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To my brother,

Do you know I’ve been sitting here thinking to myself: that if I didn’t believe in life,

if I lost faith in the woman I love, lost faith in the order of things, were convinced
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I were struck by every horror of man’s disillusionment – still I should want to live
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will triumph over everything – every disillusionment, every disgust with life. I’ve

asked myself many times whether there is in the world any despair that would

overcome this frantic and perhaps unseemly thirst for life in me, and I’ve come to

the conclusion that there isn’t, that is till I am thirty, and then I shall lose it of

myself, I fancy.
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Abstract

This dissertation is a report on a number of distinct topics in the field of non-

equilibrium statistical mechanics including the evolution of classical as well as quan-

tum systems.

The evolution of an object that is described by the Ornstein-Uhlenbeck process

generalized through a time-nonlocal attraction is considered. The time-nonlocality

is taken to be represented in the Langevin description through the presence of mem-

ory. Analysis of the Langevin equation is performed for algebraic and delay-type

memories. An equivalent bona-fide Fokker-Planck equation is constructed.

A random walker subjected to a non-standard confining potential, taken to be

a piece-wise linear function, is analyzed. Matching conditions for arbitrary joining

configurations are given. Exact propagators in both the time- and Laplace-domains
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are derived for the case of a ‘V’-shaped potential. Two illustrative applications of

such calculations are presented in the areas of chemical physics and biophysics.

The relaxation of quantum systems interacting with a thermal reservoir is studied.

Calculations for specified bath spectral functions are presented. Our primary focus

is the vibrational relaxation of an excited molecule and we provide a generalization

of the Montroll-Shuler equation into the coherent domain. A related system, the

Stark ladder, is briefly discussed.
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Chapter 1

Introduction

In this thesis, we report on a few fundamental studies in the field of non-equilibrium

statistical mechanics covering a number of distinct, unrelated, topics including the

evolution of classical as well as quantum systems. The former include a Brownian

particle subject to time-nonlocal memory e↵ects and a random walker moving in a

non-standard confining potential. The latter deals with the influence of an interaction

with a thermal reservoir on the evolution of quantum systems. We also include the

results of an additional investigation on a dimension e↵ect in reaction-di↵usion theory

(Appendix A) on a topic unrelated to the rest of the thesis. As we cover a wide variety

of topics, we have divided our discussion into three Parts. Each of the three Parts is

divided into three Chapters. The first Chapter in the sequence serves to introduce

the specific problem and provide motivation for its study; any techniques required

for the analysis are introduced in this Chapter as well. The two Chapters that follow

in each sequence contain the main elements of this thesis. Conclusions are presented

internal to each Chapter. We provide a brief outline of the thesis here.

In the first Part (Chapters 2, 3, and 4), we discuss the e↵ects of introducing

time-nonlocality in the Ornstein-Uhlenbeck process. The time-nonlocality is taken

1



Chapter 1. Introduction

to be present in the Langevin description of the process. Chapter 3 proceeds with

a direct analysis from the resulting Langevin equation while Chapter 4 presents a

derivation of the equivalent bona-fide Fokker-Planck equation.

In the second Part (Chapters 5, 6, and 7), we analyze the e↵ects of non-standard

confinement on the motion of a random-walker, i.e., a di↵using particle. The confin-

ing potential is taken to be a simple piece-wise linear function consisting of joining

two segments of equal and opposite slopes. In Chapter 6, we give expressions for

various dynamic quantities and in Chapter 7 we describe two illustrative applications

and present specific calculations relevant to their qualitative analysis.

In the third Part (Chapters 8, 9, and 10), we study the influence of a bath on

the relaxation of quantum systems; a Generalized Master equation approach in the

weak-coupling approximation is used. The requisite memories depend on a single

bath spectral function through an integral transform. At equilibrium, the detailed

balance condition is ensured by a simple restriction on the spectral function. In Chap-

ter 9, we reproduce results for a simple, yet illustrative, system, the non-degenerate

dimer analyzed earlier, and present explicit calculations of the bath spectral func-

tions. In Chapter 10, we analyze vibrational relaxation of a molecule in a bath

under conditions of high coherence. The related Stark ladder system is also briefly

discussed.

2



Part 1: Brownian Motion with

Memories
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Chapter 2

Overview of Memory E↵ects in

Brownian Motion

The Ornstein-Uhlenbeck process describes the motion of a particle under the e↵ect

of a harmonic restoring potential that is being subjected to white Gaussian noise.

It arise frequently in statistical mechanics [1, 2]. In a one-dimensional system, the

equation that governs the evolution of the probability density P (x, t) at time t and

position x, often referred to as the Smoluchowski equation, takes the form

@P (x, t)

@t
=

@

@x

✓

�xP (x, t) + D
@P (x, t)

@x

◆

(2.1)

where � gives the strength of the restoring force and D is the di↵usion constant.

The solution to Eq. (2.1) is well-known. It is similar to that of the simple di↵usion

equation provided that the time t undergoes a saturation transformation t ! T (t) =

(1 � e�2�t)/2�. In addition, an extra term that decays at the rate � in a well known

way modifies the standard initial condition term. Thus, for an initial condition

P (x, 0) = �(x � x
0

),

P (x, t) =
1

p

4⇡DT (t)
e� (x�x0e��t)2

4DT (t)

4



Chapter 2. Overview of Memory E↵ects in Brownian Motion

The focus in Chapters 3 and 4 is on systems in which the harmonic restoring

force is time-nonlocal. One might be tempted to argue that such a generalization

of the Ornstein-Uhlenbeck process could be performed directly in Eq. (2.1). The

time-nonlocality would then be introduced into the potential term through a general

memory function �(t) with the simple transform,

d

dx
�xP (x, t) ! d

dx
�

t

Z

0

�(t � t0)xP (x, t0).

The evolution of P (x, t) would then depend not only on the current time t but prior

times t0 as well. As will briefly be discussed in Chapter 3, however, this method

leads to unphysical predictions. Our interest is in situations in which the physics

of the problem introduces a memory �(t) into the Langevin equation rather than

in the probability equation. We have then, for the stochastic variable x
i

(t) (which

represents the ith particle),

dx
i

(t)

dt
= ��

t

Z

0

dt0 �(t � t0)x
i

(t0) + ⇠
i

(t), (2.2)

where ⇠
i

(t) is the noise. When the memory in Eq. (2.2) is a �-function, i.e., when

the equation is local in time, one reacquires the standard Langevin equation for x
i

(t)

and the standard Smoluchowski equation for the probability density. The analysis

that follows takes Eq. (2.2) as its starting point.

Newton’s laws provide a simple example of how a time-nonlocal Langevin equa-

tion might arise. As should be well-known, Newton’s second law of motion relates

the force to an object’s acceleration, i.e., the second derivative with respect to time

a spatial coordinate. For many physical systems, it is standard, and appropriate, for

these inertial, second-order terms to be neglected in the construction of the Langevin

equation by making a high-damping approximation. This converts the second-order

equations of Newton into first-order approximations that are reminiscent of Aristo-

tle. However, one may find the high-damping approximation inappropriate in certain

5



Chapter 2. Overview of Memory E↵ects in Brownian Motion

physical situations. If one keeps the inertial term intact, both the coordinate x of

the particle and its velocity v must be treated on an equal footing. Thus one is

concerned with a probabilistic description that depend on both, i.e., one considers

P (x, v, t) rather than P (x, t). If observables that are dependent only on the coor-

dinate are of interest, a one-variable description can be introduced through the use

of a memory function that relates the time derivative of x to an appropriate func-

tion of x, i.e., Eq. (2.2). A recent review of the mathematics of animal motion [3]

discusses such a situation. In an alternative source of time-nonlocality, the physical

signal related to the restoring force may propagate at a finite speed. Examples of

such delays may be found in the study of Alzheimer walks [4] and a recent analysis

of pairwise movement coordination [5] applicable to a system of foraging bats [6].

One is tempted to attempt the construction of a Fokker-Planck equivalent to

Eq. (2.2) by defining for the ith particle the velocity at time t as v
i

(t) = dx
i

(t)/dt.

Then, one performs the standard transformation from the particle description defined

by x
i

(t) to a field description that is identified by the field variable x. Concretely,

the microscopic definitions of the probability density P (x, t) and its current density

j(x, t) are

P
1

(x, t) = h�(x
i

(t) � x)i, (2.3a)

j(x, t) =

⌧

dx
i

(t)

dt
�(x

i

(t) � x)

�

, (2.3b)

where h...i is the ensemble average. When the memory in Eq. (2.2) is a delta-function,

the velocity, v
i

(t) = ��x
i

(t) + ⇠
i

(t), can be inserted into Eq. (2.3b) and its factor

of x
i

(t) replaced by the field variable x due to the presence of �(x � x
i

(t)) as a

multiplying factor. If the noise is taken to be Gaussian, standard procedures [7]

allow the averaged noise, h⇠
i

(t)�(x
i

(t) � x)i, to be converted into a di↵usive term.

The result is the standard constitutive relation for the Ornstein-Uhlenbeck process

j(x, t) = �
✓

�x + D
@

@x

◆

P (x, t).

6



Chapter 2. Overview of Memory E↵ects in Brownian Motion

In tandem with the continuity equation,

@P (x, t)

@t
+

@j(x, t)

@x
= 0,

one derives the Smoluchowski equation, Eq. (2.1). See the textbook by van Kam-

pen [8] for an in-depth discussion of this procedure

If, however, the memory in Eq. (2.2) is retained, it is x
i

(t0), not x
i

(t), that is

present in the velocity. Thus, the velocity depends on the position of the ith particle

not just at time t but for previous times as well. As the delta-functions in both

of Eqs. (2.3) relate x only with the position of the particle at time t and not t0,

i.e., x
i

(t) and not x
i

(t0), the conversion used in the Marko�an situation can not

be performed. This technical failure to derive non-Marko�an field equations is a

direct consequence of the time-nonlocal nature of the potential term in Eq. (2.2). A

derivation of the Fokker-Planck representation equivalent to Eq. (2.2) requires the

additional manipulation discussed in Chapter 4.

Our focus in Chapter 3 is on the Langevin description. We consider two explicit

forms of the memory, algebraic and single delay, and compare their respective results

with the well-understood exponential memory. Two quantities of potential experi-

mental interest are discussed. In Chapter 4, we give a derivation of what is referred to

in the literature as a bona fide Fokker-Planck description for the Ornstein-Uhlenbeck

process by construction of a conditional probability distribution. We find the con-

ditioned distribution to retain dependence on its history and contrast the resultant

evolution with that of the propagator for an exponential memory.

We note that discussions in Chapters 3 and 4 should find applicability in systems

far from equilibrium. These might include movement of animals that have a prefer-

ence to places visited in the past [9] and, as in Alzheimer-related investigations [10],

various versions of the concept of ‘self-reinforced random walks’. The complexity

of the biological nature of the systems involved necessitates a memory description

7



Chapter 2. Overview of Memory E↵ects in Brownian Motion

and the fact that we are not necessarily near equilibrium suggests that a fluctuation-

dissipation relationship between the memory and the noise need not apply. Thus,

we take the noise to be Gaussian and white noise as a useful first step.

8



Chapter 3

Langevin Analysis: Algebraic and

Delay Memories

Langevin equations with memories have often been investigated in the past, but

modern work on the topic appears to have begun with Budini and Cáceres [11].

However, their investigations were restricted primarily to the exponential memory

with a focus on various kinds of non-Gaussian noise (radioactive, Poisson, Abel, etc.).

Algebraic memories were touched upon in the context of fractional derivatives but

no dissipation was assumed in their analysis. A more recent study of theirs analyzed

stationary properties of memory-possessing Langevin equations of the algebraic and

delay type [12]. Fractional derivatives have been used [13] to introduce what are in

essence memory e↵ects into fractional probability density equations. An interesting

report in the literature by Fiscina et. al. [14] found that a Langevin equation with

fractional derivatives accurately described the observed asymptotic spectral density

of vibrated granular material. Drozdov [15] analyzed the stationary properties of

Langevin equations using characteristic functionals for various noise distributions.

Bolivar [16] reported on work that explored the dynamic behavior of a non-Marko�an

Langevin equation for arbitrary Gaussian noise correlation functions through a focus

9



Chapter 3. Langevin Analysis: Algebraic and Delay Memories

on the di↵erentiability of the displacement. A Langevin equation with an exponential

memory has also been analyzed with a path integral approach [17].

In a manner analogous to the work highlighted above, in the following Chapter we

focus on the Langevin description of the time-nonlocal Ornstein-Uhlenbeck process.

In Section 3.1, we derive general results for the average displacement and size of

a particle whose motion is described by Eq. (2.2). To facilitate calculations, we

have taken the noise to be white, i.e., �-correlated. The processes we consider are

far from equilibrium and do not obey a fluctuation-dissipation relation between the

noise and the memory. Sections 3.2 and 3.3 of this Chapter focus on two memories

of both conceptual and physical interest. Respectively, they are the algebraic and

single delay memories. We find that, in the case of an algebraic memory, the Green

function is the Mittag-Le✏er function while for a single delay process the Green

function is related to the Lambert function As in the well-understood case of the

exponential memory, both Green functions display a regime in which they decrease

monotonically and one in which they oscillate while they decay.

Section 3.4 discusses potential applications of our results through two specific

experiments. The first discusses motional narrowing in the frequency-dependent

susceptibility of our system. The particle is charged and a time-periodic electric

field is applied. A measurement of the steady-state mean square displacement of

the particle is discussed in the second. We conclude in Section 3.5 with four short

interesting remarks. In the first, we compare the results for the three memories, the

algebraic, the single delay, and the simple exponential, highlighting intriguing simi-

larities and di↵erences. The second discusses a natural but incorrect generalization

of the Smoluchowski equation. Remarkably, its predictions are correct in the context

of the first of the two experiments. In the third, we remark upon an apparent vio-

lation of the Balescu-Swenson theorem, an important theorem in the understanding

of the e↵ects of memory. Lastly, we contrast the two-time correlation functions for

10



Chapter 3. Langevin Analysis: Algebraic and Delay Memories

each of the three memories with its equivalent in the Marko�an limit.

3.1 A Route for the Description of Memory Ef-

fects

With our attention restricted to the Langevin equation, Eq. (2.2), we drop the label

i and consider a single particle without loss of generality as the particles do not

interact. With �(t) being the Green function of the homogenous (without noise)

part of Eq. (2.2), an immediate consequence is

e�(✏) =
1

✏ + �e�(✏)
. (3.1)

Here, tildes denote Laplace transforms and ✏ is the Laplace variable. This result

leads to the solution of Eq. (2.2) in the time domain as

x(t) = �(t)x(0) +

t

Z

0

dt0�(t � t0)⇠(t0). (3.2)

An explicit calculation along these lines was given by San Miguel and Sancho in

ref. [18]. From here onwards, we only consider systems in which the noise ⇠(t) has

zero mean, h⇠(t)i = 0, and is white, which means that h⇠(t)⇠(s)i = 2D�(t� s) where

the constant D describes the strength of the noise. If one makes the reasonable

assumption that the noise is uncorrelated with the initial value of the observation,

the expectation values of arbitrary powers of x at a specified time can be calculated

explicitly. The average displacement and the average squared displacement are

hx(t)i = x
0

�(t), (3.3)

h�x2(t)i = hx(t)2i � hx(t)i2 = 2D

t

Z

0

ds�2(s), (3.4)

11



Chapter 3. Langevin Analysis: Algebraic and Delay Memories

where we take a localized initial condition, x(0) = x
0

. In light of the fact that

Eq. (2.2) already has t = 0 as a special instant at which the memory is initialized,

we observe that there are now two, generally di↵erent, times 0 and t
0

, the latter being

the time at which hx(t
0

)i is first measured, e.g., the initial observation time. For the

sake of simplicity, we take t
0

= 0 though, generally, the two times can be di↵erent.

This general case, for which the two times are di↵erent, leads to interesting subtleties

which we discuss in Chapter 4. In the second line we have displayed the di↵erence

of the average of the square of the displacement and the square of its average. We

represent it by the symbol h�x2i and refer to it, rather than to hx2i, as the mean

square displacement (MSD). Expectation values of two-time quantities such as the

correlation function hx(t)x(s)i can also be obtained straightforwardly:

hx(t)x(s)i = x2

0

�(t)�(s) + 2D

s

Z

0

dt0�(t � t0)�(s � t0), (3.5)

f(t, s) ⌘ hx(t)x(s)i � hx(t)ihx(s)i = 2D

s

Z

0

dt0�(t � t0)�(s � t0). (3.6)

The above results do not require that the noise be Gaussian. If, however, it is known

to be Gaussian we can also write, for arbitrary powers of the displacement,

hxn(t)i =

8

>

>

>

<

>

>

>

:

p

P

m=0

(2p)!

(2m)!(p�m)!

[x
0

�(t)]2m

✓

D
t

R

0

ds �2(t)

◆

p�m

even n (p ⌘ n

2

),

p

P

m=0

(2p+1)!

(2m+1)!(p�m)!

[x
0

�(t)]2m+1

✓

D
t

R

0

ds �2(t)

◆

p�m

odd n (p ⌘ n�1

2

),

and thereby solve the entire problem on the basis of the Gaussian property.

3.2 Algebraic Memories in the Langevin Equation

The family of algebraic functions provides a useful case study of the class of memories

that cannot be approximated via a Marko�an procedure. The latter means the

12
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replacement of �(t) for long times by a delta-function in t of strength
R1

0

dt�(t). We

consider such memories as our starting point for the present section:

�(t; ⌫) =
↵(↵t)⌫�1

�(⌫)
. (3.7)

Here ↵ is a positive constant with units of inverse time and the Gamma function,

�(⌫), provides the appropriate normalization. We analyze the Green function �(t).

The Laplace transform1 of Eq. (3.7), and insertion into Eq. (3.1), gives the Laplace

domain Green function as,

e�(✏; ⌫) =
1

✏ + �↵

⌫

✏

⌫

=
✏⌫

✏⌫+1 + �↵⌫

=
1

✏
�

1 + �↵

⌫

✏

⌫+1

� , (3.8)

the Laplace-domain representation of the Mittag-Le✏er function of one parameter,

which is written in usual notation as E
⌫+1

(��↵⌫t⌫+1) [19]. In the time domain,

setting �↵⌫ ⌘ ⇣⌫+1, this results in the series,

�(t; ⌫) =
1
X

n=0

h

� (⇣t)(1+⌫)

i

n

�(n(1 + ⌫) + 1)
. (3.9)

This expression is derived through a binomial expansion of the denominator in

Eq. (3.8). One obtains a formal series in increasing powers of (⇣/✏)1+⌫ . A term-

by-term inverse Laplace transform of this formal series results in Eq. (3.9) for all

⌫ > �1. The resulting series converges for all finite times.

For the parameter range of interest, the Green function we have calculated shows

three interesting types of behavior. The first is an overdamped decay, ⌫ 2 (�1, 0),

the second is underdamped oscillations, ⌫ 2 (0, 1), and the third unstable oscilla-

tions, ⌫ 2 (1, 1). We depict �(t) for the cases of overdamped decay (left) and

underdamped oscillations (right) in Fig. 3.1 over 16 dimensionless time units ⇣t.

1The Laplace transform of Eq. (3.7) only exists for ⌫ > 0. However, the form of the
Laplace-domain Green function, Eq. (3.8), suggests extending the domain of validity to
⌫ � �1. In this range, the Green function is unity when t = 0 (except for ⌫ = �1 where
�(t) = 1/2).

13
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Figure 3.1: The Green function, �(t), is displayed for varying ⌫ in Eq. (3.9) over the
overdamped (left) and underdamped (right) regimes in the range [�0.8, �0.2] and
[0.2, 0.8] in steps of 0.2. Time is plotted in units of 1/⇣. A more negative ⌫ leads
to �(t) approaching 0 more slowly, while a more positive ⌫ results in the increased
amplitude and persistence of the oscillations.

The overdamped regime exhibits sharper initial decays, but longer tails, as the value

of ⌫ is made more negative. The amplitude of oscillation and the time for which they

persist both increase for increasing ⌫ in the underdamped regime. The derivative

of �(t) at t = 0 changes discontinuously when ⌫ approaches 0 from either direction.

For positive values of ⌫ it vanishes. For negative values it tends to infinity. This

behavior is sharply di↵erent from that in the case of the simple exponential memory

characteristic of the damped harmonic oscillator. For the latter, the derivative of

�(t) at t = 0 always vanishes. Not shown are the unstable oscillations for values of

⌫ > 1. Three special values of ⌫ correspond with standard processes. For ⌫ = �1, we

have standard Brownian di↵usion, i.e., a Wiener process or an unconfined random

walk. For ⌫ = 0, we have the standard Smoluchowski equation, and the time-local

Ornstein-Uhlenbeck process. For ⌫ = 1, we have pure oscillations with no damping.

A second representation of �(t) is found by explicitly closing the Bromwich con-

tour. For all non-integer values of ⌫, Eq. (3.8) has at least two singularities of interest:

branch points at zero and infinity. Simple poles exist for all relevant values of ⌫ at

the points ln(✏) = ±i(1 + 2m)⇡/(⌫ + 1) where m is an integer greater than zero.

14
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By choosing the branch cut to be along the negative real axis, the domain of ✏ is

restricted to | arg(✏)| < ⇡. This limits the number of poles that fall on the relevant

Riemann sheet, i.e., when ⌫ < 0, there are no simple poles while two additional poles

move on to the Riemann sheet as ⌫ passes through each successive even integer. The

Bromwich integral of Eq. (3.8) can be performed to quadrature and results in

�(t; ⌫) = �sin ⌫⇡

⇡

1
Z

0

dr e�r⇣t

r⌫

r2(⌫+1) � 2r⌫+1 cos ⌫⇡ + 1

+

8

>

>

>

>

<

>

>

>

>

:

0 �1<⌫ 0

2

⌫+1

e�⇣t cos

⌫⇡
⌫+1 cos(⇣t sin ⌫⇡

⌫+1

) 0<⌫ 2

2

⌫+1

h

e�⇣t cos

⌫⇡
⌫+1 cos(⇣t sin ⌫⇡

⌫+1

)+e�⇣t cos

3⌫⇡
⌫+1 cos(⇣t sin 3⌫⇡

⌫+1

)
i

2<⌫ 4

(3.10)

where �(0; ⌫) equals 1 for all ⌫. The integral in Eq. (3.10) is the Laplace transform of

a positive definite function and, for non-integer values of ⌫, is therefore non-negative

at all times. As mentioned previously, additional exponential terms become relevant

as ⌫ is increased further.

We have given two separate representations of �(t) in the time domain: the series,

Eq. (3.9), and the integral expression, Eq. (3.10). These are compared in Fig. 3.2,

over a range of approximately 30 dimensionless time units for 2 values of ⌫ in each

regime, ±0.1 and ±0.9. The two representations match up well over shorter time

periods. However, at longer times, the numerical implementation of the series leads

to divergent results as a consequence of round-o↵ errors.

The integral in Eq. (3.10) is not reducible in terms of known functions for arbitrary

⌫. For the particular case of ⌫ = m + 1/2, where m is an integer, a transform of

u = r1/2 simplifies the integrand to

(�1)m+1

2

⇡

1
Z

0

du e�u

2
⇣t

u2(m+1)

u2(2m+3) + 1
.

The denominator of this integral is easily factorable into the (2m + 3)th roots of

15



Chapter 3. Langevin Analysis: Algebraic and Delay Memories

�t
0 5 10 15 20 25 30 35

�
(t)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Overdamped Regime

Integral
Series

�t
0 5 10 15 20 25 30 35

�
(t)

-0.8
-0.6
-0.4
-0.2
0

0.2
0.4
0.6
0.8
1

1.2
Underdamped Regime

Integral
Series

Figure 3.2: Depicts both the integral representation and the series representation of
the Green function, �(t) for two values of ⌫ = ±0.2, ±0.8 each in the overdamped
regime (left) and the underdamped regime (right). The series representation is in-
dicated by dots and the integral representation by solid lines. At approximately
30 dimensionless time units ⇣t, the series begins to diverge as a result of numerical
round-o↵ results.

1. This results in the standard integral representation of the Faddeeva function,

w(iz) = erfcx(z), which corresponds to the scaled error functions with complex

arguments [20]. We give here the ⌫ = �1/2 (m = �1) and ⌫ = 1/2 (m = 0) cases:

�

✓

t; �1

2

◆

= e⇣terfc
⇣

(⇣t)
1
2

⌘

, (3.11)

�

✓

t;
1

2

◆

=e� ⇣t
2 cos

3
1
2 ⇣t

2
+w

⇣

i
p

⇣t
⌘

�w
⇣

i
p

⇣te
i⇡
3

⌘

�w
⇣

i
p

⇣te� i⇡
3

⌘

. (3.12)

The long-time behavior of the Mittag-Le✏er function, valid for non-integer values

of ⌫ in the region (�1, 1), is well known [19],

� (t ! 1; ⌫) = �
p

X

n=1

1

� [1 � n(⌫ + 1)]



�1

(⇣t)(⌫+1)

�

n

+ O(t�p(⌫+1)). (3.13)

We see that an algebraic memory results in an algebraic time-dependence of �(t) at

long times. The dominant term in the series, proportional to 1/ (⇣t)1+⌫ , leads to a

decay which is stronger when ⌫ is larger. In the underdamped regime, the leading
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Figure 3.3: Long-time comparison of two expressions of the Green function: the
integral expression, Eq. (3.10), shown with solid lines and its series approximation,
Eq. (3.13), shown with dashed lines. The latter consists of the first 5 terms for 3
values of ⌫, 0.1 (left), 0.5 (center), and 0.9 (right) over di↵ering time ranges.

term of Eq. (3.13) is negative. Therefore, at long times, �(t) approaches zero from

below, confirming the existence of at least one minimum. This term is positive for

the overdamped regime. The correspondence between the long-time approximation,

Eq. (3.13) with 5 terms, and the full propagator is depicted in Fig. 3.3 for 6 values

of ⌫: ±0.1, ±0.5, ±0.9. The long-time approximation does not lead to oscillations,

rather to an overall decay towards 0. For smaller values of |⌫|, the approximation

becomes valid at earlier times.

Thus, the algebraic memory leads to a noiseless Green function that corresponds

exactly to the Mittag-Le✏er function. Three separate regimes emerge: overdamped

decay, �1 < ⌫  0, underdamped oscillations, 0 < ⌫ < 1, and unstable oscillations,

⌫ � 1.
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3.3 Memories that Represent Delay Processes

We now briefly outline memories that represent delay processes [4, 5, 21–25]. A full

discussion of such memories can be found in works by McKetterick and Giuggioli [5,

25]. Our focus here is on a memory with only a single time delay ⌧ . Thus, we have

�(t) = �(t � ⌧). (3.14)

A complete analysis [5, 21] of delay processes requires an extension of the Eq. (2.2)

to the time �⌧ < 0 to avoid dealing with a piece-wise process with Wiener dynamics

for 0  t < ⌧ and delayed dynamics for t � ⌧ . The evolution of x then depends on

the prior history of x during �⌧  t  0. We refer the reader to [5] for a thorough

discussion and treat here the simplest case in which the history is neglected. Thus,

the delay process is defined by its Green function �(t), the Laplace-domain expression

of which is

�̃(✏) =
1

✏ + �e�✏⌧

. (3.15)

Two equivalent time-domain expressions for Eq. (3.15) highlight properties of

�(t) over di↵erent time scales. In the first, Eq. (3.15) is expanded in a formal power

series and inverted term-by-term. This gives the following expression [4, 22–24]

�(t) =
1
X

k=0

(��)k

k!
(t � k⌧)k⇥(t � k⌧), (3.16)

where ⇥(x) is the Heaviside step function. Eq. (3.16) is useful for short time cal-

culations as only a finite number of terms are required to calculate �(t) for any

finite time. Its functional dependence is a kth degree polynomial in the interval

k⌧  t  (k + 1)⌧ . An alternative functional form for �(t), found with the use of

Cauchy’s residue theorem, is given by

�(t) =
X

Res

e✏t

✏ + �e✏⌧

, (3.17)
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Figure 3.4: The single delay Green function �(t) for four values of �⌧ =
0.3, 0.6, 1, 1.6 are shown. The first represents the stable non-oscillatory regime, the
next two represent the stable oscillatory regime and the last the unstable oscillatory
regime.

where the summation is over the residues. The poles of Eq. (3.15) are the the roots

of the characteristic equation, ✏+� exp �✏⌧ = 0. These poles are defined through the

Lambert function [23,26] and, in particular, provide information about the long-time

evolution of the system. Thus, the single delay process has three distinct behavioral

regimes: monotonic decay, oscillatory decay, and unstable oscillations [21]. Fig. 3.4

displays illustrative examples of �(t) for each of the parameter regimes.

3.4 Application to Experiments and Comparison

of Consequences of Di↵erent Memories

We discuss our predictions for the three cases of algebraic, single delay, and exponen-

tial memory in the context of two experiments that can, in principle, be performed.
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The first involves motional narrowing of spectral lines and the second the spatial

extension of the particle in the steady-state. The expression for the exponential

memory is given by

�(t) = be�bt, (3.18)

with the b obeying �b = !2, the square of the oscillator frequency.

Eq. (3.18) appears not only in the damped harmonic oscillator analyzed by San

Miguel and Sancho [18], but in numerous other contexts, including a description of

transport with an arbitrary degree of quantum mechanical coherence given in the

Frenkel exciton context by Kenkre [27–29]. Despite its introduction in the latter

reference being in the context of site-to-site motion of a quasiparticle rather than

of attraction towards a center, many of the expressions obtained, and much of the

intuition, can be ported here. The Green function �(t) is well-known to be given by

the simple expression

�(t) = e�bt/2 [cos⌦t + (b/2⌦) sin⌦t] , (3.19)

where ⌦ =
p

!2 � b2/4. Eq. (3.19) displays standard features including the reduction

of the original undamped oscillator frequency ! to ⌦ when damping is introduced

via the damping exponent b/2 and passage from the damped oscillatory to the over-

damped regime when b/2 > !. In the latter, trigonometric functions change into

their hyperbolic counterparts leading to the phenomenon of motional narrowing of

spectral lines.

3.4.1 Motional Narrowing of Spectral Lines

In the first experiment, the particles are charged and a time-varying electric field is

applied (the particles do not interact among themselves). Thus, a forcing term is
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added to Eq. (2.2), the label i being suppressed, to give

dx(t)

dt
= ��

t

Z

0

dt0 �(t � t0)x(t0) + E(t) + ⇠(t), (3.20)

This allows for the measurement of the polarization and, thus, the susceptibility.

The latter is the ratio of the Fourier transforms of the polarization and the applied

electric field. The term E(t) has absorbed unimportant proportionality constants

and is essentially the electric field. The spectral line at frequency f is proportional

to hx̂(f)i
ˆ

E(f)

where the circumflexes denote Fourier transforms and f is the frequency.

We use f rather than the more usual ! to distinguish it from the oscillator frequency

that we have already used in our treatment.

A well-known phenomenon that occurs in systems with a simple exponential

memory is motional narrowing. The spectral lines, narrow if the damping in the

system is vanishing or small, broaden as the damping is increased. However, after

a critical value of the damping is exceeded, separate lines coalesce and increased

damping leads to a narrowing of the line. This e↵ect, expected for the damped

harmonic oscillator also occurs for the algebraic and single delay cases. One sees

from Eq. (3.20) that the the frequency-dependent susceptibility is proportional to
hx̂(f)i
ˆ

E(f)

and, thus, that the one-sided Fourier transform of the Green function �(t) is

required. From Eq. (3.19) for the exponential memory and Eq. (3.9) and Eq. (3.16)

for the algebraic and single delay memories, respectively, we have

�̂(f) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

p

f 2 + b2

q

(f 2 � !2)2 + f 2b2

Exponential, (3.21a)

1
p

f 2 � 2f⌧µ2 sin f⌧ + ⌧ 2µ4

Single Delay, (3.21b)

(|f |)⌫

q

|f |2(⌫+1) � 2 (|f |⇣)⌫+1 sin ⇡⌫

2

+ ⇣2(⌫+1)

Algebraic, (3.21c)

where we have given the absolute value of the Fourier transforms. In Eq. (3.21b)
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Figure 3.5: Susceptibility on the frequency f of the applied electric field for the
three cases, exponential, single delay, and algebraic, in the left, center, and right
panels, respectively. Motional narrowing is seen as each displays two peaks in the
coherent limit which, as damping is increased, initially broaden and move towards
each other (to the center, i.e., the region f = 0). An increase in the damping beyond
a critical value in each case, however, leads to a narrowing rather than a broadening.
Frequency is plotted on the horizontal axis in units of the coherent parameter !,
µ and ⇣ for the three respective cases. The vertical axis units are arbitrary. Two
arrows in the central panel locate the additional peaks that develop for the single
delay process. The sharp transition at f = 0 for the algebraic memory, which is a
jump from a vanishing to an infinite value, can be seen when comparing the ⌫ = �0.3
case with the ⌫ = 0.1 case.

we have introduced the coherence parameter µ =
p

�/⌧ for the delay case and is

analogous to ! in the exponential case and ⇣ in the algebraic case.

We show the results of Eq. (3.21) in Fig. 3.5 for the exponential (left), single delay

(center) and algebraic (right) memories. Units along the vertical axis are arbitrary.

The left panel depicts motional narrowing for the exponential memory: two peaks

broaden and then coalesce into a single peak as the damping is increased. Similar

transitions are seen for both the single delay memory (coherence measured by the

value µ⌧) and the algebraic memory (coherence measured by the value ⌫). The

single delay process is quite similar with the exception that it develops additional

symmetric peaks, indicated by the arrows. The algebraic process, while also similar

in the overall aspects, exhibits sharp di↵erences for small values of f . The source
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of this peculiar behavior is the fact that the integral of �(t) over all time changes

drastically as one crosses from the oscillatory to the monotonic region. The integral

is 0 for positive ⌫ and infinite for negative values of ⌫.

The motional narrowing phenomenon [30] appears in magnetic resonance obser-

vations [31], neutron scattering experiments [32–37], and in other contexts whenever

the underlying dynamics of a system undergo spectral di↵usion. Such spectral dif-

fusion arises not only from thermal motion in an inhomogeneous medium but from

a variety of sources that includes changes in the bath fluctuation rate [38]. For ex-

ample, the simple exponential memory case can be seen to arise explicitly in the

magnetic resonance context.

3.4.2 Spatial Extent in the Steady State

The competition between the spread due to di↵usion the attraction to the center

often leads to a steady-state spatial extent of the particle. A number of experimental

techniques could be devised in principle to measure this size. The size in the steady-

state is given by the saturation value of the MSD h�x2i. The time-dependent MSD

for the exponential memory is given by,

⌦

�x2

↵

(t)=
D

!



!

b
+

b

!
� be�bt

!

✓

!4

b2⌦2

+
4⌦2�!2

4⌦2

cos 2⌦t+
3!2�4⌦2

2b⌦
sin 2⌦t

◆�

. (3.22)

Although any two of the three parameters !, b and ⌦ uniquely determine the third,

we have used all three here and elsewhere to avoid cumbersome square roots in

the display. In the overdamped limit, i.e., when b > 2!, the above trigonometric

functions turn into hyperbolic functions as ⌦ becomes imaginary.

The MSD for the case of the single delay is

⌦

�x2

↵

(t) = 2D

0

@⇥(k)
k�1

X

l=0

(l+1)⌧

Z

l⌧

ds g
l

(�s) +

t

Z

k⌧

ds g
k

(�s)

1

A , (3.23)
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where g
k

(t) is defined as

g
k

(�t) =
k

X

m=0

k

X

n=0

(�1)(m+n)

m!n!
(�t � m�⌧)m(�t � n�⌧)n,

in any interval, k⌧  t  (k + 1)⌧ .

The MSD for the algebraic case is given by,

h�x2i(t)=2D

t

Z

0

ds

8
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>

>

>

>

>
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>
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>

>

>

>
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Z
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dr

⇡
e�r⇣sC(r)
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2

�1 < ⌫  0, (3.24a)
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1
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e�r⇣sC(r)

3

5

2

0 < ⌫  2, (3.24b)

with

⇤ = cos

✓

⌫⇡

⌫ + 1

◆

,  = sin

✓

⌫⇡

⌫ + 1

◆

,

C(r) =
r⌫ sin ⌫⇡

r2(⌫+1) � 2r(⌫+1) cos ⌫⇡ + 1
.

Our interest lies in the steady-state size of the particle given by these expressions

in the limit t ! 1 . Calling the saturation value of the MSD as the particle size S

(in units of area for our 1-dimensional system), we have

S =

8
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D

µ

✓

1 + sin µ2⌧ 2

µ⌧ cos µ2⌧ 2

◆

, (3.25b)
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1
ZZ

0

drdq

⇡2

2C(r)C(g)
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, (3.25c)
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(⌫+1)2

✓
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◆

� 8
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1
Z

0

dr

⇡

C(r)(⇤ + r)

r2+2⇤r+1
+2

1
ZZ

0

drdq

⇡2

C(r)C(q)

r + q

3

5,(3.25d)

where Eq. (3.25c) is for �0.5 < ⌫  0 and Eq. (3.25d) is for 0 < ⌫  1. For the

parameter range ⌫  �0.5, the MSD diverges as,

lim
t!1

h�x2i(t) /
(

ln t ⌫ = �0.5,

t2|⌫|�1 �1  ⌫ < �0.5.
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Figure 3.6: Spatial extent of the particle in the steady-state as determined from the
saturation value of the MSD. The left, center, and right panels display the MSD for
an exponential memory, single delay memory, and algebraic memory, respectively.
The vertical axis is the steady-state size normalized to the size for the time-local
case, �(t) = �(t). We set � equal to the coherent parameter for each case: ! for the
exponential memory, µ for the single delay memory and ⇣ for the algebraic memory.
Dotted lines indicate the location of the transition from monotonic (overdamped) to
oscillatory (underdamped) regimes.

The MSD for the single delay memory, Eq. (3.25b), is known to have the analytic

expression shown above. It can be obtained after solving [22] the di↵erential equation

governing the evolution of the covariance at long times.

Plots of the long-time expressions in Eq. (3.25) are shown in Fig. 3.6 for the

exponential, single delay, and algebraic memories in the left, center, and right panels,

respectively. We normalize the MSD for all three memories using the respective

coherent parameters: !, µ and ⇣. An increase in D results in a monotonic increase

in the MSD in all three cases. The exponential memory has a symmetric dependence

on ! and b, with a minimum for b = !. Only in the stable regime, µ2⌧ 2 < ⇡/2, is the

expression valid for the single delay memory. As expected, the MSD diverges as the

unstable limit is approached. The saturation value of the MSD diverges as either of

!/b and µ⌧ approach zero because � vanishes and, therefore, there is no attractive

center.

25



Chapter 3. Langevin Analysis: Algebraic and Delay Memories

At long times, the MSD for the algebraic case diverges when ⌫ ! �0.5 from

the right and when ⌫ ! 1 from the left. The divergence at the lower limit occurs

due to the long-time algebraic dependence of the Green functions, Eq. (3.13). The

value of ⌫ for which the steady-state size is minimum depends on the ratio of time

constants, �/↵. When this ratio is equal to 1, the minimum is at ⌫ = 0. This is

obvious in Fig 3.6. For an arbitrary �/↵, the value of ⌫ at the minimum is given by

the transcendental equation,

ln
�

↵
= �(⌫

min

+ 1)2



d

d⌫
ln F (⌫)

�

⌫=⌫min

, (3.26)

where F (⌫) is the functional form of the curve plotted in the right panel of Fig. 3.6.

An increase in the ratio of �/↵ shifts the minimum rightwards, a decrease shifts it

to the left.

A comparison of the MSD dynamics can be done by setting the parameters such

that, %
R1

0

ds �2

d

(s) = V , where % is the appropriate coherent parameter, is identical

for all three cases. The saturation value of the three memories are not comparable

over the entire parameter space. The single-delay process has a minimum MSD

saturation when 2µ2⌧ 2 = cos(µ2⌧ 2), i.e., a value V = 1.19, while the exponential

memory process has a minimum value, V = 1 exactly when b/� = 1. For these

parameter values, the algebraic memory has a minimum value of V = 1/2 located at

⌫ = 0.

We select values of V > 1.19 from the algebraic long-time MSD, Eqs. (3.25c)

and (3.25d), and solve the exponential and single delay memory expressions in

Eqs. (3.22) and (3.23) to obtain

!/b = V ±
p

V 2�1, sin
�

(µ⌧)2

�

=
(2V µ⌧)2�1

(2V µ⌧)2+1
,

respectively. For the exponential memory we choose the negative branch, !/b =

V �
p

V 2 � 1, for the monotonic regime and the positive branch, !/b = V +
p

V 2 � 1,

in the oscillatory regime.
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Figure 3.7: Comparing the dynamics of the MSD for the algebraic, exponential
memory, and single delay memories when their MSD have a mutual saturation value
with solid, dot-dashed, and dashed lines, respectively. We hold constant % which is
equal to the coherent parameter for each of the memories (! for exponential, µ for
the single delay, and ⇣ for the algebraic. The MSD is normalized in units %/D. Two
curves for each memory depict dynamics in the underdamped regime and one for
each memory in the overdamped regime. The inset plot shows that same figure with
logarithmic axes.

Using these values of V , !/b and µ⌧ we plot in Fig. 3.7 the dynamics of the

three memories. In the oscillatory regime, all three memories exhibit the apparent

saturation behavior associated with the oscillations of their respective Green func-

tions. The single delay memory clearly saturates the fastest. The exponential and

algebraic memories have very similar MSD, with the exponential memory initially

larger. In the overdamped regime, the algebraic memory saturates much slower due

to its heavy tail.
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3.5 Discussion

This Chapter focused on an investigation into the dynamics of a time-nonlocal gen-

eralization of the Ornstein-Uhlenbeck process. The time-nonlocality is achieved

through the presence of a memory function, which we have denoted by the sym-

bol �(t), in the harmonic restoring force. For the time-local case, i.e., where �(t) is

a simple �-function in time, the result is text-book material and leads to solutions

of the corresponding Smoluchowski equation. We have investigated here two mem-

ories that may be applicable to certain biological systems: the algebraic memory,

Eq. (3.7), and a delay case, Eq. (3.14). They are compared with the standard expo-

nential memory, Eq. (3.18), the consequences of which are well-known. Similarities

across the three cases as well as some distinguishing characteristics of each have been

found. The connection to the time-local case, for which �(t) = �(t), is trivial for both

the delay and the exponential memories as the memory is finite when integrated over

all time. For the algebraic case this is not true and leads to some peculiar behavior.

3.5.1 Similarities and dissimilarities in the consequences of

the three memories

Eq. (2.2) convolves the displacement x(t) with ��(t) in all three cases. The strength

of the confinement to the attractive center may be said to be described by � while the

specific manner by which the particle is confined may be attributed to �(t). The three

memories, exponential, single delay, and algebraic, are found in Eqs. (3.18), (3.14)

and (3.7), respectively. We label the coherence parameter ! in the exponential case,

µ =
p

�/⌧ for the delay case and ⇣ =
p

�↵ in the algebraic case while the loss of

coherence occurs at the rate b, 1/⌧ (equal to the reciprocal of the delay time), and

↵, respectively.
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The basic quantity that determines the behavior of the system is the Green

function �(t). It is given generally in the Laplace domain by Eq. (3.1). In the time

domain it takes the form given in Eq. (3.19) for the exponential memory, Eq. (3.16)

for the delay memory, and Eq. (3.9) for the algebraic case. An additional result

shown in this Chapter is the alternate form, Eq. (3.10) that we have derived. We

use it along with its asymptotic form, Eq. (3.13), well known to the literature [19].

Both provide considerable computational convenience. While Fig. 3.1 shows the

Green function for the algebraic case in the underdamped and overdamped regimes,

Figs. 3.2 and 3.3 display the usefulness of the alternate forms we provide for the

computations.

The behavior of the algebraic case is determined by a single parameter ⌫. Positive

values result in oscillations while negative values lead to monotonic decay. Whereas

for the other two memories, where a transition in the system from the oscillatory

to the overdamped regimes occurs when the coherence parameter (! or µ) is held

constant and the damping (b or 1/⌧ respectively) is varied, variation of ↵ with ⇣ held

constant does not do anything similar in the algebraic case. The scaling behavior

of the power-law dependence results in the damping parameter ↵ introduced in the

algebraic memory, Eq. (3.7), completely drops out of the picture in the Green function

as seen in Eq. (3.9). This despite being introduced in a manner analogous to the

exponential case Eq. (3.18). Instead, the coherence parameter merely serves to scale

time. The exponent ⌫ determine the oscillatory-decaying transition. This remarkable

feature of the algebraic memory stems from its scale-free nature.

The time-integral of the Green function from zero to infinity, i.e.,
R1

0

�(t)dt given

by 1/�e�(0), is of direct relevance for several observables. This presents no problems

for the exponential and the delay memories but for the algebraic case one runs into

the peculiarity that e�(0) may not exist. Indeed,
R1

0

�(t)dt vanishes for positive ⌫ but

becomes infinite provided ⌫ 2 [�1, 0). One of the direct consequences of this feature
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is the drastic jump from 0 to 1 observed in the spectral line at zero frequency f

noted in Fig. 3.5 which depicts motional narrowing of the a.c. susceptibility.

For algebraic and delay memories there is also the regime of unbounded oscil-

lations that occurs for |⌫| > 1 and �⌧ > ⇡/2 respectively. Because the regime is

seldom physical, we have shown it only passingly in Fig. 3.4 and only for the delay

case, with an e↵ect in the central panel of Fig. 3.5 where additional peaks in the

spectral line result.

3.5.2 Non-local attractive term in the Smoluchowski equa-

tion

We leave to Chapter 4 a complete discussion of the Fokker-Planck equivalent to

Eq. (2.2). As was mentioned in Chapter 2, the direct generalization of Eq. (2.1)

itself through the inclusion of a memory in its attraction term can not be deduced

from Eq. (2.2). Such a generalized Smoluchowski equation is given by

@P (x, t)

@t
=

@

@x

0

@�

t

Z

0

dt0 �(t � t0)xP (x, t0)

1

A+ D
@2P (x, t)

@x2

. (3.27)

One may be tempted by the self-evident naturalness of Eq. (3.27) to observe the

consequences of its assumption despite its incorrectness. By multiplying Eq. (3.27)

by xn, integrating over x from �1 to +1, and performing the requisite integration

by parts one obtains the equations for the moments. The equation for an arbitrary

moment is thus given by

dhxn(t)i
dt

+ n�

t

Z

0

dt0 �(t � t0)hxn(t0)i =
n!

(n � 2)!
Dhxn�2i. (3.28)

Upon particularization of Eq. (3.28) to the first moment (n = 1), we have

hx(t)i = �(t)x
0

. (3.29)
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While a comparison with the equation for the true average displacement, given in

Eq. (3.3), for the correctly generalized Langevin equation finds that Eq. (3.29) is cor-

rect, higher moments are not. For the case of n = 2, the average square displacement,

the solution to Eq. (3.28) becomes

hx2i(t) = �
�!2�

(t)x2

0

+ 2D

t

Z

0

dt0 �
�!2�

(t0), (3.30)

where by �
�!2�

we mean the expression for the Green function �(t) that is obtained

when � is replaced by 2�. A comparison with the correct moment, given in Eq. (3.4),

shows that the higher moment prediction of the inappropriate generalization is al-

ways inaccurate except for when �(t) = �(t), i.e., the time local case, in which case

�(t) is exponential and the relation required for equivalence, �
�!2�

(t) = �2(t), is

accidentally correct.

Occasions where approximate descriptions accurately reproduce the lower mo-

ments but not the higher moments are frequently encountered in transport the-

ory [39]. While the inappropriate generalization of the Smoluchowski equation ac-

curately reproduces the motional narrowing phenomenon because it depends com-

pletely on the first moment, we display in the next subsection that the size of the

particle, time-dependent or steady-state, can not be reproduced because the size is

determined by the second moment.

3.5.3 Apparent violation of the Balescu-Swenson Theorem

A theorem in the field of non-equilibrium statistical mechanics, first enunciated by

Balescu [40] and Swenson [41], relates the dynamical and steady-state observables

that can be calculated from non-Marko�an equations to those of their Marko�an

equivalent. The Balescu-Swenson theorem clarifies that non-Marko�an equations

are unnecessary for a steady-state description. This is true despite the fact that they
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Figure 3.8: Apparent violation of the Balescu-Swenson theorem in the mean squared
displacement. We plot with dashed lines the MSD of our theory for the exponential
memory, Eq. (3.22), for a constant � and three values of the damping parameter b/�:
0.5, 2.5 and 12.5. Their saturation values increase when b/� is increased signifying a
violation of the Balescu-Swenson theorem as � is being held constant. By contrast,
all three predictions of the incorrect generalization of the Smoluchowski equation,
Eq. (3.30), saturate to the same single value the di↵erence in the values of b/�.

incorporate the microscopic dynamics, which provides a more accurate description

of the approach to equilibrium. Thus, while non-Marko�an equations di↵er from

their Marko�an equivalents in their predictions for the values of ac observables,

the values of dc observables are reproduced by Marko�an equations with perfect

accuracy. One may find an intuitive understanding of the theorem through the

explicit consideration of the Marko�an approximation in the Laplace-domain. The

approximation requires the replacement of the Laplace variable by zero in the Laplace

transforms of the memories. This exact replacement occur as well in the Tauberian

theorems used to calculate asymptotic, i.e., steady state, results.

Fig. 3.8 displays the time-dependence and the saturation value of the mean square

displacement (MSD) for the simple case of exponential memory. We hold � constant

and vary the damping parameter over three values b/� = 0.5, 2.5 and 12.5. The
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exact results, Eq. (3.22), are depicted with dashed lines and indicate a dependence

of the saturation size on b despite no change to �. This result certainly conflicts

with the statement of the Balescu-Swenson theorem if we assume the saturation

value of the MSD to be a steady-state observable applicable to the theorem. We

also display in Fig. 3.8 (solid lines) that the incorrectly generalized Smoluchowski

equation, Eq. (3.27), predicts a MSD that does follow the Balescu-Swenson theorem.

Although one should not take the predictions of the incorrect generalization of the

Smoluchowski equation too seriously as physical parameter ranges exist for which

the MSD takes negative values, all do approach the same saturation value of the

MSD that is obtained for the time-local situation.

For a fuller understanding of the apparent violation of the Balescu-Swenson the-

orem, consideration of the theorem in the context of its time may be of import. First

Balescu [40] and then Swenson [41] enunciated the theory when the generalized mas-

ter equation (GME) was initially being developed by various investigators [42–47].

While the GME can accurately describe the short-time dynamics that are not acces-

sible to the Master equation, the latter’s importance to the understanding of central

tenets in statistical mechanics necessitated an awareness of which properties required

the use of a GME for an accurate model and which could be accurately modeled by a

Master equation. The Balescu-Swenson theorem provides this understanding. Its ap-

parent violation here (see Eq. (3.25)) thus necessitates an answer to the query: what

underlies Eq. (2.2) such that its predicted steady-state quantities have a dependence

on the memory?

Other cases [28,48] for which the Balescu-Swenson theorem does not apply have

been identified earlier. For example, an apparent violation has been shown [28]

to occur when the particle under consideration has a finite lifetime. However, the

process under discussion here incorporates no finite lifetime e↵ects. The simple

answer to the above question is that the memory we consider here appears only in
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the systematic term of Eq. (2.2). The Balescu-Swenson theorem requires that the

memory describe the whole process.

3.5.4 A Comment on Two-Time Correlation Functions

For many practical situations, only two times are of physical significance: an ini-

tialization time and what one might term an observation time. In these cases, only

single-time quantities (such as hx(t)i) are of experimental interest. In some physical

situations, however, a third (and fourth, etc.) time can play a physical role in the

process. For example, in Section 3.4 we discuss an experiment in which one mea-

sures the polarization of a charged particle that experiences both the time non-local

attraction to a center expressed in Eq. (2.2) and an applied time-varying electric

field. Initially, we assume that the electric field is turned on concurrent with the

initialization time t
0

of the system. If, instead, the field is turned on at the later

time s and the position of the particle is measured at a time t, two-time correlations

such as hx(t)x(s)i are of experimental importance. These two-time correlations have

appeared previously in the context of aging [49,50] and, when the quantity of interest

is the velocity, in [51].

We have provided general expressions for hx(t)x(s)i and f(t, s), the antisym-

metrized combination of the former, in Eqs. (3.5) and (3.6) respectively in terms of

the Green function �(t). For the case of an exponential memory, for instance, we

have

f(t, s) =
D

!

(

e� b
2 (t�s)

✓

b

!
+

!

b

�

cos [⌦(t�s)]+
b2�!2

2⌦!
sin [⌦(t�s)]

◆

(3.31)

� be� b
2 (t+s)

!

✓

!4

⌦2b2

cos [⌦(t�s)]+
4⌦2�!2

4⌦2

cos [⌦(t+s)]+
b2�!2

2⌦b
sin [⌦(t+s)]

◆

)

The Marko�an counterpart, obtained by taking the limit b ! 1, ! ! 1, such that
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Figure 3.9: Plotted are the antisymmetrized two-time correlation f(t, s) as a function
of the di↵erence of the times t and s for all three cases of the memory functions,
exponential, algebraic, and single delay, in dashed, dotted, and dot-dashed lines
respectively. The solid line plots f(t, s) in the limit of no memory. Parameters have
been chosen so that the same Marko�an limit is obtained for all three memories.
The horizontal axis is the di↵erence in time and the vertical axis is f(t, s)/D, both
being normalized by 1/�. We have held the sum of the times constant at a reasonably
large value, �(t+ s) = 30 while the di↵erence �(t� s) is varied over the range [0, 30].
Only the underdamped case is displayed.

!2/b = �, is

f(t, s) =
D

�

�

e��(t�s) � e��(t+s)

�

. (3.32)

Neither the exponential memory, Eq. (3.31), nor its Marko�an limit, Eq. (3.32),

results in f(t, s) being solely a function of the di↵erence in time t�s. As expected, the

non-Marko�an two-time correlation function di↵ers from its Marko�an counterpart

at short values of the di↵erence t � s but tends to the latter for large values. We

depict this behavior for the underdamped case graphically in Fig. 3.9 for all three

cases of the memory by fixing the sum of the two times and varying the di↵erence.

Two features are clear, one at short and one at long t�s. As expected, all cases tend

to the Marko�an limit at large values of t � s. At short times, on the other hand,
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they all are di↵erent. This is so because there they depict the (dimensionless) mean

square displacements which we have seen indeed di↵er, representing the violation of

the Balescu-Swenson theorem.

The work in this Chapter was done in collaboration with co-investigators external

to UNM, and has been published as M. Chase, T. J. McKetterick, L. Giuggioli and

V. M. Kenkre, “Langevin analysis for time-nonlocal Brownian motion with algebraic

memories and delay interactions”, European Physics Journal B, 89, 1-15 (2016).
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Chapter 4

Fokker-Planck Analysis

Attempts [18,52–54] to derive the probability density approach to the time-nonlocal

Ornstein-Uhlenbeck process have been the subject of a number of articles [55–58]

over the years. The aim is to construct the deterministic equation for the probability

distribution corresponding to Eq. (2.2). A bona-fide equation of this type, referred

to as a Fokker-Planck equation, describes the evolution of a conditional probability

distribution, i.e., the probability density that the particle is located at position x

at time t conditioned on it being at the position x0 at the prior time t0. In the

case of the familiar Smoluchowski equation, Eq. (2.1), and more generally any time-

homogeneous Markov process, this requirement is met implicitly by an equation

for the single-time probability density. The presence of memory in the Langevin

equation, however, requires the explicit construction of the conditional probability

distribution. Despite this, discussions in the literature generally focus on the one-

and two-time probability distributions [18,52,53,55,59], the practical utility of which

remain untested, e.g., the sign of the mean of the distribution can change in certain

parameter regions, which leads to the coe�cients of both the restoring force and the

di↵usive term being undefined [60].
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We extend these procedures [18, 52, 53, 55, 59], developed for the one- and two-

time probability distributions, to processes for which the initial condition of the

stochastic variable is taken to be non-local in time (see the discussion by Giuggioli

in ref. [61]). Of particular interest when the memory is of the delay type [62–66],

an extended history of the stochastic variable, however, may play a role for any

memory. Questions remain, however, on the appropriateness of the label Fokker-

Planck for these equations [53,55–58]. We do not attempt to settle the matter here.

Despite these questions, we present our results for their interesting nature as well as

their potential application in extensions to recent work.

Two examples illustrate concrete issues in which a bona-fide Fokker-Planck de-

scription for the conditional probability distribution may be of importance. Ob-

servations of a particular stochastic process may be limited by external or internal

constraints to a subspace of the allowable motion space. In these situations, the

results are inherently conditioned on the object being in the observational space. In

combination with memory e↵ects, a restricted observation space limits one to only

a partial characterization of the process. Physical boundaries lead to similar con-

ceptual issues even with full access of the observer to the motion space. Inferences

about the underlying stochastic process are complicated by boundary e↵ects. Recent

work [67, 68] has found the time-local Smoluchowski equation, Eq. (2.1), applicable

to trapping situations [67] and to the spread of epidemics [68]. The latter leads

to an interesting description of the transmission of infection in diseases such as the

Hantavirus [69]. If, through further observation, memory e↵ects are found to be im-

portant, what has been called in the literature a bona-fide Fokker-Planck description

may be of use.

We divide this Chapter into five Sections as follows. In Section 4.1, we de-

fine in detail the relations between joint and conditional probability distributions.

We briefly discuss the specialization of those relations to the context of Markov and
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time-homogeneous processes. Section 4.2 introduces a method devised by San Miguel

and Sancho [18] to construct a form of the memory-possessing Langevin equation,

Eq. (2.2), without a convolution. This form is useful in the present context because

the non-Marko�an e↵ects have been translated into time-dependent, but time-local,

coe�cients. Using the proscription described in Chapter 2, Section 4.3 presents

the probability density description of the Ornstein-Uhlenbeck process, which is fully

characterized by the one- and two-time joint probability distributions. In Section 4.4,

the conditional probability distribution is discussed and a Markov condition on the

memories is derived. We compare the twice-conditioned version to the simple one-

time propagator, a special case of the one-time joint probability. We conclude in

Section 4.5 with final remarks and briefly note the equation that defines the condi-

tional probability distribution.

4.1 Discussions on Joint and Conditional Proba-

bility Distributions and Their Relations

We begin with a review of the basic concepts necessary to understand the derivation.

The full description of the stochastic variable x
i

(t), taken to be one-dimensional as

in Chapter 3, requires knowledge of the entire set of the n-time joint probability

distributions, identified by P
n

(x
n

, t
n

; x
n�1

, t
n�1

; ...; x
1

, t
1

). This expression defines

the probability density that the particle takes the value x
1

at time t
1

and x
2

at time

t
2

and x
3

at time t
3

, etc. Physically, this corresponds the observation of the position

of a single object at multiple di↵erent times. Henceforth, we take the times to be

ordered such that t
n

� ... � t
1

. The joint probability distributions are constructed

from a microscopic description by extending Eq. (2.3a) to multiple variables. We

define

P
n

(x
n

, t
n

; ...; x
1

, t
1

) = h�(x
i

(t
n

) � x
n

)�(x
i

(t
n�1

) � x
n�1

)...�(x
i

(t
1

) � x
1

)i, (4.1)
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where h...i is the ensemble average. It is, of course, essential that the �-functions

in Eq. (4.1) are all for the ith particle. Eq. (4.1) allows [70] for the construction

of any m-time averaged observable, for n � m, by multiplication with the desired

observable and then integrating each variable, x
n

, x
n�1

, etc., over all space.

Three properties relate the joint probability distributions of di↵erent indices. The

first property reduces P
n

when two of its times are identical:

P
n

(x
n

, t
n

; ...; x
p

, t
p

; x
q

, t
q

; ...; x
1

, t
1

) = �(x
p

�x
q

)P
n�1

(x
n

, t
n

; ...; x
p

, t
p

; ...; x
1

, t
1

). (4.2)

That is, when t
p

= t
q

the positions associated with those times must be identical as

well, i.e., x
p

= x
q

. There are no additional conditions on P
n

. The marginal P
n�1

of

P
n

is found by integration over one of its variables, i.e.,

P
n�1

(x
1

, t
1

; ..; x
s�1

, t
s�1

; x
s+1

, t
s+1

..; x
n

, t
n

)=

1
Z

�1

dx
s

P
n

(x
1

, t
1

; ..; x
s

, t
s

; ..; x
n

, t
n

). (4.3)

The m-time joint probability distribution can then be constructed from the n-time

one for n � m. Bayes’ theorem [71] relates the n- and m-joint probability distribu-

tions for n, m � 1 to the conditional probability distribution. We have

Q
n|m(x

n+m

,t
n+m

; ..; x
m+1

, t
m+1

|x
m

, t
m

; ..; x
1

, t
1

) =
P

n

(x
n+m

, t
n+m

; ..; x
1

, t
1

)

P
m

(x
m

, t
m

; ..; x
1

, t
1

)
, (4.4a)

=
Q

n+r|m�r

(x
n+m

, t
n+m

; ..; x
m�r+1

, t
m�r+1

|x
m�r

, t
m�r

; ..; x
1

, t
1

)

Q
r|m�r

(x
m

, t
m

; ..; x
m�r+1

, t
m�r+1

|x
m�r

, t
m�r

; ..; x
1

, t
1

)
, (4.4b)

where Q
n|m gives the probability density of the particle being at x

n+m

at time t
n+m

and ... and x
m+1

at time t
m+1

conditioned on it previously being at x
m

at time t
m

and

... and x
1

at time t
1

. Thus, the conditioned distribution describes the probability

density that the stochastic variable takes on certain values given its particular history.

The single-time conditional probability distribution Q
n|1 is often referred to as

the n-time propagator, ⇧
n|1(xn

, t
n

; ...; x
1

, t
1

|x
0

, 0). It can be related to the n-time

joint probability distribution through the appropriate marginalization of Eq. (4.4a).
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One takes m = 1 and rearranges Eq. (4.4a) such that P
1

(x
1

, t
1

) is on the left hand

side. By then taking t
1

= 0 and marginalizing over x
1

, we have

P
n

(x
n

, t
n

; ...; x
1

, t
1

) =

1
Z

�1

dz⇧
n

(x
n

, t
n

; ...; x
1

, t
1

|x
1

, 0)P
1

(x
1

, 0), (4.5)

where we have used the equivalence between Q
n|1 and the propagator P

n

. As t = 0,

however, P
1

(x
1

, 0) is simply the initial condition (P
0

(z)) and the standard relation

between the propagator and the joint probability distributions is recovered. When

the particle is taken to be initially localized, P
n

reduces to the propagator ⇧
n

and

becomes explicitly dependent on the P
0

.

As is evident from Eq. (4.5), the joint probability distributions retain this depen-

dence on initial conditions in the case of initially delocalized particles as well. Despite

this, we use the standard notion for the joint probability distributions, which leaves

as implicit their dependence on the initial condition (again excepting the propaga-

tor). However, as the conditional probability distributions can be constructed from

the joint ones, they may retain the latter’s dependence on the initial condition. Un-

fortunately, this can lead to confusion in the notation for Q
n|m. The ambiguity

becomes clear by considering Eq. (4.4b) for the case of a localized initial condition

at x
0

, i.e., P
0

(z) = �(z � x
0

). The implicit dependence of the joint probability

distributions, labeled P
n

and P
m

in Eq. (4.4a), becomes explicit in the propagators

⇧
n

and ⇧
m

. If the conditional probability distribution retained the formers implicit

dependence on the initial condition, the transition to the explicit dependence in the

propagators leads to its own transition. The result is Q
n|m, implicitly dependent

on P
0

(z), becoming Q
n|m+1

, with explicit dependence on the initial location x
0

. To

avoid ambiguity, when the conditional probability distribution is dependent on the

initial condition, it is written explicitly, i.e., Q
n|m(...|...; P

0

). However, the notation

that we have used, in which the index m in Q
n|m counts only the number of points on

which it is conditioned, is retained. Thus, Q
n|m(...|...; P

0

) becomes Q
n|m+1

(...|...; x
0

)

if P
0

becomes a �-function.
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As is well-known [8], an important subclass of stochastic processes are the Markov

processes. They are defined by the fact that the conditional probability depends only

on its most recent conditioned time [8]. Thus, satisfying the equality

Q
n|m(x

n+m

, t
n+m

; ..; x
m+1

, t
m+1

|x
m

, t
m

; ..; x
1

, t
1

)

= Q
n|1(xn+m

, t
n+m

; ..; x
m+1

, t
m+1

|x
m

, t
m

). (4.6)

The combination of the reduction in the number of conditioned times and Bayes’

theorem, Eq. (4.4a), implies that P
n

= Q
1|1Pn�1

for any n. Thereafter, repeated

use of Bayes’ theorem shows that P
n

can be written solely in terms of Q
1|1 and P

1

.

As the complete set of joint probability distributions specify a stochastic process,

P
2

therefore completely characterizes Markov processes. One recovers P
1

following

a marginalization of P
2

using Eq. (4.3) and recovers Q
1|1 from both with the use of

Bayes’ theorem. A Markov processes is time-homogenous if Q
1|1(x1

, t
1

|x
0

, t
0

) can be

rewritten with shifted times, i.e., as Q
1|1(x1

, t
1

� t
0

|x
0

, 0).

For non-Marko�an processes, the complete set of P
n

is generally needed for

its characterization. However, for the special case of Gaussian noise, the process

is specified by just the one- and two-time averages [72]. We reiterate that, as in

Chapter 4, we take the noise to be white and Gaussian and, thus, focus on P
1

and

P
2

in the remainder of the Chapter.

4.2 An Equivalent Langevin Equation without

Convolutions

The derivation that we present here reproduces one that was first elucidated by San

Miguel and Sancho [18]. As our starting point, we take Eq. (2.2) and generalize it to

a process in which the initial condition is time-nonlocal, i.e., x
i

(t) = �(t) is known
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for �t
0

 t � 0 (t
0

� 0). Thus, we have

dx
i

(t)

dt
= ��

t

Z

�t0

dt0 �(t � t0)x
i

(t0) + ⇠
i

(t). (4.7)

When t
0

is taken to be 0 (or �(t) = 0), Eq. (2.2) is recovered. Similar to the derivation

presented in Section 3.1, Eq. (4.7) is formally solved using Laplace transforms. The

result is

x
i

(t) = x
0

�(t) +

t

Z

0

dt0�(t � t0)⇠
i

(t0) + �(t), (4.8)

where

�(t) = �
t

Z

0

dt0 �(t � t0)

0

Z

�t0

dt00 ��(t0 � t00)�(t00), (4.9)

x
0

= �(0) is the value of the extended initial condition at t = 0, and �(t) is the

Green function of the process. The Laplace-domain expression of the latter is given

in Eq. (3.1) of Chapter 3. In contrast with the similar result for a time-local initial

condition, Eq. (3.2), the e↵ect of an extended deterministic history is simply the

addition of the forcing term �(t).

While the analysis in Chapter 3 proceeds directly with the related formal solution,

Eq. (3.2) which is recovered from Eq. (4.8) when t
0

= 0, here we construct a Langevin

equation without a time convolution that is equivalent to Eq. (4.7). The benefit of

such a Langevin equation lies in it being local-in-time. Thus, one may use it, per

the proscription briefly outlined in Chapter 2, to derive the equivalent probability

distribution equation.

Developed by San Miguel and Sancho [18], the method used to convert Eq. (4.8)

into an equivalent equation without a convolution is rather elegant. One simply takes

the temporal derivative of Eq. (4.8), resulting in the equation

dx
i

(t)

dt
=x

0

d�(t)

dt
+

d

dt

2

4

t

Z

0

dt0 �(t � t0)⇠
i

(t0)

3

5+ �̇(t), (4.10)
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and then removes the explicit dependence on x
0

. The latter is performed by solving

Eq. (4.8) for x
0

and inserting it into Eq. (4.10). The equivalent to Eq. (4.7) is then

given by

dx
i

(t)

dt
=

�̇(t)

�(t)
x

i

(t) + �(t)
d

dt

2

4

t

Z

0

dt0
�(t � t0)

�(t)
⇠
i

(t0)

3

5+ �(t)
d

dt



�(t)

�(t)

�

, (4.11)

where �̇ indicates a temporal derivative. The modified noise, which we label with

◆
i

(t), obeys the twin relations

h◆
i

(t)i = 0, h◆
i

(t)◆
i

(t0)i
t>t

0 = D�(t)�(t0)
d

dt

d

dt0

2

4

t

0
Z

0

ds
�(t � s)

�(t)

�(t0 � s)

�(t0)

3

5 . (4.12)

The proscription outlined here has converted the explicit non-Marko�city of

the memory-possessing Langevin equation, Eq. (4.7), into a implicit dependence

in Eq. (4.11). Though time-local, Eq. (4.11) displays the e↵ects of non-Marko�city

through the time-dependence of the potential strength, �̇(t)/�(t), the addition of

color to the noise, and the driving force.

4.3 Solutions to Joint Probability Equations

In a generalization similar to that performed to construct Eq. (4.1), the generalized

current density for two times is defined as

j
2

(x
2

, t
2

; x
1

, t
1

) =

⌧

dx
i

(t
2

)

dt
2

�(x
i

(t
2

) � x
2

)�(x
i

(t
1

) � x
1

)

�

. (4.13)

With Eqs. (4.1) and (4.13), in combination with the continuity equation, the con-

struction of implicit equations for the one- and two-time joint probability distribu-
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tions can be performed. They are given as

@

@t
P

1

(x, t) = � @

@x

Ddx
i

(t)

dt

�

�

�

�

xi(t
0
) = x

�(x
i

(t) � x)
E

, (4.14a)

@

@t
P

2

(x, t; x0, t0) = � @

@x

Ddx
i

(t)

dt

�

�

�

�

xi(t) = x

�(x
i

(t) � x)�(x
i

(t0) � x0)
E

. (4.14b)

Here, we replace numerical indices on the variables x
1

and x
2

with primed and un-

primed variables, respectively. Eqs. (4.14a) and (4.14b) are closed by replacing the

time derivatives of the stochastic variable with Eq. (4.11). This is followed by an

exchange of the stochastic variables for their equivalent field variables as mediated

by the �-functions. The result trivially gives both the attraction coe�cients and the

forcing term. However, the di↵usion coe�cients require the use of Novikov’s theo-

rem [7]. The complete derivation of both the one- and two-time joint probabilities is

given in Appendix B.

The closed equations are given by

@

@t
P

1

(x, t) =
@

@x

✓

A(t)x � B(t) + D(t)
@

@x

◆

P
1

(x, t)

�

, (4.15a)

@

@t
P

2

(x, t; x0, t0)=
@

@x

✓

A(t)x�B(t)+C(t, t0)
@

@x0 +D(t)
@

@x

◆

P
2

(x, t; x0, t0)

�

, (4.15b)

with the coe�cients defined as

A(t) = � �̇(t)

�(t)
, (4.16a) B(t) = ��(t)

d

dt



�(t)

�(t)

�

, (4.16b)

C(t, t0) = 2D�(t)
d

dt

t

0
Z

0

ds
�(t � s)�(t0 � s)

�(t)
, (4.16c)

D(t) = D�2(t)
d

dt

t

Z

0

ds
�2(s)

�2(t)
. (4.16d)

Both of Eqs. (4.15) contain terms that represent the attraction to a center and
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di↵usion expected in a description of a Ornstein-Uhlenbeck process. However, as

Eqs. (4.15) represent the time-nonlocal process, the coe�cients of both terms are

time-dependent, being A(t) and D(t), respectively. The time-nonlocality also con-

tributes through a driving term, proportional to B(t), dependent on the deterministic

history of the particle. The final term, which is only present in the equation for the

two-time probability distribution (Eq. (4.15b)), is similar to a cross di↵usion term,

derivatives with respect to both x and x0 begin present. The evolution of P
2

(x, t; x0, t0)

therefore depends not only on a single location in the past but on the entire proba-

bility distribution. As expected, C(t, t0) goes to zero when t0 ! 0 so that Eq. (4.15b)

reduces to Eq. (4.15b).

Expressions similar to Eqs. (4.15) have been given in by Fox [53] and Hernan-

dez [73] for the case in which the memory and the noise in the a Langevin equation

obey a fluctuation-dissipation theorem. Unfortunately, there is no direct method

that either reduces their result to Eqs. (4.15), or vice versa, except in the trivial

limit of a Marko�an process.

4.3.1 Brief Note on Divergent Coe�cients

When the process under consideration is in an oscillatory parameter regime, the

coe�cients Eqs. (4.16) diverge. They diverge because the Green function �(t) crosses

zero when the average position of the particle is at the origin. See examples of this

crossing in the right panel of Fig. 3.1 and Fig. 3.4 in Chapter 3 for algebraic and single

delay memories, respectively. At these divergences, the coe�cients, Eqs. (4.16), also

happen to switch signs. Thus, Eqs. (4.15) describe a process that converts from a

di↵usive one (D(t) > 0) to anti-di↵usive one (D(t) < 0) and, concurrently, from an

attractive one (A(t) > 0) to being repulsive (A(t) < 0). Remarkably, as one might

expect from the well-behaved averaged quantities that were discussed in Chapter 3,
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these divergences do not cause issues in the solutions to Eqs. (4.15). However, they

can be removed through the redefinition of time first proposed by Giuggioli in [61].

The redefined time is given by the monotonically increasing function

T (t) =

t

Z

0

ds�2(s), (4.17)

which, we note, is essentially the mean squared displacement given in Chapter 3 by

Eq. (3.4).

4.3.2 Solution for the One- and Two-Time Probability Dis-

tributions

Analytic solutions to the one- and two-time joint probability equations can be found

using either Eqs. (4.15) or the transformed expressions in terms of T (t). In either

case, the standard method of solving Smoluchowski-type equations with harmonic

potentials is used. We outline the method here (see Appendix C for a complete

derivation). A Fourier transform with respect to x of both Eqs. (4.15a) (and a

second with respect to x0 for Eq. (4.15b)) results in first-order partial di↵erential

equations. Both transformed equations are driven by di↵usive terms while in the

latter there is the additional cross-di↵usive one proportional to C(t, t0). The method

of characteristics then converts the partial di↵erential equations to ordinary ones.

Following an inverse transform, the real-space expressions for the two propagators
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are

⇧
1

(x, t|x
0

, 0) =
1

p

4⇡DT (t)
exp

8

<

:

�
 

x � x
0

�(t) � �(t)
p

4DT (t)

!

2

9

=

;

, (4.18a)

⇧
2

(x, t; x0, t|x
0

, 0) =
1

4⇡D
p

T (t)T (t0)[1�N2(t, t0)]
exp

8

<

:

�1

1�N2(t, t0)
(4.18b)

2

4

 

x�x
0

�(t)��(t)
p

4DT (t)

!

2

+

 

x0�x
0

�(t0)��(t0)
p

4DT (t0)

!

2

�N(t, t0)

 

x�x
0

�(t)��(t)
p

2DT (t)

! 

x0�x
0

�(t0)��(t0)
p

2DT (t0)

!#

9

=

;

,

where x
0

is the (localized) initial condition and

N(t, t0) =
1

p

T (t)T (t0)

t

0
Z

0

ds�(t � s)�(t0 � s) t � t0,

is the two-time correlation function or covariance. As expected from the Markof-

fian Smoluchowski equation, both propagators remain Gaussians for all times with

Eq. (4.18b) being bivariate. In agreement with the results derived in Chapter 3, the

mean displacement and the MSD are

hxi = x
0

�(t) + �(t), (4.19a) h�x2i = 2DT (t). (4.19b)

The MSD is defined here as the di↵erence between the average of the squared dis-

placement and the square of its average. The two-time correlation function N(t, t0)

approaches 0 when t0 ! 0 and when t ! 1. It is identically 1 for t = t0. When the

memory is taken to be a time-local �-function, i.e., the Ornstein-Uhlenbeck process,

it simplifies to �(t � t0)
p

T (t0)/T (t).

From Eqs. (4.18), the joint probability distributions for the arbitrary initial con-

dition P
0

(z) is derived in the standard manner P
n

(...) =
R1

�1 dz⇧
n

(...|z, t)P
0

(z). We
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have then

P
1

(x, t) =
1

p

4⇡DT (t)

1
Z

�1

dz P
0

(z) exp

8

<

:

�
 

x � z�(t) � �(t)
p

4DT (t)

!

2

9

=

;

, (4.20a)

P
2

(x, t; x0, t0)=
1

4⇡D
p

T (t)T (t0)[1�N2(t, t0)]

1
Z

�1

dz P
0

(z) exp

8

<

:

�
 

x0�z�(t0)��(t0)
p

4DT (t0)

!

2

9

=

;

⇥exp

8

<

:

�1

1�N2(t, t0)

" 

x�z�(t)��(t)
p

4DT (t)

!

�N(t, t0)

 

x0�z�(t0)��(t0)
p

4DT (t0)

!#

2

9

=

;

. (4.20b)

Eqs. (4.20a) and (4.20b) are written to highlight their similarities and di↵erences.

The integrand of the single-time joint probability distribution, Eq. (4.20a), occurs

identically (modulo a change from t to t0) in the integrand of the two-time joint

probability. However, the complete integrand of Eq. (4.20b) incorporates a second

Gaussian with dependence on both the time t and the two-time correlation function.

4.4 The Solution to a Fokker-Planck Equation

The one- and two-time joint probability distributions, Eq. (4.20) can be combined

using Bayes’ theorem, Eq. (4.4a), to construct the conditional probability distribution

Q
1|1. It is given by

Q
1|1(x, t|x0, t0; P

0

) =

2

4

1
Z

�1

dz P
0

(z) exp

8

<

:

�
 

x0�z�(t0)��(t0)
p

4DT (t0)

!

2

9

=

;

3

5

�1

(4.21)

⇥ 1
p

2⇡DT (t)[1�N2(t, t0)]

1
Z

�1

dz P
0

(z) exp

8

<

:

�
 

x0�z�(t0)��(t0)
p

4DT (t0)

!

2

9

=

;

⇥exp

8

<

:

�1

1�N2(t, t0)

" 

x�z�(t)��(t)
p

4DT (t)

!

�N(t, t0)

 

x0�z�(t0)��(t0)
p

4DT (t0)

!#

2

9

=

;

.

The initial condition P
0

(z) is carried through both of Eqs. (4.20) such that it appears

in both the denominator and the numerator of Eq. (4.21), being convolved with the
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Chapter 4. Fokker-Planck Analysis

one- and two-time propagators, respectively. Therefore, generally the evolution of

Q
1|1 depends not only on the single conditioned time t0 but on its history as well.

Processes for which this dependence is retained are said to display aging dynamics.

This type of dynamics clearly complicates observational or experimental analysis us-

ing Eq. (2.2) because a single measurement at time t0, or even multiple measurements

at times t0, t00, etc., do not accurately inform about the future.

Processes that lack this historical dependence satisfy the criteria for a Markov

process given in Eq. (4.6). Eq. (4.21) allows for the derivation of the correspond-

ing conditions on �(t) and, therefore, the related memories. As the construction of

P
3

, and the general Q
1|2 is non-trivial, we avoid such complications by considering

Eq. (4.21) for the case of a localized initial condition in both space and time. As

discussed in Section 4.2, for an initially localized particle Q
1|1(x, t|x0, t0; P

0

) becomes

Q
1|2(x, t|x0, t0; x

0

, 0) exactly. Thus, by taking P
0

to be a �-function and �(t) = 0,

a special case of the twice-conditioned conditional probability distribution is con-

structed. The result is

Q
1|2(x, t|x0, t0; x

0

, 0) =
1

p

4⇡DT (t)[1 � N2(t, t0)]
exp

(

�1

4DT (t)[1�N2(t, t0)]


x � N(t, t0)
T (t)

T (t0)
x0 � x

0

✓

�(t) � �(t0)N(t, t0)
T (t)

T (t0)

◆�

2

)

(4.22)

Eq. (4.22) retains the Gaussian form of both propagators. The calculations of the

mean displacement and the mean squared displacement (MSD) are trivial and result

in the expressions

hxi
Q

= N(t, t0)
T (t)

T (t0)
x0 � x

0

✓

�(t) � �(t0)N(t, t0)
T (t)

T (t0)

◆

, (4.23a)

h�x2i
Q

⌘ hx2i
Q

� hxi2

Q

= 2DT (t)[1 � N2(t, t0)]. (4.23b)

As indicated by the average displacement, Eq. (4.23a), at short times the particle

may move in either direction. This contrasts with that of the propagator ⇧
1

which
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displays a delay for all non-Markov processes (see our discussion on the moments in

Chapter 3). The MSD is modified by a simple dependence on the covariance. Both of

Eqs, (4.23) converge with the equivalent expressions for the propagator, Eqs. (4.19)

at long-times.

From inspection, Q
1|1(x, t; x0, t0; P

0

) is not generally equal to Q
1|2(x, t; x0, t0; x

0

, 0)

for t0 > 0. As expected, the Markov criteria are therefore not generally satisfied.

Only when the factor that multiples x
0

is identically zero is Eq. (4.22) independent

of the initial time. This condition is met when

�(t)

�(t0)
= N(t, t0)

T (t)

T (t0)
.

Following the insertion of the definitions of N(t, t0) and T (t) into the above relation,

the derivative with respect to t is taken. This results in the simple condition for a

Markov process on the Green function:

�(t)
d

dt0
�(t0) = �(t0)

d

dt
�(t). (4.24)

This condition is met only when �(t) = exp(�Gt) with a constant G. An exponential

Green function occurs for time-local Langevin equations, i.e., when the memory is a

time-local �-function. From further inspection, the condition for time-homogeneity

is �(t � t0)�(t0) = �(t), which is again only satisfied for an exponential Green func-

tion. Thus, Eq. (2.2) describes a time-inhomogenous, non-Markov process. The

Smoluchowski equation represents the only Ornstein-Uhlenbeck processes that are

time-homogeneous and Marko�an. Pure di↵usion, i.e., the Wiener process, is a

special case when G = 0.
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Chapter 4. Fokker-Planck Analysis

4.4.1 E↵ect of non-Marko�city on the Conditional Proba-

bility

To give a concrete example of the evolution of the twice-conditioned distribution,

Eq. (4.22), we use the exponential memory that we introduced in Chapter 3. We

reproduce its Green function here for clarity (see Chapter 3 for details),

�(t) = e�bt/2

"

cos

r

!2 � b2

4
t +

✓

bp
4!2 � b2

◆

sin

r

!2 � b2

4
t

#

,

where b is the damping parameter and ! =
p

�b is the coherence parameter.

We have used the Green function for an exponential memory, with b/� = 1/4,

in the construction of Fig. 4.1. Its left panel depicts the propagator ⇧
1

(x, t|x
0

, 0)

as defined by Eq. (4.18a). The right panel displays the corresponding conditional

probability distribution Q
1|2(x, t|x

0

, t0; x, 0) as in Eq. (4.22). The particle is taken to

be initialized at x = x
0

for both cases (with no additional history dependence, i.e.,

�(t) = 0), with the latter being also conditioned on the particle being at x
0

at time

t0 = !/2. Thus, Q
1|2(x, t|x

0

, t0; x, 0) gives the probability density that the particle

is located at x at time t given that it was at x
0

at both t = 0 and t = !/2. We

set D = !x2

0

/4. Both probability densities are shown for five dimensionless times:

for the propagator they are !t = 0.1, 0.2, 0.3, 0.4, 2 and for the conditional prob-

ability distribution we use !t = 0.6, 0.7, 0.8, 0.9, 2.5. We have, therefore, that the

di↵erences between the last conditioned time and the observation time �t are iden-

tical for both cases (namely, �t = 0.1, 0.2, 0.3, 0.4, 2). The initial condition, which

normalizes the horizontal axis, is identified with arrows in both panels. The arrows

also serve to highlight the di↵erence between the two distributions for small values of

�t. Both the propagator and the twice-conditioned distribution immediately start

to spread from di↵usion. The propagator’s average motion is initially delayed due to

inertial e↵ects. In contrast, the twice-conditioned distribution displays an immediate

average motion towards the center due to the memory of its history. At long times
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Figure 4.1: Time-dependence of the propagator ⇧
1

(x, t|x
0

, 0) (left panel) and the
twice-conditioned probability distribution Q

1|2(x, t|x
0

, t0; x
0

, 0) (right panel). The
history function �(t) is taken to be 0 for both. The later condition for Q

1|2 is
t0 = !/2 (see text for further elaboration on the conditions). The positional de-
pendence (horizontal axis) is normalized with x

0

. We plot both distributions for
five dimensionless times: !t = 0.1, 0.2, 0.3, 0.4, 2 and !t = 0.6, 0.7, 0.8, 0.9, 2.5,
respectively. The latter being, respectively, 0.1!, 0.2!, 0.3!, 0.4!, 2! time units af-
ter t0. Arrows indicate the initial condition for both. Shortly after their respective
final conditioned time, ⇧

1

is delayed prior to its motion towards the attractive center
while Q

1|2 moves immediately. At long times the two distributions converge. We set
D = !x2

0

/4 in both panels.

the two converge as the memory e↵ects are damped.

4.5 Conclusion

We have presented in this Chapter a derivation of the conditional probability distri-

bution, given in Eq. (4.21), for the time-nonlocal Ornstein-Uhlenbeck process. This

derivation began with Langevin equation representation of the process, Eq. (2.2),

from which an equivalent Langevin equation without convolutions is constructed [18].
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From there, standard procedures [8] allow one to derive the one- and two-time joint

probability distributions and, therefore, the conditional probability distribution. The

conditioned distributions tend to be dependent on their full history, with the ex-

ception being Markov processes represented by the Smoluchowski equation. This

includes the special case of pure di↵usion, i.e., the Wiener process. See Giuggioli

et. al. [61] for further discussions on the complications when the system contains a

memory of the delay type.

With conditional probability distributions, processes that are governed by time-

nonlocal harmonic forces can be analyzed. Two situations in which they may find

application are observations that are limited to a subspace of the full motion space

and systems that are subject to boundary conditions. The latter already presents

issues in attempts to describe time-local processes that are not spatially-invariant.

The one- and two-time joint distributions are generally not su�cient. For example,

the method of images is inapplicable in the presence of boundary conditions [67,

74]. One suggested solution involves supplementing the Fokker-Planck equations,

Eqs. (4.20), with terms that account for the boundaries. The reliance of many

boundary techniques on the propagator, and not the joint distributions, may make

an equation for the conditional probability distribution itself be of interest.

We close by briefly noting this equation. It can be derived from Eqs. (4.15) using

P
2

= Q
1|1P1

, a rearrangement of Eq. (4.4a). When we substitute the second into the

first, we have

@

@t
Q

1|1(x, t|x0, t0; P
0

)=
@

@x

✓

A(t)x++B(t)+C(t, t0)
@

@x0 +D(t)
@

@x

◆

Q
1|1(x, t|x0, t0; P

0

)

�

+
@

@x0



ln P
1

(x0, t)
@

@x
Q

1|1(x, t|x0, t0; P
0

)

�

. (4.25)

The first term on the right-hand side of Eq. (4.25) is identical to the equation for the

two-time joint probability, Eq. (4.15b). The second term; however, explicitly depends

on the P
1

and, therefore, the initial condition of Q
1|1. For processes dependent
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on boundary conditions, additional terms may need to be added into Eqs. (4.20a)

and 4.25.

The work described in this Chapter was done in collaboration with co-inves-

tigators external to UNM, and has been accepted for publication as L. Giuggioli,

T. J. McKetterick, V. M. Kenkre, and M. Chase, “Fokker-Planck description for a

linear delayed Langevin equation with additive Gaussian noise”, Journal of Physics

A, (2016).
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Part 2: Simple Random Walk

under Confinement
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Chapter 5

Overview of Confinement in

Random Walks

Systems that perform random walks are ubiquitous in both natural and artificial

contexts. They arise in disciplines as diverse as reaction-di↵usion theory [75–81],

immunology [82–86], animal motion [3,87–90], and epidemiology [67,68,91–94]. True

to the term “random walker”, these systems often describe the spatial dependence

of a particle or excitation. Such objects may experience an additional forcing term

which acts to confine the particle to a particular region of space. The often-used

starting point to model such systems, with confinement at the probability level of

description, is the general Smoluchowski equation. In a continuous one-dimensional

space, it is given by

@P (x, t)

@t
=

@

@x

✓

dU(x)

dx
P (x, t)

◆

+ D
@2P (x, t)

@x2

, (5.1)

Here P (x, t) is the probability density of the particle being located at position x at

time t, U(x) is the confining potential and D is the di↵usion constant. Eq. (5.1) can

arise from a Langevin description [1, 2] for a particle in a highly-damped environ-

ment that experiences white noise. The derivation of Eq. (5.1) from its underlying
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Langevin description, and, more generally, the relation between the Langevin and

Fokker-Planck descriptions, is sketched in Appendix B.

The term ’Smoluchowski equation’ usually is made in reference to a confining

potential proportional to x2, i.e., quadratic. This follows from the standard usage

of the harmonic oscillator as the first-order model for any system with a potential

minimum. A recent study of the transmission of infection on the basis of Eq. (5.1)

has been carried out by Sugaya and Kenkre [68, 95]. Our interest lies in potentials

that confine but are not quadratic in the spatial coordinate. Higher powers of x are

not analytically tractable; however a linear potential, i.e., one proportional to |x|,
can be solved exactly. The particularization of Eq. (5.1) for such a potential is

@P (x, t)

@t
= E @

@x

✓

|x|
x

P (x, t)

◆

+ D
@2P (x, t)

@x2

, (5.2)

where E is the strength of the potential with units of velocity. The solution to these

potentials can be found using Laplace transforms. This is followed by applying the

appropriate boundary conditions at the points of discontinuity and is applicable to

any piecewise linear potential.

In Chapter 6, we present the exact solution of the V-potential equation. Its evo-

lution is then compared with that of the Smoluchowski equation with a quadratic

potential. Chapter 7 discusses two illustrative applications in the disciplines of con-

densed matter, the motion of excitations on doped molecular crystals, and immunol-

ogy, the motion of receptor clusters on the cell surface.
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Chapter 6

Piecewise Linear Potentials:

Matching Analysis

We first introduce a method of solving the general Smoluchowski equation, Eq. (5.1),

for an arbitrary piece-wise linear potential. Solutions are found in each region of space

complementary to the segmentation of the potential and are then joined across the

boundaries. Thus, the solution to any linear potential can be constructed. Match-

ing conditions for the most general boundary, a discontinuous jump between two

segments each with an arbitrary slope, are presented and then particularized to

two special cases: a discontinuous jump between purely di↵usive spaces and a ‘V-

potential’, i.e., two linear pieces of equal and opposite slopes on the two sides of an

attractive center taken to lie at x = 0.

In the second section, we apply these matching conditions to the case of a V-

potential. Dynamics of a particle in this sub-quadratic potential have been known in

part earlier, a partial solution having been given by Smoluchowski [96] for the case

of a reflecting boundary at x = 0 and extended by Lamm and Schulten [97–99] to

absorbing boundary conditions. Here, we give the full solution for arbitrary initial
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condition and no boundary. The solutions are simple but their behavior is rich. In

particular, a striking feature, found when the initial condition is a �-function, is

a change in the shape of the solution from a Gaussian to a decaying exponential.

The change in the shape leads to interesting consequences on the time evolution of

ensemble averaged quantities such as the position and velocity. We conclude with

a comparison between the solutions for the standard quadratic potential and the

V-potential. In particular, the variance in the shape of the V-potential solution is

contrasted with the invariant solution for the quadratic potential, which remains

Gaussian for a �-function initial condition.

6.1 Matching Conditions for a General Boundary

When the potential U(x) present in Eq. (5.1) is piece-wise linear Laplace-domain

results can be simply obtained. An illustrative example of such a potential is shown

in the left-most panel of Fig. 6.1. Within each linear segment, and for the moment

neglecting the initial condition, the dynamics are described by the standard Laplace-

domain convective-di↵usive equation

D
d2

eP (x, ✏)

dx2

+ E
S

d eP (x, ✏)

dx
= ✏ eP (x, ✏). (6.1)

Here E
S

is the potential strength appropriate to that segment.

As a second order linear equation with constant coe�cients, Eq. (6.1) possesses

two linear independent solutions. They are of the form eP (x, ✏) ⇠ e�x where � is

found using the characteristic polynomial of Eq. (6.1). Within each segment, this

leads to solutions of the form,

eP (x, ✏) = Ae
�ES+

p
E2

S
+4D✏

2D
x + Be

�ES�
p

E2
S

+4D✏

2D
x,

Here A and B are constants that will be determined by matching the solutions of

each joined pair of segments at their respective ’joint’, i.e., the point of discontinuity.
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Figure 6.1: Depicts an example of a piece-wise linear potential and illustrates the
method of solving for a general point of discontinuity. Both distance, on the hori-
zontal axis, and the potential, on the vertical axis, are in arbitrary units. The left
frame shows an arbitrary four-segment potential. In the center frame, a close-up of
the discontinuity between the central two segments L and R is shown. The method
used to solve for the matching conditions is shown in the right frame. The related
potential, for which segment R is shifted rightwards a distance d (the dash-dotted
line) and connecting segment C (the dotted line) is inserted. Using segment C as a
mediator, the matching conditions between the original segments R and L is derived.
The matching conditions for the original discontinuous potential is found by taking
the limit d ! 0 indicated by the arrow.

With the matching conditions for a general joint, the full solution (when the initial

condition is included) is found by chaining together successive segments.

The derivation of the general matching conditions between the coe�cients of

the solution for each segment proceeds as follows. The general joint, shown in the

central frame of Fig 6.1, consists of a discontinuous jump, at point q and of height

H, between segments, which we label I and II, of potential strengths ↵
I

and ↵
II

respectively. The potential is thus given by

U
G

(x) = ↵
I

(x � p)⇥(p � x) + (↵
II

(x � p) + H)⇥(x � p), (6.2)

where ⇥(x) is the Heaviside step function. The derivation is complicated by the

discontinuity in U
G

(x) which leads to a discontinuity in eP (x). Instead of the potential

given in Eq. (6.2), we consider a simpler potential which has the segments I and II

separated a distance d and connected by a third segment, C, of potential strength

61



Chapter 6. Piecewise Linear Potentials: Matching Analysis

H/d. Thus, the modified potential is

U
M

(x) =↵
I

(x � p)⇥(p � x) +
H

d
(x � p)(⇥(x � p) +⇥(d + p � x))

+ (↵
II

(x � p � d) + H)⇥(x � p � d), (6.3)

With the addition of segment C, U
M

(x) is continuous. The derivation of the matching

conditions between segments I and II is simplified. As indicated by the arrow in the

right-frame of Fig. 6.1, the matching conditions for U
G

(x) are then found by taking

the limit d ! 0.

To start, we consider one a continuous joints of the type found in U
M

(x). The

segments are joined at point p with potential strengths of ↵
L

and ↵
R

on the left and

right segments respectively. This potential is given by

U
C

(x) = ↵
L

(x � p)⇥(p � x) + ↵
R

(x � p)⇥(x � p),

Within each region the solution eP (x, ✏) for the segments becomes

eP
L

(x, ✏) = A
L

e
�↵L+

p
↵2

L
+4D✏

2D
x + B

L

e
�↵L�

p
↵2

L
+4D✏

2D
x,

eP
R

(x, ✏) = A
R

e
�↵R+

p
↵2

R
+4D✏

2D
x + B

R

e
�↵R�

p
↵2

R
+4D✏

2D
x.

Here, eP
L

(x, ✏) ( eP
R

(x, ✏)) is for the left (right) segment and A
R

, etc., are the coe�-

cients. The two boundary conditions across the joint are

eP
R

(q, ✏) = eP
L

(q, ✏), (6.4a)
d eP

R

(x, ✏)

dx

�

�

�

�

�

x=p

=
d eP

L

(x, ✏)

dx

�

�

�

�

�

x=p

+
↵

L

� ↵
R

D
eP
L

(p, ✏). (6.4b)

Eq. (6.4a) ensures the continuity of eP (x, ✏) across the joint. The discontinuity in

the derivative of eP (x, ✏), as seen in Eq. (6.4b), follows from requiring the integral of

Eq. (6.1) around the joint go to zero as the integral limits approach the discontinuity.
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That is,

lim
!0

p+

Z

p�

"
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d2

eP (x, ✏)

dx2

+
d

dx

⇣
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⇥(p � x) + ↵
R

⇥(x � p)] eP (x, ✏)
⌘

� ✏ eP (x, ✏)

#

= 0.

From Eq. (6.4a), we have the relation

B
R

(p) = A
L

(p) + B
L

(p) � A
R

(p). (6.5)

where we have introduced the notational shorthand A
R

(p) defined by

A(p) = Ae
�↵+

p
↵2+4D✏

2D
p, B(p) = Be

�↵L�
p

↵2+4D✏

2D
p,

for all coe�cients. The condition on the derivative, Eq. (6.4b), results in the relation
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Eqs. (6.5) and (6.6) are combined into the dual matching conditions that give the

coe�cients of the segment R in terms of those of segment L and vice versa
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◆

B
L

(p).

The coe�cients of segment L in terms of those of R are found by exchanging L and

R.

For the modified potential given in Eq. (6.3), segments I and II can be connected

by applying Eqs. (6.7) twice. The first application is across the I-C joint, located at
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q, and the second application is across the C-II joint, located at q + d. In the limit

d ! 0 the matching conditions for the discontinuous joint in Eq. (6.2) are then

A
II

=
↵

I

+
p

�
I

� e� H
D

�

↵
II

�
p

�
II

�

2
p

�
II

A
I

e
↵II�↵I+

p
�I�

p
�II

2D
q (6.8a)

+
↵

I

�
p

�
I

� e� H
D

�

↵
II

�
p

�
II

�

2
p

�
II

B
I

e
↵II�↵I�

p
�I�

p
�II

2D
q,

B
II

=
e� H

D

�

↵
II

+
p

�
II

�

� ↵
I

�
p

�
I

2
p

�
II

A
I

e
↵II�↵I+

p
�I+

p
�II

2D
q (6.8b)

+
e� H

D

�

↵
II

+
p

�
II

�

� ↵
I

+
p

�
I

2
p

�
II

B
I

e
↵II�↵I�

p
�I+

p
�II

2D
q.

where �
I

= ↵2

I

+ 4D✏ and �
II

= ↵2

II

+ 4D✏. The coe�cients of segment I can be

found in terms of those of segment II by the combination of a label switch and the

transform H ! �H. As expected, Eqs. (6.8) reduce to Eqs. (6.7) when the height

of the discontinuity is zero, H ! 0.

The e↵ects of the discontinuity are highlighted in the simple potential that con-

sists of a step of height H > 0 at point q = 0 between two purely di↵usive regions.

In this straightforward case, Eqs. (6.7) are simplified as

A
II

=
1+e� H

D

2
A

I

+
e� H

D �1

2
B

I

, (6.9a) B
II

=
e� H

D �1

2
A

I

+
1+e� H

D

2
B

I

. (6.9b)

As expected from the similarities of this problem to that of the quantum mechanical

barrier, the potential wall couples the coe�cients both on a single segment and

between the two segments. An increase in the height of the potential wall leads to a

pronounced increase in this coupling.

When normalization requirements are applied, A
II

is equal to 0, and the particle

is initialized on the left segment (I), Eqs. (6.9) lead to the simple relations

B
II

=
2

1 + e
H
D

B
I

, A
I

= tanh
H

2D
B

I

.
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The wall leads to an exponential suppression of the transmission. In the limit H !
1, there will be no coupling between the segments. Somewhat counter-intuitively,

however, when H becomes negative there is a limit to how fast the particle spills over

into the low-potential region. E↵ectively, a particle that starts in the high potential

regime does not immediately detect the drop in potential.

In preface to the analysis performed in Section 6.2 we provide Eqs. (6.7) for a

V-potential. The matching conditions

A
II

=

p
E2 + 4D✏ � Ep

E2 + 4D✏
A

I

� Ep
E2 + 4D✏

B
I

, (6.10a)

B
II

=
Ep

E2 + 4D✏
A

I

+
E +

p
E2 + 4D✏p

E2 + 4D✏
B

I

. (6.10b)

Here we have taken ↵
II

= �↵
I

= E where E is positive and set both the discontinuity

H and the location q to zero.

6.2 Solutions and their Behavior

We return our focus to the confining V-potential, the expression for which is given

by

U
V

(x) = E|x|,

E being the potential strength with units of velocity. The full solution to the corre-

sponding Smoluchowski equation, Eq. (5.2) is found through deriving the propagator

⇧(x, x
0

, t) which is the solution for the probability density at x at a time t later given

that the initial density is localized at x
0

. This is due to the linearity of the problem

which allows the general solution for an arbitrary initial condition to be found using

the standard Greens’ function formalism whereby the propagator is multiplied by
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the initial probability distribution p(x
0

) and integrated over all space

P (x, t) =

1
Z

�1

dx
0

p(x
0

)⇧(x, x
0

, t).

As the essence of the solution to Eq. (5.2) is given by the propagator we focus our

attention on analyzing its behavior.

We first examine the steady state distribution, P
SS

(x), which is obtained by

putting the left hand side of Eq. (5.2) equal to zero:

P
SS

(x) = lim
t!1

P (x, t) =
1

2`
e� |x|

` (6.11)

where ` = D/E is the characteristic width of the distribution. When the particle is

initialized far from the center the short-time behavior of the solution is essentially

given by the di↵usion equation with a simple convective term; the e↵ect of the

discontinuity is minimal. The requirement that the long-time behavior of the V-

potential equation is given by Eq. (6.11) already shows that the full-time solution

will change shape.

The full Laplace-domain expression for Eq. (5.2), with a localized initial condition

P
0

(x) = �(x � x
0

) is

✏ eP (x, ✏) � �(x � x
0

) = E d

dx

✓

|x|
x
eP (x, ✏)

◆

+ D
d2

eP (x, ✏)

dx2

. (6.12)

We initially consider the case of x
0

> 0, the case of x
0

< 0 being solved by symmetry

and consequently by a simple x ! �x transformation. We note that the domain

of x naturally breaks up into three di↵erent regions separated by two points of

discontinuity: the first, at x = 0, due to the potential and the second, at x = x
0

,

due to the initial condition. As mentioned in Section 6.1, within each region there

are two independent solutions of the form exp((±1 ±
q

1 + 4`✏

E )/(2`)x).

In addition to the matching conditions across the first discontinuity, Eqs. (6.10a)

and (6.10b), there are four other boundary conditions. Two conditions relate the
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behavior of the probability as x ! ±1, and require that eP (x ! ±1, x
0

, ✏) vanish.

The second pair, similar in form to Eqs. (6.4), match across the initial condition .

They are

eP
L

(x
0

, ✏) = eP
R

(x
0

, ✏), (6.13a)
d eP

L

(x
0

, ✏)

dx

�

�

�

�

�

x=x0

=
d eP

R

(x, ✏)

dx

�

�

�

�

�

x=x0

+
1

D
. (6.13b)

where L (R) refers to the region to the left (right) of the initial condition. As in

Eq. (6.4a), the first condition, Eq. (6.13a), ensures continuity of the probability. The

second, Eq. (6.4b) follows from the requirement that the integral of Eq. (6.12) around

the initial condition go to zero as the integral limits approach the discontinuity, i.e.,

lim
!0

x0+

Z

x0�

"

D
d2

eP (x, ✏)

dx2

+ E d

dx

✓

x

|x|
eP (x, ✏)

◆

� ✏ eP (x, ✏) + �(x � x
0

)

#

= 0.

Application of these conditions, along with the removal of the requirement that

x
0

> 0, yields the propagator e⇧(x, x
0

, ✏) in the Laplace domain:

e⇧(x, x
0

, ✏) =
e� |x|�|x0|

2`

E
q

1 + 4`✏

E

2

4e�
p

1+

4`✏
E

|x�x0|
2` +

e�
p

1+

4`✏
E

|x|+|x0|
2`

q

1 + 4`✏

E � 1

3

5 . (6.14)

Inversion of the Laplace-domain propagator into the time-domain is possible either

through explicit Bromwich contour integrations or by reference to tables [100]. The

time domain propagator is a combination of error functions, exponentials and the

Gaussian di↵usion propagator modified appropriately for convection:

⇧(x, x
0

, t)=
1p

4⇡Dt
e� (x�x0)2+E2t2

4Dt e� |x|�|x0|
2` +

e� |x|
`

4`

✓

1�erf

✓

|x|+|x
0

|�Etp
4Dt

◆◆

. (6.15)

Our analytic results Eq. (6.15) can be verified easily through a numerical solution

of Eq. (5.2). The latter can be thought of as the continuum limit of

dP
n

(t)

dt
= F (P

n+1

+ P
n�1

� 2P
m

) + f

✓

|n + 1|
n + 1

P
n+1

� |n � 1|
n � 1

P
n�1

◆

(6.16)
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Figure 6.2: Comparison of our analytic solution in Eq. (6.15) with numerically ob-
tained counterparts showing excellent agreement at two di↵erent dimensionless times
⌧
N

= 1 and ⌧
N

= 5. Here ⌧
N

is Ft in units of 4⇥106, there are 1200 sites in the chain
and f/F = 0.25 ⇥ 10�3. The walker location was at a distance x

0

/` = 5 initially.
The shape-shifting of the solution is also clear from an early time Gaussian to a late
time mod exponential.

where P
n

(t) is the probability of occupation of the nth site at a time t in a discrete 1-d

lattice, F is the nearest neighbor hopping rate, and f is the rate of motion towards

the attractive center at n = 0. If a is the lattice spacing, the continuum limit

a ! 0, F ! 1, f ! 1, Fa2 ! D, 2fa ! E
na ! x, P

n

(t)/a ! P (x, t)

converts Eq. (6.16) into the V-potential equation. We use n
0

= x
0

/a and the above

discretized forms of E and D to represent Eq. (6.15), the propagator derived analyt-

ically in its discrete version, as

⇧
n,n0(t)=

1p
4⇡Ft

e� (n�n0)2+4f2t2

4Ft e� |n|�|n0|
F/f (6.17)

+
f

2F
e� 2|n|

F/f



1�erf

✓

|n|+|n
0

|�2ftp
4Ft

◆�

.

The analytic solution given by Eq. (6.17) (solid lines) is compared to the numerical

solution (markers) of the discretized di↵erential equation which we have obtained

using standard Matlab procedures such as ODE45. We have displayed in Fig. 6.2 the
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spatial distribution at two widely di↵erent times. The first depicts an early situation

close to the initial distribution and the second a late situation near the steady state.

The dimensionless time ⌧
N

is Ft in units of 4⇥106. It has the respective values 1 and

5 for the two cases shown in Fig. 6.2. The value of f/F we have taken is 0.25⇥ 10�3

and the number of lattice sites 1200. Agreement is excellent given that the size of

the region is taken to be large compared with the equilibrium width ` and that the

potential is not too steep. Much of the interesting behavior found in our solutions

is provided by the transition between an initial Gaussian and the eventual cusped

steady-state distribution (a decaying exponential).

The analysis that we have discussed here for the V-Potential can in principle be

performed for any piece-wise linear confining potential using the results derived in

Section 6.1. Generally, however, there is no simple inverse Laplace-transform of the

Laplace-domain propagator into the time-domain. Results in the time-domain would

require a numerical inverse transform method.

6.2.1 Shape-shifting of the Solutions

Insight into the solutions of our Fokker-Planck equation, Eq. (5.2), can be gained

by analyzing the two terms in Eq. (6.15). The first term, essentially a Gaussian, is

characteristic of di↵usion. The second term has the spatial form of an exponential

decay required by the steady state distribution. The peak of the Gaussian travels

ballistically in the manner of the case when the potential is a simple bias, i.e. U(x) =

±Ex. The bias respects the potential experienced on either side of the confining

center and reflects the peak of the Gaussian term moving through the center. Thus,

at long times, only the tail contributes to the probability distribution. Note that

the long-time behavior of the propagator is determined by the decaying exponential

term, which is modified by a complementary error function.
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Figure 6.3: Time evolution of the probability density for a walker localized initially
at x

0

/` = 20. The dimensionless time is measured as the ratio of t to
p

2D/E2.
The left panel depicts three early values (3.5, 7, 10.5) while the right depicts three
late values (12.5, 15, 25). Both panels display the initial value for comparison. In
the left panel, the distribution changes from localized to Gaussians as the walker
moves ballistically towards the attractive center and di↵uses simultaneously. The
last curve shows a little peak at the attractive center as the walker begins to settle at
the attractive center. In the right panel the peak grows as the shape changes clearly
into the mod exponential. Shape shifting is particularly clear in this figure.

In order to examine more closely the passage from the initial shape through the

Gaussian intermediate to the final exponential form, we display Fig. 6.3. Initially,

the probability distribution travels ballistically maintaining the shape of a Gaussian.

However, when the probability of the walker being at the potential center reaches

an appreciable value, the distribution begins to form a cusp, reflecting the approach

towards the steady state distribution. Following the formation of the cusp, the dis-

tribution rapidly transitions into an intermediate state reflecting both the traveling

Gaussian and the exponential. During this transition period there are two local

maxima. Finally, the long-term steady state distribution is attained.
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6.2.2 Average Position and Velocity

Additional insight into the consequences of the random walker moving in a V-

potential can be obtained by exploring its average position hxi and its average veloc-

ity hvi ⌘ dhxi/dt. Choosing a positive value for x
0

, the former is obtained by simply

calculating the moment of the propagator as given by our Eq. (6.15):

hxi =

✓

x
0

� Et

2

◆

1 + erf

✓

x
0

� Etp
4Dt

◆�

+

✓

x
0

+ Et

2

◆

1 � erf

✓

x
0

+ Etp
4Dt

◆�

e
x0
` . (6.18)

The expression for the average position consists of a term showing ballistic motion

to the left and a term showing ballistic motion to the right, both at speed E , and

both modified by error function factors representative of simultaneous di↵usion with

di↵usion constant D. At long times, the combination of the two terms results in

hxi ! 0. Time di↵erentiation gives

dhxi
dt

= hvi = �E
2



1 + erf

✓

x
0

� Etp
4Dt

◆

�
✓

1 � erf

✓

x
0

+ Etp
4Dt

◆◆

e
x0
`

�

. (6.19)

Both Eqs. (6.18) and (6.19) apply for x
0

> 0. The average velocity obviously begins

as the slope of the V-potential at the position of initial placement, i.e., has the value

�E . If there were no di↵usion, i.e., if D = 0, the average velocity would jump to zero

when the walker reaches the attractive center as a consequence of the reverse sign of

the V-potential slope on the other side of the center. Di↵usion smooths the jump.

The sum of the first two terms inside the square brackets in Eq. (6.19) starts at the

value 2 and drops to 0 while the third term vanishes both initially and finally. The

error functions ensure that there is dormant behavior at small times during which

the velocity is essentially at the original constant value until di↵usion kicks in and

the velocity starts dropping.

In Figs. 6.4 and 6.5, we explore the e↵ect of varying each of the parameters, D,

E , and x
0

, on the average velocity of the confined random walker. The time scale is

chosen separately in the case of each parameter and the plots are parametrized by

71



Chapter 6. Piecewise Linear Potentials: Matching Analysis

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t/tx 0

⟨v
⟩/

Γ
0 0.1 0.2

0.95

1

0 10 20 30
0

0.2

0.4

0.6

0.8

1

t/tℓ

⟨v
⟩/

Γ

α = 0.5
α = 1.5
α = 3.5
α = 7.5

C
h
a
p
te

r
5

O
v
e
rv

ie
w

o
f
C

o
n
fi
n
e
m

e
n
t

in

R
a
n
d
o
m

W
a
lk

s

S
ys

te
m

s
th

at
p
er

fo
rm

ra
n
d
om

w
al

ks
ar

e
u
b
iq

u
it

ou
s
in

b
ot

h
n
at

u
ra

la
n
d

ar
ti

fi
ci

al
co

n
-

te
xt

s.
T

h
ey

ar
is

e
in

d
is

ci
p
li
n
es

as
d
iv

er
se

as
re

ac
ti

on
-d

i↵
u
si

on
th

eo
ry

th
eo

ry
[7

5–
81

],

im
m

u
n
ol

og
y

[8
2–

86
],

an
im

al
m

ot
io

n
[3

,8
7–

90
],

an
d

ep
id

em
io

lo
gy

[6
7,

68
,9

1–
94

].
T
ru

e

to
th

e
te

rm
ra

n
d
om

w
al

ke
r

th
es

e
sy

st
em

s
of

te
n

d
es

cr
ib

e
th

e
sp

at
ia

l
d
ep

en
d
en

ce
of

a

p
ar

ti
cl

e
or

ex
ci

ta
ti

on
.

S
u
ch

ob
je

ct
s

m
ay

ex
p
er

ie
n
ce

an
ad

d
it

io
n
al

d
et

er
m

in
is

ti
c

fo
rc

-

in
g

te
rm

w
h
ic

h
ac

ts
to

co
n
fi
n
e

th
e

p
ar

ti
cl

e
to

a
p
ar

ti
cu

la
r

re
gi

on
of

sp
ac

e.
T

h
e

of
te

n

u
se

d
st

ar
ti

n
g

p
oi

nt
to

m
od

el
th

es
e

sy
st

em
s

is
th

e
ge

n
er

al
S
m

ol
u
ch

ow
sk

i
eq

u
at

io
n
.

In

a
co

nt
in

u
ou

s
on

e-
d
im

en
si

on
al

sp
ac

e,
it

is
gi

ve
n

by

@
P

(x
,t

)

@
t

=
@ @
x

✓

d
U

(x
)

d
x

P
(x

,t
)◆

+
D

@
2

P
(x

,t
)

@
x

2

,h
v
i/

E

H
er

e
P

(x
,t

)
is

th
e

p
ro

b
ab

il
it
y

d
en

si
ty

of
th

e
p
ar

ti
cl

e
b
ei

n
g

lo
ca

te
d

at
p
os

it
io

n
x

at

ti
m

e
t,

U
(x

)
is

th
e

co
n
fi
n
in

g
p
ot

en
ti

al
an

d
D

is
th

e
d
i↵

u
si

on
co

n
st

an
t.

E
q.

(5
)

ca
n

ar
is

e
fr

om
a

L
an

ge
vi

n
d
es

cr
ip

ti
on

[1
,2

]f
or

a
p
ar

ti
cl

e
in

a
h
ig

h
ly

-d
am

p
ed

en
vi

ro
n
m

en
t

th
at

ex
p
er

ie
n
ce

s
w

h
it

e
n
oi

se
.

T
h
e

d
er

iv
at

io
n

of
E

q.
(5

)
fr

om
it

s
u
n
d
er

ly
in

g
L
an

ge
vi

n

d
es

cr
ip

ti
on

,
an

d
,

m
or

e
ge

n
er

al
ly

,
th

e
re

la
ti

on
b
et

w
ee

n
th

e
L
an

ge
vi

n
an

d
F
ok

ke
r-

54

C
h
a
p
te

r
5

O
v
e
rv

ie
w

o
f
C

o
n
fi
n
e
m

e
n
t

in

R
a
n
d
o
m

W
a
lk

s

S
ys

te
m

s
th

at
p
er

fo
rm

ra
n
d
om

w
al

ks
ar

e
u
b
iq

u
it

ou
s
in

b
ot

h
n
at

u
ra

la
n
d

ar
ti

fi
ci

al
co

n
-

te
xt

s.
T

h
ey

ar
is

e
in

d
is

ci
p
li
n
es

as
d
iv

er
se

as
re

ac
ti

on
-d

i↵
u
si

on
th

eo
ry

th
eo

ry
[7

5–
81

],

im
m

u
n
ol

og
y

[8
2–

86
],

an
im

al
m

ot
io

n
[3

,8
7–

90
],

an
d

ep
id

em
io

lo
gy

[6
7,

68
,9

1–
94

].
T
ru

e

to
th

e
te

rm
ra

n
d
om

w
al

ke
r

th
es

e
sy

st
em

s
of

te
n

d
es

cr
ib

e
th

e
sp

at
ia

l
d
ep

en
d
en

ce
of

a

p
ar

ti
cl

e
or

ex
ci

ta
ti

on
.

S
u
ch

ob
je

ct
s

m
ay

ex
p
er

ie
n
ce

an
ad

d
it

io
n
al

d
et

er
m

in
is

ti
c

fo
rc

-

in
g

te
rm

w
h
ic

h
ac

ts
to

co
n
fi
n
e

th
e

p
ar

ti
cl

e
to

a
p
ar

ti
cu

la
r

re
gi

on
of

sp
ac

e.
T

h
e

of
te

n

u
se

d
st

ar
ti

n
g

p
oi

nt
to

m
od

el
th

es
e

sy
st

em
s

is
th

e
ge

n
er

al
S
m

ol
u
ch

ow
sk

i
eq

u
at

io
n
.

In

a
co

nt
in

u
ou

s
on

e-
d
im

en
si

on
al

sp
ac

e,
it

is
gi

ve
n

by

@
P

(x
,t

)

@
t

=
@ @
x

✓

d
U

(x
)

d
x

P
(x

,t
)◆

+
D

@
2

P
(x

,t
)

@
x

2

,h
v
i/

E

H
er

e
P

(x
,t

)
is

th
e

p
ro

b
ab

il
it
y

d
en

si
ty

of
th

e
p
ar

ti
cl

e
b
ei

n
g

lo
ca

te
d

at
p
os

it
io

n
x

at

ti
m

e
t,

U
(x

)
is

th
e

co
n
fi
n
in

g
p
ot

en
ti

al
an

d
D

is
th

e
d
i↵

u
si

on
co

n
st

an
t.

E
q.

(5
)

ca
n

ar
is

e
fr

om
a

L
an

ge
vi

n
d
es

cr
ip

ti
on

[1
,2

]f
or

a
p
ar

ti
cl

e
in

a
h
ig

h
ly

-d
am

p
ed

en
vi

ro
n
m

en
t

th
at

ex
p
er

ie
n
ce

s
w

h
it

e
n
oi

se
.

T
h
e

d
er

iv
at

io
n

of
E

q.
(5

)
fr

om
it

s
u
n
d
er

ly
in

g
L
an

ge
vi

n

d
es

cr
ip

ti
on

,
an

d
,

m
or

e
ge

n
er

al
ly

,
th

e
re

la
ti

on
b
et

w
ee

n
th

e
L
an

ge
vi

n
an

d
F
ok

ke
r-

54

Figure 6.4: Dependence of the velocity of the random walker on time showing the
e↵ect of changing the potential slope E (left panel) and the initial location x

0

(right
panel). The parameter that is varied and shown in the legend in the right panel,
↵ ⌘ x

0

/`, applies to given line styles in both panels. The dimensionless time used
is t/t

x0 in the left panel and t/t
`

in the right. Here t
x0 = x2

0

/2D and t
`

= `2/2D
are times taken by a pure di↵usive walker to cover distances x

0

and ` respectively.
The left panel includes an inset showing the short-term ballistic behavior where a
dormant stage is followed by a velocity decrease.

↵ ⌘ x
0

/`, the ratio of the initial position to the steady state width of the distribution.

The e↵ect of changing E is shown on the left in Fig. 6.4, where an increase in E corre-

sponds to an increase in ↵. In the short term, shown in the inset, the walker travels

ballistically for a longer time when the potential steepness is decreased. The long

term decay into the steady state probability distribution, indicated by hvi/E ! 0,

occurs more slowly for a decreased potential strength. These results match with the

intuitive e↵ect of a steeper potential in that the walker will initially travel towards the

potential center at a larger velocity, experiencing the e↵ects of confinement earlier al-

lowing it to more quickly settle into the steady state distribution. Overall, increasing

the potential strength will decrease the transition time from initial ballistic motion

to the final steady state distribution.

The e↵ect of changing the initial position of the particle, x
0

, is shown in the right

panel of Fig. 6.4. While the behavior appears similar to that shown in the left panel,

we note that the time spent in the initial ballistic motion increases as the random
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Chapter 6. Piecewise Linear Potentials: Matching Analysis

the probability distribution travels ballistically maintaining the shape of a Gaussian.

However, when the probability of the walker being at the potential center reaches

an appreciable value, the distribution begins to form a cusp, reflecting the approach

towards the steady state distribution. Following the formation of the cusp, the dis-

tribution rapidly transitions into an intermediate state reflecting both the traveling

Gaussian and the exponential. During this transition period there are two local

maxima. Finally, the long-term steady state distribution is attained.

6.2.2 Average Position and Velocity

Additional insight into the consequences of the random walker moving in a V-

potential can be obtained by exploring its average position hxi and its average veloc-

ity hvi ⌘ dhxi/dt. Choosing a positive value for x
0

, the former is obtained by simply

calculating the moment of the propagator as given by our Eq. (6.15):

hxi =

✓

x
0

� Et

2

◆

1 + erf

✓

x
0

� Etp
4Dt

◆�

+

✓

x
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+ Et

2

◆

1 � erf
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x
0

+ Etp
4Dt

◆�

e
x0
` .t/tE

(6.18)

The expression for the average position consists of a term showing ballistic motion

to the left and a term showing ballistic motion to the right, both at speed E , and

both modified by error function factors representative of simultaneous di↵usion with

di↵usion constant D. At long times, the combination of the two terms results in

hxi ! 0. Time di↵erentiation gives

dhxi
dt

= hvi = �E
2



1 + erf

✓

x
0

� Etp
4Dt

◆

�
✓

1 � erf

✓

x
0

+ Etp
4Dt

◆◆

e
x0
`

�

. (6.19)

Both Eqs. (6.18) and (6.19) apply for x
0

> 0. The average velocity obviously begins

as the slope of the V-potential at the position of initial placement, i.e., has the value

�E . If there were no di↵usion, i.e., if D = 0, the average velocity would jump to zero

when the walker reaches the attractive center as a consequence of the reverse sign of

the V-potential slope on the other side of the center. Di↵usion smooths the jump.

68

Figure 6.5: E↵ect of the di↵usion constant D, in the form of the dimensionless
parameter ↵ ⌘ x

0

/` = x
0

E/D, on the time evolution of the velocity of the random
walker. The dimensionless time used here, t/tE where tE ⌘ x

0

/E is the time in takes
a purely ballistic walker with velocity E to travel a distance x

0

. Note that all curves
intersect at the same point when t equals tE .

walker is initially placed further from the potential center. The walker approaches

its steady state distribution more slowly when initialized further away. The ↵ values

displayed in the right panel apply to both panels with their associated line types;

so we see that that an increase in ↵ moves one in opposite order among the curves

in the two panels. The e↵ect of changing the di↵usion constant, where an increase

in D corresponds to a decrease in ↵, is displayed in Fig. 6.5. A larger di↵usion

constant allows the walker to sense the confinement earlier but makes it spend less

time relatively moving ballistically. This combination has the consequence that the

decay into the steady state is slower. In e↵ect, a large di↵usion constant extends

the time under which the walker transitions from the initial ballistic motion into the

steady state. Note that all the curves in Fig. 6.5 intersect in a single point at t = tE .

We also show the relation between hxi and hvi in part because observations have

been reported in that manner in the study of immunological synapse formation, a

subject we passingly address in Section 7.2. Although we have not obtained such a

relation by analytic means, eliminating the time dependence is possible numerically.

The results for changing E is depicted in Fig. 6.6 (e↵ect of changing x
0

is identical).
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Chapter 6. Piecewise Linear Potentials: Matching Analysis

the probability distribution travels ballistically maintaining the shape of a Gaussian.

However, when the probability of the walker being at the potential center reaches

an appreciable value, the distribution begins to form a cusp, reflecting the approach

towards the steady state distribution. Following the formation of the cusp, the dis-

tribution rapidly transitions into an intermediate state reflecting both the traveling

Gaussian and the exponential. During this transition period there are two local

maxima. Finally, the long-term steady state distribution is attained.

6.2.2 Average Position and Velocity

Additional insight into the consequences of the random walker moving in a V-

potential can be obtained by exploring its average position hxi and its average veloc-

ity hvi ⌘ dhxi/dt. Choosing a positive value for x
0

, the former is obtained by simply

calculating the moment of the propagator as given by our Eq. (6.15):
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The expression for the average position consists of a term showing ballistic motion

to the left and a term showing ballistic motion to the right, both at speed E , and

both modified by error function factors representative of simultaneous di↵usion with

di↵usion constant D. At long times, the combination of the two terms results in

hxi ! 0. Time di↵erentiation gives

dhxi
dt

= hvi = �E
2


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Both Eqs. (6.18) and (6.19) apply for x
0

> 0. The average velocity obviously begins

as the slope of the V-potential at the position of initial placement, i.e., has the value

�E . If there were no di↵usion, i.e., if D = 0, the average velocity would jump to zero

when the walker reaches the attractive center as a consequence of the reverse sign of

the V-potential slope on the other side of the center. Di↵usion smooths the jump.
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Figure 6.6: Relation between the velocity (time derivative of average displacement)
and the displacement of the random walker. Plotted is hvi/E versus hxi/x

0

when
E (left) and D (right) is varied, both in the form of the dimensionless parameter
↵ ⌘ x

0

/` = x
0

E/D. Note the change in the convexity of the curves in the left panel.

Increasing ↵, corresponding to an increase in either E or in x
0

, leads to the walker

traveling ballistically for a longer distance before slowing down into the steady state.

As ↵ is decreased, this plunge has qualitatively di↵erent shapes, with curve convexity

increasing, and indicates a sharper initial slowdown followed by a more leisurely

approach to the steady state.

The e↵ect of changing D is depicted in Fig. 6.6, where an increase in D corre-

sponds to a decrease in ↵. Decreasing the di↵usion constant makes the walker travel a

larger distance ballistically before reaching the hxi = 0 region. The plunge occurring

closer to the confining center for larger D suggests that di↵usion acts as a sensing

mechanism for the walker, allowing it to interact with the potential discontinuity

while further away.

6.3 Comparison with the Quadratic Potential

A comparison of the V-potential results with those of the general Smoluchowski

equation, Eq. (5.1) with the commonly used (see, e.g., ref. [67]) quadratic U(x) given
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by (1/2)�x2, is suggested by the use of the later in understanding various physical

problems of confined random walkers [67,68] We concluded by contrasting these two

cases more closely. For this purpose we compare the propagator we have derived for

the case of the V-potential, Eq. (6.15), with the well-known quadratic Smoluchowski

propagator [1, 2, 67]

⇧(x, x
0

, t) =
e�

(x�x0e��t)
2

4DT (t)

p

4⇡DT (t)
, (6.20a) T (t) =

1 � e�2�t

2�
. (6.20b)

The spatial dependence of the propagator is always Gaussian in the quadratic case.

Consequently, the shape-shifting phenomenon we have witnessed for the V-potential

case does not arise. In addition, the average displacement and velocity, hxi and

hvi, have forms for the quadratic case that are considerably simpler than for the

V-potential. Both are calculated to be exponential in time, hxi = x
0

e��t, hvi ⌘
dhxi/dt = �x

0

�e��t, and thus to be related linearly to each other: hvi = ��hxi.
The time dependence of hxi and hvi is, on the other hand, more complex for the V-

potential, see Eqs. (6.18) and (6.19). Unlike in the quadratic case, it is not straight-

forward at all to eliminate t from those equations to obtain a v-x relation. We found

it necessary to use a numerical procedure to extract that relation. Unlike in the

quadratic case there is an unavoidable dependence of the V-potential relation on the

di↵usion constant D and the initial location x
0

.

Of particular interest is the di↵erence between the initial slopes of the velocity

versus time plots in the quadratic versus the V-potential case, given in Eq. (6.19). In

the quadratic case, the slope, equal to �x
0

�, is dependent on the potential strength

and is di↵erent from di↵erent initial locations. This contrasts with the V-potential

case for which neither the initial location nor any potential parameter decides the

initial slope; the v(t) curve is initially totally flat in the V-potential case. Not only
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the first t-derivative but all order derivatives of the velocity vanish initially. This is

confirmed explicitly by di↵erentiating Eq. (6.19),

dhvi
dt

=
x

0

Ep
4⇡Dt3

e� (x0�Et)2

4Dt ,

and noticing that at t = 0, the Gaussian term vanishes faster than any purely

polynomial term can grow. As repeated di↵erentiations only result in polynomials

of finite order, all derivatives of hvi vanish at t = 0. This vanishing provides the

initially flat nature of the velocity curve. The dormant behavior comes from the

presence of an isolated essential singularity and is similar to what happens in the

context of Arrhenius dependence of chemical rates or the Einstein specific heat if the

temperature T is the abscissa rather than the time t as here.

By multiplying Eq. (5.1) by x, integrating over all x, and invoking standard

boundary conditions on P (x, t) and its spatial derivatives, one can write, for any

potential U(x),
dhxi
dt

= hvi =

⌧

�dU(x)

dx

�

. (6.21)

When the potential is quadratic the force (or velocity) dU(x)/dx is linear in x;

however, in the V-potential case it is proportional to |x|/x and, therefore, highly

nonlinear. The linearity in the former case ensures that a closed di↵erential equation

for hxi exists. In the latter case it does not exist and so D has an e↵ect on the

average velocity. It is the fact, that the relation hf(x)i = f(hxi) is by no means valid

for such nonlinear functions f(x), that is responsible for the richer consequences of

the V-potential. In the quadratic case, the linearity of the force validates the relation

accidentally and thereby imposes a simple relation between hvi and hxi without any

influence of the di↵usion constant.
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Chapter 7

Applications in Chemical and

Biological Physics

We present here two illustrative applications of the results that we derived in Chap-

ter 6 that describe the motion of a walker undergoing di↵usion in a V-potential.

The first is a quantum yield calculation in doped molecular crystals [28, 101, 102].

Hanson [103, 104] and others [105] have suggested methods of creating the linear

confining potential that may be used. Following a brief introduction to molecular

crystals, we sketch the defect technique [28, 106–111] (adapted from [111]), which

accounts for the consequences of semi-isolated defects on the motion of a walker.

The Laplace-domain propagator, Eq. (6.14), is then used to calculate the quantum

yield for which a non-monotonic variance is found and discussed. An analysis of

the position-dependent velocity of T-cell membrane receptors during immunologi-

cal synapse formation [112–123] is the second illustrative application. An impor-

tant experimental result in the studies of immunological synapse formation is the

position-dependent average velocity [112] of the T-cell receptor proteins. We present

a qualitative comparison of these results with our calculated relationship between

the average position hxi, Eq. (6.18), and velocity hvi, Eq. (6.19), for the V-potential.
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We find that it does not adequately predict the motion and propose a second linear

confining potential, dubbed the ‘bucket’-potential, that incorporates a central non-

convective region. Its position-dependent average velocity does qualitatively replicate

the receptor motion.

7.1 Quantum Yield Calculations in Doped Molec-

ular Crystals

Doped molecular crystals [28,101,102], exemplified by aromatic hydrocarbon lattices

held together via the van der Waals interaction [124], often provide a model system

for the laboratory study of the magnitude and nature of exciton motion in complex

biological entities such as photosynthetic systems [125]. In early experiments [126,

127], small concentrations of guest molecules, such as tetracene, were doped into a

lattice, often comprised of anthracene, onto which light was made to shine. Frenkel

excitations were produced and proceeded to move on the lattice, potentially being

captured by the guest molecules, and finally decayed due to their a finite lifetime.

The radiation emitted during this decay occurs at di↵erent frequencies which allows

the amount emitted, and therefore captured, by the guest molecules to be tracked.

The ratio given by the number of excitations that radiate from the host to those

that were originally created is called the host yield; we label it �. If no non-radiative

processes exist, the guest yield would be 1 � �. The ratio of these two quantities

(1 � �)/� relates the fraction of excitations captured by guest molecules to those

left free and thus is often called the dimensionless energy transfer rate [28]. We

here calculate these quantities when the motion occurs under the influence of the

V-potential in a representative one-dimensional molecular crystal.

Our starting equation that describes the excitation motion is given by Eq. (5.2
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with the addition of decay and capture terms,

@P (x, t)

@t
+

P (x, t)

⌧
= E @

@x

✓

|x|
x

P (x, t)

◆

+ D
@2P (x, t)

@x2

� C�(x � x
r

)P (x, t). (7.1)

Here ⌧ is the lifetime, C is the capture parameter and x
r

is the trap site. This

form of decay leads to a simple exponential decay of the probability independent

of position in the time domain, i.e., P (x, t) ! exp(�t/⌧)P (x, t), and the transform

✏ ! ✏ + 1/⌧ in the Laplace-domain. Analysis of the capture term requires the defect

technique [28,106–111], a sketch of which we present here, adapted, essentially, from

Spendier and Kenkre [111], which is a recent review of the technique used by di↵erent

authors in a variety of contexts. Here, and in ref. [111], the approach and notation

followed are those of Kenkre and collaborators.

7.1.1 Introduction to the Defect Technique

We consider a particle that moves on a discrete lattice of arbitrary dimension and

whose probability of being on site m is given by P
m

(t). The coherent motion, i.e.,

the motion independent of the defect, is linear in the probability and otherwise left

as general. The master equation that then governs the motion of the particle is given

by

dP
m

(t)

dt
= motion terms �

0
X

r

C 0�
m,r

P
m

(t), (7.2)

where C 0 is the discrete capture parameter and is related to C as defined in Eq. (7.1)

by the standard continuous limit, a ! 0, C 0 ! 1, aC 0 ! C. The trap sites are

located at r with each being selected by the kronecker-delta �
m,r

and the prime

signifies a sum over those sites. We take a single trap site for simplicity.

Following a Laplace transform of Eq. (7.2), the Laplace-domain probability eP
m

(✏)

becomes

eP
m

(✏) = e⌘
m

(✏) � C 0
e 

m,r

(✏) eP
r

(✏), (7.3)
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where e 
m,r

is the homogenous propagator from site r to site m, and e⌘
m

(✏) is the full

homogenous probability at site m for the particular initial condition, i.e., e⌘
m

(✏) =
P

n

e 
m,n,

(✏)P
n

(0). When the motion term in Eq. (7.2) diagonalizes in the Fourier

domain, e.g., the di↵usive case, one can explicitly derive Eq. (7.3). In particular,

the origin of the homogenous propagator in the second term on the right-hand side

is self-evident. However, its origin is intuitive in all systems by considering the

time-domain equivalent of Eq. (7.3),

LT�1

n

C 0
e 

m,r

(✏) eP
r

(✏)
o

= C 0
t

Z

0

dt0 C 0 
m,r

(t � t0)P
r

(t0),

where  
m,n

(t) is the time-domain propagator. Clearly, the second term on the right-

hand side of Eq. (7.3) is understood as the ‘captured’ probability that would have

contributed to the total in the absence of the trap.

An explicit solution requires the removal of eP
r

(✏) from the right hand side of

Eq. (7.3). It is found by setting m = r and then solving for eP
r

(✏) which can then be

inserted back into Eg. (7.3). This gives the solution as

eP
m

(✏) = e⌘
m

(✏) � e 
m,r

(✏)
eµ

r

(✏)

1/C 0 + e⌫
r

(✏)
. (7.4)

Two new functions have been defined in Eq. (7.4) to simplify its physical under-

standing: eµ
r

(✏), referred to as the the µ-function, is the probability that the particle

travels from the particular initial condition to the trap site in the absence of the

trap; e⌫
r

(✏), the ⌫-function [76, 109,128], is the self-propagator for the trap site. The

latter was introduced by Kenkre [76] in his studies of energy transfer in molecular

crystals and photosynthetic systems and is important in understanding exciton dy-

namics [28, 76, 109, 128]. The quantum yield is then found by a sum over all space.

It is given by

� ⌘
X

m

eP
m

(✏) =
1

✏



1 � eµ
r

(✏)

1/C 0 + e⌫(✏)
r

�

, (7.5)
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where both the homogenous solution e⌘
m

(✏) and the propagator e 
m,r

(✏) sum to

✏�1. Physical understanding of the consequences of Eq. (7.5) are discussed in [28,

76, 109, 128]. Relevant to the V-potential and Eq. (7.1), the continuous limit1 of

Eq. (7.5) is taken in the standard manner a ! 0, C 0 ! 1, aC 0 ! C, eµ
r

(✏)/a, !
eµ(✏), e⌫

r

(✏)/a, ! e⌫(✏). Thus for continuous systems we give

� =

1
Z

�1

dx eP (x, ✏) =
1

✏



1 � eµ(✏)

1/C + e⌫(✏)

�

, (7.6)

7.1.2 Quantum Yield Calculation and Discussion

Upon the insertion of the Laplace-domain propagator for the V-potential, Eq. (6.14),

into Eq. (7.6), the quantum yield becomes

� =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1�
e� |xr |�|x0|

2`

h

(Q(✏) � 1) e�Q(✏)

|xr�x0|
2` +e�Q(✏)

|xr |+|x0|
2`

i

E(Q(✏)

2�Q(✏))

C

+Q(✏)�2e�Q(✏)

|xr |
2` sinh

h

Q(✏) |xr|
2`

i sgn(x
r

)=sgn(x
0

),

1� Q(✏) e� |xr |�|x0|
2` e�Q(✏)

|xr |+|x0|
2`

E(Q(✏)

2�Q(✏))

C

+Q(✏)�2e�Q(✏)

|xr |
2` sinh

h

Q(✏) |xr|
2`

i sgn(x
r

) 6=sgn(x
0

),

(7.7)

where

Q(✏) =

r

1 +
4`

E⌧
.

The two cases correspond with the trap being located on the same side and opposite

sides of origin, respectively.

We take the trap site as located at x
r

= L/2 and calculate the yield for the

illustrative localized initial condition that has the excitation (initially) located at

x
0

= �L/2. For such symmetrical positioning around the origin, the yield becomes

� = 1 � Q(✏) e�Q(✏)

L
2`

E(Q(✏)

2�Q(✏))

C

+ Q(✏) � 2e�Q(✏)

L
4` sinh

⇥

Q(✏) L

4`

⇤

(7.8)

1Issues may arise for motion spaces of dimension greater than one. Here, we focus on
those of a single dimension. As such, no problems present themselves. See Chapter 10 for
a discussion.
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initially the yield decreases, it reaches a minimum and then it increases. Intuitively

this results because, for small values of E , confinement helps trapping by limiting

the probability of the excitation di↵using to ±1 and hurts trapping at large values

of E by strongly concentrating the probability that the excitation is very close to the

origin.
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Figure 7.1: The non-monotonic dependence of the quantum yield, Eq. (7.8), on the
potential strength E (in units of 2D/L) for four di↵erent values of the lifetime ⌧ (in
units of L2/2D). Location of the trap, x

r

, and the initial location of the Frenkel
excitation, x

0

, are separated by a distance L symmetrically around the origin. The
capture parameter, C, is set to 4 (in units of 2D/L). Non-monotonic e↵ects (see
text) are clear from the minimum in the quantum yield located at E ⇡ 2D/L.

Let us focus our attention on the e↵ect on the observable � on the degree of

confinement imposed on the excitation motion by the V-potential. We depict the

dependence of the quantum yield on E in Figs. 7.1 and 7.2. Fig 7.1, where Eq. (7.8)

is plotted for four values of the lifetime ⌧ (in units of L2/2D), over a range of

the potential strength E (in units of 2D/L), clearly shows non-monotonic behavior:

there is a minimum in the quantum yield (in Fig 7.1 it happens to appear between

the values 1 and 2 of the abscissa). Since the curves rise on both sides of this

value, we see that the quantum yield is non-monotonic in the confinement strength.

This remarkable non-monotonicity e↵ect has been recently reported for quadratic

confinement potentials in the trapping of Smoluchowski random walkers [67] and in

the transmission of infections in epidemics [68].

The non-monotonicity e↵ect can also be seen directly in the time-domain [67,

68]. In our present context, this behavior can be noticed in the variation of the

quantum yield on the lifetime of the excitation. This is clear in Fig. 7.2, where
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Figure 7.2: The non-monotonic dependence of the quantum yield, Eq. (7.8), on five
values [0.25, 0.5, 1, 2, 4] of the potential strength E (in units of 2D/L) for a range of
the lifetime ⌧ (in units of L2/2D). Location of the trap, x

r

, and the initial localization
of the Frenkel excitation, x

0

, are separated by a distance L symmetrically around the
origin. The capture parameter, C, is set to 4 (in units of 2D/L). Non-monotonicity
is seen through the increase, and subsequent decrease in the normalized yield for all
values of ⌧ as E is increased, with the maximum occurring at E ⇡ 2D/L.

The lifetime, scaled to the time the excitation would take to traverse as a random

walker the distance between the initial condition and the trap site, is plotted on

the x-axis. The non-monotonic dependence of the quantum yield on the potential

strength is confirmed in the figure. The black arrows, whose direction corresponds

to successively higher values of E , point out this non-monotonicity as E is increased:

initially the yield decreases, it reaches a minimum and then it increases. Intuitively

this results because, for small values of E , confinement helps trapping by limiting

the probability of the excitation di↵using to ±1 and hurts trapping at large values

of E by strongly concentrating the probability that the excitation is very close to the

origin.
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7.2 Immunological Synapse Formation

Immunological synapse formation, in particular the motion of receptor proteins on

the surface of the T-cells, is our second illustrative application. We discuss our find-

ings below; our intention is to present only qualitative arguments, not quantitative

predictions or explanations.

The initial event that often drives important biological processes is a binding

interaction between an external target molecule and receptor proteins located on

the cell membrane. This interaction leads to an appropriate cellular response. Cell

surface receptors tend to be mobile with their motion influenced by interactions with

intracellular molecules such as the actin cytoskeleton. In the cellular response we

consider here, antigen presenting cells (APC) are initially recognized by T-cell recep-

tors (TCRs). Groups of these receptors amalgamate into TCR microclusters which

tend to move towards a central region, the contact point between the T-cell and APC,

to form a spatially organized structure. These structures are called immunological

synapses [113, 114] and are considered important for the function of T-cells [115].

The biological mechanism of TCR microcluster motion remains unknown; one en-

tity that plausibly could drive their motion is the retrograde flow of actin [116–118].

The actin cytoskeleton, a filamentous network that undergirds the cell membrane,

is known to transport cell surface molecules like TCRs. However, the connection

between actin and TCR remain unknown (though a frictional coupling mechanism

has been proposed [119, 120]). Two separate mechanisms that drive the underlying

actin flow, and therefore move the coupled TCR, have appeared in the literature:

actin polymerization pushing against the cell membrane [121] and myosin II pulling

against the branched F-actin network [122]. Due to concentration di↵erences be-

tween the cell periphery and the cell center [117], Myosin II contraction [122] is a

distance-dependent force. The distance-dependence of the force motivates our appli-

cation of linear potentials. We do not provide definitive answers to these questions;
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Figure 7.3: Qualitative comparison of experimental results, in the left panel, on the
relation between hxi and hvi of TCR microclusters reconstructed from ref. [112] with
our theoretical predictions, in the right panel, for a V-potential. The right panel
shows an increase as does the left panel but the flat portion in the central region,
quite obvious in the experiment, is absent in the right panel.

however, our calculations may provide a method of distinguishing between these two

causes.

7.2.1 Experimental Results and V-Potential Predictions

The observations of interest focus on the time and distance dependence of velocities of

the TCR microclusters on the cell surface during immunological synapse formation.

We approximate their motion as being radial to allow the use of the one-dimensional

results obtained in Chapter 6 directly. Following an initial period of global cellular

dynamics, the time dependence of the average velocity is observed to decay towards

a zero average value [118]. This is qualitatively similar to the behavior depicted in

Figs. 6.4 and 6.5. Additionally, the position-dependence of the velocity of the TCR

microclusters is provided experimentally. Reconstruction of the data found in [112],

see left panel in Fig. 7.3, displays two distinct regions in which dynamics di↵er: a

central region within 4 µm of the center and a peripheral region outside of that 8

µm diameter center. In the central region, the microclusters travel slowly, about 4
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nm/s, with minimal discernible distance dependence while they move faster, about

20 � 100 nm/s, with a strong dependence on distance in the peripheral region. The

presence of a central region, in which the behavior of the average velocity displays no

distance-dependence, motivated an extension of our calculations using the results of

Section 6.1. We consider a second piecewise linear potential, a composite of a central

flat portion joined with V-potential pieces at the periphery. As we illustrate below,

this produces a velocity-distance relation that similar to observations.

7.2.2 Extension of V-Potential to the Bucket Potential

The lack of distance dependence on the average velocity of the TCR microclusters

depicted in Fig. 7.3 suggests including a central region of constant potential (no

force), i.e. where the walker dynamics are solely di↵usive. As discussed previously,

the methods that we used to solve Eq. (5.2) are generalized by Eqs. (6.8) to any

arbitrary linear potential. Here, the potential we propose is a central region of no

force bracketed by linear potentials with equal and opposite potential strengths:

U(x) =

8

>

>

>

>

<

>

>

>

>

:

E (x � L) x > L

0 L < x < �L

�E (x + L) x < �L.

(7.9)

Here, E remains the potential strength and 2L is the width of the central region.

The propagator for this ‘bucket’ potential is found upon its insertion into Eq. (5.1).

For the case in which the walker is initialized on the walls of the ’bucket’, i.e.

x
0

> L (the case of x
0

< �L is solved by symmetry), the Laplace-domain propagator
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is

e⇧ =

8

>

>

>

>

>

>

>

>
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>
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>
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eQ(✏)

x�x0+2L
2`

r

4`✏

E x < �L,

(7.10)

where we have suppressed the arguments of e⇧(x, x
0

, ✏) and

e◆(✏) = (Q(✏) � 1) sinh

r

✏

D
(x + L) +

r

4`✏

E cosh

r

✏

D
(x + L),

e(✏) =

✓

(Q(✏) � 1)2 +
4`✏

E

◆

sinh 2

r

✏

D
L + 2 (Q(✏) � 1)

r

4`✏

E cosh 2

r

✏

D
L.

The form of Eq. (7.10) in the sloped regions of the potential corresponds well with

their equivalent regions when under a V-potential. They are modified by functions

of L and, in the limit L ! 1, reduce to Eq. (6.14). The case where L > x
0

> �L,

i.e. the walker is initialized on the bottom of the basket, is

e⇧(x, x
0

, ✏) =

8
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(7.11)
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Figure 7.4: Counterpart of Fig. 2 for the ‘bucket potential’. The time-domain
propagator is plotted at four values (0,0.5,1.5,10) of the dimensionless time ⌧ =
t/

p
2D/E2 for an initial location of the walker at x

0

/` = 4, and the bucket width
as L/` = 0.3. The propagator behaves essentially as in Fig. 2 but the steady state
has a flat portion in the center. The transitioning of the intermediate Gaussian into
the mod exponential with a flat central portion is already evident in the earlier time
curve at ⌧ = 1.5.

Here
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The presence of the Laplace variable ✏ in two di↵erent forms, 1+4D`✏/E and ✏/D,

in Eq. (7.10) requires numerical methods to invert the transform. For this purpose

we use standard inversion routines [129, 130]. We exhibit the resulting time-domain

propagator for a walker initially in the periphery at four di↵erent dimensionless

times in Fig. 7.4. The propagator travels in a similar manner to the probability

propagation of the V-potential, Fig. 6.3, traveling ballistically initially, undergoing

a transition in shape, then settling into the steady state distribution. The latter

consists of a central plateau of width 2L = 6 bracketed by decaying exponentials
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Figure 7.5: Qualitative comparison, as in Fig. 6, of experimental observations from
ref. [112] (left panel is identical to that in Fig. 6) to our theoretical predictions. The
latter here are for the ‘bucket’ potential for a few di↵erent values of its parameters
(right panel). Considerable enhancement is seen in the qualitative agreement since
the bucket potential is able to reproduce the central flat portion.

with characteristic width ` = 10. This propagator and that of the V-potential

behave similarly in the outer regions where it experiences a non-zero force. Its initial

shape is Gaussian before the transition into a decaying exponential. The di↵erence

between the two occurs in the central region, where the ’bucket’ propagator connects

the probability values at the two points of discontinuity in an approximately linear

fashion. This near linearity is due to the e↵ects of di↵usion under forced unequal

boundary conditions. During the transition period, di↵usion works to gradually

equalize these two boundary probabilities, decreasing the steepness of the propagator.

The resulting relationship between hxi and hvi for the ‘bucket’ potential is de-

picted in Fig. 7.5. It is visually obvious that there is much better agreement of exper-

iment [112] and our calculations with the bucket potential than with the V-potential.

The former retains the initial dormant behavior characteristic of the V-potential as

well as the plunge, hvi ! 0, when the walker interacts strongly with the discontinu-

ities present in both potentials. As expected, the qualitative di↵erence between the

two lies in the location of this rapid decrease in speed. For the ’bucket’ potential

this plunge occurs in the periphery, as opposed to at the center, resulting in the

addition of a central area of small or vanishing velocity. The presence of this low-
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velocity area results from the constant potential center, as the confinement increases

the probability of locating the walker in the center where motion is dominated by

di↵usion.

7.3 Conclusion

We have presented two potential applications for the V-potential results derived

in Chapter 6. The first is a quantum yield calculation in doped molecular crys-

tals [101, 102] that are experiencing an applied electric field. Issues raised by Han-

son [103, 104] and others [105] provide potential applicable systems. Exact calcula-

tions of the quantum yield are presented and a interesting non-monotonic behavior

as the potential strength E is increased is noted. The non-monotonicity is similar

to that that has recently been found for the quadratic potential in an analysis of

infection transmission [67, 68]. Our second application is to receptor motion on the

surface of T-cells during immunological synapse formation [112–123]. In particular

the position-dependence of the average velocity. Observations made [112] suggest a

central region with little positional dependence of velocity surrounded by a periph-

ery where the velocity shows a strong dependence on position. The V-potential does

not qualitatively model these systems. However, a proposed extension, the ‘bucket’

potential, using the methods of Section 6.1 displays qualitatively similar behavior.

The work in Chapters 6 and 7 in this thesis was done in collaboration with a

co-investigator external to UNM, and has been published [131] as M. Chase, K.

Spendier, and V. M. Kenkre,“Analysis of Confined Random Walkers with Applica-

tions to Processes Occurring in Molecular Aggregates and Immunological Systems”,

Journal of Physical Chemistry B, 120, 3072-3080 (2016).
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Part 3: Approach to Equilibrium

in Quantum Systems
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Chapter 8

Overview of Approach to

Equilibrium in Quantum Systems

Our focus in this Part of the dissertation is on the manner in which an interaction

with a bath influences the evolution of a quantum mechanical system towards its

equilibrium state when it is disturbed from it. An experiment may begin with the

system being prepared in a particular state. That system is then allowed to evolve

and, due to its interaction with the bath, to return to its equilibrium state. A partic-

ularly common experimental setup uses light to excite a molecule into a higher energy

state; the subsequent relaxation into thermal equilibrium may be noted and manip-

ulated [132–148]. Recent improvements in spectroscopic techniques [149–151] have

opened dynamics at very short timescales (some say even the attosecond timescale)

to observation. At those extremely short times, an understanding of the e↵ects

of coherence is required to provide accurate predictions and to contextualize novel

experimental results. Potential processes for which knowledge of these coherence ef-

fects may find application include unimolecular-dissociation [152] and other chemical

reactions [149,153,154].
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The manner in which an arbitrary system decoheres through a randomization of

its phases [155–158] while simultaneously achieving occupation probabilities given

by the Boltzmann weights is not fully understood. Take an isolated system with

Hamiltonian H and therefore an energy spectrum given by the eigenvalues that

correspond to the eigenstates of the Hamiltonian. If this system were to be placed

in one of its eigenstates, the system evolution, as given by the Schrödinger equation,

would simply be the periodic oscillation of its phase. In contrast, if the system were

left to itself for a long time, one would invoke the postulate of equilibrium statistical

mechanics [155]: the density matrix of the system is diagonal in its eigenbasis with

those diagonal elements being proportional to their respective Boltzmann weights

(in that basis). We wish to highlight that the postulate of equilibrium statistical

mechanics is actually two postulates: one in reference to the phases (they are assumed

to be random) and the second in reference to the probabilities (they are assumed

to follow Boltzmann weights). This split nature is made particularly clear on pages

172-173 in ref. [155].

The invocation of the postulate therefore assumes that the system is not isolated

but, in fact, interacts with a bath, i.e., the rest of the universe. The nature of this

interaction must be quite specific to fulfill the requirements of equilibrium statistical

mechanics. It must be strong enough that, independent of the initial condition of

the system, one finds the equilibrium state with probabilities that are given by the

Boltzmann weights as well as random phases. However, it must be weak enough

that this equilibrium state respects the eigenvalues and eigenvectors of the isolated

system. At equilibrium, therefore, the bath must not have further influence on the

equilibrium state of the system. Our goal in Chapters 9 and 10 is to maintain such an

interaction while correctly accounting for the influence of the coherent microscopic

dynamics at short times (with respect to the equilibrium time).

When interest is in simply the long-time evolution, the use of a Master equation is
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appropriate. Here, the equation of interest governs the evolution of the probabilities

that the system is in an eigenstate with the transition rates between pairs of eigen-

states required to satisfy the detailed balance condition. This latter requirement

ensures that the system reaches the proper equilibrium state. Master equations are

equations of the form

dP
M

(t)

dt
=
X

N

[F
MN

P
N

(t) � F
NM

P
M

(t)] . (8.1)

In the present context we label the eigenstates of the Hamiltonian with M , their

probability of occupation by P
M

(t) and require that the transition rates between

each pair of eigenstates, i.e., F
MN

, F
NM

, obey the relation

F
MN

F
NM

= e��EMN .

Here, � ⌘ 1/k
B

T is the standard thermodynamic beta (k
B

being the Boltzmann

constant and T being the bath temperature) and E
MN

is the di↵erence in energies

between the two eigenstates.

To account for the e↵ects of o↵-diagonal elements of the system density matrix,

and thus more accurately describe the evolution of the system at short times, we turn

to the fundamental research performed by Zwanzig [47, 159–161] and others [42, 44,

45,162–164]. The formalism provides an equation that continuously links the short-

time evolution of the system with its long-time evolution and eventual equilibrium

in principle. The relevant equation, the Generalized Master equation (GME), is of

the form [47,159–163,165,166]

dP
M

(t)

dt
=

t

Z

0

dt0
X

N

[W
MN

(t � t0)P
N

(t0) � W
NM

(t � t0)P
M

(t0)] . (8.2)

Despite the absence of explicit references to the o↵-diagonal matrix elements, their

e↵ects, and thus the influence of the bath, are accounted for through the memory
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functions1 W(t).

The energy spectra of the systems that we consider here in this thesis are equally

spaced. Thus, each can be characterized by a single energy that identifies the dif-

ference between the eigenvalues of successive eigenstates. Here, the generic energy

di↵erence �E is used. Each system we discuss will be identified by a di↵erent sym-

bol. We shall see that the bath e↵ects can then be properly characterized through

two memories that depend on a single [165] spectral function Y (z).

The necessary formalism is available in earlier work by Kenkre [165,167,168] who

generalized Zwanzig’s projection operators to include coarse-graining over the bath

and applied it to various physical systems. These memories, which we label �±(t),

are then given through the Fourier-transform expressions

��(t)=

1
Z

�1

dz Y(z)cos[(z��E)t], (8.3a)

�
+

(t)=

1
Z

�1

dz Y(z)cos[(z+�E)t], (8.3b)

where  = ⇡Y (�E) is the reciprocal of a timescale associated with the Master equa-

tion transition rates. We require only two memories �±(t) because of the system be-

ing characterized by a single energy; the + and � therefore are naturally interpreted

as being associated with the energetically upwards and downwards transitions, re-

spectively. The di↵erences between the two memories are simply due to the presence

of either a + or a � in the argument of the cosine. More generally, additional pairs

of memories would exist if the system were to possess many characteristic energies.

With the introduction of the bath spectral function in Eq. (8.3), the requirement

1We note that, in general, the bath also contributes to Eq. (8.2) a forcing term with
dependence on the initial condition of the system. In the tradition of van Hove [42] and
others [44, 47, 159–163], we ignore this term here by assuming an initially random phase,
i.e., no coherent superpositions. This is valid, for example, if the initial condition is a single
eigenstate. See ref. [165] for a discussion of the general case.
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that the integrals of the memories obey the detailed balance condition can be written

in a simple form. The bath spectral function must obey [34] the special condition

Y (�z) = Y (z)e��z, (8.4)

or, equivalently,

Y (z) =
Y

s

(z)

1 + e��z

(8.5)

where Y
s

(z) = Y
s

(�z) is symmetric in z and, again, � ⌘ 1/k
B

T . Baths are then

completely specified by the symmetric function Y
s

(z), along with the temperature

T . Through Eq. (8.4), they are also guaranteed to lead to memories whose integrals

respect the detailed balance condition.

Chapters 9 and 10 are laid out as follows. In Chapter 9, the strength of the GME

is displayed by considering the relaxation of a simple system: the non-degenerate

dimer analyzed previously in our research group [169]. The necessity of the special

condition on the bath spectral function is highlighted. We then introduce illustrative

analytic, phenomenological bath function calculations. A physical discussion of the

relevant energies, and their ratios, is given.

In Chapter 10, we discuss the e↵ects of the memory functions in the GME on

the evolution of an excited molecule that undergoes vibrational relaxation. We

present the GME that naturally generalizes the Montroll-Shuler equation [141], the

workhorse in the study of vibrational relaxation, to account for coherent e↵ects. We

also show, in passing, interesting results in a related condensed matter system: a

charged particle in a crystal accelerated by a strong electric fields leading to the

formation of Stark ladders.

Throughout Chapters 9 and 10, energies are taken to be normalized by ~.
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Chapter 9

A Simple Non-Degenerate System

and Explicit Calculations of Bath

Spectral Functions

In this Chapter we present two items: an introduction to a simple non-degenerate

system previously analyzed by Tiwari and Kenkre [169] and explicit calculations of

bath spectral functions that we have performed in this thesis which are applicable to

that introductory system as well as the richer systems we investigate in Chapter 10.

In Section 9.1, the reader is introduced to the non-degenerate dimer, i.e., a two-state

system of unequal energies, for two reasons. First, it provides a pedagogically simple

system to illustrate the subtleties of the decoherence and detailed balance processes.

In the manner of Eqs. 8.3, we represent the e↵ects of these processes with the use of

the bath spectral function Y (z); notably, the detailed balance requirement on Y (z),

given in Eq. (8.4), is highlighted. Secondly, the dimer serves as a model system to

which we present physically realistic extensions in Chapter 10.

Not present in ref. [169] is a discussion of particular bath spectral functions.
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Thus, in Section 9.2, we present eight symmetrical bath spectral functions that

can be grouped in three. The triple delta-function, and its approximation with

three Lorentzian functions, is introduced to elucidate examples of the transition

from coherent evolution to incoherent. Two examples of a simple truncated spec-

trum are provided by the flat box and the triangle. The last five consist of simple

one-parameter functions with infinite support: the Lorentzian, squared Lorentzian,

quartic, mod exponential and Gaussian. We end with a discussion of the three ratios

of characteristic energies. We conclude in Section 9.3 with brief remarks including a

comment on an alternative approach.

9.1 Relaxation of a Simple Quantum System: the

Non-Degenerate Dimer

The non-degenerate dimer, a two-state system in which the states are at di↵erent

energies, presents a simple case to familiarize oneself with the basic issue studied in

this Part of the thesis. The Hamiltonian H
Di

that defines the system is given by

H
Di

=

2

4

� 0

0 ��

3

5 . (9.1)

Here, 2� is the di↵erence in energy between the two Hamiltonian eigenstates. We

label the eigenstate with eigenvalue � as |1i and that with eigenvalue �� as |2i.
The equilibrium density matrix in the eigenbasis is then

⇢
therm

=
1

2 cosh ��

2

4

e��� 0

0 e��

3

5 .

Defining the occupation probabilities of eigenvector |1i and |2i as P
1

(t) and P
2

(t),

respectively, we have at equilibrium
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P
1

(t ! 1) =
1

2
� tanh ��

2
, (9.2a) P

2

(t ! 1) =
1

2
+

tanh ��

2
, (9.2b)

The e↵ect of the non-degeneracy of the system on the equilibrium state is particularly

clear in Eqs. (9.2): the deviation from the degenerate is simply a decrease (increase)

proportional to tanh(��)/2 for eigenstate |1i (|2i).

The starting point of our analysis is the von Neumann equation (we put ~ = 1

throughout this thesis),

i
d

dt
⇢ = [H, ⇢], (9.3)

where H = H
Di

+ V and V represents the interaction between the bath and the

system. It is taken to be of the form

V =

2

4

0 V

V 0

3

5 ,

that is, a simple, symmetrical coupling of the two sites. The properties of the bath

itself are left unspecified as is the physical origin of the interaction. In the usual

manner of the GME formalism [47, 159–161, 165, 166], the interaction is taken to be

weak enough that it can be treated perturbatively.

9.1.1 Generalized Master Equation for the Non-Degenerate

Dimer

The simplicity of the dimer allows the general GME, Eq (8.2), to be written in terms

of a single variable p(t), defined as the di↵erence in the probabilities of occupation

of the two eigenstates, i.e., p(t) = P
1

(t) � P
2

(t). The equation that governs the
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evolution of p(t) is then

d

dt
p(t) + 

t

Z

0

dt0 [�
+

(t � t0) + ��(t � t0)] p(t0) = 

t

Z

0

dt0 [�
+

(t0) � ��(t0)] . (9.4)

Here,  is the reciprocal time-scale that is associated with the equivalent Master

equation. As in Eqs. 8.3, ��(t) and �
+

(t) are the memories that describe, respec-

tively, the transition downwards and upwards in energy. With the energy di↵erence

between the two eigenstates being 2� the integral expression for the memories are

��(t) =

1
Z

�1

dz Y (z) cos [(z�2�)t], (9.5a)

�
+

(t) =

1
Z

�1

dz Y (z) cos [(z+2�)t]. (9.5b)

To obtain the correct equilibrium value, we shall see that the bath spectral function

Y (z) must obey Eq. (8.4).

The GME, Eq. (9.4) with memories given by Eqs. (9.5b) and (9.5a), can be

formally solved in the Laplace-domain and written as

ep(✏) =
1

✏
e⇠(✏) +

1

✏ + [e�
+

(✏) + e��(✏)]

h

1 � e⇠(✏)
i

, (9.6)

with

e⇠(✏) =
e�

+

(✏) � e��(✏)
e�

+

(✏) + e��(✏)
⌘ �

e�
�

(✏)
e�

S

(✏)
.

We have introduced here the Laplace-domain expressions for �
�

(t) and �
S

(t) the

sum and di↵erence memory functions, respectively. Explicitly in terms of �±(t) they

are given by

�
�

(t) =  [��(t) � �
+

(t)] . (9.7a) �
S

(t) =  [��(t) + �
+

(t)] . (9.7b)

100



Chapter 9. A Simple Non-Degenerate System and Bath Spectral Functions

The first is product of the sine of the bath spectral function with the factor 2 sin�t

and the second the product of the cosine transform with the factor 2 cos�t. Gener-

ally, both quantities are found to be of both physical and conceptual importance.

The use of the Abelian theorem, f(t ! 1) = lim
✏!0

✏ ef(✏), allows the calculation

of the long-time value of p(t) from its Laplace-domain expression. The steady-state

di↵erence in probabilities is therefore

p(t ! 1) =
e�

+

(0) � e��(0)
e�

+

(0) + e��(0)
, (9.8)

One can see explicitly in Eq. (9.8) the importance of the Marko�an-approximated

rates, F± = 
R1

0

dt0 �±(t) ⌘ e�±(0). These two rates F± determine exactly the im-

pact of the memories on the equilibrium state. Calculated explicitly, the expressions

for the Marko�an-approximate rates are

F� =⇡

1
Z

�1

dz Y (z)�(z�2�)=⇡Y (2�), F
+

=⇡

1
Z

�1

dz Y (z)�(z+2�)=⇡Y (2�)e��2�.

The factor of ⇡Y (2�) defines the reciprocal timescale  in Eq. (9.6). We have used

Eq. (8.4) in the right-hand equation to replace Y (�2�) with Y (2�) exp(��2�).

As expected, the requirement on Y (z) results in the ratio of the two Marko�an-

approximated rates,

F
+

F�
= e��2�, (9.10)

satisfying the detailed balance condition. The reason for the requirement on the bath

spectral function given in Eq. (8.4) is therefore made clear by Eq. (9.10). Only for

this particular relation will detailed balance be satisfied for arbitrary non-degeneracy.

At infinite time, the probabilities of occupation are
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P
1

(t ! 1) =
1

2
� tanh ��

2
, P

2

(t ! 1) =
1

2
+

tanh ��

2
,

exactly equivalent to Eqs. (9.2).

This brief explanation of the non-degenerate dimer introduced by Tiwari and

Kenkre [169] in their study of the approach to equilibrium of a quantum system

shows explicitly the dual memories �± that incorporate the microscopic dynamics

that describe the evolution of a system at short-times. It also sets the stage for

our memory calculations below in Section 9.2 and our application to more realistic

systems in Chapter 10.

9.2 Memory Functions for Specified Baths

We give here some explicit forms of the bath spectral function Y (z) and their resulting

memories �±(t). The detailed balance requirement, which results in bath spectral

functions of the form given in Eq. (8.5), allows Y (z) to be specified through the

symmetrical function Y
s

(z). The bath can be simply characterized by two energy

parameters, the width of the symmetrical spectral function, which we call w, and

the thermal energy of the bath which we represent by the inverse temperature � =

1/k
B

T . The system may have various characteristic energies. Let us typify them in

the two-state system by the energy di↵erence � between the two levels, in the Stark

ladder by the energy di↵erence � between neighboring sites, and in the harmonic

oscillator by the frequency ⌦ of the oscillator. In this section, we use the symbol ⌦

as the characteristic energy of the system. With the exception of the delta-function

triplet, each bath spectrum function is normalized such that Y (⌦) = 1/⇡.

We give an illustration example of a bath spectral function in Fig. 9.1. The
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Figure 9.1: Gaussian bath spectral function Y (z) is displayed for 4 values of the
parameter �⌦ = 0, 1, 2, 4, 1. The vertical lines indicate the width of the spectral
function and we use ⌦ to normalize the horizontal axis.

Gaussian spectral function is displayed for 4 values of the dimensionless energy ratio

�⌦ = 0, 1, 4, 1. The solid vertical lines indicate the width of the spectral function

and the horizontal axis is normalized by ⌦. An increase in the parameter �⌦ leads

to a breaking of the symmetry between the left- and right-half planes and thus, the

symmetry between the transition to higher energy and the one to lower energy. Small

values of �⌦ are approximately Gaussians shifted slightly leftward.

9.2.1 The Delta-Function Triplet and the Introduction of

Incoherence

The delta-function triplet peaks at 0 and ±⌦. Here, in contrast to all the other

cases, we have normalized Y (z) by setting its integral to 1, given the presence of the
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�-function at ⌦. The bath spectral function is

Y (z) =
2

1 + e��z

✓

S�(z) + (1 � S)
�(z � ⌦) + �(z + ⌦)

2

◆

, (9.12)

with S determining the relative strengths of the zero-energy and ⌦-energy transitions.

We note that the case of S = 0 corresponds with the vertical lines displayed at

z/⌦ = 1 in Fig. 9.1. The memories are given by

�±(t) = S cos⌦t + (1 � S)



cos2⌦t ⌥
✓

tanh
�⌦

2

◆

sin2⌦t

�

. (9.13)

Fig. 9.2 in the left panel displays two examples each of the memories plotted against

the dimensionless time t. The dashed line is �
+

(t) and the dashed-dotted line is

��(t) for � = 1/2. The solid line is �
+

(t) and the dotted line is ��(t) for � = 2.

We take the characteristic system energy ⌦ = 1 and the spectral strength S = 1/2

in both. Both cases illustrate that a spectrum limited to delta-functions results in

purely oscillatory memories, see Eq. (9.13), and, therefore, to completely coherent

motion.

Broadening of the delta-functions in the spectrum by Lorentzians

�(z) ! 1

⇡

✓

↵

z2 + ↵2

◆

,

where ↵ is the broadening (width) parameter, leads to the damping of the memories

as expected. Fig 9.2 in its right panel depicts these damped memories for two values

of ↵. The thermal energy scale is � = 1/2 in these plots. The dotted and solid

lines show the memories, �
+

(t) and ��(t) respectively, for ↵ = 1/8; the coherent

oscillations persist for several periods before the memories decay. By contrast, for

larger ↵ (= 1), the dashed-dotted and dotted lines depict the respective memories

as damping much quicker. The delta-function spectrum and coherent memories are

recovered in the limit ↵ ! 0.
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Figure 9.2: Time evolution of the memories �± for the 3-peaked spectral function.
Coherent oscillations are seen for true delta-functions in the left panel while the
introduction of ↵, which broadens the delta-functions into Lorentzians, damps the
memories in the right panel. Each memory is shown for two values of the thermal
energy: � = 1/2, 2. The right panel depicts the memories that result when each
delta-function in Eq. (9.12) is represented with Lorentzians of finite width ↵: 1/8
and 1 respectively.

9.2.2 Truncated Spectra

To satisfy detailed balance, the width w must be taken as greater than ⌦ for truncated

spectra. The ‘box’ spectral function, centered at the origin, has width 2w and

constant height 1/⇡. The expression for Y (z) is given by

Y (z) =
1

⇡



1 + e��⌦

1 + e��z

�

⇥(w � |z|), (9.14)

where ⇥(z) is the Heaviside step function. The memories are

�±(t)=
1 + e��⌦

⇡

"

sin wt

t
cos⌦t ⌥ 1 � cos wt

t
sin⌦t (9.15)

⌥2 sin⌦t

1
X

n=1

(�1)n

✓

t

n2�2+t2

◆

(1�e�n�w cos wt)�
✓

n�

n2�2+t2

◆

e�n�w sin wt

�

#
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Figure 9.3: Depicted in the left panel are the sum and di↵erence of the memories
for the ‘box’ spectral function, given in Eqs. (9.15), with the corresponding Y (z),
Eq. (9.14), in the inset. Values for the characteristic energies are ⌦ = 1, � = 1/2,
w = 4. The sharp truncation of he ’box’ spectral function results in memories
with strong oscillatory behavior. In the right panel, the sum and di↵erence of the
triangular spectral function, Eqs. (9.17), are depicted with the corresponding Y (z),
Eq. (9.16), in the inset. The energy scales are ⌦ = 1, � = 1/2, w = 4.

The sum �
S

(t) = �
+

(t)+��(t) and di↵erence �
�

(t) = ��(t)��
+

(t) of the memories

given by Eqs. (9.15) are depicted in Fig. 9.3, left panel, while the bath spectral func-

tion for the ‘box’, Eq. (9.14), is shown in the inset. The chosen parameter values:

thermal energy � = 1/2, the characteristic system energy ⌦ = 1, and the spec-

tral width w = 4. The discontinuous spectrum results in memories with persistent

oscillations.

The triangular spectral function is centered at the origin with width 2w, height

w/(w � ⌦) and constant slope. The bath spectral function is given by

Y (z) =
1

⇡

✓

1 + e��⌦

1 + e��z

◆✓

w � |z|
w � ⌦

◆�

⇥[w � |z|] (9.16)
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The expression for the memories are therefore

�±(t) =
1 + e��⌦

⇡(w � ⌦)

✓

1 � cos wt

t2

◆

cos⌦t ⌥
✓

wt � sin wt

t2

◆

sin⌦t (9.17)

⌥2 sin⌦t

1
X

n=1

(�1)n



wt

n2�2+t2
�2n�t

✓

1�cos wt e�n�w

(n2�2 + t2)2

◆

�2t2
✓

sin wt e�n�w

(n2�2 + t2)2

◆��

.

Fig. 9.3, right panel, depicts the sum and di↵erence of the memories, Eqs. (9.15),

for the triangular spectra while the spectral function, Eq. (9.14), is in the inset.

Parameter values are ⌦ = 1, � = 1/2, w = 4. Compared to the memories that result

from the ‘box’ spectral function, those of the triangular Y (z) have weaker oscillations;

however, in both cases, the sharp truncation causes persistent oscillations.

9.2.3 Spectra with Infinite Support

The Lorentzian spectral function, centered at the origin with spectral width w, results

in memories that are particularly simple. The normalized expression for the bath

spectral function is given by

Y (z) =

✓

1

⇡

◆✓

1 + e��⌦

1 + e��z

◆

⌦2 + w2

z2 + w2

�

. (9.18)

The expressions for the memories that result from Eq. (9.18) are

�±(t) =

✓

1 + e��⌦

2

◆✓

⌦2 + w2

w

◆

"

✓

cos⌦t ⌥ tan
�w

2
sin⌦t

◆

e�wt (9.19)

⌥ 4 sin⌦t
1
X

n=0



�w

�2w2 � ⇡2(2n + 1)2

�

e
�⇡(2n+1)t

�

#

Fig. 9.4, in its left panel, depicts the sum and di↵erence of the memories, Eq. (9.19),

for two sets of the parameter values: characteristic system energy ⌦ = 1, thermal

energy � = 1 and spectral widths w = 1/4 and 4. An increase in the spectral width

leads to an increase in the damping of the memories. The inset displays Lorentzian

spectral functions that correspond with the characteristic energies above. They are
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Figure 9.4: The left panel displays the sum and the di↵erence of the memories for a
Lorentzian spectral function, given in Eqs. (9.19). In the inset is the corresponding
Y (z), Eq. (9.18). ⌦ = 1, � = 1 in both and two values of w = 1/4, 4 are shown. An
increase in the spectral width leads to a broadening of the spectrum (solid line in the
inset) and an increase in the damping. Depicted in the right panel are the di↵erence
between the real and approximated memories

⇥

��(t) � �a

�(t)
⇤

�
⇥

�
+

(t) � �a

+

(t)
⇤

for
a single set of parameter values: ⌦ = 1, � = 1, w = 1/4. In the inset is the di↵erence
between the corresponding real and approximate bath spectral functions Y (z)�Y a(z)
(inset). Note the di↵erence in scale for the left and right panels.

represented by solid and dashed-dotted lines, respectively. An increase in the spectral

width both broadens and shifts the bath spectral function.

The Lorentzian spectral function, Eq. (9.18), can be approximated for small val-

ues of �w by a shifted Lorentzian with shift parameter z̄ = �w/4. The width of

the approximated Lorentzian spectral function Y a(z) is modified such that w !
w(1 � z̄2). It is then given by

Y a(z) =

✓

1 + e��⌦

2⇡

◆

⌦2 + w2

(z � wz̄)2 + w2(1 � z̄2)2

. (9.20)

The approximate spectra from Eq. (9.20) have been introduced because they lead

to memories �a

±(t) that are somewhat simpler than the true memories, Eqs. (9.19).
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They are given by

�a

±(t) =

✓

1 + e��⌦

2

◆✓

⌦2 + w2

w(1 � z̄2)

◆

cos (⌦± az̄)t e�w(1�z̄

2
)t, (9.21)

and might be used for back-of-the-envelope calculations. The di↵erence between the

real and approximate memories, Eqs. (9.19) and Eqs. (9.21), respectively, is depicted

in Fig. 9.4, right panel. Shown are �
�

(t) � �a

�

(t) and �
S

(t) � �a

S

(t), where �a

�

(t) is

defined as in �
�

(t) except with the approximate memories, �a

±(t), replacing the true

memories, �±(t). The characteristic energies are taken to be the same as the first

pair of memories (⌦ = 1, � = 1, w = 1/4). The approximate bath spectral function,

Eq. (9.20), di↵er from the true Lorentzian spectral function closest to the origin (see

inset).
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Figure 9.5: Depicted are the sum and di↵erence of the memories that result
from a squared Lorentzian (left panel) and quartic (right panel) spectral functions,
Eqs. (9.24) and (9.26), respectively. Both are shown for ⌦ = 1, � = 1 and two values
w = 1/2, 2. The respective spectrum, Eqs. (9.23) and (9.25), are in the inset. A
subtle di↵erence in the dependence on z of either spectrum leads to similar memories
with small di↵erences at intermediate times that we have indicated with the arrow,
namely, the presence of a distinct hump for the quartic spectral function.
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A generalization of the Lorentzian spectral function in Eq. (9.18) is the generalized

Cauchy distribution [170] specified by the parameter ⌫ which determines the high-

energy tails of the bath spectral function. The general expression is given by

Y (z; ⌫) =

✓

1

⇡

◆✓

1 + e��⌦

1 + e��z

◆

⌦2 + a2

z2 + a2

�

⌫

, (9.22)

where ⌫ > 1/2 is required for Y (z, ⌫) to be normalizable. The Lorentzian spectral

function, Eq. (9.18), reemerges when ⌫ = 1. Here, we give the case of ⌫ = 2,

the square Lorentzian spectral function. This results in a z�4 dependence at high

energies. For this case, the generalized spectral function, Eq. (9.22), is specialized to

Y (z) =

✓

1

⇡

◆✓

1 + e��⌦

1 + e��z

◆

⌦2 + w2

z2 + w2

�

2

. (9.23)

The memories that result from Eq. (9.23) are given by

�±(t) =

✓

1+e��⌦

4

◆✓

⌦2+w2

w
3
2

◆

2

"

(1 + wt)(cos⌦t + cos(⌦t ± �w)) ± �w sin⌦t

1 + cos �w
e�wt

⌥ 8 sin⌦t
1
X

n=0



�3w3

(�2w2 � ⇡2(2n + 1)2)2

e� ⇡(2n+1)t
�

�

#

(9.24)

The bath spectral function, Eq. (9.23), and the sum and di↵erence of the memories,

Eq. (9.24), are displayed in Fig. 9.5, left panel, for ⌦ = 1, � = 1 and w = 1/2, 2.

The bath spectral function (inset) shows the standard broadening and shifting as the

spectral width w is increased.

As a comparison, the quartic spectral function possesses a z�4 dependence at

high energies as well. The expression for its bath spectral function is

Y (z) =

✓

1

⇡

◆✓

1 + e��⌦

1 + e��z

◆

⌦4 + w4

z4 + w4

�

. (9.25)

The distinction between the squared Lorentzian spectral function, Eq. (9.23), and

Eq. (9.25)) is most evident in the intermediate energy regime. The memories that
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result from Eq. (9.25) are given by

�±(t) =

✓

1 + e��⌦

p
8

◆✓

⌦4 + w4

w3

◆

"

✓

cos
wtp

2
+ sin

wtp
2

◆

cos⌦t e
� wtp

2

⌥
✓

sinh ⌘ + sin ⌘

cosh ⌘ + cos ⌘

◆

sin
wtp

2
�
✓

sinh ⌘ � sin ⌘

cosh ⌘ + cos ⌘

◆

cos
wtp

2

�

sin⌦t e
� wtp

2 (9.26)

⌥ 4
p

2 sin⌦t
X

n=0



�3w3

�4w4 + ⇡4(2n + 1)4

e� ⇡(2n+1)t
�

�

#

.

Here ⌘ = �w/
p

2. The sum and di↵erence of the quartic spectral function memories,

Eqs. (9.24), are depicted for ⌦ = 1, � = 1 and w = 1/2 and 2 in Fig. 9.5, right panel,

with Y (z), Eq. (9.23), inset. The two arrows in Fig. 9.5 point to a subtle distinction

between the memories for a squared Lorentzian spectral function, Eqs. (9.24), and

those of the quartic, Eqs. (9.26), at intermediate times.

The mod exponential spectral function is centered at the origin with width w.

Its bath spectral function is given by

Y (z) =

✓

1

⇡

◆✓

1 + e��⌦

1 + e��z

◆

e� |z|�⌦
w . (9.27)

The memories that result from Eq. (9.27) are expressed as

�±(t)=

✓

1+e��⌦

2⇡

◆

w e
⌦
w

"

cos⌦t⌥wt sin⌦t

1 + w2t2
(9.28)

⌥4 sin⌦t
1
X

n=1

(�1)n

wt

(1+n�w)2+w2t2

#

The sum and di↵erence of the memories, Eqs. (9.28), are depicted in Fig. 9.6, left

panel. The parameter values ⌦ = 1, � = 1, and two values of w = 1/2, 2 are

considered. Inset is the mod exponential spectral function in dotted and solid lines,

respectively. The discontinuity in the derivative of the exponential spectral function

at z = 0 causes the oscillations to be persistent.

The final bath spectral function we consider is a Gaussian of width w:

Y (z) =

✓

1

⇡

◆✓

1 + e��⌦

1 + e��z

◆

e� z2�⌦2

w2 . (9.29)
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Figure 9.6: In the left panel, the sum and the di↵erence of the memories, Eqs. (9.28),
are displayed for the mod exponential spectral function while the right panel similarly
displays the sum and di↵erence of the memories, Eqs. (9.30), for the Gaussian spectral
function. Inset in each is Y (z), Eqs. (9.27) and (9.29), respectively. ⌦ = 1 and � = 1
for both spectral functions while w = 1/2 and 2 for the mod exponential while for
the Gaussian the values for the spectral width are w = 1/2, 1. The discontinuity
in the exponential spectral density at z = 0 decreases the damping, resulting in the
persistence of oscillations.

The magnitude of Eq. (9.29) is strongly dependent on the width. The memories that

result from a Gaussian spectral function are given by

�±(t) =
1 + e��⌦

4

we
⌦2

w2

p
⇡

"

e� w2t2

4 cos⌦t ± i

✓

w(
wt

2
) � w(�wt

2
)

◆

sin⌦t

+ 2i sin⌦t
X

n=1

(�1)n

✓

w(
wt + in�w

2
) � w(

�wt + in�w

2
)

◆

#

. (9.30)

The Fourier transform of Eq. (9.29) results in an scaled error function of complex

argument which we represent with the Faddeeva function [20], w(iz) = erfcx(z).

The presence of i in Eq. (9.30) should not lead the reader to conclude the memories

have imaginary components. As shown in Fig 9.6, left panel, they are certainly real.

Depicted are the sum and di↵erence of the memories for ⌦ = 1, � = 1, and two
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values of w = 1/2 and 1 with the corresponding Y (z) inset with, respectively, dotted

and solid lines. The strong dependence of the Gaussian spectral function on the z

results in memories with extreme quantitative dependence on the parameters.

When the dimensionless energy ratio �w is small, the Gaussian spectral function

can be approximated with a shifted Gaussian centered at w(1� z̄2) where z̄ = �w/4.

The approximation to the bath spectral function, Eq. (9.29), is given by

Y a(z) =
1

⇡

1 + e��⌦

2
e� ⌦2

w2 e
� (z�wz̄)2

w2(1�z̄2)2 . (9.31)

The exact memories for the approximate spectral function, Eq. (9.31), provide ana-

lytically tractable approximation for calculations. They are given by

�a

±(t) =
w(1 � z̄2)p

⇡

1 + e��⌦

2
e

⌦2

w2 cos (⌦± wz̄)t e�w

2
(1�z̄

2
)

2
t

2
(9.32)

9.2.4 Physical Discussion of Memory Behavior

The behavior of the memories for particular bath spectral functions is intimately

related to the relative values of the three (dimensionless) energies that characterize

the system and the bath. They are the system energy ⌦, the thermal energy of the

bath 1/�, and w, the energy that characterizes the spectral resolution of the bath.

Physically, the e↵ects caused by the variation of these parameters are related to the

change in the ratios of the energy scales, �w, �⌦ and ⌦/w. The first ratio compares

the thermal energy of the bath to its average spectral energy. For small values of this

ratio the dominant energy scale of the bath is its spectral while temperature e↵ects

dominate for large values (see Fig. 9.1 for an example). The second and third ratios

compare the respective bath energies to the system energy. Small values of either

lead to incoherent motion whereas, the exchange of energy is suppressed when the

ratios are large leading to longer coherent system evolution.

Though the ratios are the physically important quantities, their interdependence
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Figure 9.7: The normalized memories, �±(t)/�±(0), for the Lorentzian spectral func-
tion are shown for two values of ⌦ in each of the panels. From left to right, the ratio of
the characteristic bath energies, �w, takes the values �w = 1/64 (� = 1/8, w = 1/8),
�w = 1 (� = 1, w = 1), and �w = 64 (� = 8, w = 8). The increase in ⌦ increases
the oscillation frequency of the memories and, therefore, the coherence time of the
system evolution.

on the dimensionless energies complicates a qualitative analysis of the e↵ect of their

change on the memories. Therefore, we e↵ect change through a variation in the

energies but provide commentary using the ratios. We have highlighted the salient

di↵erences in the three figures: Figs 9.7, 9.9 and 9.8. All three display memories that

result from a Lorentzian spectral function, whose expression is given in Eq. (9.18).

In addition, the relevant time scale is set by .

We display the e↵ects of varying the characteristic energy of the system ⌦ in

Fig. 9.7. Two values, ⌦ = 1/2, 2, are shown for three pairs of characteristic bath

energies: � = 1/8 and w = 1/8 (left), � = 1 and w = 1 (center), and � = 8 and w = 8

(right). The bath energies have been chosen to highlight the e↵ect of the thermal

deviation to the spectra (see Fig. 9.1 for an example of this e↵ect). An increase in ⌦

generally results a decrease in the period of oscillation. In the left panel, neither of
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Figure 9.8: A variation to the spectral energy w = 1/2, 2 is displayed for the case of
the Lorentzian spectral function. Three pairs of the ratio of the characteristic system
energy to the thermal energy or the bath are shown: (⌦ = 8, � = 1/4), (⌦ = 2,
� = 1), and (⌦ = 1/4, � = 8). The ratio ⌦� = 2 is held constant. An increase in
the spectral width w generally results in an increase in the damping relative to the
oscillation period. However, larger smaller values of �w decrease the e↵ect as the
thermal energy scale begins to dominate the dynamics.

the characteristic bath energy scales are large compared to the system energy; the

oscillations of the memories therefore persist for multiple periods. An increase in

the characteristic bath energies with respect to those of the system, as in the center

panel, results in stronger damping, and, therefore, leads to a shorter coherence time.

As seen in the right panel, however, thermal e↵ects dominate the spectral energies

when �w is large leading to re-lengthening of the coherence time scale. Across the

three panels, one can observe the importance of the ratio of the characteristic bath

energies in determining the coherence time scale by identifying the dominant bath

energy scale.

The memories for two values of the characteristic spectral energy w = 1/2, 2 are

displayed in each panel of Fig. 9.8. The ratio of the characteristic system energy to

the thermal energy is held constant: left (⌦ = 8, � = 1/4), center (⌦ = 2, � = 1),
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Figure 9.9: We display here the di↵erence between the normalized memories,
��(t)/��(0) � �

+

(t)/�
+

(0) against the dimensionless time t for two values of the
thermal energy, � = 1/2. 2 and three pairs of the ratio of the system energy and spec-
tral width: left (⌦ = 8, w = 48), center (⌦ = 2, w = 1), right (⌦ = 1/4, w = 1/8).
Larger values of � result in an increase in the distinction between the memories.
However, the e↵ect itself becomes less important as �w decreases commensurate
with the increase in the spectral damping.

and right (⌦ = 1/4, � = 8). As evidenced in Fig. 9.8, the coherent time-scale is

decreased when the spectral width w is increased. Small values of w indicate a limit

to the capability of the bath to dissipate energy. The e↵ect is diminished for small

values of �w when the thermal energy scale dominates the behavior of the bath.

Fig. 9.9 depicts the e↵ect of a change in the parameter � on the di↵erence between

the normalized memories ��(t)/��(0) � �
+

(t)/�
+

(0). In each panel, two values of

� (1/2, 2) are displayed while the ratio of the characteristic system energy to the

spectral energy is held constant. From left to right, we use ⌦ = 8, w = 4, ⌦ = 2,

w = 1, and ⌦ = 1/4, w = 1/8. An increase in the thermal energy leads to a

commensurate increase in the distinguishability of the two memories. This e↵ect is

damped, however, when its the spectral energy w that determines the energy of the

bath.
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9.3 Conclusion

The explicit bath spectral functions that were discussed in Section 9.2 may be used

along with the simple non-degenerate dimer analyzed by Tiwari and Kenkre [169].

We use them in this thesis with systems that are richer in content and more realistic

for physical applications in Chapter 10. The harmonic oscillator is one system, the

state space being semi-infinite (M = 0, 1, ..., 1) and the Stark Ladder system is

another, for which the state space is infinite (M = �1, ..., 1).
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Chapter 10

Relaxation of Two Quantum

Systems: E↵ects of Coherence on

Vibrational Relaxation and on the

Stark Ladder

In this Chapter, we study the impact of short-time coherence on the evolution of two

physically interesting systems (see refs. [165,167,168] for a complete discussion of the

formalism). An excited molecule that undergoes vibrational relaxation is our primary

system of interest. The Master equation that describes the relaxation at long times,

valid when the energy levels of the relaxing molecule are well-approximated by those

of the harmonic oscillator, is well-known to be the Montroll-Shuler equation [141].

The details of its properties have been discussed and various extensions proposed in

the literature [146,147,171–173]. Despite the more recent development of a number

of alternative theoretical approaches [133–135,142–144,148,174], however, the GME

that naturally extends the Montroll-Shuler equation to the coherent domain has not
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been discussed. In Section 10.1, such a generalization is one of our principal results.

With its help we will describe an equation for the generating function subject to

coherent e↵ects; the equations for the moments and factorial moments; an extension

into the coherent domain of the validity of the Bethe-Teller result [175], i.e., the aver-

age energy being independent of the particulars of the initial probability distribution;

and give an explicit Laplace-domain solution for the special case of the system being

prepared in a Boltzmann distribution characterized by a temperature T
0

given and

discussed in the context of the so-called canonical invariance property [172,173].

The Stark ladder is a second physical system that can also be considered as a

natural extension to the non-degenerate dimer. It describes the motion of a charge

on a lattice under strong electric fields subject to nearest neighbor coupling between

lattice sites. In Section 10.2, we analyze the GME associated with such a system

and give expressions for the propagator in the Laplace domain. Because the energy

spectrum of this system is not bounded below, the system does not go to thermal

equilibrium. Nevertheless, the time-domain dynamics of the charge are interesting

enough to be discussed with reference to coherence.

10.1 Vibrational Relaxation: Coherence E↵ects

The Master equation that governs the relaxation of an excited molecule was con-

structed by Montroll and Shuler [141] as a discrete generalization of the continuum

analysis given by Shuler and collaborators [138–140]. In the construction, they as-

sume the Landau-Teller transitions [176], valid for interactions between the oscillator

and the bath taken to be of su�cient weakness such that a first-order Taylor series

expansion in the oscillator coordinate is appropriate. Thus, the Montroll-Shuler

equation was written in ref. [141] as

dP
M

dt
= 

⇥

(M + 1)P
M+1

+ Me��⌦P
M�1

�
�

M + (M + 1)e��⌦

�

P
M

⇤

. (10.1)
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Here, P
M

(t) is the probability of occupation of the Mth eigenstate (M taking integer

values from 0 to 1) and both the nearest-neighbor coupling and the dependence of

the transition rates on M arise from the linearity of the interaction with respect to the

oscillator coordinate. As in Eq. (8.1),  is the reciprocal time scale, � is the thermal

energy scale, and ⌦ is the energy (or, equivalently, the frequency) characteristic of

the system.

The GME that governs vibrational relaxation is derived using the generaliza-

tion, devised by Kenkre [165, 167, 168], of the Zwanzig procedure of diagonalizing

projection operators [47, 159–161]. It is given by

1



dP
M

(t)

dt
=

t

Z

0

dt0


��(t � t0) [(M + 1)P
M+1

(t0) � MP
M

(t0)]

� �
+

(t � t0) [(M + 1)P
M

(t0) � MP
M�1

(t0)]

�

. (10.2)

Here, the memories �±(t) are as defined in Eqs. (8.3) and we have explicitly grouped

the energetically downwards transitions (the first bracketed term) separately from the

upwards transitions (the second bracketed term). The connection between the GME,

Eq. (10.2), and the Montroll-Shuler equation, Eq. (10.1), becomes more evident when

the terms of the latter are grouped in a similar manner. Thus, we combine the

energetically downwards transitions and upward transitions into, respectively, the

terms [(M+1)P
M+1

(t)�MP
M

(t)] and exp(��⌦) [(M+1)P
M

(t)�MP
M�1

(t)].

Following this reorganization, Eq. (10.1) is rewritten in the form

1



d

dt
P

M

(t) = [(M + 1)P
M+1

(t) � MP
M

(t)]

� e��⌦ [(M + 1)P
M

(t) � MP
M�1

(t)] . (10.3)

The correspondence between the GME and the Montroll-Shuler equation, noted in

Chapter 8, becomes immediately evident. When the memories �±(t) in Eq. (10.2)

are replaced with their respective Marko�an approximations, i.e.,
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�M

� (t) = �(t)

1
Z

0

dt ��(t) = �(t), �M

+

(t) = �(t)

1
Z

0

dt �
+

(t) = e��⌦�(t),

Eq. (10.3) results. The definition of �±(t) has been used to evaluate the integral in

both cases. We remind the reader that the bath spectral function Y (z) is normalized

such that the reciprocal timescale is given by the expression  = ⇡Y (⌦).

Eq. (10.2) is then the generalization of the Montroll-Shuler equation accounting

for coherent e↵ects at short times. As expected for a GME, Eq. (10.2) is explicitly for

the probabilities. The e↵ects of the o↵-diagonal matrix elements are not neglected;

however, they contribute through the memories �±(t).

10.1.1 First-Order Partial Di↵erential Equation for the Gen-

erating Function

The analysis of Montroll and Shuler [141] owes its success to the introduction of the

generating function. Defined by the transformation

G(z, t) =
1
X

M=0

zMP
M

(t), (10.4)

one can use it to construct an alternative representation of the Montroll-Shuler equa-

tion. Through the transform, the original di↵erential-di↵erence equation, with de-

pendence on the discrete index M , given in Eq. (10.3) is converted into a partial

di↵erential equation for the continuous variable z. The latter is given by

1



@G(z, t)

@t
= (z � 1)

@

@z

⇥

(ze�✓ � 1)G(z, t)
⇤

, (10.5)

where ✓ = ⌦/k
B

T is the ratio of the characteristic system energy to the thermal

energy of the bath. The Nth probability of occupation is recovered from G(z, t) by
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N di↵erentiations with respect to z and a division by N ! followed by setting z = 0.

The moments are constructed directly from G(z, t) by the repeated application of

the operator z@/@z followed by setting z = 1, i.e.,

✓

z
@

@z

◆

n

�

�

�

�

�

z = 1

= hMni.

We note that we have maintained the Montroll-Shuler notation that the argument

of the generating function is z. The reader should not confuse its use here with the

use of the same variable for describing the frequency of the bath spectral function

Y (z) as in, for example, Section 9.2.

The power of the Montroll-Shuler analysis comes from the simple form of the

solution to Eq. (10.5). Taking an arbitrary initial condition,

G(z, 0) =
X

M=0

zMP
M

(0) = G
0

(z),

one may solve the equation for the generating function using the method of charac-

teristics. As is common in the use of this technique, the full solution depends in a

straightforward manner on the function G
0

(z):

G(z, t) =
1 � e�✓

(z � 1)e�⌧e�✓ � (ze�✓ � 1)
G

0

[⇣(z)] . (10.6)

Here, ⌧ ⌘ t
�

1 � e�✓

�

and the second factor in Eq. (10.6) is simply G
0

(z) with z

substituted by the function ⇣(z) given by

⇣(z) =
(z � 1)e�⌧ �

�

ze�✓ � 1
�

(z � 1)e�⌧e�✓ � (ze�✓ � 1)
. (10.7)

The transformation given in Eq. (10.4) can be used in the context of the GME as

well. The result is a generalization of Eq. (10.5) to account for arbitrary coherence.

It is given by

1



@G(z, t)

@t
= (z � 1)

@

@z

t

Z

0

dt0 [(z�
+

(t � t0) � ��(t � t0))G(z, t0)] . (10.8)
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While we have not been able to similarly solve the integro-di↵erential equation,

Eq. (10.8), for arbitrary initial conditions, we have obtained several partial results.

10.1.2 Moment and Factorial Moment Equations from the

GME

One may derive a second alternative representation of the Montroll-Shuler equa-

tion (and similarly the GME) through the use of the factorial moments. They are

constructed by

f
n

(t) =
X

M

M(M � 1)...(M � n + 1)P
M

(t), (10.9)

where n is a positive integer (f
0

being defined as 1). The relation between the

generating function, whose evolution equation is given in Eq. 10.5), and the factorial

moments is

f
n

(t) =
@n

@zn

G(z, t)

�

�

�

�

�

z = 1

.

An equivalent representation of the Montroll-Shuler equation for its factorial moment

is then constructed directly from the generating function equation:

1



df
n

dt
+ n(1 � e�✓))f

n

= n2e�✓f
n�1

. (10.10)

As compared with the equation for the probabilities of occupation, Eq. (10.3), the

benefit of Eq. (10.10) lies in its hierarchical structure: the evolution equation for

f
n

depends only on f
n

and f
n�1

. This structure contrasts with that of the Master

equation in which the evolution of P
M

depends on both P
M+1

and P
M�1

.

One can derive an equivalent equation for the factorial moments of the GME,

Eq. (10.2); being given by

1



@f
n

(t)

@t
+ n

t

Z

0

dt0�
�

(t � t0)f
n

(t0) = n2

t

Z

0

dt0�
+

(t � t0)f
n�1

(t0). (10.11)
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Here we see the natural appearance of the di↵erence memory function �
�

(t) defined

in Eq. (9.7b). We note that its time integral from 0 to 1 equals 1 � e�✓, which as

expected, appears in the second term of the left-hand-side of Eq. (10.10). Laplace-

domain solutions can be constructed for arbitrary n using the hierarchical structure

of Eq. (10.11), f
n

being coupled only to f
n�1

and f
0

being 1.

We bring our focus onto the simple moments, i.e.,

hMni =
1
X

M=0

MnP
M

(t).

The evolution equations for a general moment is of a slightly more complicated form

than that of the factorial moments. The general equation is

1



d hMni
dt

+n

t

Z

0

dt0 �
�

(t � t0) hMni(t0) =

t

Z

0

dt0 �
+

(t0) (10.12)

+
n�1

X

p=1

✓

n

p�1

◆

t

Z

0

dt0


(n+1�p(�1)n�p)

p
�

+

(t�t0)�(�1)n�p�
�

(t�t0)

�

hMpi(t0),

When Eq. (10.12) is specialized to the case of the first (n = 1) and second (n = 2)

moments, we have:

1



d hMi
dt

+

t

Z

0

dt0�
�

(t � t0) hMi (t0) =

t

Z

0

dt0�
+

(t0), (10.13a)

1



d hM2i
dt

+ 2

t

Z

0

dt0�
�

(t � t0)
⌦

M2

↵

(t0) (10.13b)

=

t

Z

0

dt0 [�
�

(t � t0) + 4�
+

(t � t0)] hMi (t0) +

t

Z

0

dt0 �
+

(t0).

We observe again both of Eqs. (10.13) depend on the memory combinations �
�

(t)

and �
+

(t). The results for the Montroll-Shuler equation can be found directly from

Eqs. (10.13) by insertion of the Marko�an-approximated memories, i.e., the products
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of �(t) and 1�e�✓ and e�✓, respectively (✓ = �⌦). The e↵ects of arbitrary coherence

can be gleaned from the various baths discussed in Section 9.2.

We give the solutions of Eqs. (10.13) in the Laplace-domain as

ghMi(✏) =
hMi

0

✏ + e�
�

(✏)
+

e�
+

(✏)

✏
⇣

✏ + e�
�

(✏)
⌘ (10.14a)

]hM2i(✏) =
hM2i

0

✏ + 2e�
�

+

"

e�
�

(✏) + 4e�
+

(✏)

✏ + 2e�
�

(✏)

#"

hMi
0

✏ + e�
�

(✏)

#

(10.14b)

+
e�

+

(✏)

✏
⇣

✏ + e�
�

(✏)
⌘ +

42

e�2

+

(✏)

✏
⇣

✏ + e�
�

(✏)
⌘⇣

✏ + 2e�
�

(✏)
⌘

10.1.3 Validity of the Bethe-Teller Result in the Coherent

Domain

In their investigation of the deviations from thermal equilibrium in shock waves [175],

Bethe and Teller obtained a particular interesting result describing the evolution of

the average energy E(t) of an excited molecule coupled to a bath. They found the

temporal dependence of the average energy to be given by

E(t) = E(0)e�(1�e

�✓
)t + E

th

⇣

1 � e�(1�e

�✓
)t

⌘

, (10.15)

with E(0) being the initial average energy and E
th

= ⌦ coth ✓/2 being its value at

thermal equilibrium. Evident in Eq. (10.15) are two important properties of the

relaxation of the molecule. Note that the average energy does not depend on the

actual probabilities of occupation despite the dependence of their own evolution on

themselves. The average energy of two systems that are prepared with identical av-

erage energy but wildly divergent probability distributions would, therefore, display

identical evolution. Secondly, observe that the relaxation of the average energy is

exponential at all times and, crucially, that this time dependence is independent of

E(0), i.e., independent of the initial average energy. The time dependence of the
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evolution depends, therefore, only on the nature of the system and on the properties

of the bath not on its prepared state. We study now these properties for systems of

arbitrary coherence.

Using the GME, Eq. (10.2), one can extend the analysis performed by Bethe and

Teller to account for coherence at short times. The average energy is essentially

proportional to Eq. (10.14a), i.e., hMi(t). Following a rearrangement of the terms in

Eq. (10.14a), the Laplace-domain expression for the average energy is written as

eE(✏) =
E(0)

✏ + f�
�

(✏)
+ E

th

"

f�
S

(✏)
f�

�

(✏)
tanh

✓

✓

2

◆

#"

1

✏
� 1

✏ + f�
�

(✏)

#

. (10.16)

As in the Bethe-Teller result, the average energy is found to be both independent

of the particular distribution of the probabilities of occupation and only trivially

dependent on its initial value, the latter dependence being similarly multiplicative.

However, only at extremely long-times, i.e., when the Marko�an approximation

becomes valid, will the time dependence of the evolution be exponential. The Bethe-

Teller result is simply recovered from Eq. (10.16) by a replacement of the memories

with their Marko�an-approximated equivalents.

A formal time-domain expression can be derived from Eq. (10.16) by first defining

e⌘(✏) =
1

✏ + e�
S

(✏)
.

The first term on the right-hand-side of Eq. (10.16) is then simply E(0)e⌘(✏). Using

this definition, the term proportional to E
th

becomes a simple convolution of 1�⌘(t)

with ⇠(t), the latter being defined in the Laplace domain as

e⇠(✏) =
f�

S

(✏)
f�

�

(✏)
tanh

✓

✓

2

◆

. (10.17)

We note that e⇠(✏ = 0) is simply 1. The time-domain expression for the average

energy is then given by

E(t) = E(0)⌘(t) + E
th

t

Z

0

dt0⇠(t � t0) [1 � ⌘(t0)] . (10.18)

126



Chapter 10. Relaxation of Two Realistic Quantum Systems

�t
0 2 4 6

E(
t)

0

1

2

3

4

5

6

7

8

9
Incoherent
w=2
w=1
w=1/2

�t
0 2 4 6

�
�
(t)

-3

-2

-1

0

1

2

3

4
w=2
w=1
w=1/2

A

A

C
C

B

B

Figure 10.1: A generalization of the Bethe-Teller result to account for coherent e↵ects
is presented. The left panel displays the time evolution of the normalized average
energy of the relaxing molecule, E(t)/E(0), E(0) being the initial energy of the
particle, for the Lorentzian spectral function, Eq. (9.18). Three values of the spectral
width w = 2, 1, 1/2 are shown along with the incoherent limit, given by the Bethe-
Teller result, Eq. (10.15), the latter being labeled by the symbol o. The values of
the other parameters, � = 1/2 and ⌦ = 4, are illustrative. Time is in units of
. In all cases, the average energy rises from its initial value and saturates to the
normalized thermal value E

th

/E(0). The incoherent limit is a simple exponential rise.
Coherence, however, leads to an oscillating energy with an increase in w leading to
larger amplitudes of oscillation. The right panel displays the three di↵erence memory
functions �

�

(t) from Eq. (9.19) that correspond to the three examples of the coherent
evolution.

By comparison with the Bethe-Teller result, Eq. (10.15), arbitrary coherence leads

to two simple changes. The exponential decay exp(�(1 � exp(�✓))t) has become a

decay whose time-dependence is determined by ⌘(t) and the convolution of 1 � ⌘(t)

with ⇠(t) has replaced the exponentially saturating factor.

In Fig. (10.1), left panel, the evolution of the average energy is displayed for

the illustrative case of a Lorentzian bath spectral function, Y (z) (see Chapter 9 for

details). Three values of the spectral width (which defines the symmetric portion

127



Chapter 10. Relaxation of Two Realistic Quantum Systems

Y
s

(z) of the spectral function) are chosen, w = 1/2, 1, 2; the equivalent Bethe-Teller

result is shown as well, being labeled by the symbol o. We normalize E(t) with

its initial value, E(0). An increase in the spectral width, equivalent to an increase

in the coherence time, results in both larger and more persistent oscillations. At

long times, however, the Bethe-Teller result is approached. This occurs because the

factor ⇠(t ! 1) approaches 1 and ⌘(t) becomes the standard exponential damping,

i.e., exp(�(1 � exp �✓)). For reference, the right panel of Fig. (10.1) displays the

respective �
�

(t). The e↵ect in the variation of the strength of the oscillations present

in �
�

(t) is highlighted by the three arrows identified by A, B, and C.

10.1.4 Lack of Canonical Invariance of the GME

A general solution for the generating function of the GME, whose evolution equation

is given in Eq. (10.8), is intractable. The Laplace-domain equation for the generating

function of the GME, however, is essentially that of the Montroll-Shuler equation,

the latter being given by

(z � 1)



@

@z

h

ze�
+

(0) eG(z, ✏)
i

� @

@z
e��(0) eG(z, ✏)

�

=
✏


eG(z, ✏) � 1


G

0

(z),

except with e�±(0) being replaced by e�±(✏). Here, we have highlighted the connection

by replacing at the appropriate places 1 and e�✓ with the respective time integrals

e�⌥(✏ = 0). If the above equation is solved in an indirect manner, e.g., a Laplace

transform of the solution Eq. (10.6) for a particular G
0

(z), then Eq. (10.5) is also

solved for that particular initial condition. The factors of e�±(0) in the solution simply

need be replaced by e�±(✏).

As we show below, the case for an initial distribution being taken to have Boltz-

mann weights among the states in a manner corresponding to the “initial” temper-

ature T
0

can be solved in this manner. Explicitly, the initial value of the generating
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function is given by

G
0

(z) =
1 � e�✓0

1 � ze�✓0
.

where ✓
0

= ⌦/k
B

T
0

. Upon the replacement of the argument of G
0

with ⇣(z), and

subsequent expansion of Eq. (10.6), the solution to the generating function of the

Montroll-Shuler equation simplifies into

G(z, t) =

"

e�
+

(0) � e��(0)

ze�
+

(0) � e��(0)

#

2

4

1

1 � (z�1)(

e
�+(0)�e

�✓0 e
��(0))

(z

e
�+(0)�e

��(0))(1�e

�✓0
))

e�⌧

3

5 , (10.19)

Notice that the right-hand side of Eq. (10.19) is of the form C/(1 � Ae�Bt), where

A, B, and C are all constants. As such, the Laplace transform is trivially written by

expanding the fraction in a power series. The Laplace transform of the solution is

eG(z, ✏)=

"

e�
+

(0) � e��(0)

ze�
+

(0) � e��(0)

#

X

k

1



✏



+k(e��(0)�e�
+

(0))
(10.20)

⇥
"

(z�1)(e�
+

(0)�e�✓0 e��(0))

(ze�
+

(0)�e��(0))(1�e�✓0)

#

k

,

where the k-summation is over integers from 0 to 1. Eq. (10.20) is the solution to

the first-order di↵erential equation w.r.t z for the generating function given above.

As the solution does not depend on the argument of e�±, we replace the 0 present in

Eq. (10.20) with an ✏. The result is

eG(z, ✏)=

"

e�
+

(✏) � e��(✏)

ze�
+

(✏) � e��(✏)

#

X

k

1



✏



+ k(e��(✏) � e�
+

(✏))
(10.21)

⇥
"

(z � 1)(e�
+

(✏) � e�✓0 e��(✏))

(ze�
+

(✏) � e��(✏))(1 � e�✓0))

#

k

,

To ensure that Eq. 10.21 is the solution to the generating function of the GME

one need substitute it into Laplace-domain expression equivalent to the evolution

equation given in Eq. (10.5). We have carried that out and shown that Eq. 10.21 is

indeed valid.

129



Chapter 10. Relaxation of Two Realistic Quantum Systems

For canonical invariance to hold, the time-domain expression of the generating

function must be of the form

G(z, t) =
1 � e�⇥(t)

1 � ze�⇥(t)

.

where ⇥(t) is strictly proportional to the temperature. Unfortunately, Eq. (10.21)

can not be analytically transformed for an arbitrary memory. The presence of mul-

tiple factors does suggest, however, that the time-domain solution will have multiple

convolutions. Thus, no ✓(t) exists.

10.2 Stark Ladder: Coherence E↵ects

The system that underlies vibrational relaxation, the harmonic oscillator, can be

considered a natural extension of the non-degenerate dimer [169] briefly discussed in

Section 9.2. Compared to that of the dimer, the richness of the former’s behavior

stems from two sources. The system state-space is extended from two states to

a semi-infinite number, i.e., M = 0, 1, ..., 1 instead of simply 1 and 2, and the

transitions depend on the index M , a result of the linearity with regards to the

oscillator coordinate of the interaction between the system and the bath. Upon

reflection, a second natural extension of the dimer suggests itself: a charged particle

moving in a discrete crystal under the action of an electric field. Here, the state-

space is infinite, i.e., M = �1, ..., 1, but the transitions remain independent of

the index. Known as the Stark ladder system, its GME can be solved explicitly and

interesting conclusions about evolution at short times drawn. Its energy spectrum

lacks a lower bound; however, so at long times the system does not approach thermal

equilibrium. Our focus here is on the behavior at short times; we briefly mention in

Section 10.3 an e↵ect observed at long times that remains not fully understood.

Consider then a charged particle that moves under the influence of a strong
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electric field on a 1-dimensional crystal lattice of intersite spacing a. We denote

by � the product of the charge, the spacing and the strength of the electric field

and label the sites by M . Taking the system to be of a simplified one-band form

and the bath interaction to couple only nearest-neighbor sites, the eigenstates are

well-known [177, 178] to be localized at the sites of the crystal. The eigenvalues

correspond exactly with the site energies; the spectrum is, therefore, equally spaced

as in both the non-degenerate dimer and the harmonic oscillator. Though simpler

than the latter due to the lack of a dependence on M in its transition rates, the Stark

ladder system still displays complex behavior because the state-space is infinite.

Using the formalism developed in refs. [165, 167, 168], the evolution equation for

P
M

(t), the probability of occupation of the Mth site, is given by

1



d

dt
P

M

(t) =

t

Z

0

dt �
�

(t � t0)[P
M�1

(t0) � P
M+1

(t0)] (10.22)

+

t

Z

0

dt �
S

(t � t0)[P
M+1

(t0) + P
M�1

(t0) � 2P
M

(t0)].

Here, we have used the sum and di↵erence memories, �
S

(t) and �
�

(t) respectively,

that are defined in Eqs. (9.7). Upon first glance one may assume that Eq. (10.22)

is merely the discrete version of a generalized advective-di↵usion equation, i.e., an

equation of the form

@

@t
P (x, t) + �

t

Z

0

dt0 �
A

(t � t0)
@

@x
P (x, t0) = D

t

Z

0

dt. �
D

(t � t0)
@2

@x2

P (x, t0), (10.23)

where � and D are constants and �
A

(t) and �
D

(t) are, respectively, the advective

and di↵usive memories. An attempt to take the continuum approximation (a ! 0,

P
M

(t)/a ! P (x, t)) of Eq. 10.22, however, immediately runs into a contradiction.

The bracketed term in the upper line of Eq. (10.22) would be proportional to a,

[P
M�1

(t0) � P
M+1

(t0)] ! a
@

@x
P (x, t0),
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while the bracketed term in the lower line would be proportional to a2,

[P
M+1

(t0) + P
M+1

(t0) � 2P
M

(t0)] ! a2

@2

@x2

P (x, t0),

but neither �
�

(t) nor �
S

(t) produces1 a factor of a. The continuum approximation of

Eq. (10.22) would therefore require both a and a2 to be finite. Clearly,  can not be

taken to infinity in a manner that respects both, i.e., proportional to both a and a2.

Despite the seemingly obvious relation between Eq. (10.22) and Eq. (10.23) no pro-

cedure connects the two. We note that the Marko�an approximation of Eq. (10.22),

however, is the discrete version of the advective-di↵usion equation. The required

extra factor of a appears in the transition rate, 1 � exp(���), that results from the

approximation of �
�

(t). That is 1 � exp(���) ! a�� where � = �/a is finite.

The discrete equation, Eq. (10.22), can be solved using standard Fourier trans-

form procedures. The propagator for an initial localized charge, i.e., P
M

(0) = �
M,0

may be written in the Laplace-domain as

eP
M

(✏) =
1



h

e�
S

± e�
�

i|M |



( ✏



+e�
S
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e�2
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�e�2
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1
2 �( ✏



+e�
S

�
q

e�2

S

�e�2

�
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�|M |

h
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

+ e�
S

)2 + e�2

�

� e�2

S

i

1
2

, (10.24)

where we have suppressed the arguments of the memories. The ± in the first term

is understood to be + for positive M and � for negative M .

The moments of the distribution can be calculated either directly from Eq. (10.24)

or from Eq. (10.22). The expression for an arbitrary moment hMni is

]hMni =
n�1

X

p=0

n�p even

✓

n � 1

p

◆

e�
S

(✏)
]hMpi

✏
+

n�1

X

p=0

n�p odd

✓

n � 1

p

◆

e�
�

(✏)
]hMpi

✏
. (10.25)

1The reader may comment that the memories, being dependent on � (which is also
taken to zero in the continuum limit), should themselves be a↵ected by the approximation.
However, both �

S

(t) and �
�

(t) depend on � only through the argument of a cosine (cos(�t))
and sine (sin(�t)), respectively. As � multiplies the time t in both, no new parameter can
be defined. One finds a similar issue when considering the fully coherent Stark ladder
system, the propagator of which is J2

M

(4V/� sin(�t/2)). In the continuum limit, either the
e↵ect of the electric field is removed or time must be inappropriately redefined.
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The expressions for the particular cases of the first and second moments are given

by

ghMi(✏)=
e�

�

(✏)

✏2

, (10.26a) ]hM2i(✏)=
e�

S

(✏)

✏2

+2
2

e�
�

(✏)2

✏3

. (10.26b)

Both the average displacement, Eq. (10.26a), and the average squared displacement,

Eq. (10.26b), reduce to their respective values when either the coherent or incoherent

limit is taken. By explicitly expanding e�
S

(✏) and e�
�

(✏) in terms of their integral

representations, given in Eqs. (9.7), one can formally invert Eqs. (10.26). Their

time-domain expressions are

hMi =

1
Z

�1

dz Y (z)
�

1 � e��z

�

t2


sinc2

(z � �)t

2

�

, (10.27a)
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1
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,

where we have defined

F
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(z, t) =
�

1 � e��z

�

✓
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2

◆

sinc2
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2
,

F
2

(z, z0, t) =
�

1 � e��z

�

⇣

1 � e��z

0
⌘

t2

 

sinc2

(z��)t

2

� sinc2

(z��)t

2

(z0 � z)(z0 + z � 2�)

!

,

and used the symmetrical bath spectral function introduced in Eq. (8.5) and dis-

cussed in Section 9.2.

A more physically important quantity than hMi, Eq. (10.27a), is the average

velocity of the charge hvi, i.e., its derivative ⌘ dhMi/dt. In Fig. 10.2, main frame, we

display hvi for the illustrative case of a Lorentzian spectral function, whose expression

is given in Eq. (9.18), against the dimensionless time t. We have used the parameters
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Figure 10.2: Depicted is the average velocity of the charge hvi (given by the derivative
of Eq. (10.26a) w.r.t. time), main figure, and the average-squared displacement
(given in Eq. (10.26b)), inset, for the dimensionless frequencies � = 1, � = 1/4 and
three values of the spectral width w = 1/4, 1, 4 as well as the coherent and incoherent
limits. In the case of arbitrary coherence, the charge initially remains at rest before
a delayed acceleration. This contrast with its counterpart in the incoherent limit
which instantaneously achieves its steady-state value (1 � exp(���)). The average
velocity approaches its value in the incoherent limit at long times. The e↵ect of
arbitrary coherence is similar for the average squared displacement (inset) as well:
at short times the extent of the charge oscillates as in the coherent case while at long
times it is purely di↵usive a la the incoherent case.

� = 1 and � = 1/4 and have displayed three values of the spectral width w =

1/16, 1/4, 2 along with the relevant incoherent and coherent limits. At times short

compared to , arbitrary coherence results in the charge behaving similar to that of its

coherent counterpart; it remains essentially localized at its initial location (here, M =

0). This contrasts with the immediate delocalization of the charge that is evident

in the incoherent limit of the system. At times large compared with , however,

the e↵ects of coherence are destroyed and the velocity of the charge is identical to

that of its incoherent counterpart (whereas the charge remains localized for all times

in the coherent limit of the system). For intermediate times, the average velocity

oscillates around the incoherent steady state value, the amplitude and persistence of
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these oscillations increasing as the value of the spectral width is made larger, i.e., as

the coherence of system is increased.

The inset of Fig. 10.2 depicts the average squared displacement of the charge,

Eq. (10.27b), for the same Lorentzian spectral function. The parameters used are as

in the main figure. Similar to that of the average velocity, at times short compared

with , arbitrary coherence results in the charge behaving similarly to its coher-

ent2 counterpart. In a replication of the oscillations seen in that limit, the charge

displays ‘breathing’ dynamics in which its extent not only oscillates but actually

decreases. As expected, the length of time for which the ‘breathing’ is observed

decreases as the spectral width is decreased, i.e., as the system becomes less coher-

ent. At times large compared with , the average-squared displacement displays the

di↵usive behavior standard to the incoherent case.

10.3 Conclusion

The derivation [42,44,47,159–163] of the GMEs briefly outlined in Chapter 8 assumed

a maximally incoherent initial condition, i.e., only the diagonal elements of the initial

density matrix are non-zero. The forcing term that accounts for the e↵ect of non-zero

o↵-diagonal matrix elements has been neglected. Though this assumption of diagonal

initial conditions is common in investigations that use the GME (see ref. [166] for an

exception), complete understanding of the system-bath interaction necessitates its

investigation. The results presented in this Chapter can be used as a stepping stone

to the more general case. The microscopic specification of baths is another issue

neglected in this analysis. Such calculations would be useful in the understanding

of particular experimental results especially in the context of vibrational relaxation.

2An ambiguity in the time scale for the coherent limit exists due to the appropriate
limiting procedure (w ! 0,  ! 0, /w ! 1). We chose a coherent time-scale that
highlights the similarities between the general case, Eq. (10.27b), and its coherent limit.
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Figure 10.3: Displays e↵ective di↵usion constant, D
eff

(t) (see text for description)
versus the dimensionless time t for the Lorentzian spectral function. Three values
of the spectral width are shown w = 1/4, 1, 4 along with the incoherent limit. The
di↵usion constant, i.e., the steady-state value of D

eff

(t), is seen to vary with the
spectral width. Thus, properties of the bath e↵ect steady-state quantities. Other
characteristic frequencies (� = 4, � = 2) have been chosen to highlight the e↵ect

Two extensions that are particular to vibrational relaxation would be of further

value in such an analysis. An expansion of the interaction between the system and

the bath to third-order in the oscillator coordinate leads to an e↵ective long distance

interaction. Though such an interaction remains weak, as both standard in the GME

formalism and desirable in the present context, a non-local interaction could generate

interesting dynamics. Of secondary interest is an extension of these results to an

anharmonic oscillator, e.g., the Morse oscillator [179, 180]. An operator structure is

retained in such a system but the e↵ect of disassociation would be observed.

We briefly remark on an interesting observation in the Stark ladder system. De-

picted in Fig. 10.3 is the e↵ective di↵usion constant, i.e., D
eff

= h�M2i/t, for

the Lorentzian spectral function. Three values of the spectral width are shown

w = 1/4, 1, 4 along with the result in the incoherent limit (the other characteristic

frequencies (� = 4, � = 2) are chosen to highlight the following e↵ect). As is evi-

dent from the figure, the steady-state value of D
eff

(t) is di↵erent for various spectral

widths; it must depend, therefore, explicitly on the properties of the bath.
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An understanding of this e↵ect is complicated by the dependence of the memories

on a single bath spectral function. We instead consider the generalized advective-

di↵usion equation, Eq. (10.23), with arbitrary memories �
A

(t) and �
D

(t). The aver-

age displacement and the average squared displacement are essentially equivalent to

those of the Stark ladder system, being given by:

fhxi(✏)=
e�

A

✏2

, ghx2i(✏)=
e�

D

(✏)

✏2

+2
2

e�
A

(✏)2

✏3

.

Explicit calculations can then be performed by assuming a simple functional form

of the memories. We take the advective memory to be exponential, i.e., �
A

(t) =

$ exp(�$t) with damping parameter $, and the di↵usive memory to be a �-function,

i.e., �
D

(t) = �(t); we have then

hxi = �t � �
1 � e�$t

$
, (10.29a)

h�x2i = � 2�2

t

$
+ �2

✓

5 � 4e�$t � e�2$t

$2

◆

� 4�2

te�$t

$
+ 2Dt. (10.29b)

In Eq (10.29b) we have introduced the mean square displacement h�x2i = hx2i�hxi2.

At long times, the quantities of interest are then the average velocity, which is simply

�, and the di↵usion constant. The latter is defined in the standard manner

D = lim
t!1

h�x2i(t)
2t

= D � �2

$
. (10.30)

The di↵usion constant is dependent on the parameters of the bath. The physicality

of this observation remains an open question.

Investigations reported in this Chapter 10 are being submitted for publication as

an article, V. M. Kenkre and M. Chase, “Approach to Equilibrium of a Quantum Sys-

tem and Generalization of the Montroll-Shuler Equation for Vibrational Relaxation

of a Molecular Oscillator” to Journal of Chemical Physics.
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Appendix A

Some Subtleties in Reaction

Di↵usion Theory

We present in this Appendix a completely unrelated problem that is, however,

broadly relevant to the other contents of the thesis. We examine a subtle, yet im-

portant, dimensional e↵ect in the context of reaction-di↵usion theory [28, 106, 108,

111, 181, 182]. Applicable in contexts as diverse as exciton trapping in molecular

systems [183–188] and the coalescence of receptor clusters on cellular surfaces [85,

86,113], reaction-di↵usion theory allows one to model the motion of an object when

its movement may be restricted by an external process such as capture or a chemical

reaction. Of interest are situations for which one may wish to treat the so-called

trapping region, in which the latter processes (the “reaction” part of the reaction-

di↵usion) occur, to be of a smaller dimension than the over-all motion space.
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A.1 Reaction-Di↵usion Theory: the ⌫-Function

The focus here being on a particular technical problem, we only briefly outline the

necessary background to reaction-di↵usion theory [28,106,108,111,181,182]. We refer

the reader to a recent review [111] for a complete discussion on the theory and its

numerous applications. Applicable to classical systems that can be described with a

continuous spatial coordinate, our starting point is given by

@

@t
P (~xm, t) = [Motion Terms] � C

0
Z

d~y r� m(~xm � ~y m)P (~xm, t). (A.1)

The particle, whose location is identified by the probability distribution P (~xm, t),

moves in an m-dimensional space which contains a reaction region. Here, C is

the capture rate (with units that depend on the trap dimension), �m(...) is the m-

dimensional �-function, the prime indicates that the integration is over the reaction

region, and we leave the (homogenous) motion terms as general with ⇧(~xm, ~y m, t)

being the resultant (homogenous) propagator.

While the ‘reaction’ in reaction region can refer to a process of essentially ar-

bitrary nature, e.g., infection, annihilation, chemical synthesis, etc., we refer to it

throughout this Section as the trapping region, or trap, for simplicity.

Using standard techniques [28, 110, 111, 181, 182], one can calculate quantities

such as the survival probability of the particle using Eq. (A.1). Of particular interest

to applications of reaction-di↵usion theory, the Laplace-domain expression (tildes

denote Laplace-transformed functions and ✏ is the Laplace variable) for the survival

probability is

eQ(✏) ⌘
1
Z

�1

dxm

eP (~xm, ✏) =
1

✏



1 � eµ(✏)

1/C + e⌫(✏)

�

. (A.2)

In Eq. (A.2) we have introduced two important functions in the theory of reaction-

di↵usion: the µ-function and the ⌫-function. Their expression in the time-domain
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are

µ(t) =

0
Z

d~xm

1
Z

�1

d~xm

0

P
0

(~xm

0

)⇧(~xm, ~xm

0

, t), (A.3a)

⌫(t) =

0
R

d~y m

0
R

d~xm⇧(~xm, ~y m, t)
R 0

d~y m

, (A.3b)

As evident from the presence of the homogenous propagator in Eqs. (A.3), both are

dependent on the trapping region only through its extent. The first, Eq. (A.3a), is

the probability density that the particle has travelled from its initial condition, given

by P
0

(~xm

0

), to the trapping region. Generally speaking, it is well-behaved. The latter

quantity, Eq. (A.3b), was defined by Kenkre and collaborators [76, 109, 128]. It is

constructed from the probability density that a particle initialized in the trapping

region at the point ~xm

0

returns to the trapping region at time t. This probability

density is then averaged over all points ~xm

0

. Highly-symmetric trapping regions do

not require this averaging. In these cases, the ⌫-function is exactly the probability

density that a particle initialized in the trapping region returns at the time t. Even

in the general case one can informally interpreted it as essentially the probability

(density) of return.

A.2 A Point-Like Trap with Di↵usion

We proceed with by illustrating the dimensionality issue through a specialization of

Eq. (A.1) to the case of di↵usive motion. While simple, pure di↵usion highlights the

dimensionality e↵ect without any additional complexity that can be present in purely

homogenous motion. The particular form of Eq. (A.1) that governs this situation is

@

@t
P (~xm, t) = D

@2

@x2

P (~xm, t) � C

0
Z

d~y m� m(~xm � ~y m)P (~xm, t), (A.4)
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with D being the standard di↵usion constant. The (homogenous) propagator is then

given by the well-known expression

⇧(~xm, ~xm

0

, t) =

✓

1

4⇡Dt

◆

m
2

e� (~x m�~x m
0 )2

4Dt , (A.5)

which is exactly equal to the tensor product of m standard one-dimensional propa-

gators. When the trapping region is taken to be a single point, located at ~xm

0

, the

⌫-function is found by simply equating ~xm to ~xm

0

in Eq. (A.5). Its time-domain

expression is then

⌫(t) =

✓

1

4⇡Dt

◆

m
2

. (A.6)

From Eq. (A.2), the calculation of the survival probability requires that Eq. (A.6) be

Laplace-transformed. However, the Laplace transform exists only for m < 2. When

the trapping region is taken to be a single point, the survival probability can only be

calculated for a one-dimensional motion space. A point-trap in two dimensions leads

to a divergence in the Laplace transform that stems from the short-time behavior of

Eq. (A.6). In the next subsection, we extend these results to simple extended traps

in motion spaces of low dimension.

A.3 The ⌫-Function for Simple Extended Traps

We catalogue here time-domain ⌫-functions for various simple extended traps in

low-dimensional motion spaces. This serves to both provide sample calculations for

further use and to illustrate that the existence of the Laplace-transformed expressions

depends on its short-time behavior. We provide here both the short-time and long-

time dependence of the ⌫-functions along with the complete expression.

We consider one- and two-dimensional motion spaces. In the former, we take

trapping regions to be a single point, two points (separated a distance 2d), and a finite

line (of length l). In the latter, the trapping regions are taken to be an infinite line, a
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m Trap Style ⌫-function
Short-
Time

Long-
Time

LT

1 Point 1p
4⇡Dt

1p
t

1p
t

3

1 Two Points 1p
4⇡Dt

⇣

1 + e� a2

4Dt

⌘

1p
t

1p
t

3

1 Finite Segment erf lp
Dt

� 1

l

q

4Dt

⇡

e� l2

2Dt sinh l

2

2Dt

1 1p
t

3

2 Point 1

4⇡Dt

1

t

1

t

2 Two Points 1

4⇡Dt

⇣

1 + e� a2

4Dt

⌘

1

t

1

t

2 Line Segment 1p
4⇡Dt

erf lp
Dt

� 1

l⇡

e� l2

2Dt sinh l

2

2Dt

1p
t

1

t

3

2 Infinite Line 1p
8⇡Dt

1p
t

1p
t

3

2 Ring 1

4⇡Dt

e� r2

2Dt I
0

⇣

r

2

2Dt

⌘

1p
t

1

t

3

2 Spot
R ⇢
0 d⇢

0
⇢

0 R ⇢
0 d⇢

00
⇢

00
e

� ⇢02+⇢002
4Dt

I0

⇣
⇢0⇢00
2Dt

⌘

a

2
Dt

1 ⇢

2

8Dt

3

Table A.1: The ⌫-function for various simple traps in a one- and two-dimensional
motion space are presented . Included are the short- and long-time behavior. A
checkmark indicates that the Laplace transform (LT) exists.

ring (of radius r), and a spot (of radius ⇢) in addition to the all three identified above.

The results are in Table A.1. The left-most column identifies the dimensionality of

the motion space, the next column displays an image of the trapping region, the

left-center column gives the full ⌫-function calculated using Eq., the center column

gives the short-time behavior, the center-right column gives the long-time behavior,

and the right column indicates if the ⌫-function is Laplace-transformable.

For a motion space of one dimension, the ⌫-function can be Laplace-transformed

for both point-like and finite traps. These results are recorded in the first three en-

tries of Table A.1. The Laplace transform exists for two-dimensional motion spaces,

however, only when the trap is of finite extent, e.g., a line or a spot. The finite
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traps in two-dimensional motion spaces comprise the last four entries of Table A.1.

Point-like traps in a two-dimensional motion space, the fourth and fifth entries in

Table A.1, do not lead to ⌫-functions that possess Laplace-transformed expressions.

This non-existence of the Laplace-domain expression occurs because of the short-time

behavior of the ⌫-function; both expressions go as 1/t as t ! 0. This dependence

results in the logarithmic divergence of the integral. While the factor of exp(�✏t) in

the transform damps long-time algebraic dependences; it provides no corresponding

damping at short times. The logarithmic divergence from the short-time dependence

therefore dominates the integral.

A pattern emerges from the results of Table A.1. When the trapping regions is

either of equal dimension to the motion space or one dimension smaller, the Laplace

transform exists. If, however, the trapping region is two dimensions smaller the

Laplace transform does not. In practice, therefore, one can ensure appropriate be-

havior from the ⌫-function by taking the trapping region to be of equal dimension

to the motion space. Though some complications arise in calculations due to the

presence of m-integrations, having a trapping region and a motion space of the same

dimensional tends to be more physically appropriate because most physical objects

are space-filling. However, one may remain interested in the criteria that determines

the existence of the Laplace-transform of the ⌫-function for arbitrary trapping region.

In the next subsection, we derive this criteria for an interesting subset of allowable

traps.

A.4 One-Less-Dimension for Separable Traps

The existence criteria for the Laplace transformed ⌫-function for an arbitrary trap-

ping region is beyond the scope of the present discussion. However, by considering

an intuitive description of trap as being points, lines, volumes, etc., one is motivated

144



Appendix A. Some Subtleties in Reaction Di↵usion Theory

to study the subset of trapping regions that match these descriptions. We focus then

on trapping regions that can be exactly decomposed into a Cartesian coordinate sys-

tem. While not as general as the intuitive descriptors given above, these special cases

capture the essential idea. These traps are constructed such that their extent in all

of the m-dimensions of the motion space are independent of their extent in any of the

other m � 1-dimensions. Thus, they can be built dimension-by-dimension from the

single dimension traps that we consider in Table A.1 (the first three entries). Their

trapping regions can then be naturally decomposed into two distinct subspaces. In

the first, a p-dimensional subspace, the trap is point-likely, i.e., the trapping region

is a set of isolated points. In the second, a q-dimensional subspace, the trap is a

q-dimensional hyperrectangle, i.e., the trapping region is of the same dimensionality

as the subspace. Clearly, we have m = p + q. Though these traps represent an

extremely special subset of allowable trapping regions, they provide a useful starting

point to develop intuitive reasoning that can be applied to more general examples.

We take the Cartesian basis that respects this decomposition to be given by

the components of the vector ~xm that originally appeared in Eq. (A.1). Then the

integral in Eq. (A.1) over the trapping region can itself be simply decomposed into the

localized and delocalized subspaces of p and q dimensions. The integral is rewritten

as
0
Z

d~y m !
Z

AS

d~xm

0
X

~y

p

0
Z

· · ·
Z

| {z }

q

d~y q�p(~x p � ~y p)�q(~x q � ~y q). (A.7)

Here, the original integral over the trapping region is deconstructed into a sum over

the localized subspace, with each trap location being identified with the points ~y p,

and an integration over the delocalized subspace, identified by ~y q. Here, we explicitly

divide the latter integration into individual integrals for each of the q dimensions to

highlight the separability of the trap. Henceforth, these q integrations are collapsed

into a single integral that we label with q. We also replace the prime on the sum
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with the label p so as to clearly indicate that it sums over the dimensions in the

localized subspace. The final integral, labeled by AS, is over the full m-dimensional

motion space. It, along with the �-functions, smooths the above transition from an

implied integration to a explicit sum.

We insert the integral representation for the trapping region, Eq. (A.7), into the

definition of the ⌫-function given in Eq. (A.3b). We have then a general expression

for the ⌫-function for a separable trap. It is given by

⌫(t) =

p

P

~y

p

q

R

d~y q

p

P

~x

p

q

R

d~x q ⇧(~xm, ~y m, t)

p

P

~y

p

R

q

d~y q

, (A.8)

where the sums are over the isolated point-traps identified with ~x p. As evidenced by

the results collected in Table A.1, focus should be on the short-time behavior as it

determines the existence of the Laplace-domain expression for the ⌫-function. When

t = 0, the propagator in Eq. (A.8) can be replaced exactly by a delta function of

m-dimensions, its argument being ~xm � ~y m. The result is

⌫(t = 0) =

p

P

~y

p

p

P

~x

p

�p(~xm � ~y p)

p

P

~x

p

, (A.9)

where the separability of the two subspaces is used to exactly cancel the double

integration in the numerator with the single one that is present in the denominator.

The value of ⌫(t = 0) is, as expected, infinite when p is a positive integer, which

confirms the results found in Table A.1. By taking t = 0, however, we have obscured

the exact short-time behavior and, therefore, the criteria for the existence of the

Laplace-domain expression.

Without specifying the homogenous propagator no further progress can be made.

Thus, we proceed as in Section A.2 with the illustrative example in which the motion
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term is taken to describe pure di↵usion. For simplicity, we take the trap in the

localized subspace to be only a single point. This choice is motivated by the results

in Table A.1 that suggest that the existence of the ⌫-function does not depend on the

number of isolated points merely that there are only isolated points. Following the

insertion of the di↵usive propagator, Eq. (A.5), we have the time-domain expression

for the ⌫-function as

⌫(t) =
1

Q

✓

1

4⇡Dt

◆

p
2

q

Z

d~y q

q

Z

d~x q

✓

1

4⇡Dt

◆

q
2

e� (~x q�~y q)2

4Dt , (A.10)

where
R

q

d~x q = Q is the volume of the trapping region in its delocalized subspace.

Eq. (A.10) simplifies by noting that the double integral of a Gaussian leads to a single

integral of error functions. As t ! 0, these approach a constant and the remainder

is simply

⌫(t ! 0) / t�
p
2 . (A.11)

Confirming the results displayed in Table A.1, the Laplace transform of Eq. (A.11)

only exists for integer values when p = 0, 1. Thus, only when the delocalized subspace

is of equal dimension to the motion space or of one less dimension does the Laplace

transform of the ⌫-function exist for the di↵usive case.

A.5 Conclusion

We have discussed an issue with reaction-di↵usion theory in dimensions higher than

one. The ⌫-function, which is required to calculate quantities such as the survival

probability, may not exist. This result has been shown explicitly for the particular

case of homogenous motion described by pure di↵usion; for an isolated point-trap,

the Laplace-domain expression for the ⌫-function only exists when the motion space

is one-dimensional. Higher dimension motion spaces result in Laplace integrals that

diverge. Time-domain expressions for the ⌫-function for particularly simple low-
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dimensional traps in one- and two-dimensional motion spaces are presented in Ta-

ble A.1. A general trend emerges: divergences in the Laplace integral arise from the

behavior of the ⌫-function at short times. This short-time behavior is essentially

determined by the di↵erence in the dimensionality of the motion space and that of

the trapping region. The latter being at minimum only one dimension smaller than

the former.

While the extension of this observation to general trapping regions is left un-

explored, we analyze the one-dimension-less conjecture for an interesting subset of

traps: those that can be decomposed into a localized subspace and a delocalized

subspace. We motivate the specialization to these trapping regions by the intuitive

description of traps as points, lines, etc. Again for the special case of of di↵usive

motion, we confirm that the localized trapping region can be no more than a single

dimension. This result is only shown for di↵usive motion. From Eq. (A.9), how-

ever, one may intuit a more general result: the short-time behavior of the ⌫-function

depends on the dimensionality d
p

of the localized trapping region such that each

of these dimension can be treated as independent from the remainder. Thus, the

short-time behavior of the ⌫-function goes as if the system were d
p

copies of a simple

point trap in a one-dimensional motion space. Intuition can also be developed for

more complex trapping regions. For example, a line trap that is oriented not in a

separable manner but in the shape of the letter M will result in a similar dependence

of the ⌫-function at short times because both are lines.

The work reported in this Appendix is being prepared for publication by S. Sug-

aya, M. Chase, and V. M. Kenkre as an article “Comment on reaction-di↵usion

theory in dimensions higher than one”, to be submitted to Physical Review B.
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Appendix B

Derivation of Equations for the

Joint Probability Distributions

We derive here the closed Fokker-Planck equations for the one- and two-time joint

probability distributions.

Into the implicit equations, given in Eqs. (4.14a) and (4.14b), one inserts the

time-convolutionless Langevin equation, Eq. (4.11). The resulting equations are

@

@t
P

1

(x, t) = � @

@x
h[�A(t)x

i

(t) + B(t) + ◆(t)] � (x
i

(t) � x)i, (B.1a)

@

@t
P

2

(x, t; x0, t0) = � @

@x
h[�A(t)x

i

(t)+B(t)+◆(t)] � (x
i

(t)�x) �(x
i

(t0)�x0)i, (B.1b)

where we have used the notation introduced in Eqs. (4.16), i.e., A(t), B(t), etc., and

the noise ◆(t). The first two terms on the left-hand-side can be trivially evaluated

by noting that hx
i

(t)�(x
i

(t) � x)i = xh�(x
i

(t) � x)i. Using the definition of the joint
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probability distributions, e.g., P (x, t) = h�(x
i

(t) � x)i, we have

@

@t
P

1

(x, t) =
@

@x
[A(t)x � B(t)] P

1

(x, t) � @

@x
h◆(t)� (x

i

(t) � x)i, (B.2a)

@

@t
P

2

(x, t; x0, t0) =
@

@x
[A(t)x�B(t)] P

2

(x, t; x0, t0)

� @

@x
h◆(t)� (x

i

(t) � x) � (x
i

(t0) � x0)i. (B.2b)

The noise terms can be evaluated using Novikov’s theorem [7]. Using the notation

in ref. [7], Novikov’s theorem relates the weighted value of a functional R[f ], where

f(s) is a random Gaussian function with correlation hf(s)f(s0)i = F (s, s0), to the

average of its functional derivative, i.e.,

hf(s)R[f ]i =

s

Z

0

ds0 F (s, s0)

⌧

�[R[f ]]

�f(s0)

�

, (B.3)

where �[...]/�f(s) indicates a functional derivative.

From the noise term in Eq. (B.2a) we have:

h◆
i

(t)� (x
i

(t) � x)i =

t

Z

0

ds h◆
i

(t)◆
i

(s)i
⌧
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i
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�◆
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(s)

�

,

=

t

Z

0

ds h◆
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Between the second and the third lines the exchange property of the delta function,

i.e., @/@x[�(x � y)] = �@/@y[�(x � y)], has been used; between the third and the

fourth lines the independence of x
i

(t) and x has been taken utilized.
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Lastly, we evaluate the functional derivative of x
i

(t) with respect to ◆(s). It can

be calculated directly from the solution, Eq. (4.8), by rewriting the latter in terms

of ◆(t). We have

x
i

(t) = x
0

�(t) + �(t)

t

Z
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ds
◆
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(s)

�(s)
+ �(t);

the functional derivative is then trivial, being given by

�[x
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. (B.5)

With Eq. (B.5), along with correlation function, the noise term is then given by
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Care must be taken to ensure that the di↵erential operators only act on the correct

functions. The result is

h◆
i

(t)� (x
i

(t) � x)i=�D�(t)2

d

dt

2

4

t

Z

0

ds �(s2)

3

5

@

@x
P

1

(x, t), (B.7)

Upon the insertion of Eq. (B.7) into Eq. (B.2a), the result is the closed Fokker-Planck

equation for the one-time joint probability distribution given in Eq. (4.15a)

The process is quite similar for the two-time joint probability distribution but for
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the presence of a second term. The noise term in Eq. (B.2b) is simplified as
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As in Eq. (B.4), the derivative has been changed through the delta function and the

independence of x
i

(t) from x and x
i

(t0) from x0 has been used.

The first term, labeled by (B.8a), is essentially identical to that of Eq. (B.7)

becoming

�D�(t)2

d

dt

2

4

t

Z

0

ds �(s2)

3

5

@

@x
P

2

(x, t; x0, t0), (B.9)

when the functional derivative is evaluated. The second term, labeled by (B.8b), can
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be simplified as
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Inserting both Eq. (B.9) and Eq. (B.10) into Eq. (B.2b) and the result is the Fokker-

Planck equation for the two-time probability distribution given in Eq. (4.15b).
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Solution to Joint Probability

Distribution Equations

We derive here the one- and two-time propagators from their respective Fokker-

Planck equations, given in Eqs. (4.15).

Following a Fourier transform (dual for the two-time equation) where k (and

k0) is the Fourier variable that correspond with the spatial coordinates x (and x0,

respectively), the two equations become


@

@t
+A(t)k

@

@k

�

bP
1

(k, t) = �
�

ikB(t) + k2D(t)
�
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(k, t), (C.1a)

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2

(k, t; k0, t0)=�
�

ikB(t)+kk0C(t, t0)+k2D(t)
�

bP
2

(k, t; k0, t0). (C.1b)

Here, bP
1

(k, t) is the Fourier transform of P
1

(x, t) and bP
2

(k, t; k0, t0) is the dual Fourier

transform of P
2

(x, t; x0, t0). Both of Eqs. (C.1) are first-order partial di↵erential

equations and, therefore, amenable to the use of the method of characteristics with

respect to k and t. The variables k0 and t0 are to be treated as parameters.

Per the method of characteristics, the variable s is defined along each of the

characteristic curves. Thus, the bracketed term in both equations is treated as a
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total derivative, i.e.,
d

ds
=

@

@t
+ A(t)k

@

@k
.

We have then the functional dependence of the characteristic variable s on the vari-

ables k and t as

s = t, k =
k

0

�(s)
,

where k
0

is the constant of integration for k-integral (that of the t-integral has been

set equal to 0.)

We solve Eq. (C.1a) first. By rewriting k in terms of s along with the explicit

insertion of the coe�cients, whose expressions are given in Eqs. (4.16) we have
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A rearrangement of terms in Eq. (C.2) allows both sides to be rewritten in terms of

a total derivative
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Taking the lower limit of the integral to be s = 0, with initial condition taken to be

localized, i.e., P
1

(x, t) = �(x � x
0

), and the upper limit to be s = t, we have
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Reinserting k
0

into Eq. (C.3), the expression for the one-time propagator in the

Fourier-domain is
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An inverse Fourier transform of Eq. (C.4) results in the one-time propagator that we

have given in Eq. (4.18a).
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The procedure for the two-time propagator is slightly complicated by the presence

of k0 and t0 as parameters. The rewriting k in terms of s and insertion of the

coe�cients results in
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Eq. (C.5) can also be rearranged into a total derivative:
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Care must be taken due to the ‘delayed’ initial condition, i.e., �(x�x0)⇧
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(x0, t0|x
0

, 0),

which is specified at the time t0. The lower limit of the total derivative is then

evaluated at s = t0, with k0
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/�(t0) being the initial k value; the upper limit is
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Reinsertion of k results in
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When the expression for the one-time propagator is inserted into Eq. (C.7), we

have
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Eq. (C.8) is simply the Fourier-domain expression for a bivariate Gaussian with

means given by �(t)x
0

+ �(t) and �(t0)x
0

+ �(t0), variances given by
p

2DT (t)

and
p

2DT (t0), and covariance given by N(t, t0). An inverse Fourier transform

of Eq. (C.8) therefore results in the two-time propagator that we have given in

Eq (4.18b):
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