]
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Sb-based membrane transfer using

single-step etch process

4.1 Wet and dry transfer process

Fabrication of Sb-based membranes begins with molecular beam epitaxy of InAs/

(InAs,Ga)Sb type II superlattices (T2SLs) on a 60 nm Al0.4Ga0.6Sb sacrificial layer.

Composition and thickness of the AlGaSb film are carefully selected to avoid any

plastic deformation during epitaxial growth. As-grown membranes are released by

selective removal of the Al0.4Ga0.6Sb film in a diluted HF solution. Wet and dry

transfer methods are utilized to transfer membrane with 1 × 1 cm2 and arrays of

T2SLs with small lateral sizes (∼ 24×24 µm2) to a new host. Wet or dry transfer to a

new host is used depending on the thickness and lateral size of the T2SL. Wet transfer

is demonstrated for membranes with large area (∼ 1× 1 cm2) and thickness varying

between 0.1 and 1.6 µm to a new host. In addition, arrays of T2SLs with small

lateral sizes (∼ 24 × 24 µm2) are transferred from a GaSb substrate to alternative

supporting materials using dry transfer method . Figure 4.1 (a)-(d) schematically

34



Chapter 4. Sb-based membrane transfer using single-step etch process

Figure 4.1: Schematic illustration of T2SL transfer from the original growth substrate
to a new host using wet and dry techniques. (a) As-grown T2SL on a GaSb growth
substrate coated with an Al0.4Ga0.6Sb sacrificial layer. Wet transfer of T2SL is typically
used for large area membranes, as illustrated in ((b)-(d)). Protective layer deposited on
the T2SL (b). The protective coating/active layer stack is patterned with an array of
holes to enhance access of the etchant to the sacrificial layer. Selective etching of the
sacrificial in [(HF:H2O):Ethanol], resulting in the membrane to weakly bond-back to the
native substrate (c). Freestanding membrane in de-ionized water upon debonding from the
GaSb support, and membrane transfer to a new host (d). Dry transfer is typically used
for 2D arrays of small-area membrane, as schematically depicted in (e)-(g). Unreleased
membrane patterned into a 2D array of mesas via standard photolithography (e). Partial
selective etch of the sacrificial layer in [(HF:H2O):Ethanol] (f). Removal of the mesas from
the growth substrate and their transfer to the new support, using a stamp (g).

illustrate wet transfer of T2SLs to a receiving substrate. Prior to release, we coat

the T2SL with a polymer or metal film to protect the active layer during selective

etching of the Al0.4Ga0.6Sb. The need for a protective coating during this process is
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related to the poor selectivity of the diluted HF solution between the InAs/GaSb SL

and the Al0.4Ga0.6Sb sacrificial layer. Two types of samples were fabricated for the

wet etch study, referred to as samples A and B. Both samples had holes etched down

through the epitaxy to enhance access of the etching solution to the Al0.4Ga0.6Sb

sacrificial layer, as shown in figure 4.1. The difference between samples A and B was

that sample A had a protective coating of 5 nm of Ti/ 15 nm Au on its topmost

layer, whereas sample B had a protective coating of photoresist. Both the protective

top layers had holes directly aligned to the holes in the epitaxy. The protective

layers doubled as mechanical support in subsequent processing steps. Sample A

was fabricated in two lithography steps. First, squares were defined by standard

lithography, followed by a blanket coating of Ti /Au, and this left a layer of Ti/Au

with square holes. The second lithography protected the metal layer. Then, arrays

of holes were dry etched through the T2SL using inductively couple plasma (ICP)

with BCl3 gas to promote access of the etching solution to the sacrificial layer and

photoresist was removed after all. Sample B was fabricated in one lithography step,

where only the image reversal of the square mask (as in Sample A), was applied, and

the epitaxy was subsequently etched using BCl3 ICP etching, through the epitaxy

and down into the substrate. In both cases, the samples were intentionally over-

etched all the way into the GaSb substrate (∼2.1µm deep), so that the Al0.4Ga0.6Sb

sacrificial layer was exposed as a layer in the hole sidewall.

Releasing the membrane from the host substrate was accomplished by etch-

ing away the Al0.4Ga0.6Sb sacrificial layer using a diluted HF and ethanol solution

([(HF:H2O) 1:700]:ethanol 1:5). Samples with PR as a protective layer were released

after 16 hours and samples with an Au layer for protection released after 6 hours.

Au as protective layer offers metal assisted chemical etching (MacEtch), a simple di-

rectional wet etching method. MacEtch, is a wet etching method for semiconductors

that can be anisotropic, assisted by a metal catalyst. The catalyst can be patterned

metal films (Ag, Au, Pt, Pd, etc.). For samples A and B upon complete etching of
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the sacrificial layer, the membrane will release from the substrate and either float off

the substrate and up to the surface of the HF solution, or it may bond back onto the

original GaSb substrate. In both cases, membrane and host substrate were trans-

ferred from the etching solution to a shallow beaker of DI water, where the transfer

to a new host was performed. The surface preparation of the target substrate is

essential for a successful transfer. A hydrophilic surface is preferred, and to ensure

a hydrophilic target surface, both the Si and Au/Ti/Si substrates were cleaned with

acetone and isopropanol, and then treated with oxygen plasma to form native oxide

on the surface. To transfer the membrane to the target substrate, the substrate was

dipped into the DI water beaker with the membrane, and the membrane adhered to

it through capillary action.

InAs/InAsSb structure is another T2SL used as mid IR absorber as well. This

structure was used for the dry transfer experiments, following the process illustrated

in figure (1). In sample C, the T2SL was patterned in a 2D array of mesas with

24×24µm2 and 6 µm spacing were defined using positive resist (AZ4330), and ICP

etched with BCl3. The final etch depth was 2.6 µm, which is more than epi-

layer thickness, thereby allowing complete access to sacrificial layer. Then, the

Al0.4Ga0.6Sb sacrificial layer was partially etched in diluted HF and ethanol solu-

tion ([(HF:H2O) 1:700]: ethanol 1:5), the same solution used to etch samples A and

B for wet transfer. After 4 and a half hour, sample was rinsed in water and dried with

nitrogen. The pixels were peeled off from GaSb substrate using both, Polydimethyl-

siloxane PDMS stamp and thermal tape. The PDMS was prepared by 1) mixing

10 parts of the PDMS base with 1 part of the PDMS curing agent, 2) curing the

mixture on a hotplate at 85 for 4 hours, 3) cleaning the surface in toluene for ∼30

min, and 4) drying the PDMS on top of a 50 hot plate for approximately 2 hours.

The last step of dry transfer with PDMS is to print the mesas from PDMS to the new

host substrate, which is cleaned with acetone, IPA, and water, and performing an

oxygen plasma treatment with 100 watt power and 0.100 Torr pressure for 2 minutes.
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This can be achieved by placing the PDMS/T2SL in contact with the new substrate

(see figure 4.1) and slowly peeling off the PDMS stamp with a constant speed from

the new host. Next transfer was with heat release single side tape, semiconductor

equipment corp product, pixels were peeled off from GaSb substrate as well. Then

tape and new substrate which was cleaned using the same way as PDMS transfer,

attached together and heated up to 90 to 110 , after 20 seconds tape color turned

into white and transferred happened. We demonstrate transfer of T2SL membranes

with different in-plane geometry, thickness and layer structure. Figure 4.2 (a)-(c)

shows a schematic cross-sectional view and scanning electron micrographs (SEMs)

of 100 nm-thick InAs/GaSb T2SLs after release and wet transfer to a Si substrate.

Figure 4.2(d) is an SEM of a partially released membrane, which is still coated with a

Figure 4.2: Schematic cross-sectional views and SEM of transferred T2SL transferred
to various substrates. Cross-section (a) and top-view SEM (b)-(c) of a 100 nm-thick
InAs/GaSb T2SL with two different in-plane patterns transferred to a Si substrate. Pho-
toresist serves as a protective coating during membrane release. (d) is an off-axis SEM
of a partially released 100 nm InAs/GaSb T2SL bonded to native growth substrate and
coated with photoresist. Layer structure (e) and SEM images (f)-(g) of a 1.6 µm-thick
InAs/GaSb SL membrane bonded to bulk Si. A Ti/Au film hinders etching of the active
layer as removal of the sacrificial layer occurs. (h) is on off-axis SEM of the membrane
side-wall, showing that a minimal lateral etching of the GaSb layer occurs during release
of the InAs/GaSb SL membrane.
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photoresist protective layer. A 1.6 µm-thick membrane with identical layer structure

is transferred to bulk Si using a Ti/Au coating as protective layer (see Figure 4.2

(e)-(h)). Figure 4.2 (h) is a high magnification SEM showing that a minimal lateral

etching occurs at the membrane sidewalls. We achieve release and dry transfer of 2.5

Figure 4.3: Schematic (a) of a 2.5 µm-thick InAs/InAsSb T2SL after release and dry
transfer to a Si substrate. (b) Top-view SEM of a 2D array of pixels on bulk Si. (c) Off-
axis SEM of a single pixel. Dry transfer of the mesas is mediated by thermal release tape.
Tape residues are visible on the surface of the pixel. (d) is a high magnification SEM of
the smooth membrane sidewall, showing that no lateral etching of the T2SL occurs during
the release step.

µm-thick InAs/InAsSb T2SL patterned in a 2D array of 24×24µm2 mesas or pixels.

Figure 4.3 (a)-(b) show a cross-sectional view of the transferred membrane and a

SEM of pixels bonded to bulk Si, respectively. Figure 4.3 (c) is a high magnification

and off-axis SEM of a single pixel. The transferred membrane exhibits smooth side-

walls (see Figure 4.3(d)) thereby confirming the excellent selectivity of the etching

solution between InAs/InAsSb and the sacrificial layer.

A successful release and dry transfer of membranes requires a tight control on

the etching time of the sacrificial layer. Indeed, if dry transfer is performed before

membranes are completely released, the undercut portion will peel off and the rest

of the pixel will stay on the native substrate, yielding transferred pixels with holes in

the center (see Figure 4.4). On the other hand, if pixels are transferred long after the

undercut is complete, the pixels may have shifted or be released from the substrate

surface, resulting in misaligned or missing pixels after transfer to the new substrate
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(see Figure 4.4). A successful dry transfer is achieved by peeling off membranes from

the native substrates just before complete etching of the sacrificial layer.

Figure 4.4: Top-view images of native substrates (a)-(c) and new host (b)-(d) after release
and transfer of a 2.5 µm-thick InAs/InAsSb T2SL. (a)-(b) are SEM and (c)-(d) are bright
field optical images. The native substrate and the new host are bulk GaSb and bulk Si,
respectively. The sacrificial layer is 60 nm Al0.4Ga0.6Sb. Etching time in diluted HF (see
Methods) was 3 hours in (a)-(b) and 5.5 hours in (c)-(d).

4.2 Bonding between Sb-based membrane and -

host substrate

Residual Al0.4Ga0.6Sb may result in an increased roughness of the membrane back-

side, thereby promoting a weak bond between the membrane and the new substrate.

Transfer of membranes on metal-coated substrates may also be used to provide the

T2SL with electrical contacts via interface bonding. In this scenario, a residual

Al0.4Ga0.6Sb will drastically increase the resistance of the contact. To confirm that

the selective etching step completely removes the sacrificial layer, we did a series
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of experiments, i.e. atomic force microscopy (AFM), energy dispersive spectroscopy

(EDS) and scanning transmission microscopy (STEM). We compare the surface to-

pography of the top and bottom surface of the released membrane using AFM. The

EDS analytical technique is performed on the backside of the pixels for elemental

analysis to verify the absence of the sacrificial on the membrane layer after peeling off

from the growth substrate. Further, STEM and EDS show no air gap at the interface

of the transferred pixel and new substrate. Figure 4.5 schematically illustrate the

Figure 4.5: Atomic force microscopy of the top (a)-(c) and bottom (b)-(d) surface of an
InAs/InAsSb membrane. (a)-(b) Schematic illustration of AFM. (c)-(d) Surface topogra-
phy as measured over a 1×1 µm2 area. We access the bottom surface of the membrane
while it is bonded on PDMS, during a dry transfer process. The comparable values of RMS
roughness measured in (c) and (d) suggest that the Al0.4Ga0.6Sb has been completely re-
moved by the diluted HF solution, during the release step.

measured areas . We gain access to the backside of the membrane by measuring the

InAs/InAsSb SL supported by a polydimethylsiloxane (PDMS) stamp (see Figure

4.5). The PDMS is used to peel the T2SL from the growth substrate after partial

release of the film has occurred, thereby leaving the bottom surface exposed. Figure

4.5 show 2D AFM images acquired over 1×1 µm2 areas on the front and backside of

the T2SL. Atomic force microscopy is performed on an Asylum MFP-3D system in

tapping mode. Scans are acquired using NSC15 cantilevers (MikroMasch) with a tip

radius of 8 nm and a spring constant of 40N/m. AFM data is analyzed by Gwyddion

software. We calculate a root-mean-square (RMS) roughness of 0.112 nm and 0.118
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nm from the images in Figure 4.5 (c) and (d), respectively. The comparable RMS

roughness of the top and bottom surfaces of the T2SL suggests that the Al0.4Ga0.6Sb

has been completely removed by the diluted HF solution, during the release step.

In the AlGaSb sacrificial layer, Al and Ga, the prime components of the layer

which are not used in InAs/InAsSb T2SL active region. EDS which is an x-ray tech-

nique has been used to identify the elemental composition of the transferred pixels.

Since x-ray has a finite penetration depth and it may not go thoroughly to the bot-

tom layer of the transferred pixels, we analyze the transferred pixels onto PDMS or

tape, which are bottom-up to ensure one that x-ray senses the layer which is in con-

tact with sacrificial layer. This way of measurement definitely shows the sacrificial

layer residual. Figure 4.6 shows the schematic of the measured area. The elemental

counts shows no Al or Ga which confirms that no residue of the AlGaSb layer is on

the transferred pixels before transferring to the new substrate. we perform scanning

Figure 4.6: EDS analysis of transferred pixels to PDMS

transmission electron microscopy (STEM) and Energy dispersion X-ray spectroscopy

(EDS) to investigate the chemical composition and the structural quality of a 2.5

µm-thick InAs/InAsSb T2SL bonded to Si. Prior to membrane transfer, Si is coated

with a Ti/Au/Ti film. The T2SL is patterned in a 24×24 µm2 pixel prior to release

and dry transfer to the new host. Milling by a focused ion beam is used to obtain a

thin lamella across the T2SL/Si interface (see Figure 4.7(a)-(b)). Remarkably, figure

4.7(a)-(b) rule out the presence of voids or particles at the membrane/host interface,
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by showing a continuous interface bond. Figure 4.7(c) is a scanning transmission

Figure 4.7: Structural characterization of the bonded interface between a 2.5 µm-thick
InAs/InAsSb SL and a metal-coated Si substrate. (a)-(b) Off-axis SEM image of an
InAs/GaSb SL mesa transferred to a metal coated Si substrate. The visible cross-section
across the bonded interface is obtained by FIB. Remarkably (a) and (b) show a continuous
bond between the membrane and the new host. (c) High-angle annular dark field STEM
across the bonded interface. The material contrast allows identifying the T2SL, as well as
the Ti/Au bilayer deposited on Si prior to membrane transfer. (d) Elements concentration
profiles obtained by EDS in the direction marked by the white arrow, in (c).

electron microscopy (STEM) image of the T2SL/substrate interface, where the ma-

terial contrast allows identifying the multilayered structure of the SL and the metal

coated substrate. The yellow line marks the path of the EDS chemical analysis, and
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the arrow indicates the direction of the performed line scan. The concentration of

Ga, Sb, In, As, O, Ti, Au, and Si are extracted from the energy dispersive spectra

and displayed in Figure 4.7 (d). The magnitudes of each elemental profile are nor-

malized to the values obtained for Si. The intensity modulation of the STEM image

allows accurate correlation with the EDS scans through the interface. In, As, and Sb

show an oscillating profile over the T2SL. The Au signal correlates with the bright

region in Figure 4.7 (c), and the Ti has a bimodal peaking between the Au and the

SL, and between the Au and the Si signal.

4.3 Crystalline structure characterization

As demonstrated in figure 4.2 and 4.3, we have established a successful process to

release and transfer T2SL membranes onto any host substrate. As transfer occurs

through release of the membrane into a fluid, there is no resistance to strain relax-

ation, and elastic strain transfers between the various layers in the SL. Furthermore,

global and local bending of the membrane typically occurs during release and trans-

fer. Strain redistribution among the layers may affect the electronic structure of the

SL (e.g., change the intra-band energy gap). In addition, strain induced by bending

or wrinkling can dramatically reduce the critical thickness of each layer for dislo-

cation formation. All of these phenomena will significantly affect the performance

of any device embedding T2SLs or any Sb-containing heterostructure. Based on

these considerations, as-grown and transferred membranes undergo co-planar (out-

of-plane) and grazing-incidence (GI) XRD to evaluate the effect of the release and

transfer process on the crystalline quality and strain state of the membranes. Both

InAs/GaSb and InAs/InAsSb membranes are investigated. In this study as-grown

and transferred membranes undergo co-planar (out-of-plane) and grazing-incidence

(GI) XRD. Both InAs/GaSb and InAs/InAsSb membranes are investigated. GI-
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XRD measurements at the (220) reflection allow determining the in-plane lattice

parameter (ain-plane) of the membrane before and after transfer to a new host. Co-

planar measurements around the GaSb (004) reflection are fitted by a commercial

software package to obtain the structure of the as-grown and transferred multilayer

stacks. We calculate the in-plane strain as ain-plane= (ain-plane-abulk)/abulk, where abulk

is the lattice parameter of the relaxed material. The calculated in-plane strains yield

the strain distribution among the various layers of the SL membrane, before and

after transfer to bulk Si. A comparative analysis of the co-planar patterns measured

for the as-grown and transferred membranes determines the effect of the release and

transfer process on the crystalline quality of the SL. Figure 4.8(a) shows the out-of-

plane XRD pattern acquired from the as-grown AlGaSb/InAs/GaSb multilayer stack

on a GaSb substrate. A thin InSb is grown at the GaSb/InAs interfaces to achieve

a strain-balanced heterostructure. The investigated InAs/GaSb T2SL is nominally

1.6 µm-thick. The solid circles represent the experimental data acquired around the

GaSb (004). The pattern is dominated by the substrate peak at a Bragg angle of

24.005◦ and by the 0th order peak of the SL structure at 24.026◦. We identify SL

fringes up to the 4th order, and a shoulder (at lower Bragg angles than the substrate

peak) that we ascribe to the contribution of the Al0.4Ga0.6Sb sacrificial layer. The

sharp SL fringes as well as the relatively high intensity of the 0th order reflection

compared to the substrate peak, demonstrate the high epitaxial quality of the as-

grown structure. Fig. 4.9 depicts the obtained GI-XRD reflection for the as-grown

(line-circles pattern) and the transferred (line-triangles pattern) T2SL. The two pat-

terns correspond to two perpendicular (220) directions. We observe a single peak for

the as-grown and transferred membranes, signifying that both structures are charac-

terized by a single in-plane lattice parameter, i.e., they are pseudomorphic epitaxial

layer stacks. The peaks acquired from the as-grown membrane are centered at the

angle corresponding to the GaSb lattice parameter (aGaSb,bulk=6.0959 Å). The two

patterns acquired from the transferred sample exhibit both broadening and a shift
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Figure 4.8: (a) Co-planar diffraction pattern acquired around the (004) GaSb peak
of the as-grown InAs/GaSb T2SL (Black solid circles). A fit to the experimental
data is plotted as a red line. (b) Co-planar XRD pattern acquired from a transferred
InAs/GaSb SL on a Si substrate (Black solid circles). The inset shows the layer
structure obtained from the fit of the co-planar patterns, plotted as a red line.

to 33.428◦ indicating a relaxation of the lattice during the transfer. The calculated

in-plane lattice parameter for the transferred membrane is 6.10177 0.0052 Å, i.e.,

0.096% bigger than the initial GaSb lattice parameter. To deduce the various layer

thicknesses for the as-grown multilayer, we fit the experimental data in Fig. 4.8

(a) with a calculated pattern from a model structure (red line). For this purpose,

we use a generic optimization algorithm. The model assumes a pseudomorphic het-

erostructure to the GaSb substrate. We extract the following structural parameters

for the as-grown multilayer: 50 nm Al0.3Ga0.7Sb/ 5 nm GaSb followed by a 312 period

SL of 2.16 nm InAs/2.14 nm GaSb/0.26 nm InSb. The layer structure calculated

from analysis of the co-planar XRD scans agrees with the one expected from the

utilized growth conditions. The resulting fit demonstrates that the whole stack is

pseudomorphic to the GaSb substrate. We observe additional satellite peaks in the

experimental data that we ascribe to multi-diffraction effects.

Figure 4.8(b) shows the co-planar diffraction pattern of the transferred mem-

brane (black solid circles). The pattern is dominated by the 0th order peak of the
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Figure 4.9: In plane diffraction pattern by GI-XRD around the (220) reflection of the
as-grown (circle-line pattern) and the transferred (triangle-line pattern) InAs/GaSb.

transferred structure now found at 24.019◦. A careful inspection reveals a small

systematic shift in the higher order superlattice fringes compared to the diffraction

pattern acquired from the as-grown sample (see Fig. 4.8(a)). It is worth pointing out

that the substrate peak and the typical shoulder of the AlGaSb layer have vanished

as the membrane has been transferred to a new host substrate. Interestingly, we

still observe the additional satellite peaks ascribed to multi-diffraction effects of the

T2SL suggesting that release and transfer does not degrade the crystalline quality of

the film. We calculate the expected diffraction pattern for the transferred membrane

(red curve) and compare it to the measured data. In this analysis we use the layer

thickness obtained from fitting the co-planar scans of the as-grown samples as well

as the in-plane lattice parameter deduced from the GI-XRD scans (ain-plane=6.10177

Å). Figure 4.8(b) shows that such fitting procedure produces a curve in good agree-

ment with the experimental data. These results confirm both the structural model
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Figure 4.10: Co-planar diffraction pattern of the as-grown (a) and transferred (b)
InAs/InAsSb SL membrane (Black solid circles). Both patterns are acquired around
the GaSb (004) reflection. A fit to the experimental data is plotted as a red line in
(a) and (b). The model layer structure obtained from fitting the co-planar patterns
is shown in the inset, in (b). A slight discrepancy in the layer thickness deduced from
simulations of the data in (a) and (b) is observed. The thickness within brackets is
obtained from fitting diffraction patterns of the as-grown membrane.

calculated from the co-planar scans of the as-grown multilayers, and the in-plane

lattice parameter obtained from the GI-XRD measurements.

We carry out a similar analysis for a 2.5 µm-thick InAsSb/InAs T2SL membrane.

Figure 4.10(a) shows the co-planar diffraction pattern (black solid circles) around the

(004) GaSb peak of the as-grown AlGaSb/InAs/InAsSb multilayer. The pattern is

dominated by the GaSb substrate and the 0th order superlattice peaks at 24.01◦

and 24.03◦, respectively. We identify the typical shoulder arising from the AlGaSb

sacrificial layer as well as several superlattice fringes at lower and higher angles than

the main peaks of the diffraction pattern. The large number of observable superlattice

fringes indicate a good pseudomorphic crystal structure of the as-grown multilayer

stack. We perform GI-XRD around the in-plane (220) reflection of the as-grown and

the transferred membranes. Data are acquired around two perpendicular directions

for the as-grown sample (line-circles pattern) and at one reflection for the transferred

membrane (line-triangles pattern), as shown in Fig 4.11.
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We find the substrate reflections close to their average position of 33.46◦, i.e., in

good agreement with the first sample set. We ascribe the broad features dominating

the GI-XRD of the as-grown membrane to the large thickness of the superlattice,

which may result in an inhomogeneous strain distribution. Interestingly, upon re-

lease, the (220) reflection sharpens indicating a more equal distribution of strain

inside the transferred membrane. Calculations of the in-plane lattice parameter of

the transferred membrane from Braggs law yield ain-plane=6.1000 0.0074 Å, which is

0.066%, larger than the lattice parameter of the as-grown structure.

Following procedure reported for the InAs/GaSb SL, we determine the layer

structure (right inset in Fig. 4.10(a)) by fitting a calculated diffraction pattern to

the co-planar scans. The deduced parameters are 50 nm Al0.3Ga0.7 layer followed by

340 periods of the 3 nm InAs0.78Sb0.22 /4.4 nm InAs superlattice. Good agreement is

found with what expected from the growth conditions. Hereby, a single InAsSb layer

represents the digital InAs/InSb alloy. We observe a set of reflections which cannot

be fitted by partly relaxing the SL membrane, but are compatible with a structure

that would have double the thickness for the InAsSb and InAs layer. Therefore,

we ascribe these reflections to multiple diffraction effects due to the large number

of periods and large total thickness of the T2SL. To confirm the strain relaxation

of the transferred InAs/InAsSb SL membrane, we carry out co-planar diffraction

around the (004) reflection of the membrane. The obtained pattern is depicted in

Fig. 4.10(b). We observe the 0th order SL peak shifted to 24.038◦, along with SL

fringes up to the 4th order. As expected, the GaSb substrate peak and the shoulder

from the AlGaSb layer have vanished. We again identify several higher orders SL

fringes, but intensity between them reaches at some places the background level of

our setup. Interestingly, the additional fringes observed for the as-grown sample

are still present indicating the excellent crystal quality of the transferred membrane.

We relax the in-plane lattice parameter of the structural model deduced from the

as-grown sample to the parameter determined from the GI-XRD (ain-plane=6.100005
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Figure 4.11: The GI-XRD around two (220) reflections of the as-grown SL and one
(220) reflection of the transferred multilayer stack.

Å). Interestingly, we obtain a good agreement with the 0th order reflection, but the

layer thickness require a minimal change (see inset Fig. 4.10(d) the thickness in the

bracket are the thickness obtained from fitting diffraction patterns of the as-grown

membrane).

Finally, we evaluate the effect of the release and transfer process on the strain

distribution in each layer of the T2SL. For this purpose, we calculate the in-plane

strain in the as-grown and transferred membranes using the in-plane lattice param-

eters obtained from XRD (4.1). Table 1 shows that the release and transfer process

results in relaxation of the T2SL and redistribution of the strain established by epi-

taxial growth among the various layers in the SL. Specifically, while the membrane

is freestanding in liquid, the strain through its thickness is balanced, such that only

stretching occurs. During this process, part of the compressive strain established by

epitaxial growth in the InSb layers transfers to InAs and GaSb, within the InAs/GaSb
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Table 4.1: In-plane lattice parameters deduced from GI-XRD and co-planar XRD
for the InAs/GaSb and InA/InAsSb T2SL, both before and after transfer to bulk Si.
Calculated values of in-plane strain in each layer of the SL are also reported along
with the bulk lattice parameters per each constitutive material of the multilayer
stack.

T2SL Layer abulk
ain-plane εin-plane

As-grown Transferred As-grown Transferred

GaSb/InAs/InSb
GaSb 6.0959 Å

6.0959 Å 6.1017 Å
0% 0.095%

InAs 6.0583 Å 0.62% 0.072%
InSb 6.4790 Å -5.92% 5.8%

InAs/InAsSb
InAs 6.0583 Å

6.0959 Å 6.1000 Å
0.62% 0.69%

InAsSb 6.1424 Å -0.75% -0.69%

SL. A similar process occurs within the Ga-free membrane, resulting in the tensile

strain in InAs to increase and in the InAsSb to become less compressive.

We compare the in-plane strain obtained for the transferred membrane via XRD

and continuum mechanical modeling of an elastically multilayer. In this analysis we

assume that the strain state and the thickness of each layer within the SL are uniform

in the growth direction. Furthermore, all the layers are regarded as perfectly bonded

at any stage of the process. We calculate the in-plane strain in the various layers of

the InAs/GaSb T2SL using the equations below

εGaSb =
Σ1η1εm,1 − Σ2η2εm,2

1 + Σ1η1 + Σ2η2

(4.1)

εInAs = −εm,1(1 + Σ2η2) + Σ2η2εm,2

1 + Σ1η1 + Σ2η2

(4.2)

εInSb =
Σ1η1εm,1 + εm,2(1 + Σ1η1)

1 + Σ1η1 + Σ2η2

(4.3)

where εm,1 = εGaSb − εInAs and εm,2 = εInSb − εGaSb are the mismatch strains between

adjacent layers and Σ1 = MInAs/MGaSb, Σ2 = MInSb/MGaSb, η1 = tInAs/tGaSb and

η2 = MInSb/MGaSb with M the biaxial modulus of the material and t layer thickness
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[48, 49]. We obtain equations 6.1-4.3 using force balance between all the layers in SL

Table 4.2: Layer thickness within the InAs/GaSb and the InAs/InAsSb SL, as ex-
pected from the epitaxial growth conditions. Mismatch strain, εm,XRD, between
adjacent layers in the as-grown T2SLs, as deduced from XRD. Biaxial modulus,
M=E/1-ν, with E, Youngs modulus and ν the Poissons ratio of the materials [1].
Residual in-plan straine as deduced from XRD, εin-plane,XRD, and from continuum
mechanics modeling, εin-plane,CM.

T2SL Layer Thickness εm,XRD M εin-plane,XRD εin-plane,CM

GaSb/InAs/InSb
InAs 2.2 nm

-0.62 %
791 GPa 0.72% 0.55%

GaSb 2.1 nm 914 GPa 0.09% 0.07%
InSb 0.26 nm 6.52 % 629 GPa -5.80% -5.98%

InAs/InAsSb
InAs 4.4 nm

-1.37 %
791 GPa 0.69% -0.59%

InAsSb 3.2 nm 760 GPa -0.69% -0.72%

and the constraint of coherent lattice across the interfaces [49]. A similar analysis

gives

εInAsSb =
1

1 + Σ1η1

(4.4)

εInAs =
1 − εm(1 + Σ1η1)

1 + Σ1η1

(4.5)

to estimate in-plane strain in the InAs/InAsSb SL where εm = εInAsSb−εInAs is the mis-

match strain between InAsSb and InAs, Σ1 = MInAs/MInAsSb and η1 = tInAs/tInAsSb.

Biaxial modulus and layer thickness are indicated with M and t, respectively. In our

analysis we utilize the layer thickness estimated from the co-planar XRD patterns of

the as-grown membranes (see Figure ?? (b) and (d)), and we calculate the mismatch

strain from the values obtained for the as-grown membrane from XRD (see Table

4.1). Table 4.2 shows that the in-plane strain values obtained from XRD and those

calculated using continuum mechanical models differ by 0.03-0.17%. We attribute

this discrepancy to non-uniformity of the strain state and thickness of the various

layers in the growth direction.

As shown by equations 1-5, the residual strain in each layer of the T2SL is
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determined by the thickness ratios between the various layers, η. Varying the layer

structure within a T2SL is routinely used to engineer the intra-band gap and tune

the absorption edge of the material within the IR range. As a result, it is crucial

to calculate the strain distribution in the transferred membrane at varying thickness

ratios between the InAs and GaSb, and the InAs/InAsSb. In these calculations we

fix the mismatch strains to the values reported in Table 4.2. Figure ?? (a) shows

that the amount of residual strain in the InAs and GaSb membrane increases with

the tInAs/tGaSb. A similar result is obtained for the layers within the InAs/InAsSb

T2SL (see Fig. ?? (b)).

We use high magnification SEM to characterize the sidewalls of the InAs/GaSb

and InAs/InAsSb T2SL bonded to a new substrate. Prior to imaging, we release

and wet transfer both membranes to bulk Si. We use photoresist as a protective

coating of the InAs/GaSb T2SL, and we remove the polymer by solvent treatment

before scanning electron microscopy. No protective coating is used during release of

the Ga-free membrane. Figure ??(a) and (b) shows the InAs/InAsSb T2SL exhibit

smoother sidewalls than the InAs/GaSb T2SL, thereby suggesting that a higher etch-

ing selectivity exists between the Al0.4Ga0.6Sb sacrificial layer and the Ga-free SL.

We evaluate the impact of release and transfer on the optical quality of the T2SL

membrane by photoluminescence (PL) measurements at 300 K. Figure ?? (c)-(d)

compare PL spectra acquired from unprocessed InAs/GaSb and InAs/InAsSb ac-

tive layers while on the growth substrate, and after release and transfer to bulk Si.

Ga-containing and Ga-free membranes have a thickness of 1.6 µm and 2.5 µm, respec-

tively, and they are both patterned in a 2D array of 10×10 µm2 holes prior to release.

Both as-grown T2SL exhibit broad PL spectra, with a dip at ∼4.2 µm, originated

by absorption of atmospheric CO2, and a cut-off wavelength at 5.5 µm, determined

by the InSb detector of the measurement set-up. PL acquired from as-grown and

transferred membranes shows similar spectral features (see Fig. ?? (c)-(d)). Figure

?? (c)-(d) shows that release and transfer results in the PL intensity to decrease by ∼
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Figure 4.12: E-k dispersion curve along (001) direction (a) as-grown InAs/GaSb, (b)
transferred InAs/GaSb, (c) as-grown InAs/InAsSb and (d) transferred InAs/InAsSb.

65% and ∼ 63% for the InAs/GaSb and InAs/InAsSb, respectively. We attribute the

lower PL intensity for either InAs/GaSb and InAs/InAsSb transferred membranes

to the reduced the volume of the emission area resulting from patterning of the films

before release. We attribute the broad PL to C1-HH1 and C2-HH1 transitions. The

two PL spectra are expected to broaden and merge at 300 K. Further, the variation

in individual layer thicknesses may also contribute to broadening of the spectral fea-

tures. Based on the in-plane lattice parameters obtained by XRD for the as-grown

and transferred membranes (see Table 1), we calculate the transition energy from C1

and C2 (in the conduction band) to HH1 (in the valance band) using the empirical

pseudopotential method. Simulations yield a 0.2920 eV and a 1.165 eV transition en-

ergy from C1 to HH1 and from C2 to HH1, respectively, for the as-grown membrane.

These intra-band energy gaps change to 0.2933 eV and 1.163 eV in the transferred

SL, due to strain redistribution among the layers. We expect the calculated change

for the transition energy in the transferred sample to result in a 19 nm blue-shift and

a 2 nm red-shift of the RT-PL peaks originated from the C1-HH1 and from C2-HH1
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transitions. For the InAs/InAsSb structure, the calculated transition energies vary

from 0.2453 to 0.2471 eV (from C1 to HH1) and from 0.769 to 0.765 eV (from C2

to HH1). A corresponding blue-shift of 37 nm and a red-shit of 8 nm is expected in

the PL peaks acquired from transferred membrane. These estimated changes in the

PL spectra are below the resolution of the measurement PL setup.
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Sb-based membrane photodetector

Currently available infrared detectors are classified as either thermal or photonic

detectors. Thermal detectors, such as bolometers, operate at room temperature,

thereby enabling low-cost commercial applications, including surveillance and night

vision detection in high-end automobiles.[70] Photonic detectors, on the other hand,

have much higher performance (sensitivity, responsivity, and speed) compared to

thermal detectors but require cryogenic cooling. Moreover, photonic focal plane

arrays are realized using an expensive fabrication process, in which part of the pro-

cessing is wafer-level on the host substrate including mesa delineation, surface pas-

sivation, metal evaporation, and indium deposition. This process is followed by a

die-level fabrication involving dicing, flip-chip bonding to a silicon read-out inte-

grated circuit, substrate thinning/removal, and packaging. The die-level steps are

low-yield processes that dramatically increase the cost and fabrication time for the

focal plane arrays. One of the reasons for the low cost of microbolometer detector ar-

rays is that the entire fabrication and packaging is done at a wafer level. In this work,

we demonstrate an approach based on epitaxial lift off [8, 71] to realize InAs/InAsSb

type II superlattice membrane (T2SL-M) detectors that can be adapted for large-

scale wafer integration of photonic detectors on silicon substrates or other flexible
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materials.

5.1 Sb-based membrane transfer

The samples were grown by molecular beam epitaxy in a Vacuum Generators V80H

solid-source machine equipped with valved Sb and As crackers. The 60 nm-thick

sacrificial layer composed of Al0.4Ga0.6Sb followed by the 2.5 µm PIN homojunction

device comprising of 14 ML InAs/12 ML InAs0.81Sb0.19. In which the n-type layers

were Te-doped to 2×1018 cm−3, while the absorber and p-contact layers were Be-

doped at 3×1016 cm−3 and 2×1018 cm−3, respectively.

Following to growth, we used single-step etch dry transfer method to peel off the

InAs/InAsSb T2SL pixels from the growth substrate to the host substrate. Release

and dry transfer of membranes requires a tight control of the etching time of the

sacrificial layer. Indeed, if dry transfer is performed before a significant portion of

the membrane is completely released, the undercut film will peel off while the rest of

the pixel will remain on the native substrate, yielding transferred pixels with holes

in the center. On the other hand, if the pixels are transferred long after the undercut

is complete, the pixels may have shifted or been released from the substrate surface,

resulting in misaligned or missing pixels after transfer to the new substrate. A

perfect dry transfer yields membranes with small defects on the released side, and it

is achieved when pixels are peeled off from the native substrate right before complete

etching of the sacrificial layer. Transferred membranes were characterized by optical

and SEM. Fig. 5.1 shows a large and a small scale images of the transferred pixels.

The area of the transferred arrays was 5×5mm2. Fig. 5.1 shows defects, namely,

missing pixels, in the transferred array. The yield of our release and transfer process

was ∼70%75%. We attribute the defects to particles contaminating the stamp or the

new host, resulting in a poor adhesion of the membrane to the PDMS or the new
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Figure 5.1: Optical microscope and SEM images of transferred InAs/InAsSb pixels
on Si/Ti/Au/Ti

host during transfer. The yield of the transfer process can be then reduced by better

preparation and cleaning of the stamp and new host substrate.

5.2 Sb-based membrane optical characterization

The optical quality of the transferred T2SL-M pixels and as-grown sample was evalu-

ated by photoluminescence (PL) measurements at room temperature using an argon

laser with a power of 1.5 W, an InSb detector, a germanium filter, and a monochro-

mator equipped with a grating rated for 2.6 to 6 µm. PL measurements for both

the as-grown sample and the transferred pixels showed midwavelength IR response,

but the transferred pixels had additional Fabry-Perot oscillations. These additional

oscillations (Fig. 5.2) were likely caused by reflection from the Ti/Au/Ti-coated Si

substrate.

5.3 Sb-based membrane photodetector fabrication

Indium-bump-free infrared photodetectors based on T2SL-M were then fabricated

using the process shown in Fig. 5.3. InAs/InAsSb pixels were first transferred onto
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Figure 5.2: A comparison of room-temperature PL spectra between unprocessed
InAs/InAsSb on a GaSb substrate and transferred InAs/InAsSb membrane on
Si/Ti/Au/Ti substrate.

a supporting Si substrate coated with a Ti (50 Å)/Au (150 Å)/Ti (50 Å) film. The

metal layers served as the bottom contact of the detectors. The transferred mem-

branes were annealed at 150 on a hot plate for 5 min. Any native oxide film grown

on the side walls of the mesas was removed by a 30 s etching in hydrochloric solution

(HCl:DI water = 1:20). Then, 100 nm of Si3N4 was deposited by PECVD as a blan-

ket coating, covering all the pixels and substrate. This dielectric layer passivated

the photodetector pixels and promoted adhesion of the pixels to their new substrate.

The dielectric layer also acted as an insulator between the top and bottom contacts.

Next, a lithography step was undertaken and a dry reactive ion etch (RIE) was per-

formed to open areas in the Si3N4 for metallization. After standard photolithography

to defined the top and bottom contacts, native oxides were removed from the pixels,

using diluted HCl:H2O (1:20). Finally, Ohmic contacts were thermally evaporated

on the defined area using Ti (500 Å)/Pt (500 Å)/Au (3000 Å). Conventional single

pixels with a 410×410 µm2 area and 300 µm-diameter optical apertures were pro-

cessed on as-grown (i.e., unreleased membranes). Mesa etching was performed using
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Figure 5.3: Indium-bump-free single pixel photodetector process; (1) T2SL pixels
transfer to Si substrate deposited with Ti/Au/Ti, (2) Si3N4 blanket layer deposition,
(3) Standard lithography and RIE etch to open the area for metal contact deposition,
(4) metal contact deposition.

an ICP reactor with BCl3 gas. The resulting etch depth was 2.4 µm, a depth corre-

sponding to the middle of the bottom contact layer of the detector. The devices were

passivated by a 100 nm-thick Si3N4 layer after a short (30 s) dip in a hydrochloric

acid solution (HCl:H2O=1:20) to remove native oxides formed on the mesa sidewalls.

The Ohmic contacts were simultaneously evaporated on the bottom and top contact

layers and consisted of Ti (500 Å)/Pt (500 Å)/Au (3000 Å).

The electrical response of a 24×24 µm2 Indium-bump free photodetector on Si was

evaluated by I-V measurements, and the results were compared with the as-grown

sample. Fig. 5.4 shows the I-V characteristics for both devices at 77 K. Previous

publications have reported a comparison of the dark current in devices with different

areas fabricated on the same as-grown T2SL. Specifically, lower dark current densities

were reported for devices with larger areas, suggesting that surface recombination
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Figure 5.4: current voltage characteristics of Indium-bump-free single pixel and con-
ventional single pixel at 77 K.

at the side-walls plays a crucial role in determining the dark current.[59, 72, 73, 58]

As reported in Refs. 8 and 9, the slope of the inverse of the dynamic resistancearea

product (RAeff) as a function of the perimeter-to-area ratio at 77K is directly pro-

portional to the surface-dependent leakage current of the diode. The inverse of the

dynamic resistancearea product was calculated using

where RAeff,bulk is the bulk contribution of the RAeff (Ω cm2), rsurface is the

surface resistivity (Ω cm), and P and A are the perimeter and the area of the device,

respectively. In this experiment, the perimeter to area ratio was 0.0097 and 0.17 for

a pixel with a 410×410 µm2 area, and a 24×24 µm2 area, respectively. The result

is that the surface recombination at the side-walls plays a much less significant role

in determining the dark current in the larger pixels. The calculated value of the

resistivity, using Equation (1), for the Indium-bump-free photodetectors pixel was

57×10−3 Ω cm, which matches the numbers reported in the reference. Therefore, the

higher dark current density of the transferred pixel was partially attributed to surface
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Figure 5.5: Normalized zero bias spectral response measured at 77 K.

leakage currents. The spectral response of the device was evaluated using a broad

spectrum IR light source (Hawk Eye IR-18), which was chopped and sent through a

monochromator. The grating of the monochromator was optimized for 39 µm. The

monochromator output illuminated the detector-under-test, which was cooled down

to 77K in cryostat and biased with a preamplifier. This allowed the output voltage

response to be collected and recorded by a lock-in amplifier. Fig. 5.5 illustrates the

normalized spectral response. The Fabry-Perot effect caused a spectral narrowing

and intensity amplification of the PL peak in the transferred sample, which reduced

the FWHM and distorted the apparent bandgap of the material in comparison to

the as-grown sample.

The transferred pixel for spectral response measurements was also prepared sim-

ilar to the PL sample, with identical substrate preparation and detector material.

Therefore, Fabry-Perot is likely to occur in this pixel as well and would manifest

as a distortion in the spectral response. Because of the small pixel size and high

dark current which leads to low signal-to-noise ratio of the transferred sample, only
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Figure 5.6: Bottom contact behavior, (a) Schematic of reference and transferred sam-
ples cross sections, (b) Current-voltage characteristics of reference and transferred
sample at 77 K.

the highest part of the response was observable, which led to the spectral response

having an apparent cut-off at 4.3 µm. In both conventional and Indium-bump-free

T2SL PIN infrared photodetectors fabrication techniques, top metal contacts were

thermally deposited with the same thickness on P-doped InAs/InAsSb layer. In

order to investigate how the transfer fabrication method affects the bottom metal

contact characteristics, we grew 700 nm-thick N-doped InAs/InAsSb T2SL on a 60

nm Al0.4Ga0.6Sb sacrificial layer on GaSb substrate. The electrical characteristics of

the reference and the transferred structure were compared. For the reference sam-

ple, Standard optical photolithography was used to define a 2D array of 24×24 µm2

square mesa followed by an ICP reactor dry etch with BCl3 gas. The resulting etch

depth was 600 nm that corresponds to the very bottom layer of the highly doped

structure. The mesa was passivated by a 100 nm-thick Si3N4 layer, and the Ti (500

Å)/Pt (500 Å)/Au (3000 Å) contacts were simultaneously evaporated on the bottom

and top of the mesa.
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For the transferred sample, mesas with the same size were defined and etched to

the bottom of the sacrificial layer. Next, the N-doped InAs/InAsSb layer was dry-

transferred to Si coated with Ti (50 Å)/Au (150 Å)/Ti (50 Å). Later, the Indium-

bump-free process was followed for the transferred pixels. A schematic of the cross

section of both processed samples is shown in Fig. 5.6(a). The electrical character-

ization of the reference and transferred samples was performed in a standard probe

station at 77 K. Figure 5.6(b) shows Ohmic bottom contact with R ∼ 50 Ω for

both reference and transferred structure. EDS and current-voltage characterization

suggest that the release and transfer of membranes did not affect significantly the

quality of the bottom contact.
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Sb-based membrane transfer using

two-step etch process

Epitaxially grown single-crystalline semiconductor membranes offer a new platform

for fundamental science and advanced technology. Progress in membrane fabrica-

tion has already significantly altered the landscape, as it relates to properties and

applications of group IV and III-V semiconductors, III-nitrides and various oxide

materials. Membrane technology applied to Sb-based membranes enables accurate

material characterization and engineer strain distributions, which are not obtainable

within the limitations of epitaxial growth processes. Membrane fabrication is based

on wet and dry transfer process for layers and mesas respectively. In transfer process,

membrane is released from the growth substrate by selectively etching the sacrificial

layer grown beneath. Further, the freestanding membrane is bonded to the new sub-

strate. In the case of group III-V membrane transfer process, most of the sacrificial

layers use Aluminum (Al) containing compounds and rely on the fact that Al and

compounds containing Al etch faster than the overlying compound semiconductor or

the underlying substrate. However this precludes the inclusion of Al and Ga in the

active above the sacrificial layer. Previously, we had demonstrated epitaxial lift off
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Figure 6.1: Ga free and Ga containing T2SLs after transfer to alternative substrate,
(a) Schematic of as-grown InAs/InAsSb and InAs/GaSb structure. (b) Schematic of
transferred T2SLs to Si substrate. (d) Off-axis SEM image of the sidewalls of the
T2SLs pixels after transfer which shows that diluted HF is highly selective for Ga
free T2SL and has poor selectivity for Ga containing T2SL. The diluted HF etchant,
etches through the GaSb layers during the release process.

process for InAs/InAsSb type II superlattice membrane (T2SL-M) which is applica-

ble in photonic detectors. Since InAs/ InAsSb is Al and Ga free containing layer,

the successful realization of mesa transfer relied on an HF-based highly selective wet

etch and an Al-based sacrificial layer. Poor selectivity of the etchant for Al contain-

ing sacrificial layer in Al and Ga containing membrane, etches the mesas through

the sidewalls and leaves a rough area. Figure 6.1 shows off-axis scanning electron

micrograph (SEM) image of the sidewalls of InAs/InAsSb and InAs/ GaSb T2SL

mesas after transfer.

In optoelectronic devices, the rough sidewalls increase the imperfections on the

sidewalls and consequently enhance the surface effect and the noise of the device.

Specially, in small size optoelectronic devices since the surface effect is dominant
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in generation-recombination compare to bulk, it plays a very important role in in-

creasing the noise. Recently, scaled smaller size optoelectronic device have received

increasing attention due to higher speed, more powerful and higher resolution. For

instance, in photodetectors, smaller pixel size increase the resolution of the imager

and in LEDs, smaller size enhances device speed. Aforementioned, the essential

challenge in small size optoelectronic is the noise due to the surface effect.

In optoelectronic devices, undesirable generation-recombinations are the source

of the noise. For instance, in photonic detectors, the total dark current, as a noise

source, is comprised by bulk and surface components. The bulk component of the

dark current may reduce significantly by hetrostructure engineering in T2SL detec-

tors. Thus, the surface component is the dominant contributor to the total dark

current. Furthermore, previous studies have reported in p-i-n devices with 25×25

µm2 mesa size, the surface effect is dominant in dark current. Hence, the reduction

of surface effects is critical for high-performance optoelectronic devices.

6.1 Two-step etch transfer process

Diluted HF is the fastest etchant for the Al containing sacrificial layers, compared to

other selective etchants in literature, but poses a huge problem for transferring mesas

that are made out of materials that have very similar etch rates to the sacrificial

layer. Standard (one-step etch) dry transfer process which is based on defining

mesas using photoresist photolithography, sacrificial selective etching, using stamp

to peel off the mesas and transfer to a new substrate, has been reported before for

different material systems. Aforementioned, poor selectivity of etchants in Al and

Ga containing membrane transfer process causes hollows in those layers that leads to

increased area of dangling bonds area and dark current accordingly. Figure 6.2 (a)

and (b) shows cross-sectional SEM and scanning transmission electron microscopy
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Figure 6.2: Structural characterization of the sidewall of the Ga containing T2SL. (a)
cross-sectional SEM image of the sidewall of InAs/GaSb shows release process leaves
hollows on the sidewall of the mesa, (b) STEM image of a lamala of the transferred
mesa sidewall exhibits that the diluted HF etches through GaSb layer.

(STEM) images of the sidewall of InAs/GaSb after a non-selective etch, release and

transfer. A lamala of the transferred pixel (150 nm × 5 mm × 3 mm) is cut out by

a focused ion beam (FIB) and transferred onto a TEM grid. Figure 6.2 (b) exhibits

that diluted HF etches through GaSb layers in Ga containing T2SL.

The critical point to transferring Al and Ga containing active layer is following a

method in which the wet solution etches the sacrificial layer and does no harm to the

rest of the structure. Therefore, we developed a two-step-etch process (see Fig. 6.3

(b)-(g)) to protect the side walls of the active region from the etchant solution. In this

process the first step is defining the mesa (25×25 µm2) using standard lithography,

followed by inductively-coupled plasma (ICP) etching (etching step 1) down to the

top surface of the sacrificial layer. Later, we use another lithography step to apply

the 50×50 µm2 photoresist squares to protect SLS pixel from any damage from the

solution. We do one more ICP etching (etching step 2) to enhance access to the

sacrificial layer. Finally, we hard bake the photoresist at 120 C for 10 minutes to

harden it and increase the adhesion between photoresist and SLS pixel, in preparation

for the sacrificial layer wet etch process. After sample preparation, the sacrificial layer

is partially etched in diluted HF (Hf/ DI water : 1/20), after 2 hours the pixels are

almost released. Next, using polydimethylsiloxane (PDMS) or thermal release tape
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(TRT), we peel off the pixels (still protected with the photoresist) from the original

substrate. Then, the remaining sacrificial layer is removed by leaving the pixels in

the HF solution, while the pixels are still attached to the PDMS or TRT. Finally,

the pixels are transferred to a new substrate, and the protective photoresist layer

is removed using a combination of an acetone bath and oxygen plasma. 6.3 (1-e)).

We transferred InAs/GaSb T2SL mesas using two-step etch process (with PR as

protective layer). Figure 6.3(h) shows SEM image of a pixel after transfer using

two-step etch method and PR removal. smooth sidewalls of mesas after exhibits

the effectiveness of the process. In this work, we use two different sacrificial layer

1) AlAs0.09Sb0.91 digital alloy (DA) and 2) Al0.4Ga0.6Sb ternary. The AlAs0.09Sb0.91

digital alloy sacrificial layer contains 100% Al which potentially can enhance the etch

rate. Moreover, AlAs0.09Sb0.91 layer contains two group V which make it possible

to have a lattice matched sacrificial layer to the GaSb substrate and grow a thick

sacrificial layer. On the other hand, Al0.4Ga0.6Sb ternary has 60 nm kinetic critical

thickness which leaves no cross-hatching in the layer.

6.2 material characterization

The optical properties of the transferred pixels with AlAsSb DA and AlGaSb sacri-

ficial layer were evaluated by photoluminescence (PL) measurements at a number of

temperatures, and compared with as-grown materials. This was accomplished using

a 635 nm AlGaAs diode barstack laser with a power of 1.5 W, an InSb detector, a 2.5

µm long pass filter, and a monochromator equipped with a grating rated for wave-

lengths from 2.6 to 6 µm. PL measurements at different temperatures for both the

as-grown and transferred samples showed that as the temperature reduces, the PL

peak becomes more narrow and has a blue shift. This blue shift is a well-documented

phenomenon, as characterized by Varshni. At lower temperatures, carriers get less
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energy from phonons to get to the non-radiative centers which causes the less FWHM

in the PL spectra. The 75% (ckeck carefully) lower PL intensity observed for the

transferred sample, when compared to the as-grown sample, is partially explained by

the transferred pixels smaller volume of active material than the as-grown material

(reducing the light emission intensity to approximately 1/3), and also because the

pixels have more surface area (sidewalls) where surface recombination can dominate.

Furthermore, we performed TEM to evaluate the quality of the interface between

the transferred pixel and the new substrate. A lamala of the transferred pixel (100

nm × 5 mm × 3 mm) is cut out by a focused ion beam (FIB) and transferred onto a

TEM grid. Figure 6.4 (c) shows high resolution TEM image of T2SL crystal quality

and complete bonded interface of the transferred pixel to new host substrate.

To verify the complete removal of the Al-based sacrificial layer, X-ray photoelec-

tron spectroscopy (XPS) is performed. XPS is a surface-sensitive quantitative spec-

troscopic technique that measures the elemental composition.(reference) We transfer

25×25 µm2 mesas to TRT, and utilize (XPS) to characterize the chemical compo-

sitions contained on the backside of the mesas which was immediately grown on Al

containing sacrificial layer . Al compositions is not detected by XPS (see spectra

in Figure 6.4 (d)), confirming that no residue of the AlGaSb layer after release and

transfer to the stamp.

6.3 Device fabrication and characterization

6.3.1 Fabrication

As mentioned before, two-step etch process is a transfer method which protect the

Al and Ga containing membrane during the selective Al containing sacrificial layer
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etch. This process leaves smooth sidewalls after transfer to a new substrate. Here, we

fabricate and characterize three different type of IR photodetectors on InAs/GaSb

membrane. First type of detectors are fabricate on InAs/GaSb T2SL transferred

mesas to bulk Si using two-step etch process. For the second type, the same device

fabrication process is followed for InAs/GaSb transferred to bulk Si using one-step

etch process. Finally, we used the conventional detector fabrication method to pro-

cess the detectors on growth (GaSb) substrate. In both one-step etch and two-step

etch process, the 25×25 µm2 mesas transferred onto a supporting Si substrate coated

with a Ti (50 Å)/Au (150 Å)/ Ti (50 Å) film. The metal layers serves as the bottom

contact of the detectors. Any native oxide film grown on the side-walls of the mesas

is removed by a 30 seconds etching in hydrochloric solution (HCl:DI water/1:20).

Then, 100 nm of Si3N4 is deposited by plasma-enhanced chemical vapor deposition

(PECVD) as a blanket coating, covering all the pixels and substrate. This dielectric

layer passivates the photodetector pixels and promotes adhesion of the pixels to their

new substrate. The dielectric layer also acts as an insulator between the top and

bottom contacts. Next, a lithography step is undertaken and a dry reactive ion etch

(RIE) is performed to open areas in the Si3N4 for metallization. After standard pho-

tolithography to defined the top and bottom contacts, native oxides were removed

from the pixels, using diluted HCl:H2O (1:20). Finally, Ohmic contacts were ther-

mally evaporated on the defined area using Ti (500 Å)/Pt (500 Å)/Au (3000 Å). We

compare the device spectral response and dark current density of the transferred and

fabricated devices on Si substrate with a 25×25 µm2 device fabricated the on GaSb

substrate using conventional method to compare the performance of the fabricated

photodetectors using different methods. In conventional method mesas are defined

using standard photolithography which followed by dry ICP etch to the middle of the

highly p-doped bottom contact. The rest of the device process, consisting of Si3N4

deposition, dry etch to open contact areas and metallization, is similar to transferred

device fabrication.
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6.3.2 Characterizations

In this work, we have fabricated photodetector based on a 1.6 µm-thick InAs/GaSb

p-i-n SL to bulk Si. Previous investigations have shown the dark current of a detec-

tor can be represented as two major components of bulk component and perimeter

component (surface component).

Id = AJbulk + PJperimeter (6.1)

Jbulk contains 1) Generation current associated with the Shockley-ReadHall (SRH)

process in the depletion region of the detector, 2) Thermally generated diffusion

current associated with Auger or radiative process in both the n- and pextrinsic

regions of the detector. A surface current, Jperimeter, associated with the surface

states in the junction. Equation (1) shows by reducing the size of the device, P/A

increased and the surface current remains a dominant contributor to the total dark

current. Based on previous studies, the performance of detector device with typical

mesa dimensions of ∼ 20×20 µm2 is strongly dependent on surface effects due to their

large surface/volume ratio. Surface effect can be reduced by different passivation

method but it is still a big challenge for T2SL detectors.

We perform device characterization at 77K, i.e., the typical operating temperature

of IR detectors. Figure 5 (a) compares the dark current density (J-V) of the three

different fabricated devices (as-grown, one-step etch transferred and two-step etch

transferred) between -1 V and 1V. In addition to symmetrical J-V behavior due to

the very leaky diode (p-i-n structure), one-step etch transferred and fabricated device

shows ∼ 440 A/cm2 at -0.1 volt which is the highest dark current density among all

three different fabricated device. Both highlighted features of the J-V characteristics

measured for the detector on Si suggest that the current follows a low resistance path

along the device side-walls. We attribute the higher conductance of the membrane

perimeter to the poor selectivity of the etching solution with respect to GaSb, and
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resulting lateral etching of material during the release process. Dark current density

(J-V) of the fabricated device on two-step etch transferred pixel shows a perfect diode

(asymmetric J-V) behavior with four orders of magnitude lower dark current density

at -0.1 volt bias. This significant reduction in dark current is due to protecting

the sidewalls during the release and transfer. The same measurement is done for

fabricated device on growth substrate (GaSb). Figure 6.5 (a) shows ∼ 3 A/cm2

dark current density at -0.1 bias voltage which is two order of magnitude lower than

fabricated detector on Si using one-step etch process to transfer pixels and one order

of magnitude higher than two-step etch transferred pixels.

Figure 6.5 (b) shows the normalized spectral response of three type of devices

which covers from 1.7-5.7 m from IR specta. The visible oscillations in the spectral

response of the photodetector based on the transferred membrane originate from

multiple reflections at the metal coated Si surface.

Figure 6.6 shows a histogram of dark current density for different types of fabri-

cated devices. It shows the dark current density of the devices is constant in each

type of fabricated device.
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Figure 6.3: Schematic illustration of T2SL two-step etch process, release and transfer
from the original growth substrate to a new host. (a) As-grown T2SL on a GaSb
growth substrate coated with an Al0.4Ga0.6Sb sacrificial layer. (b) Unreleased mem-
brane patterned into a 2D array of mesas via standard photolithography and etched
using ICP to the top of the sacrificial layer to define pixels (first step etch). (c)
Pixels covered with PR, using standard photolithography and then hard backed at
120 ◦C for 10 minutes. (d) Second step ICP etch to the bottom of the sacrificial
layer to enhance etchant access to the sacrificial layer. (e) Partial selective etch of
the sacrificial layer in (HF:H2O). (f) Removal of the mesas from the growth sub-
strate and transfer to the new support, using a stamp. (g) Removal of the PR from
the transferred pixels. (h) SEM image of the sidewall of a transferred pixel using
two-step etch process.
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Figure 6.4: Optical and structural characterization of the transferred InAs/GaSb
pixels using two-step etch process (a) PL spectra acquired from as-grown and trans-
ferred InAs/GaSb using two-step etch process at 77K shows the same spectra and
the inset plot exhibits the acquired PL from as-grown transferred InAs/GaSb T2SL
on a Si substrate at different temperature, (b) SEM image of the transferred lamala
to TEM grid. (c) High resolution TEM image from the transferred pixels and Si/Ti
substrate. (b) and (c) show complete bonding between InAs/GaSb pixel and host
substrate and rule out the presence of voids or particles at the interface. (d) XPS
analysis of the transferred pixels on to thermal release tape which gives access to the
bottom of the pixels.
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Figure 6.5: Device characterization of 1.6 µm-thick InAs/GaSb T2SLs at 77 K. Three
different types of fabricated device with the same lateral dimension of the membrane
is 2424 m2 are compared. First type of device is fabricated on growth substrate
(GaSb), second type is fabricated is fabricated on transferred pixels on Si using two-
step etch process and the third type is fabricated on pixels on Si substrate using
sing-step etch process. (a) Dark current density acquired from three types of device,
(b) Spectral response comparison of three different types of devices.
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Figure 6.6: Histogram of the dark current density vs. device number. Black lines
represent the fabricated devices on growth substrate (GaSb), red lines represent the
fabricated devices on transferred pixels on Si substrate using two-step etch and the
fabricated devices on transferred pixels on Si substrate using one-step etch.

77



Chapter 7

Future work

7.1 Conclusion

Integration of Sb-based compound membranes with a Si substrate will potentially

solve a number of technological challenges in the fabrication of infrared (IR) op-

toelectronic devices based on type II superlattices (T2SLs). Typically, T2SLs are

epitaxially grown on GaSb substrates. However, GaSb substrates absorb much of

the incoming or outgoing radiation in the IR range, thus reducing the signal-to-noise

ratio (SNR). In addition, T2SLs/GaSb substrates are bonded to a Si read-out cir-

cuit (ROIC) to realize infrared focal plane arrays (FPAs). As the detectors-ROIC

combination is cryogenically cooled during operation, the large thermal mismatch

between the GaSb substrate and the Si ROIC results in structural failure of the

imaging device, via cracking of the absorber or delamination of the detectors from

the ROIC. To overcome these issues, the GaSb substrate is routinely removed via

chemical-mechanical polishing (CMP) and selective etching, thereby increasing man-

ufacturing costs, and leading to device failure. Transfer of T2SL to Si will eliminate

the issue of the thermal mismatch between the ROIC and the IR detectors, thereby
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increasing the yield of the fabrication process.

Furthermore, transfer of Sb compounds to insulating materials will enable a thor-

ough investigation of electrical transport in the heterostructure via Hall and van Der

Pauw measurements, i.e., two techniques not applicable to Sb-based heterostruc-

tures supported by semiconducting growth substrates. These studies will foster a

greater understanding of fundamental properties of Sb-containing multilayers, such

as background carrier concentration, lateral and vertical carrier mobility, both of

which significantly affect the device performance.

Membrane technology applied to Sb-based structures will enable to engineer

strain distributions, which are not obtainable within the limitations of epitaxial

growth processes. For instance, a T2SL will undergo elastic deformation during

the release process, redistributing strain intrinsic to the deposition process between

the InAs and (InAs,Ga)Sb layers in the SL. Furthermore, Sb-baseb membranes may

be bonded and conformed to patterned surfaces of various shapes and sizes to induce

local strain of different types and amplitudes. As strain modifies electronic band

structure, electronic transport, optoelectronic properties, and phonon structure, one

might harness it to obtain unique characteristics not present in the relaxed material.

Bonding Sb-based membranes to any substrate, including a flexible host, will pave

the road to fabrication of flexible IR imagers and low power transistors.

7.2 Future work

Epitaxially grown Sb compounds have recently received increasing attention as func-

tional layers in infrared detectors and sources, high mobility transistors, resonant

tunneling diodes and low-power analog and digital electronics. Sb-based membrane

technology has the potential to improve the performance of infrared detectors. More-

over, membrane technology enable wafer-level FPA processing to reduce the cost and
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increase the yield in infrared imagers fabrication and packaging. I have done a com-

prehensive study on Sb-based T2SL membrane and fabricated IR photodetectors

on Si substrates. in this desirtaion. Here, I propose a few projects using Sb-based

membranes for optoelectronic device applications.

1- I design two different methods for the wafer-level processing. More detail about

this process is explained in the following section.

2-I suggest to bonded Sb-based T2SLs membrane to Si coated with patterned

metal serves as the bottom contact and a metamaterial structure to enhance the

near field. The patterned metal layer is a plasmonic coupler structure which enhances

absorption in the active area of the photodetectors and increases the signal-to-noise

ratio of infrared detectors.

3- Strain engineering the Sb-based compounds to change the strain because it

has impact on carrier mobility in S-based structures by considering strain-induced

band splitting, band warping and consequent carrier repopulation, and altered con-

ductivity effective mass and scattering.

5- transfer process enables a thorough investigation of electrical transport in the

heterostructure via Hall and van Der Pauw measurements, which are not applicable

to T2SLs supported by GaSb substrates.

7.2.1 Wafer-level infrared photodetectors

Currently available infrared detectors are classified as either thermal or photonic

detectors. Thermal detectors, such as bolometers which work at the wavelengths

between 7.5-14 µm, operate at room temperature, thereby enabling low-cost com-

mercial applications, including surveillance and night vision detection in high-end

automobiles. Photonic detectors, on the other hand, have much higher performance
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(sensitivity, responsivity, and speed) compared to thermal detectors and engineering

the structure terminate to detection a broad IR wavelength range between 3 to 30 µm

but require cryogenic cooling. Besides, the incredible growth in microbolometers over

the last 20 years has been enabled by aligned wafer bonding. Many microbolometers

have very small moving parts, which must be protected from the external environ-

ment. Initially, this was done using special packages at the die level, which was

relatively expensive. Wafer-level capping of microbolometers seals a wafers worth of

microbolometers in one operation, and these capped devices can then be packaged

in a much simpler and lower-cost package. The state-of-the-art for photonic infrared

focal plane arrays is realized using a process in which part of the processing is done at

a wafer level on the host substrate including mesa delineation, surface passivation,

metal evaporation, and indium deposition. This process is followed by a die-level

fabrication involving dicing, flip-chip bonding to a silicon read-out integrated cir-

cuit, substrate thinning/removal, and packaging. The die-level steps are low yield

processes that dramatically increase the cost and fabrication time for the focal plane

arrays.

Recently, the DOD has a concerted effort to develop infrared sensors and cameras

for low-cost, large-format, and high-performance imaging in the short-wave infrared

(SWIR), medium-wave infrared (MWIR), and long-wave infrared (LWIR) spectral

bands. These infrared detectors must be able to be fabricated directly on silicon-

based readout integrated circuit (ROIC) substrates at the wafer scale. The U.S.

Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., issued

a broad-agency announcement for the Wafer Scale Infrared Detectors (WIRED)

program. DARPA researchers would like the ability to manufacture high-quality

miniature SWIR, MWIR, and LWIR detectors as affordably as the industry makes

high-quality visible-light digital cameras for cell phones and other small handheld

devices.
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I believe the Sb-membrane transfer process could enable wafer level fabricate of

complicated photonic heterostructures on a host Si wafer and the entire process can

be undertaken at a wafer level. Another advantage of using this approach is that the

host substrate can be recycled after the transfer is undertaken. We propose a new

process flow which gives the capability of wafer-level fabrication and wafer-leveling

packaging of photonic detectors. Reducing cost and increasing yield are the results

of these two methods.

7.2.2 Method I: Die to wafer integration

In this method, following the crystal growth of the device structures on a sacrificial

layer which is grown on GaSb substrate, wafer-level integration starts with the Sb-

based membrane transfer to Si substrate and then the following steps take place.

There can be several variables for changes within the fabrication procedure but the

process is broadly divided into the following steps 1) Pixels or mesas definition using

standard photolithography following by ICP etch (BCl3 gas) 2) Utilizing dry transfer

process to peel off the pixels from a whole GaSb growth substrate and transfer them

to arbitrary substrate (e.g. Si). This process is explained with details in chapter

3. The substrate should be covered with a conductive layer before transfer which

serves as the bottom contact for all pixels. Because of the backside illumination

through the Si substrate, this covering conductive layer should be transparent in IR

wavelength range, Graphene or very thin layer of metal can be good nominate for

this purpose. 3) Next step is pixels passivation to have higher performance devices.

Same as the conventional method, different method of passivation such as SiN and

SU8 can be used. 4) One step standard photolithography and RIE etch removes the

passivation layer from the contact areas and metal deposition on these areas produce

metal ohmic contacts for the pixels. In order to hybridizing the detectors to the

read out integrated circuit, Indium bumps are required. Like the conventional FPA
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Figure 7.1

fabrication method, following steps are taken to make indium bumps. 5) Standard

photolithography to open the areas on metal contacts for Indium layer deposition 6)

Indium bumps are shaped using Indium reflow 7) And at the last step detectors are

hybridized to ROIC by bonding Indium bumps from both sides. Figure 7.1 shows

the schematic of this method.

7.2.3 Method II: Die to wafer integration

In this method, Like previous method, following crystal growth of the device struc-

tures on a sacrificial layer which is grown on GaSb substrate, Sb-based membrane is

can be release using selective etch process and then transfer to the ROIC directly.

There can be several variables for changes within the fabrication procedure but the

process is broadly divided into the following steps 1) Defining pixels or mesas using

standard photolithography and ICP etch (BCl3 gass) 2) Utilizing dry transfer pro-

cess to peel off the pixels from a whole GaSb growth substrate and transfer them
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to arbitrary substrate (e.g. Si). This process is explained with details in chapter 3.

The substrate should be covered with a conductive layer before transfer which serves

as the bottom contact for all pixels. Since this covering conductive layer should be

transparent in IR wavelength range, Graphene or very thin layer of metal can be

good nominate for this perpuse. 3) Next step is passivating the pixels to have higher

performance devices. Same as the conventional method, different method of passi-

vation such as SiN and SU8 can be used. 4) Passivation follows by making metal

contact on top and bottom contact layer of the structure. One step standard pho-

tolithography and RIE etch removes the passivation layer from the contact areas and

depositing metal on these areas produce metal ohmic contacts for the pixels. In or-

der to hybridizing the detectors to the read out integrated circuit, Indium bumps are

required. Like the conventional FPA fabrication method, following steps are taken

to make indium bumps. 5) Standard photolithography open the areas on metal con-

tacts for Indium layer deposition 6) Indium bumps are shaped using Indium reflow

7) And at the last step detectors are hybridized to ROIC by bonding Indium bumps

from both sides. Figure 7.2 shows the schematic of this method.

7.3 Membrane metamaterial detectors

Recently, there has been a great deal of interest in confining light at metal/semiconductor

interface by using SPW. Employment of SPs for IR sensing applications is a very

promising research area, because coupling a detector with surface plasmon modes

leads to both resonant and broadband enhancement, i.e. encoding of spectral and

polarization information within the pixel and improving of detectors signal-to-noise

characteristic. To achieve higher intensity near field, the absorber should be placed

in that area and very close to the plasmonic coupler structure.

Membrane transfer method for FPAs has the capability of peeling off the pixels
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Figure 7.2

from growth substrate and transferring to Si covered with patterned metal layer (SP

structure).

Previously, I have demonstrated a broadband enhancement of the SNR of a T2SL

MWIR detector integrated with the surface plasmon coupler.

It is known to reduce dark current levels in T2SL detectors both bulk and surface

dark current components have to be reduced. Scaling the lateral dimensions of a

T2SL detector (e.g. typical mesa dimensions of individual FPA pixels are 20×20

µm2) leads to a large surface/volume ratio and surface leakage current becomes the

dominant dark current contribution. This component can be significantly reduced by

various passivation methods such as sulfide, silicon dioxide and polymeric layers and

even overgrowth with wide bandgap materials. Passivation is expected to suppress

oxidation of the side walls and saturate dangling bonds to prevent surface states.

To reduce volume currents, different methods such as the use of barrier layers to

block dark current, nBn structure, volume reduction, etc are used. The volume of
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Figure 7.3: schematic of utilizing surface plasmon coupler on a photodetector. In
this design, incident light excites the surface plasmon mode at the interface of the
metal-semiconductor and couple the light to the detector laterally and enhance the
signal

a T2SL detector may be reduced by scaling the active SLS thickness of the device.

Then the ”bulk” component of the dark current (SRH and thermally generated

diffusion current) will be linearly diminished. However, the quantum efficiency (QE)

of the device will also be decreased. Reduced volume T2SL with thin layers do

not improve the SNR because the signal depends on thickness linearly, while the

G-R noise scales as the square root of the thickness. One way to compensate QE

and signal loss is by utilization of surface Plasma wave (SPW) assisted coupling of

incident electromagnetic radiation laterally into the absorber layer. This way, QE

is enhanced in the thin T2SL device, while low dark current levels are maintained.

Different research groups have demonstrated enhanced absorption in quantum-dot

photodetectors through integration with plasmonic coupling structures.

Generally, a metal film with a 2-dimensional (2D) hole array, referred to as a

metal photonic crystal (MPC), has been used as a plasmonic coupler . To use surface

plasmon polaritons (SPPs), the active region must be placed in the near field within
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Figure 7.4: Schematic of metal and semiconductor interface and the electromagtenic
field behavior at this interface.

the decay length of the plasmonic mode. For a 2-D hole array and normally incident

light, the peak wavelength, λij, and the SPW evanescent depth, δij, are related to

period of the array, p, the dielectric constants of the metal, εm, and the dielectric

material in contact with the metal, εd, as given by equations (1) and (2)

where i, j are the scattering orders of the array . Absorption of the SPW in

the T2SL provides a solution to maintaining the absorption of a thick T2SL layer

while benefiting from the reduced noise of a thin T2SL layer. Previous SPW studies

have shown that for an MPC-integrated QDIP substrate-side illumination is more

effective than air-side illumination. On the other hand, conventional industrial FPAs

are flipped and light is incident through the substrate. So, to be compatible with

manufacturing processes, this flip-chip geometry has to be retained. CMS is a good

substitution for MPC for substrate-side illumination (SSI). In this design even though

single pixel devices are tested, SSI is used and a corrugated metal surface (CMS) is

used as a coupler.
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Figure 7.5: (a)-(c) Schematic illustration of membrane transfer to a substrate tex-
tured with a 2D array of spheres. (a) As-grown membranes bonded to their sacrificial
layer are pseudomorphically strained to the native substrate. Wet transfer of mem-
branes (b) to a textured host results in the film to conform to the shape of the
pattern. Strain redistributes across layers as the membrane is freestanding in liquid.
(c) Biaxially strained membrane.

7.4 Strain engineering

Antimonide-based membranes can be bonded to any material, including flexible and

patterned substrate. Membranes bonded to flexible hosts may be stretched or bent

to induce a uniform elastic strain in the film. Alternatively, freestanding membranes

can be transferred and conform to micro- and nano-scale patterned features due to

their extremely low bending stiffness. In this case the film undergoes local elas-

tic deformation (i.e., bending). Global or local bending may be used to impart a

controlled amount of elastic strain in Sb compounds. Here, we demonstrate the

potential of membrane technology to strain-engineer Sb-based compounds, thereby

enhancing electrical transport in these materials. For this purpose we use continuum

mechanical modeling to estimate the amount of strain imparted through bending in

a 10 InSb membrane cladded by 30 nm Al0.2In0.8Sb. InSb quantum wells exhibit

a relatively high hole mobility as the structure is under significant biaxial compres-

sive strain due to the lattice mismatch between InSb and AlxIn1-xSb. Transfer of a

thin InSb/AlxIn1-xSb heterostructures to a textured surface with an array of micro-

/nanospheres allows increasing the amount of strain in InSb beyond the limitations

of epitaxial growth. Figure 7.5 (a)-(c) schematically illustrate membrane transfer
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to a textured substrate. Initially the membrane is bonded to its native substrate

(Figure 7.5 (a)), and it is pseudomorphically strained to the lattice parameter of

the substrate. During release the membrane is freestanding, hence free to elastically

relax. Wet transfer (Figure 7.5 (b)) to a textured surface results in the membrane

to experience spherical bending and biaxial strain (Figure 7.5 (c)).

Micro/nanospheres on a substrate can be obtained by a variety of processes, in-

cluding self-assembly of silica spheres and templating by colloidal crystals. We calcu-

late the strain distribution across the thickness a 30/10/30 nm Al0.2In0.8Sb/InSb/Al0.2In0.8Sb

under a spherical bending of radius R= 5 µm. Heterostructures are modelled as-

grown on Al0.2In0.8Sb relaxed buffers. A sketch of the bent membrane and the calcu-

lated in-plane strains are in Figure. 7.6, respectively. The strains in the as-grown and

freestanding membranes are also plotted in Figure 7.6. As-grown InSb experiences

a 1.06% biaxial compressive strain, while no deformation occurs in the Al0.2In0.8Sb

layer upon growth (green lines in Figure 4(e)). During release the membrane under-

goes elastic relaxation yielding a 0.9848% compressive strain in InSb, and a 0.0752%

tensile strain in Al0.2In0.8Sb (red lines in Figure 7.6). Strain values in the released

membranes are calculated as described in the Supplementary information. A spher-

ical bending with a radius of curvature R=5 µm produces a linearly varying strain

across the heterostructures ranging from -1.9% to -2.1%, which includes the strain

due to the release process.

Figure 7.7 plots the average, minimum and maximum volumetric strain in InSb

for R going from 0.1 to 5 µm. Minimum and maximum strains are calculated at the

two InSb/Al0.2In0.8Sb interfaces. Average values of compressive strain remain more

or less constant at 2% for R 0.3-5 µm. A higher strain gradient at low R results in

the volumetric strain to increase up to 3.8 % at R=0.1 µm.

The strain engineering is applicable for layered Sb-based structures to enhance

the carrier transport and make high speed detectors.
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Figure 7.6: The textured host can be obtained through a variety of processes, includ-
ing self-assembly of silica spheres and templating by colloidal crystals. (a) Section of
a membrane undergoing spherical bending with a radius of curvature R. (b) In plane
strain profile across the thickness of an AlInSb/InSb/AlInSb heterostructures. Strain
in the as-grown (green), freestanding (red) and spherically bent (black) membranes
are plotted.

7.5 Electrical transport characterization

Previously mentioned fundamental properties of T2SL absorbers, such as background

carrier concentration and vertical carrier mobility, have not yet been very well charac-

terized due to the conductive growth substrate. the background carrier concentration

in Sb-based T2SL could be characterized by transferring to insulating substrate and

via standard techniques, such as Hall and van Der Pauw measurements. From the

measurements made, the following properties of the material can be calculated:

- The resistivity of the material

- The doping type (i.e. whether it is a P-type or N-type material)

- The sheet carrier density of the majority carrier (the number of majority carriers

per unit area). From this the charge density and doping level can be found - The

mobility of the majority carrier
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Figure 7.7: Minimum, maximum and average strain in the InSb quantum well vs. a
radius curvature varying between 0.1 and 5 µm.

I have transferred 24 x 24 µm2 pixels from GaSb substrate to a non-doped Si

substrate, subsequently, one standard photolithography step is applied to open the

area for four contact pads on the corners of the pixel. The native oxide on the opened

area is removed by 30 seconds soaking the sample in HCl: DI water/ 1:20. Next, we

thermally deposit Ti (50 nm)/ Pt (50 nm)/ Au (300 nm) to have electrical contacts

on the sample and finally, for Hall measurements, sample should be wirebonded to

a sample carrier. 7.8 shows a pixel with 4 contact pads and wires.
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Figure 7.8: Fabricated and wirebonded 24x24 µm2 pixel for Hall measurements
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