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Abstract

The development of large-scale platforms that implement quantum information pro-

cessing protocols requires new methods for verification and validation of quantum

behavior. Quantum tomography (QT) is the standard tool for diagnosing quantum

states, process, and readout devices by providing complete information about each.

However, QT is limited since it is expensive to not only implement experimentally,

but also requires heavy classical post-processing of experimental data. In this dis-

sertation, we introduce new methods for QT that are more efficient to implement

and robust to noise and errors, thereby making QT a more widely practical tool for

current quantum information experiments.

The crucial detail that makes these new, efficient, and robust methods possible is

prior information about the quantum system. This prior information is prompted by
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the goals of most experiments in quantum information. Most quantum information

processing protocols require pure states, unitary processes, and rank-1 POVM oper-

ators. Therefore, most experiments are designed to operate near this ideal regime,

and have been tested by other methods to verify this objective. We show that when

this is the case, QT can be accomplished with significantly fewer resources, and pro-

duce a robust estimate of the state, process, or readout device in the presence of

noise and errors. Moreover, the estimate is robust even if the state is not exactly

pure, the process is not exactly unitary, or the POVM is not exactly rank-1. Such

compelling methods are only made possible by the positivity constraint on quantum

states, processes, and POVMs. This requirement is an inherent feature of quantum

mechanics, but has powerful consequences to QT.

Since QT is necessarily an experimental tool for diagnosing quantum systems, we

discuss a test of these new methods in an experimental setting. The physical system

is an ensemble of laser-cooled cesium atoms in the laboratory of Prof. Poul Jessen.

The atoms are prepared in the hyperfine ground manifold, which provides a large,

16-dimensional Hilbert space to test QT protocols. Experiments were conducted by

Hector Sosa-Martinez et al. [1] to demonstrate different QT protocols. We compare

the results, and conclude that the new methods are effective for QT.
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Chapter 1

Introduction

Quantum information processors hold the promise to carry out powerful new proto-

cols in communication, computation, and sensing [2]. However, quantum information

processing devices are notoriously delicate, and sources of errors, such as decoherence

or inexact controls can easily diminish the advantage of quantum information pro-

tocols. Therefore, it is essential to characterize quantum systems in order to assure

they are performing as expected, and to diagnose sources of errors.

Quantum tomography (QT) is the standard method for diagnosing a quantum

information processor, and is the focus of this dissertation. Originally, QT was pro-

posed as a method to characterize a quantum state of light [3], and then generalized

to estimate quantum states of arbitrary systems, in a protocol now called quan-

tum state tomography (QST). Later, the methodology was extended to estimate

quantum processes, or dynamical maps on quantum systems, as quantum process

tomography (QPT) [4], and quantum readout devices as quantum detector tomogra-

phy (QDT) [5]. Therefore, QT can be used to produce estimates of the three major

components that make up a quantum informational processor: state preparation,

evolution, and readout. QT protocols have two steps: measurement and estimation.
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Chapter 1. Introduction

Through measurements, one probes the quantum system to produce data that char-

acterizes the component in question while estimation is the procedure to use this

data to build a characterization of the state, process, or readout device.

Most theoretical proposals for measurements and estimation procedures have

been developed in the context of QST. There have been several different measure-

ments proposed in this context. The original work used homodyne detection to

reconstruct the Wigner function that describes a quantum state in a continuous

variable representation [3]. Other work proposed measurement schemes for finite

dimensional systems such as single-qubits [6], two-qubits [7], arbitrary spins [8], and

general qudits [9]. More recently, constructions based on symmetric mathematical

properties have been proven optimal for QST when the estimate is limited only by fi-

nite sampling [10], such as the symmetric informationally complete (SIC) POVM [11]

and a set of mutually unbiased bases (MUB) [12].

Estimation techniques for QST have benefited from developments in numerical

optimization. The first proposals for quantum state estimation used classical meth-

ods to estimate the Wigner function [3, 13], or elements of the density matrix [14].

However, these techniques did not produce a “physical” quantum state, that is the

estimated state was not positive and/or unit trace. Therefore, the estimate cannot

be used to predict future outcomes of the experiment, since it will, by definition,

predict unphysical results for some measurements. With the advance of numerical

methods, the physicality constraints can now be incorporated into estimation proto-

cols. The first such protocol was maximum likelihood (ML) [15], which made use of

the classical likelihood principle to determine the most likely state that produced the

data within the set of quantum states. Later, a simplification of the ML estimator

was proposed, called least-squares [7], which approximates the likelihood function

when there is Gaussian distributed noise.

QT has also been implemented in a variety of different physical systems. The

2



Chapter 1. Introduction

original proposal of using homodyne detection to reconstruct the Wigner function

of a single mode of light was implemented in Ref. [13]. Since then, QST has

been demonstrated in many different experimental platforms, for example, atomic

ions [16, 17], atomic spins of neutral atoms [1, 18, 19], orbital angular momentum

modes of light [20,21], and superconducting qubits [22]. QPT has also been used to

characterize the processes in many different systems, such as entangling gates with

trapped atomic ions [23] and optical systems [24, 25], the motion of atoms in an

optical lattice [26], and three qubits in NMR [27]. Applications of QDT are more

recent and primarily focus on characterizing detectors in optical systems [28–32]

Despite the promising theoretical and experimental work in QT, as well as the

tremendous potential for QT as a diagnostic tool, it still faces two major difficulties

that limit its future practicality. First, in any experiments there are sources of noise

and errors in the implementation that can make the estimate inaccurate. Most

importantly, to accomplish QT with high reliability, we must assume some parts of

the quantum system are working perfectly. For example, with QPT, we assume that

we can perfectly prepare quantum states and measurements to probe the unknown

quantum process. However, in practice this will never be the case and errors in

state preparation and measurement (commonly referred to as SPAM errors [33])

will limit the performance. Second, it is expensive both to perform the necessary

measurements and to produce an estimate with classical post-processing of the data.

This is especially true for large systems (e.g. of order 10 qubits), which are more

typical of modern day experiments. In order for QT to be a useful strategy for the

future of quantum information processing, these two issues must be addressed.

Recent work on QT has focused on both of these challenges. In order to deal with

errors in the implementation, new techniques have been proposed that do not require

one to assume some parts of the system are working perfectly [34–37]. These tech-

niques can be understood as a combination of all three types of QT: state, process,

3



Chapter 1. Introduction

and detector. For example, one method, called gate-set tomography (GST) [35, 36],

only requires a finite set of quantum processes, or gates, that can be repeated consis-

tently. Then, in GST the experimenter implements the set of gates in different orders

and collects data from the outcomes. The data is used to reconstruct a description of

each gate, thus accomplishing QPT for each gate. The procedure does not require a

known set of quantum states or detectors, and therefore is not susceptible to SPAM

errors. However, these types of methods require more measurements of the quantum

system. Therefore, while these methods do not suffer from SPAM errors, they are

even more limited by the size of the system than standard methods.

There has also been a considerable number of new proposals for specialized di-

agnostic schemes, unrelated to QT, that are independent of SPAM errors. Most

notably is randomized benchmarking (RB), which is a protocol for measuring the

average performance of a set of quantum processes [38, 39]. RB has also been ex-

panded to measure the performance of a particular process [40] and to estimate

other parameters that describe a particular quantum process [41, 42]. RB is now

a common procedure for verifying the performance of quantum systems in many

laboratories [43–47]. There exist other techniques, such as phase estimation, which

measures a few components that define a quantum readout device [48]. However, all

specialized diagnostic techniques only characterize a few parameters that describe

the quantum system, such as the average fidelity of a process, and most do not give

information about particular errors that occurred. Consequently, there is still a need

for QT in an experimental setting.

In order to make QT a more practical tool, new methods have been proposed

that take advantage of prior information about the quantum system to reduce the

resources required. For example, most quantum information processing protocols

require pure states, so theoretical methods have been designed to reconstruct pure

states that require less resources than standard techniques [49–57]. However, these
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methods have no guarantees on performance in the presence of noise and errors,

and in an experiment such circumstances will necessarily exist. Another closely

related technique for efficiently estimating pure quantum states is called quantum

compressed sensing [58–61]. Quantum compressed sensing is based on the classical

technique of compressed sensing, which allows for the estimation of low-rank matrices

or sparse signals more efficiently than classical limits [62, 63]. Quantum compressed

sensing estimates low-rank quantum states, such as pure states, more efficiently than

standard techniques by using a set of special measurements [60] and a specific op-

timization program [58, 59]. This protocol offers the advantage that the estimate

produced is provably robust to noise and errors [58,59]. Quantum compressed sens-

ing has been experimentally demonstrated for QST [19, 64, 65] and QPT [66, 67].

However, the technique has limited practicality since it requires special measure-

ments and optimization programs. One goal of this dissertation is to show how these

two techniques for efficient QT with prior information fit into a general, more flexible

framework.

Even with new proposals, like GST [35,36] and quantum compressed sensing [58,

59], QT is unsuitable for many experiments. GST and related methods are indepen-

dent of SPAM errors, but only feasible for small systems (e.g. at most two-qubits).

Efficient methods can work for larger systems, but may not perform well in the pres-

ence of noise and errors, or require special types of measurements and estimation.

Experimental efforts have pushed the size of typical quantum systems beyond a few

qubits, and therefore there is a growing demand for QT protocols that are flexible

to a particular implementation while still being robust to noise and errors in these

regimes.

In this dissertation, we develop measurements and estimation techniques that

are more efficient to implement for larger quantum systems, robust to any type

of noise and errors, and are flexible to suit a given experiment. The fundamental

5



Chapter 1. Introduction

aspect that allows for the creation of such measurements is prior information about

the physical system. In any experimental implementation of a quantum information

protocol, there is a wealth of prior information. Most quantum information protocols

require pure states, coherent evolution, and projective measurements. Therefore,

most experiments try to engineer systems that operate near these requirements.

Through a variety of separate calibrations and experiments, such as RB [44, 68, 69]

or phase estimation, one often has confidence that the experiment is operating near

the desired regime before QT is performed. We show how to include this type of

prior information into QST, QDT and QPT.

We begin with a discussion of standard methods for QT in Chapter 2. We review

previously proposed measurements and estimation techniques as well as formalize

the effect of noise and errors on the three types of QT. In Chapter 3, we consider

QST with the prior information that the state is pure, or, more generally, close to

pure. We define two types of measurements called complete and strictly-complete,

that rely on different prior information. We further prove that the estimates derived

from strictly-complete measurements are robust to all noise and errors. In Chapter 4,

we present methods to construct both complete and strictly-complete measurements

for QST, and provide examples of such measurements. We also show that strictly-

complete measurements require roughly the same amount of resources as complete

measurements. In Chapter 5, we study how the complete and strictly-complete

measurements can be generalized to QPT when there is prior information that the

process is unitary. We simulate these methods for unitary QPT in the presence of

errors and show how comparing different estimators can be used as a diagnostic tool.

In Chapter 6, we consider an experimental implementation of QST and QPT in

order to demonstrate the power of techniques described in Chapters 3–5. The plat-

form involves ensembles of laser-cooled cesium atoms in which quantum information

is encoded in the spin of each atom. The large nuclear spin of cesium, together with

6



Chapter 1. Introduction

the electron spin, leads to a large dimensional Hilbert space and thus provides a rich

test-bed in which to explore QT protocols. The spins are controlled by four separate

magnetic fields which allow for a variety of different evolutions and measurements.

We discuss how different methods for measurement and estimation perform in this

system, and draw conclusions on the best ways to implement QT. Finally in Chap-

ter 7, we offer conclusions on the methods discussed as well as an outlook to future

work in QT.

The dissertation follows the following published articles and manuscripts in prepa-

ration:

Reference Authors Chapter
PRA 93, 052105 (2016) CHB, I. H. Deutsch, and A. Kalev Ch. 3 and 4
PRA 90, 012110 (2014) CHB, A. Kalev and I.H. Deutsch Ch. 5

in preparation
H. Sosa-Martinez, N. Lysne,

CHB, A. Kalev,
I. H. Deutsch, and P. S. Jessen

Sec. 6.3

in preparation
H. Sosa-Martinez, N. Lysne,

CHB, A. Kalev,
I. H. Deutsch, and P. S. Jessen

Sec. 6.5

arXiv:1607.03169
T. Keating, CHB,
Y.-Y. Jau, J. Lee,

G. W. Biedermann, and I. H. Deutsch

Table 1.1: Work published and in preparation, with reference to text.
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Chapter 2

Standard methods for quantum

tomography

Quantum tomography (QT) is a well established protocol for characterizing the three

components of a quantum information processor: state preparation, evolution, and

readout. In this chapter, we formally describe these components and then introduce

the standard methods for QT. We divide the discussion into two regimes. First, an

ideal setting where the states, evolutions, and readout devices are errorless and we

have direct access to the probability of each measurement outcome. Second, the

realistic setting where noise and errors exist in all components. Any experimental

implementation will necessarily fall into the second regime, so the first regime serves

as mathematical tool to establish the framework for QT.

2.1 Quantum information processing devices

A quantum information processing device can be broken into three components:

state preparation, evolution, and readout. In an experiment, the quantum system

8
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is usually prepared in some fiducial state by cooling. The system is then evolved

with external control fields, such as electromagnetic fields. After the evolution, the

system is measured by coupling to an ancilla system and then reading out the values

of the ancilla. In this section, we describe each component and present mathematical

descriptions.

In the following discussion, we denote the d-dimensional Hilbert space that de-

scribes the quantum system as Hd. We will also describe linear operators on the

Hilbert space that are elements of the Hilbert space Hd2 , which we refer to as the op-

erator space. In analogy to Dirac notation, we describe elements of Hd2 as “rounded

kets,” |·). The procedure to take an operator, which is represented as a d× d matrix

to a rounded ket, which is represented by a d2 × 1 vector, is called vectorization.

This can be accomplished in many ways but the most common is a “stacking” of the

matrix columns,

A =


a1,1 a1,2 · · · a1,d

...
...

. . .
...

ad,1 ad,2 · · · ad,d

→ |A) =



a1,1

...

ad,1

a1,2

...

ad,2
...

a1,d

...

ad,d



. (2.1)

Vectorization preserves the trace inner product such that Tr(A†B) = (A|B). We

denote {Υα} as an arbitrary orthonormal basis on operator space. One useful choice

is the Hermitian basis, {Hα}, where H0 = 1/
√
d and Hα>0 are traceless Hermitian

matrices. In the Hermitian basis, Hermitian operators are represented by real vectors,

9
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where a0 = Tr(ρH0) = 1√
d
Tr(ρ). We may apply a d2 × d2 unitary map to change

the basis of the rounded ket in the operator space. For example, the unitary, V =∑
α |Hα)(Υα| maps a vectorized operator from a given basis {Υα} to the Hermitian

basis.

2.1.1 State preparation

State preparation is the first step in a quantum information processing. A quantum

state is mathematically described by density operator, ρ, which is represented by a

positive semi-definite (PSD), ρ ≥ 0, and trace one, Tr(ρ) = 1, matrix. The set of all

quantum states is the convex set Q = { ρ | ρ ≥ 0, Tr(ρ) = 1 }. We will make many

definitions with respect to the set of all PSD matrices, labelled as S = { S | S ≥ 0 },

which is also convex, such thatQ ⊂ S. We refer to the PSD constraint as “positivity”

and it will play an important part in later chapters. We use the greek letters, ρ, σ, and

τ to represent quantum states and the capital letters S or X to represent an arbitrary

PSD matrix. An arbitrary quantum state is specified by d2 − 1 free parameters

(real numbers) because quantum states are elements of the operator space but are

constrained to have unit trace.

2.1.2 Quantum evolution

Once the system is prepared in the desired quantum state, external control is applied

to evolve the state. The external control produces a quantum process, E [·], or dynam-

ical map, on the quantum state. Mathematically, we consider such maps that satisfy

two conditions, complete positivity (CP) and trace preserving (TP) [2]. To under-

stand CP maps, first let us define a positive map. A positive map, which is applied

to a quantum state ρin, produces an output state, ρout = E [ρin] that is positive, i.e. if

ρin ≥ 0 then ρout ≥ 0. A completely positive (CP) map satisfies the same definition

10
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as a positive map but additionally maintains the positivity of any bipartite state ρAB

when E acts on one subsystem, i.e. if ρAB ≥ 0 then (EA ⊗IB)[ρA,B] ≥ 0. A TP map

is a map that preserves the trace of the quantum state, i.e. Tr (ρ) = Tr (E [ρ]).

There are many ways of representing a quantum process but we focus on two

methods. First, we consider the Kraus representation,

E [ρ] =
∑
µ

AµρA
†
µ. (2.2)

where Aµ are called Kraus operators. By construction, the Kraus representation

describes a CP map. If the Kraus operators resolve the identity,

∑
µ

A†µAµ = 1, (2.3)

then the map is also TP. The Kraus representation is not unique; a given map can

be described by infinitely many different sets of Kraus operators. A special type of

CPTP map is a unitary map. A unitary map preserves the eigenvalues of the density

operator. Unitary maps have a single Kraus operator, U , which is represented by a

unitary matrix, and therefore satisfies Eq. (2.3).

Another representation that will be important for QT is the process matrix,

which is a d2 × d2 matrix denoted χ. We can relate the process matrix to the Kraus

representation by expanding each Kraus operator in a basis on operator space, {Υα},

where Tr(ΥαΥβ) = δα,β and α, β = 1, . . . , d2. Then writing the Kraus operators in

this basis gives Aµ =
∑

α aα,µΥα, where aα,µ = Tr(AµΥα) is a complex expansion

coefficient. Applying this expansion to Eq. (2.2) gives,

E [ρ] =
∑
α,β

χα,βΥαρΥ†β, (2.4)

where the expansion coefficients have been grouped to χα,β =
∑

µ aµ,αa
∗
µ,β, which

defines the elements of the process matrix. By construction χ is Hermitian and

11
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when χ ≥ 0 it corresponds to a CP map. We apply the expansion to Eq. (2.3) to

write the TP constraint in terms of χ,

∑
α,β

χα,βΥ†βΥα = 1. (2.5)

An arbitrary CP map is specified by d4 real numbers, which is made clear in the

process matrix representation since χ is a d2 × d2 Hermitian matrix. If the map is

TP, then there are an additional d2 linear constraints on the process matrix given

in Eq. (2.5). Therefore, the number of free parameters that describes an arbitrary

CPTP map is d4 − d2.

2.1.3 Information readout

After evolution, one needs to read out the desired information about the final state

in order to determine the result of the quantum information protocol. Readout is

typically accomplished by coupling the quantum system to an ancilla system and then

measuring the ancilla [2]. The result is described mathematically by a POVM, which

is a set of operators, called POVM elements. An ancilla may have several different

orthonormal states that correspond to different outcomes of the measurement. We

index the outcomes with µ and the probability of getting an outcome, µ, is described

by a POVM element, which is a positive operators Eµ ≥ 0. The POVM elements

are represented by PSD matrices that resolve the identity,
∑

µEµ = 1. We focus on

POVMs with a finite number of N elements but mathematically a POVM may have

infinite (even continuous) elements. The POVM can also be expressed by a N × d2

matrix, referred to as the POVM matrix,

Ξ ,


← (E1| →

...

← (EN | →

 , (2.6)

12
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The POVM matrix, Ξ, maps elements of the operator space to an N -dimensional

vector space. When Ξ acts on positive operators, i.e. vectorized PSD matrices, the

N -dimensional vector space is real. When Ξ acts on a quantum state, i.e. vectorized

PSD matrices with unit trace, the result is probabilities of the different possible

measurement outcomes, Ξ|ρ) = p. A single POVM can be described by (N − 1)d2

free parameters. This corresponds to the d2 real numbers that describes each one

of the N POVM elements. The identity resolution condition consists of a set of d2

linear constraints that relate the N POVM elements.

There are many different types of POVMs. A particular example we will use

throughout this dissertation is a “basis” measurement. A basis measurement is a

POVM consisting of d, rank-1 orthonormal elements, Tr(EµEν) = δµ,ν . This is the fa-

miliar case of measurement of a Hermitian observable, whose measurement outcomes

correspond to its (non-degenerate) eigenvalues. We denote a basis measurement by

its eigenvectors,

B = {|e0〉 , . . . , |ed−1〉}, (2.7)

which has corresponding POVM elements, Eµ = |eµ〉〈eµ|.

In QT, we often require multiple readout devices. This corresponds to a collection

of POVMs. We will use an additional subscript, b, to denote the POVM, and v

to denote the POVM element, Eb,v. A collection of B POVMs is also a POVM,

however we must normalize the POVM elements, Eb,v → 1
B
Eb,v so that they resolve

the identity,
∑

b,v
1
B
Eb,v = 1.

2.1.4 The Born rule

A quantum information processor makes use of the three different components in a

given experiment. The combination produces an outcome with probability expressed

13
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mathematically by the Born rule,

pµ = Tr (EµE [ρ]) . (2.8)

The Born rule establishes a linear relationship between the probability of each out-

come and the mathematical description of the state, process, or readout device. We

organize these probabilities into a vector p = [Tr(E1E [ρ]), . . . ,Tr(ENE [ρ])], referred

to as the probability vector.

We previously constrained ρ, E , and Eµ to be positive (or CP for the process)

and have linear constraints related to the trace. These constraints were necessary

to ensure that the Born rule return probabilities. The positivity constraints ensure

that all pµ’s are positive while the trace and resolution of the identity constraints,

assure that
∑

µ pµ = 1.

In any real experiment, it is impossible to determine the probabilities {pµ} exactly

due to finite sampling limits and experimental sources of errors. We return to these

issues in a later section but for now, we consider the unrealistic case where we have

access to {pµ}. This idealization allows us to define an important notion in QT,

known as informational completeness.

2.2 Ideal quantum tomography

There exists a QT protocol to reconstruct a mathematical description of each part

of a quantum information processor (state preparation, evolution, and readout) re-

spectively called state, process, and detector tomography. In each protocol, one of

the components is unknown, but we assume complete knowledge of the other two.

For example, in quantum state tomography, the quantum state is unknown but we

assume knowledge of all quantum evolutions and readout devices. To accomplish

standard QT, we probe the unknown component to determine a measurement vec-

14
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tor. In this section, we describe an ideal version of QT, where the measurement

vector is the probability vector defined by the Born rule in Eq. (2.8). With the

prior knowledge of the other components, the Born rule establishes a linear relation-

ship between the measurement vector and the unknown component. However, not all

methods of probing the unknown component are sufficient to completely characterize

the unknown component. In order to reconstruct a description of a quantum state,

process, or readout device, we need to fully characterize all free parameters. When

the probabilities provide information about all the free parameters, we call them

fully informationally complete (full-IC). In this section, we describe full-IC methods

for state, process, and detector tomography in the ideal setting.

2.2.1 Ideal quantum state tomography

In quantum state tomography (QST), we measure an unknown quantum state with a

POVM. The probability of each outcome is found from the Born rule, pµ = Tr[Eµρ].

For convenience, we sometimes notate the POVM as a map from density matrix space

to probabilities, M[ρ] = (Tr[Eµρ], . . . ,Tr[Eµρ]) = p. A full-IC POVM uniquely

identifies the d2 − 1 free parameters that describe an arbitrary quantum state. A

mathematical definition of a full-IC POVM for QST is given below.

Definition 2.1 (Fully informationally complete, QST) Let Q = {ρ : ρ ≥

0, Tr(ρ) = 1} be the set of all quantum states. A POVM is said to be fully informa-

tionally complete if

∀ ρ1, ρ2 ∈ Q, ρ1 6= ρ2 iff M[ρ1] 6=M[ρ2], (2.9)

We can determine when a POVM is full-IC by the POVM matrix, Ξ. In vectorized

form, the Born rule is,

p = Ξ|ρ). (2.10)
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When Ξ is invertible, that is Ξ+ = (Ξ†Ξ)−1Ξ†1 exists, all elements of ρ are uniquely

determined. This is only possible if there are d2 linearly independent POVM ele-

ments.2

Two important examples of full-IC POVMs are the symmetric informationally

complete (SIC) POVM [11] and the set of mutually unbiased bases (MUB) [12].

The SIC POVM is a single POVM with d2, rank-1 POVM elements. The POVM

elements have a constant inner product such that they are symmetrically separated

in operator space. The inner product is defined as

Tr[EµEν ] =
1

d2(d+ 1)
, µ 6= ν, (2.11)

and Tr[E2
µ] = 1

d2 . The MUB consist of B = d+1 basis measurements. A measurement

of one of the bases projects the quantum state into an unbiased state with respect

to the other bases. For example, in d = 2, the bases that make up the MUB consist

of the eigenvectors of the well known set of Pauli matrices. If we measure the basis

corresponding to σz the resulting state is either |↑z〉 or |↓z〉. Therefore, if we measure

this state with the corresponding basis to σx (or to σy), we have equal probability

of getting each of the possible outcomes. The unbiased nature of the measurement

outcomes are defined by the inner product relation (where each POVM element is

normalized such that
∑

b,v Eb,v = 1),

Tr(Eb,vEb′,v′) =


δv,v′

(d+1)2 if b = b′

1
d(d+1)2 if b 6= b′

(2.12)

1The superscript “+” denotes the left inverse since, in principle, there may be more than d2

POVM elements so the POVM matrix is not square, and the standard inverse does not apply.
2One might then think that in order for a POVM to be full-IC, rank(Ξ) = d2 − 1, since this

is the number of free parameters that describe an arbitrary quantum state. However, due to the
identity resolution constraint,

∑
µ pµ =

∑
µ Tr(Eµρ) = Tr(ρ), i.e. the sum of all probabilities is

equal to the trace of the quantum state for all POVMs. Therefore, all POVMs measure the trace of
a quantum state. This overlaps with the trace constraint, and therefore the trace constraint does
not reduce the number of POVM elements required.

16



Chapter 2. Standard methods for quantum tomography

2.2.2 Ideal quantum detector tomography

The goal of quantum detector tomography (QDT) is to determine the unknown

POVM that describes the readout device. To accomplish this, we probe the POVM

element with a set of M , known quantum states, which we organize into a d2 ×M

matrix Θ, defined as,

Θ =


↑ ↑

|ρ1) · · · |ρM)

↓ ↓

 . (2.13)

Then the Born rule can be written as the linear matrix relation, P = ΞΘ, where

the elements of the matrix Pµ,ν = Tr[Eµρν ] are the conditional probability of getting

outcome µ given the ν state. A mathematical definition of full-IC for QDT is similar

to Definition 2.1 but applies to the set of probing states. The collection of states

is full-IC when the matrix P uniquely identifies every POVM element. This occurs

when Θ is invertible, i.e. Θ+ = Θ†(Θ†Θ)−1 exists. For Θ to be invertible the POVM

must be probed with d2 linearly independent quantum states. For example, the of

set d2 pure states,

|k〉 , for k = 1, . . . , d,

1√
2

(|k〉+ |n〉), for k = 1, . . . , d− 1, and n = k + 1, . . . , d,

1√
2

(|k〉+ i |n〉), for k = 1, . . . , d− 1, and n = k + 1, . . . , d, (2.14)

are linearly independent [4]. No matter how many elements there are in a given

POVM, ideal QDT only requires d2 linearly independent states to be full-IC. This

is because applying the unknown POVM matrix to a single state produces an N ×

1 probability vector. Each element in the probability vector relates to one free

parameter in each of the N POVM elements.

We could also accomplish QDT by characterizing each POVM element indepen-
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dently,

p> = (Eµ|Θ. (2.15)

Similar to Eq. (2.10), we can solve for (Eµ| when Θ is invertible. This technique is

advantageous when there are many POVM elements, which may make it computa-

tionally expensive to store the matrix Ξ.

2.2.3 Ideal quantum process tomography

The goal of quantum process tomography (QPT) is to determine the unknown quan-

tum process. To accomplish this, we prepare a set of known quantum states and

evolve them with the unknown process. The output states from the unknown pro-

cess are then determined by a full-IC POVM. By Eq. (2.8),

pµ,ν = Tr

[
Eµ
∑
α,β

χα,βΥαρνΥ
†
β

]
,

=
∑
α,β

χα,βTr
[
EµΥαρνΥ

†
β

]
,

= Tr [Dµ,νχ] , (2.16)

where (Dµ,ν)β,α , Tr
[
EµΥαρνΥ

†
β

]
are elements of a four dimensional array [4]. We

can also express the elements, (Dµ,ν)β,α in vectorized form,

(Dµ,ν)β,α = (Υβ|EµΥαρν) = (Υβ|ρ>ν ⊗ Eµ|Υα), (2.17)

yielding Dµ,ν , ρ>ν ⊗Eµ, which is an operator. The relation |AXB) = B>⊗A|X) is

a property of the Kronecker product, “⊗”. This is similar to the relation found by

the Choi-Jamio lkowski isomorphism, which is another representation of a quantum

process [70]. If the probabilities, {pµ,ν}, uniquely identifies an arbitrary process

matrix then the states and POVMs are full-IC for QPT. The mathematical definition
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of full-IC for QPT is similar to Definition 2.1, but applies to the set of probing states

and POVM elements.

The result of Eq. (2.16) is a linear relationship between the process matrix and

the probabilities, similar to QST and QDT. We can also express this relationship in

vectorized form where the process matrix is transformed to a d4×1 vector, Eq. (2.10),

the 4-dimensional array, D becomes a MN × d2 matrix that operates on |χ) (we use

the rounded bra-ket notation for simplicity even though χ is not an element of the

operator space) and the probabilities form a MN × 1 vector,

p = D|χ). (2.18)

If D is invertible, then the solution |χ) = D+p is unique, so the states and POVM that

determine D are full-IC. In order for D to be invertible there must be d2 linearly inde-

pendent states, such as the ones introduces in Eq. (2.14), and d2 linearly-independent

POVM elements, such as the SIC POVM or MUB.

2.2.4 General QT

There are clearly many parallels between QST, QDT, and QPT. In each procedure,

we look to reconstruct one component in the quantum system, either the state, evo-

lution, or readout device. Each component is represented by a positive semidefinite

(PSD) matrix. This property, simply referred to as positivity, is a powerful constraint

that will have important implications in future chapters. Another commonality be-

tween all three methods is the linear relationship between the probabilities and the

PSD matrix that represents the component. We can generalize this relationship as

follows,

p =M[X], (2.19)

where X is the PSD matrix that represents the given component and M is referred

to as the “sensing map.” The sensing map is a linear mapping between the PSD
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matrix that represents a given component and the probability of each outcome. For

example, in QST the sensing map is proportional to the POVM. While the sensing

map always provides a linear relation, in practice its form is dependent on the type

of QT. For example, in QPT, the sensing map is the matrix D, which has elements

dependent on the input states and the POVM that is applied to the output states.

So, while the linear relation is an inherent feature of QT, the form is dependent on

the type of QT being implemented.

Another difference between the three types of QT comes from the trace constraint.

For QST, we saw the quantum state is constrained to be unit trace, while for QDT

we saw that the POVM elements are constrained to resolve the identity. For QPT,

the trace constraint is more complicated, and contains d2 linear constraints on the

process matrix. Therefore, the three different types of QT are differentiated by

the sensing map and the trace constraint. However, we will see that the positivity

constraint is a very important feature of QT, and since all three methods share this

constraint, many results we present in future chapters in terms of one type of QT

can be generalized to the other two.

2.3 Noise and errors in quantum tomography

In any experimental implementation of QT there necessarily exists sources of noise

and errors. One fundamental source of noise is due to a finite number of copies of

the system, referred to as “projection noise.” There may also be other sources of

noise within the experimental setup. Errors correspond to inexact characterizations

of the other parts of the quantum information processor. For example, in QST the

readout device may be not be described by the expected POVM. Despite the fact that

many current systems have a very high level of control, there will always be physical

mechanisms that are not known. We take here a frequentist perspective, that the
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probabilities are inherent to the system and the measurement vector returned in the

experiment is a perturbation from the probabilities based on the the noise and errors.

In a real application of QT, we only have access to the measurement vector and not

the probabilities.

2.3.1 Noise in quantum tomography

In any quantum system there exists some level of noise due to finite sampling. Ad-

ditionally, there may be noise in the readout device, such as shot noise. For a noisy

system, the experiment produces a measurement vector, f , which we relate to the

probability vector p, discussed in the previous section, by the noise vector, e,

f = p+ e. (2.20)

The elements of the noise vector are random variables with zero mean and distri-

bution dependent on the type of noise. The magnitude, ‖e‖2, which we take as the

`2-norm of the vector but in general could be any norm, depends on the distribu-

tion that defines the random variable. In general, the expected noise magnitude is

proportional to the variance of the distribution, E [‖e‖2
2] =

∑
µ E[e2

µ].

Projection noise

In any realization there will be projection noise due to finite sampling of the system.

For example, in QST we may have access to a finite number of copies, m, of the

quantum state. Therefore, each POVM outcome occurs a finite number of times.

The random variable that describes the noise then follows a multinomial distribution,

E[eµ] = 0,

E[eµeν ] =
pµ(δµ,ν − pν)

m
. (2.21)
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The expected magnitude of projection noise is E[‖e‖2
2] = 1

m

∑
µ pµ(1− pµ). One can

easily show that the expected magnitude is bounded by pµ = 1/N for all µ, i.e., the

probabilities associated with the maximally mixed state. Then,

E[‖e‖2
2] ≤ 1− 1/N

m
= ξ2. (2.22)

The expression can be generalized for multiple POVMs, or for QDT and QPT with

multiple states being measured.

Shot noise

When the noise in the measurement vector is caused by shot noise from the readout

device, we treat the random variable, eµ, as being normally distributed, with mean

zero, E[eµ] = 0 and constant variance, E[eµeν ] = σ2δµ,ν . This assumption may also

apply to the case of finite sampling when the number of samples is very large if

the probabilities are not too small. Then the expected magnitude of the noise is

bounded by E[‖e‖2
2] ≤ σ2N = ξ2. It is important to keep in mind that for both the

types of noise discussed, and perhaps other examples, the bound E[‖e‖2
2] ≤ ξ2 is only

approximate. In a given experiment it may be violated.

2.3.2 Errors in quantum tomography

In each type of QT, we require perfect knowledge of other parts of the quantum

system. For example, in QST we must know the POVM that describes the readout

device exactly. This will never be possible in real experiments. Therefore, we must

study how QT performs when this assumption breaks down. In this section we

consider the effect of these errors on the measurement vector for the three different

types of QT.
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Errors in QST

For QST, we assume the readout device is described by the POVM, {Eµ}, called

the target POVM. However, due to unknown errors such as imperfect control, or

technical noise in the detector, the device is actually described by a different POVM,

{E ′µ}. These errors are commonly referred to as “measurement errors.” The actual

POVM can be written in terms of the target POVM,

E ′µ = Eµ +Xµ. (2.23)

where the matrix Xµ describes the error in the readout device. The error matrix can

have any form such that both Eµ and E ′µ are POVMs. In the vectorized form we

can write the actual POVM as a sum of the two POVM matrices,

Ξ′ = Ξ + X , (2.24)

where X is the matrix form of {Xµ}. Then acting the implemented POVM matrix

on a quantum state gives

p′ = Ξ′|ρ) = Ξ|ρ) + X|ρ) = p+ x, (2.25)

where x = X|ρ) is the error vector, similar to the noise vector discussed in the

previous section. The elements of the error vector, xµ, have a distribution dependent

on the physical process that causes errors in the readout device. Some processes

may also cause the elements of the error vectors to have mean not equal to zero.

We call these systematic errors, as they correspond to a systematic offsets in the

experimental setting as opposed to random fluctuations. Similar to the noise vector,

the error vector may be bounded such that ‖x‖2 ≤ η. This bound will depend on the

physical process that produces the error and requires some prior knowledge about

the performance of the readout device.
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Errors in QDT

For QDT, we require the perfect preparation of many quantum states in order to

characterize a detector. However, the state preparation procedure will never be per-

fect due to decoherence and/or imperfections in the control fields. In this case, there

is a set of target states, {ρν}, but due to errors in the state preparation procedure,

the set of states actually prepared are {ρ′ν}. These errors are commonly referred to

as “preparation errors.” We can express the prepared density matrices in terms of

the target density matrices,

ρ′ν = ρν + Yν , (2.26)

where the matrix Yν describes the errors in the state preparation. As with QST, the

exact form of Yν is dependent on the physical process that is causing the prepared

state not to match the target state. In vectorized form,

Θ′ = Θ + Y , (2.27)

where Y is the matrix form of {Yµ}. Then acting the prepared state matrix on the

POVM matrix gives

p′ = ΞΘ′ = ΞΘ + ΞY = P + Y, (2.28)

where Y is the error matrix corresponding to preparation errors. Systematic errors

occur when the elements of Y do not have zero mean. We can similarly bound the

magnitude of the error matrix, ‖Y‖2 ≤ υ. This bound will depend on the physical

process that produces the error and requires some prior knowledge about the state

preparation procedure.

Errors in QPT

QPT can suffer from both state preparation and measurement errors (commonly

known as SPAM [33]). Taking the linear relation in Eq. (2.17) and applying Eq. (2.24)
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and (2.27) gives,

D′µ,ν = ρ′>ν ⊗ E ′µ = ρ>ν ⊗ Eµ + Y >ν ⊗ Eµ + ρ>ν ⊗Xµ + Y >ν ⊗Xµ. (2.29)

Or in vector form,

D ′ = D + Z, (2.30)

where Zµ,ν = Y >ν ⊗ Eµ + ρ>ν ⊗Xµ + Y >ν ⊗Xµ. Then the probability of getting the

outcome for the prepared states and implemented measurements is related to the

outcome of getting the assumed states and measurements,

p′ = D ′|χ) = D|χ) + Z|χ) = p+ z, (2.31)

where z is the error vector for SPAM errors. As with the state preparation and

measurement errors independently, we can bound the magnitude of the error vector,

‖z‖2 ≤ ζ. This bound will depend on the physical process that produces the error

and requires some prior knowledge about the performance of the POVM and state

preparation.

2.3.3 Additivity of noise and errors

We make the assumption that the noise and errors are additive. That is, increasing

the magnitude of statistical noise does not affect the preparation or measurement

errors and vice versa. This assumption allows us to easily incorporate noise and errors

together. For example, in QST the measurement vector is equal to the probability of

getting each outcome plus a noise vector, given in Eq. (2.20), plus the error vector.

We combine these two expressions to give,

f = p′ + e = p+ x+ e. (2.32)

The total noise plus error vector is x + e and has magnitude bounded by the two

independent vectors, ‖x+e‖2 ≤ ‖x‖2 + ‖e‖2 ≤ η+ ξ. Therefore, in this assumption
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the magnitude of the error vectors are additive. The same procedure can be applied

for QDT and QPT.

The additivity assumption breaks down for certain sources of noise, such as pro-

jection noise. With projection noise, as shown in Sec. 2.3.1, the magnitude of the

noise is proportional to the probability of the outcome. This probability is dependent

on the measured quantum state, and therefore proportional to the state preparation

errors. However, in most cases we can choose a bound for the noise magnitude that

is independent of the state, as was done for projection noise in Sec. 2.3.1

2.4 Numerical estimation methods

Since noise and errors are inherent to any application of QT, we need methods that

produce reasonable estimates of quantum states, processes, and readout devices in

this case. The most basic approach is to determine the matrix that best represents

the measurement vector, f . For example, in QST this can be found by minimizing the

least-squares function between the measurement vector and a model in the following

program:

minimize:
R

‖Ξ|R)− f‖2. (2.33)

When the POVM is full-IC, there is a unique R that minimizes this function called

the “linear-inversion estimate”, with analytic form,

|R̂) = Ξ+f , (2.34)

which is related to the method we discussed in Sec. 2.2. However, due to noise

and errors, the linear-inversion estimate, R̂, is not necessarily a “physical” quantum

state, i.e. a PSD matrix with unit trace. This posses a problem for many reasons.

For one, many quantities, such as fidelity, purity, entanglement measures, etc., are
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defined for PSD matrices. Another problem is the estimate may produce nonphysical

predictions for outcomes of future experiments. For example, if the density matrix

estimated is not positive it will predict a “negative” probability for certain outcomes.

Therefore, we need a method to produce an estimate that is constrained to be a

physical quantum state.

In general, to find a physical estimate for QT, we use numerical optimization

techniques that are constrained over the physical set. The physical set contains the

positivity constraint and a trace constraint, which is dependent on the type of QT.

These two constraints define a convex set. When there are noise/errors we wish

to find an estimate that is “close” to the measurement vector but still within the

physical set. The closeness of the estimate is defined by some function. If the function

is convex then, since we are searching over a convex set, this fits the standard convex

optimization paradigm.

2.4.1 Convex optimization

Convex optimization is advantageous for several reasons. First, it has been proven

that for convex optimization only global minima exist, giving guaranteed convergence

of numerical programs. Second, there exists efficient algorithms to solve convex

programs that are freely available. The goal of convex optimization is to determine

the minimum of a convex function f(x) over a convex set. The defining property of

a convex function is,

f(ax1 + bx2) ≤ af(x1) + bf(x2) (2.35)
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such that a + b = 1 and a, b ≥ 0. A convex optimization problem has the following

general form,

minimize:
x

f(x) (convex function),

subject to: gi(x) ≥ 0 (convex functions),

hj(x) = 0 (affine functions), (2.36)

where {gi(x)} are called the convex inequality constraints and {hi(x)} are called the

affine (a linear function plus a constant) equality constraints. We denote x̂ as the

value of x that produces the minimum value of f while still satisfying the constraints.

There are many different types of convex programs, but the standard version of QT

falls into semidefinite programs (SDP). SDPs have an inequality constraint that the

variable is a PSD matrix. See Ref. [71] for further information on convex optimiza-

tion.

2.4.2 Convex constraints for QT

In QT, the variable is the matrix that describes the unknown component, which we

constrain to be physical. We derived the physical constraints for each component in

Sec. 2.1. We also introduce an additional inequality constraint that the any estimate

for QT should have a probability vector that is close to the measurement vector,

which we call this the measurement constraint. The variable and constraints for

each type QT is defined in Table 2.1.

From the table, we see the parallels between the different constraints in QT. The

positivity constraint is a convex inequality constraint that is shared in all three ver-

sions of QT. The trace constraint is an affine equality constraint that is different for

each type of QT. The measurement constraint is also a convex inequality constraint.

In the measurement constraint, the value of ε is dependent on prior information
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QST QDT QPT

Variable ρ Eµ χ

Positivity ρ ≥ 0 Eµ ≥ 0 χ ≥ 0

Trace Tr[ρ] = 1
∑

µEµ = 1
∑

α,β χα,βΥ†βΥα = 1

Measurement ‖Ξ|ρ)− f‖2 ≤ ε ‖ΞΘ− f‖2 ≤ ε ‖D|χ)− f‖2 ≤ ε

Table 2.1: Convex constraints for QT

about the noise and errors present in the experiment. We define ε as the sum of the

magnitude of random noise, ξ, plus the magnitude of errors for each version of QT,

(QST: η, QDT: υ, and QPT: ζ), discussed in Sec. 2.3.2.

2.4.3 Estimation programs for QST

In principle we can choose the optimization function as any convex function. There

are, however, some preferred choices. These functions also determine which con-

straints to apply in the convex optimization program. We will discuss each in terms

of QST, since it has the simplest form, but generalizations can be made for QDT

and QPT.

Least-squares

The first program we consider for QST is constrained least-squares (LS). This is

similar to the linear-inversion program considered previously, except we include the

constraint that ρ is a quantum state, i.e. it is positive and has unit trace. The
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corresponding convex optimization program is,

minimize:
ρ

‖Ξ|ρ)− f‖2

subject to: ρ ≥ 0,

Tr(ρ) = 1. (2.37)

LS returns the quantum state that matches the measurement vector as closely as

possible measured by the `2-norm.

Maximum-likelihood

The second convex estimator we consider is called maximum-likelihood (ML), origi-

nally proposed for QST in Ref. [15]. The program is based on the classical maximum-

likelihood technique, which returns the estimate that maximizes the likelihood func-

tion, L(ρ|f) =
∏

µ Tr(Eµρ)mfµ , for a finite sample of m quantum states. The state

that maximizes the likelihood function also minimizes the negative log-likelihood

function,

−log [L(ρ|f)] = −m
∑
µ

fµlogTr(Eµρ), (2.38)

which is a convex function. Therefore, we can determine which quantum state min-

imizes the negative log-likelihood function with convex optimization. The ML pro-

gram for QST is,

minimize:
ρ

− log [L(ρ|f)]

subject to: ρ ≥ 0,

Tr(ρ) = 1, (2.39)

where the factor of m is dropped since it does not effect the optimization. ML

returns the most likely quantum state to have produced the measurement vector. In
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the limit that the noise in QST is Gaussian distributed, then the likelihood function

is well approximated by a Gaussian. Therefore, the negative log-likelihood function

is −log [L(ρ|f)] =
(∑

µ |Tr(ρEµ)− fµ|2
)1/2

, which is the LS function and the ML

program is the same as LS.

Tr-norm minimization

The third estimator that we will consider is Tr-norm minimization, which was used

in the context of quantum compressed sensing [58,59]. Quantum compressed sensing

is inspired by the classical protocol of compressed sensing, which is a technique to

reconstruct an unknown matrix without sampling every element in the matrix [63,

72,73]. Compressed sensing is made possible by the fact that many matrices we are

interested in estimating have low rank. Low-rank matrices are specified by fewer free

parameters than an arbitrary matrix. Given this prior information, it was shown that

a set of measurements that satisfy a property called, the restricted isometry property

(RIP), are sufficient to perfectly reconstruct a low-rank matrix without noise [63,73].

Classical compressed sensing requires the convex optimization program,

minimize:
X

‖X‖∗

subject to: ‖M[X]− f‖2 ≤ ε, (2.40)

where ‖X‖∗ = Tr[
√
X†X] is called the nuclear-norm (also known as the trace-norm)

andM[·] represents the sensing map of the measurements that satisfy the RIP condi-

tion. It was also proven that in the presence of noise or errors, the RIP measurements

and convex program in Eq. (2.40) produce a robust estimate.

Liu [60] proved that a random set of O(d polylog d) expectation values of Pauli

matrices satisfy the RIP condition and Gross et al. [58] translated the compressed

sensing results to QST, where there is the additional constraint that X ≥ 0. For

31



Chapter 2. Standard methods for quantum tomography

QST, the compressed sensing estimation program is,

minimize:
ρ

Tr(X)

subject to: ‖Ξ|X)− f‖2 ≤ ε,

X ≥ 0, (2.41)

where the nuclear-norm becomes the trace due to the positivity constraint, X ≥ 0,

and the trace constraint is dropped in order for Tr(X) to be the free parameter. The

program in Eq. (2.41) estimates a PSD matrix, X̂Tr, that must be renormalized to

produce an estimated quantum state, ρ̂Tr = X̂Tr/Tr(X̂Tr). By relation to classical on

compressed sensing, it was proven that ρ̂Tr is a robust estimate [58,59] even though

it only requires O(d polylog d) expectation values. It was recently shown by Kalev et

al. [61] that the program in Eq. (2.41) is not required to produce such an estimate.

We will discuss this result in the next chapter.

2.4.4 Robustness bound on estimation

The estimate returned by any of the convex programs described above are robust

to the noise and errors, when the measurement vector comes from a full-IC POVM.

Here, robustness means that the quality of the estimation is only linearly proportional

to the magnitude of the noise and errors. To see this is true for QST, we first consider

two arbitrary quantum states ρa and ρb, which have probability vectors pa = Ξ|ρa)

and pb = Ξ|ρb). Then, the square of the distance between the two probability vectors

is,

‖pa − pb‖2
2 = ‖Ξ|ρa − ρb)‖2

2 = (ρa − ρb|Ξ†Ξ|ρa − ρb). (2.42)

We can bound Ξ†Ξ by the identity, I, times its smallest and largest eigenvalues,

λmin(Ξ†Ξ)I ≤ Ξ†Ξ ≤ λmax(Ξ†Ξ)I. We apply this relation to Eq. (2.42)√
λmin‖ρa − ρb‖2 ≤ ‖pa − pb‖2 ≤

√
λmax‖ρa − ρb‖2, (2.43)
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where ‖ρa − ρb‖2 = Tr [(ρa − ρb)2]
1/2

is the Hilbert-Schmidt (HS) distance between

the two matrices ρa and ρb. The HS-distance is equivalent to the `2-distance between

the vectorized density matrices, ‖ρa − ρb‖2 = ‖|ρa)− |ρb)‖2.

Now, let us choose ρa = ρ̂, the estimate returned by one of the convex programs,

and ρb = ρ the actual state that was measured in the presence of noise and errors.

Each state has a corresponding probability vector, p̂ = Ξ|ρ̂) and p = Ξ|ρ). By

Eq. (2.42),

‖ρ̂− ρ‖2 ≤
1√
λmin

‖p̂− p‖2 ≤
1√
λmin

(‖p̂− f‖2 + ‖p− f‖) , (2.44)

where the second line is found by inserting +f − f and applying the triangle in-

equality. The first term on the LHS is bounded by the measurement constraint,

‖p̂− f‖2 = ‖Ξ|ρ̂)− f‖2 ≤ ε or by the minimum value returned in the LS program.

The second term on the LHS is constrained by the definition of the noise and error

magnitude, ‖p−f‖ = ‖x+e‖ ≤ η+ ξ = ε. Therefore, the HS-distance between the

estimated state and the actual state is bounded,

‖ρ̂− ρ‖2 ≤
2ε√
λmin

, (2.45)

which is saturated when the noise/error bound is saturated and the the estimated

state and differs from the actual state in the direction of operator space that cor-

responds to the largest eigenvalue of Ξ†Ξ. The bound shows that the HS-distance

between the estimated state and the actual state is linearly proportional to the mag-

nitude of the noise and errors present with proportionality constant dependent on

the POVM. Therefore, Eq. (2.45) satisfies our definition of robustness, such that the

estimate produces by standard QST does not “blow up” when there is noise and/or

errors present. This makes standard QST feasible in most experimental settings. A

similar analysis can be applied to QDT and QPT.
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2.5 Summary and conclusions

We have presented standard methods for the three types of QT: state, process, and

detector tomography. We also discussed how to apply QT in the ideal case, when

we have direct access to the probabilities, and the realistic case, where noise and

errors exist. In the realistic case, we proved that full-IC measurements are robust

to noise and errors. However, these methods, while widely used in experimental

settings, are limited to small quantum systems. For example, a full-IC POVM, such

as the SIC or MUB, require at least d2 elements. Even for systems consisting of only

five qubits, QST requires POVMs with at least 1024 elements. Implementing such

measurements is experimentally challenging. Moreover, if such measurements are

possible, the classical estimation is still demanding even with convex optimization.

Therefore, standard full-IC methods, while useful due to the robustness property,

are not applicable to many modern day experiments. In order to feasibly perform

QT with experiments of five or more qubits, we need new types of measurement

techniques, which will be the subject of subsequent chapters.
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Chapter 3

Informational completeness in

bounded-rank quantum

tomography

In general quantum tomography (QT) is an expensive task. For example, in the con-

text of quantum state tomography (QST), we saw in Sec. 2.1 that the reconstruction

of an arbitrary quantum state requires a fully informationally complete (full-IC)

POVM, which has at least d2 elements. However, often when we wish to implement

QT, we have prior information about the component. This prior information can be

applied to reduce the resources required.

We focus here on QST, and consider the prior information that the quantum state

being measured is pure or, more generally, close to pure. Most quantum information

tasks require pure states, and therefore most experiments work to engineer these

states. In practice, we can use other techniques, such as randomized benchmark-

ing [38,39,43], to ensure the experiment operates in this regime. As we shall see, the

prior information can be applied to design measurements that uniquely identify pure
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states with less POVM elements than are required for full-IC measurements. In any

practical application, we do not know the state is pure (and in fact it will never be

exactly pure). Therefore, we construct POVMs that are robust to small imperfec-

tions in this prior knowledge. We also show that these types of measurements can be

generalized to the prior information that the state has bounded-rank, i.e., the rank

is less than or equal to some value, r.

The inherent feature of QST that allows for the design of efficient and robust

measurements is the positivity constraint on the density matrix. Therefore, the

ideas and results presented in terms of QST, can easily be generalized to quantum

detector tomography (QDT) and quantum process tomography (QPT) since POVM

elements and process matrices are also constrained to be positive. We will return to

the generalization at the end of this chapter.

3.1 Prior information in QST

In order to reduce the number of resources required for QST, we employ the prior

information about the measured quantum state. The goal in most experiments is to

prepare pure states, since these are required for the best performance in any quantum

information processing task. A pure state is a rank-1 density matrix, ρ = |ψ〉〈ψ|,

where, |ψ〉 =
∑d

k=1 ck |k〉, is fully specified by the d complex state amplitudes {ck}

in a given basis. The state amplitudes are normalized by the trace constraint and

the measurements are insensitive to the global phase of the state vector. Therefore,

there are 2d−2 free parameters that specify an arbitrary pure state. The probability

of each outcome is quadratically proportional to the state amplitudes,

pµ = 〈ψ|Eµ |ψ〉 =
∑
j,k

c∗jck(Eµ)j,k. (3.1)
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where Eµ is the µth POVM element. This quadratic relation is in contrast to the

linear relation between the probabilities and the free parameters for full-IC POVMs,

which we derived in Sec. 2.2.1. Therefore, the number of POVM elements required

for pure-state QST is not necessarily equal to the number of free parameters as was

the case with standard QST.

Despite the difficulty of the quadratic relationship, POVMs that uniquely iden-

tify pure states have been constructed [49–57, 74, 75], and shown to require only

O(d) POVM elements. In fact, Flammia et al. [52] proved that the minimum num-

ber of POVM elements to reconstruct a pure state is 2d, not much larger than the

number of free parameters. Another approach is based on the compressed sensing

methodology [58–61], where certain measurements guarantee a robust estimation

of low-rank states with high probability, based on a particular convex optimiza-

tion program. Compressed sensing techniques were shown to require O(d polylog d)

measurements [60]. In this chapter, we connect these two independent methods by

formalizing the notion of informational completeness for pure-state QST.

Since a pure state is represented by a rank-1 density matrix, then the prior

information that a state is pure can be generalized to the notion that a state has

bounded-rank. A bounded-rank state, ρ, has a bounded-number of nonnegative

eigenvalues, rank(ρ) ≤ r. The prior information that the state is pure is then a

special case when r = 1. A bounded-rank state is in general described by 2dr − r2

free parameters [56], which can be seen in the eigendecomposition. We consider

bounded-rank QST for two reasons. First, in many applications, even when the

goal is to create a pure state, due to errors in the state preparation the actual state

may more closely match a state with higher rank. No actual prepared state will be

exactly bounded rank, but may be close to such a state. Second, the mathematical

formalism that describes pure-state QST is easily generalized to the bounded-rank

case. We will show there exist POVMs for bounded-rank QST that are more efficient
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that full-IC POVMs and produce a robust estimate.

3.2 Informational completeness in bounded-rank

QST

We commonly think of POVMs, which are the mathematical descriptions of the read-

out device, as maps from measured quantum states to probabilities. More generally,

we can apply the POVM map to any positive semidefinite (PSD) matrix. In this work

we discuss POVMs mapping PSD matrices to a vector of positive numbers (which are

not necessarily probabilities), as it highlights the fact that our definitions and results

are independent of the trace constraint of quantum states, and only depend on the

positivity property. Therefore, we treat the quantum readout device represented by

the POVM {Eµ}, more generally as a map,M[·], between the space of PSD matrices

and the real vector space, RN . Particularly, the action of this map on a PSD matrix,

X ≥ 0, is given asM[X] = s, where the elements of the vector s satisfy, sµ ≥ 0 and∑N
µ=1 sµ = Tr(X). The later expression shows that since, by definition, the POVM

elements sum to the identity, the POVM always “measures” the trace of the matrix

X. If X = ρ, a density matrix, then the condition sµ ≥ 0 and
∑

µ sµ = Tr(ρ) = 1

implies that {sµ} is a probability distribution and thus consistent with the Born rule.

It is also useful to define the kernel of the map, Ker(M) ≡ {X :M[X] = 0}. Since

the POVM elements sum to the identity matrix, we immediately obtain that every

X ∈ Ker(M) is traceless, Tr(X) = 0. The converse is not true; a traceless matrix is

not necessarily entirely contained in the Kernel of M.

When considering bounded-rank QST, a natural notion of informational com-

pleteness emerges [49, 55, 61], referred to as rank-r completeness. A measurement is

rank-r complete if the outcome probabilities uniquely distinguish the PSD matrix
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X, with rank ≤ r, from any other PSD matrix with rank ≤ r, more formally:

Definition 3.1 (Rank-r complete) Let Sr = {X|X ≥ 0, rank(X) ≤ r} be the set

of PSD matrices with rank ≤ r. A POVM is said to be rank-r complete if

∀X1, X2 ∈ Sr, X1 6= X2 iff M[X1] 6=M[X2], (3.2)

except for possibly a set of rank-r PSD matrices that are dense on a set of measure

zero, called the “failure set.”

We can alternatively write the definition in terms of any norm, ‖ · ‖: a POVM is

rank-r complete when ‖X1 −X2‖ = 0 if and only if ‖M[X1]−M[X2]‖ = 0.

When applied to quantum states, the probabilities from a rank-r complete POVM

uniquely identify the rank ≤ r state from within the set of all PSD matrices with rank

≤ r, Sr, which includes all rank-r density matrices. Fig. 3.1a illustrates the notion of

rank-r completeness. The measurement probabilities cannot uniquely identify states

in this way if they lie in the failure set, as was considered in [52, 54]. However, in

the ideal case of no noise, the chances of randomly hitting a state in that set is

vanishingly small. We comment on the implications and structure of the failure set

in the next chapter.

In Ref. [49] an alternative, but equivalent, definition of rank-r complete was

proven using Ker(M): A POVM is rank-r complete if for all X1, X2 ∈ Sr, with

X1 6= X2, the difference ∆ = X1 − X2 is not in Ker(M), i.e., there exists an Eµ,

such that Tr(Eµ∆) 6= 0. Carmeli et al. [49] showed that a necessary and sufficient

condition for a measurement to be rank-r complete for QST is that every nonzero

A ∈ Ker(M) has max(n+[A], n−[A]) ≥ r+1, where n+[·] and n−[·] are the number of

strictly positive and strictly negative eigenvalues of a matrix, respectively. Carmeli et

al. [49] also showed a sufficient condition for rank-r completeness is every nonzero

A ∈ Ker(M) has rank(A) ≥ 2r + 1. Using the sufficient condition alone, it was

39



Chapter 3. Informational completeness in bounded-rank quantum tomography

(a) Rank-r complete (b) Rank-r strictly-complete

Hermitian matrices

Hermitian matrices 
with rank ≤ r

density matrices

Figure 3.1: Two notions of completeness in bounded-rank QST. The white
dots represent Hermitian matrices, positive or not, that are consistent with the (noise-
less) measurement record. (a) Rank-r completeness. The measurement record,
distinguishes the rank ≤ r state from any other rank ≤ r PSD matrix. However,
there generally will be infinitely many other states, with rank greater than r, that are
consistent with the measurement record. (b) Rank-r strict-completeness. The
measurement record distinguishes the rank ≤ r state from any other PSD matrix.
Thus it is unique in the convex set of PSD matrices.

shown that the expectation values of particular 4r(d− r) observables corresponds to

rank-r complete measurement [55].

The notion of rank-r completeness can also be applied to bounded-rank (not

necessarily positive) Hermitian matrices. Let A be the set of all bounded-rank Her-

mitian matrices, A = {H|H = H†, rank(H) ≤ r}. Then there exists POVMs whose

measurement vector uniquely identifies an arbitrary Hermitian matrix within H. We

call these Hermitian rank-r complete, and a formal definition can be made similar

to Definition 3.1. In Ref. [56], it was shown that a set of of 4rdd−r
d−1
e random or-

thonormal bases are Hermitian rank-r complete. Hermitian rank-r completeness is

a sufficient condition for rank-r completeness, since the set of bounded-rank PSD

matrices is a subset of bounded-rank Hermitian matrices. In fact, it can be shown

that the sufficient condition for rank-r completeness given by Carmeli et al. [49] is

equivalent to this definition for Hermitian matrices.
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The definition of rank-r complete POVMs guarantees the uniqueness of the re-

constructed state in the set Sr, but it does not say anything about higher-rank states.

There may be other density matrices, with rank greater than r that are consistent

with the measurement probabilities. Since Sr is a nonconvex set it may be diffi-

cult to differentiate between the unique rank-r density matrix and these higher-rank

states, particularly in the presence of noise or other experimental imperfections. To

overcome this difficulty, we consider a “stricter” type of POVM which excludes these

higher-rank states. This motivates the following definition [49,51,61]:

Definition 3.2 (Rank-r strictly-complete) Let S = {X|X ≥ 0} be the set of

PSD matrices. A measurement is said to be rank-r strictly-complete if

∀X1 ∈ Sr, and ∀X2 ∈ S, X1 6= X2 iff M[X1] 6=M[X2], (3.3)

except for possibly a set of rank-r PSD matrices that are dense on a set of measure

zero, called the “failure set.”

Alternatively, a POVM is rank-r complete when ‖X1 − X2‖ = 0 if and only if

‖M[X1] −M[X2]‖ = 0. Clearly, a POVM that satisfies Definition 3.2 also satisfies

Definition 3.1. For QST, when the rank of the state being measured is promised to

be less than or equal to r, the probabilities from a rank-r strictly-complete POVM

distinguish this state from any other PSD matrix, of any rank (except on the failure

set). Fig. 3.1b illustrates the notion of rank-r strict-completeness.

Carmeli et al. [49] showed that a POVM is rank-r strictly-complete if, and only

if, every nonzero A ∈ Ker(M) has min(n+[A], n−[A]) ≥ r + 1. This condition relies

on the PSD property of the matrices. To date, there are only a few known POVMs

that are proven to be rank-r strictly-complete [51,57]. In Chapter 4, we present new

strictly-complete POVMs with O(rd) elements, which is the same number of POVM

elements as a rank-r complete POVM.
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The definition of strict-completeness does not have a related notion for Hermi-

tian matrices, in contrast to rank-r completeness. To see this, let us apply the

definition of strict-completeness for bounded-rank Hermitian matrices in the context

of QST, ignoring positivity. Let A be a Hermitian matrix with rank(A) ≤ r. To

be (nontrivially) strictly-complete the POVM should be able to distinguish A from

any Hermitian matrix, of any rank, with less than d2 linearly independent POVM

elements. (If the POVM has d2 linearly independent POVM elements, it is fully-IC

and can distinguish any Hermitian matrix from any other.) However, for a POVM

with less than d2 linearly independent elements there are necessarily infinitely many

Hermitian matrices with rank > r that produce the same noiseless measurement

vector as A. Therefore, positivity is the essential ingredient that allows us to define

strict-completeness with less than d2 linearly independent elements. The positivity

condition, which appears in all three types of QT, is powerful constraint for efficient

QT.

3.3 Reconstruction with ideal bounded-rank QST

The differences between rank-r complete and rank-r strictly-complete has implica-

tions for the way we reconstruct the unknown quantum state. For now, we assume

that such measurements exist that satisfy the above definitions (we will construct

examples of these measurements in the next chapter). The definitions above state

that the measurements uniquely identify the bounded-rank PSD matrix within some

set. In order to accomplish QST, we need methods to identify this unique PSD ma-

trix. In this section, we consider the ideal situation that the probabilities are known

exactly and there are no other errors in the system. The noiseless and errorless case

does not correspond to any real application but is useful in establishing the funda-

mental properties of the different measurements. We return to the realistic case in
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the next section.

In each definition we allowed a failure set where the probabilities do not uniquely

identify the quantum state with respect to the set given in the definition. We also

specified that this set must have zero volume. Therefore, if the measured state is

random with respect to the measurement basis, it is vanishingly unlikely that it will

be an element of this set. Therefore, in the ideal limit for QST, it is vanishingly

unlikely that the failure set will impact the reconstruction.

3.3.1 Reconstruction with rank-r complete POVMs

Many rank-r complete POVMs are constructed by deriving a set of quadratic equa-

tions that are solvable when the measured state is bounded-rank, e.g., the construc-

tions provided in Refs. [52, 54]. Therefore, when we consider the ideal case of QST,

we can solve these quadratic equations to uniquely reconstruct the bounded-rank

quantum state. Further details are provided in Sec. 4.1.

Some rank-r complete measurements, however, do not provide a set of quadratic

equations in their derivation, e.g., the POVM provided in Ref. [50]. Therefore, we

must use numerical methods to reconstruct the quantum state. The numerical search

must be constrained to the set of rank-r states. One possible optimization program

is based on minimizing the least-squares (LS) distance between the probabilities and

the expected probabilities from a rank-r quantum state,

minimize:
X

‖M[X]− p‖2

subject to: X ∈ Sr (3.4)

However, the constraint X ∈ Sr is nonconvex, and therefore this constrained LS pro-

gram cannot be solved with convex optimization techniques, like the ones discussed

in Sec. 2.4. Nonconvex optimization is, in general, difficult due to the existence of
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local minima.

One possible algorithm to solve the program in Eq. (3.4) is based on gradient-

projection. The basic procedure for gradient-projection is to alternate a gradient

descent approach with a projection onto the set Sr [76–78]. We refer to this method

throughout as “rank-r-projection.” We denote the LS optimization function as

g(X) = ‖M[X]− p‖2, with gradient,

~5g(Xr) = 2M† [M[Xr]− p] , (3.5)

where M†[·] is the conjugate map defined by Tr(AM[B]) = Tr(M†[A]B). The

algorithm starts by generating a random rank-r PSD matrix, X
(0)
r . We then evaluate

g(X
(0)
r ), and if g(X

(0)
r ) > γ1, which is some stopping threshold, then we also evaluate

~5g(X
(0)
r ). From the gradient we produce a new estimate X(1) = X

(0)
r − a~5g(X

(0)
r ),

where a is a small constant. The new estimate is not necessarily a rank-r PSD matrix,

and so we project X(1) onto the set Sr to give X
(1)
r = P [X(1)]. The projection, P [·],

is accomplished by diagonalizing X(1) and setting the smallest d − r eigenvalues to

zero (if there are greater than d − r negative eigenvalues we must also set these

to zero in order for the matrix to be PSD). We then repeat the procedure until

either g(Xr) ≤ γ1 or ‖~5g(Xr)‖ ≤ γ2 for some pre-specified γ1 and γ2 based on the

implementation. If the algorithm stops due to the gradient threshold, then we have

likely found a local minimum, which is not the desired result. In order to find the

desired global minimum, we repeat the procedure with a different initial guess, X
(0)
r .

This entire processes is repeated until the function threshold, γ1, is reached. When

such a solution is found, the result produces a rank-r PSD matrix, X̂r which has

‖M[Xr] − p‖2 ≤ γ1. For ideal QST, we take γ1 and γ2 near zero, approximately

10−5.

Empirically, we find that the run time of this algorithm can be very long. The

time is very dependent on the local minima that necessarily exist, since the set Sr
is not a convex set. These minima act as traps for the gradient descent search and
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require that the algorithm restart with a new random seed. We do not know the

number of minima and thus how likely it is to encounter one in the optimization.

Therefore, this method is not generally a practical method for reconstruction.

3.3.2 Reconstruction with rank-r strictly-complete POVMs

In the previous section, we saw that rank-r complete POVMs are not compatible

with convex optimization. However, this is not the case for rank-r strictly-complete

POVMs. The ideal measurement vector from a rank-r strictly-complete POVM

uniquely identifies the rank-r PSD within the convex set of all PSD matrices. There-

fore, we can design convex optimization programs for reconstruction of bounded-rank

quantum states. This is formalized in the following corollary for the ideal measure-

ment case:

Corollary 3.1 (Uniqueness) Let Xr be a PSD matrix with rank ≤ r, and let s =

M[Xr] be the corresponding measurement vector of a rank-r strictly-complete POVM.

Then, the estimate, X̂, which produces the minimum of either,

minimize :
X

C(X)

subject to : M[X] = s

X ≥ 0, (3.6)

or,

minimize :
X

‖M[X]− s‖

subject to : X ≥ 0, (3.7)

where C(X) is a any convex function of X, and ‖·‖ is any norm function, is uniquely:

X̂ = Xr.
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Proof: This is a direct corollary of the definition of strict-completeness, Definition 3.2.

Since, by definition, the probabilities of rank-r strictly-complete POVM uniquely

determine Xr from within the set of all PSD matrices, its reconstruction becomes a

feasibility problem over the convex set {M[X] = s, X ≥ 0},

find X s.t.M[X] = s and X ≥ 0. (3.8)

The solution for this feasibility problem is Xr uniquely. Therefore, any optimization

program, and particularly an efficient convex optimization program that looks for

the solution within the feasible set, is guaranteed to find Xr. �

In Ref. [75] this was proven for the particular choice, C(X) = Tr(X), and also in the

context of compressed sensing measurements in Ref. [61].

The corollary implies that strictly-complete POVMs allow for the reconstruc-

tion of bounded-rank PSD matrices via convex optimization even though the set

of bounded-rank PSD matrices is nonconvex. Moreover, all convex programs over

the feasible solution set, i.e., of the form of Eqs. (3.6) and (3.7), are equivalent for

this task. For example, this result applies to maximum-(log)likelihood estimation

for QST [15], given in Eq. (2.4.3), where C(ρ) = − log(
∏

µ Tr(Eµρ)pµ). Corollary 3.1

does not apply for PSD matrices in the measurements failure set, if such set exists.

One can also include the trace constraint in Eqs. (3.6) and (3.7). For noiseless

QST, this is redundant since any POVM “measures” the trace of a matrix. Thus, if

we have prior information that Tr(X) = 1, then the feasible set in Eq. (3.8) is equal

to the set {X |M[X] = p, X ≥ 0, Tr(X) = 1}.

3.4 Estimation in the presence of noise and errors

Any real implementation of QST will necessarily have sources of noise and errors, and

therefore it is imperative that the QST protocol be robust to such effects. In order
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to produce an estimate for this realistic case, we use numerical optimization. In the

previous section we saw that rank-r complete POVMs require nonconvex programs.

Due to the complicated nature of this type of program, we forgo a discussion of

estimation with rank-r complete POVMs and focus only on rank-r strictly-complete

POVMs. In this section, we use the formalism for describing noise and errors that

was introduced in Sec. 2.3.2. We additionally model a new type of error that is inher-

ent to rank-r strictly-complete POVMs. The definition rank-r strict-completeness

assumes that the measured state has bounded rank. However, in any application

the measured state will never be exactly bounded-rank due to unavoidable errors in

the experimental apparatus. We call these preparation errors, since they cause the

prepared quantum state to differ from the target bounded-rank quantum state.

We denote the state that is actually prepared, ρa, which is, in general, full rank.

However, since the goal was to prepare a bounded-rank state, the actual state is close

to such a state, ρr. The “closeness” will depend on the magnitude of the preparation

errors based on some measure. We can relate the two states with the error matrix, Y ,

such that ρa , ρr + Y . The matrix Y is only constrained by the fact that ρa and ρr

are both quantum states. The prior information that the state is close to a bounded-

rank state then corresponds to ‖ρa − ρr‖2 ≤ υ where ‖ · ‖2 is the Hilbert-Schmidt

distance and υ is a small constant.

In Sec. 2.3, we derived expressions for the measurement vector when there exists

errors in the POVM and noise in the measurement. We express the actual POVM

as M′ = M + X , where M is the target POVM map and X represents the errors

in the map. The noise in each outcome is expressed by the vector, e. We can also
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include preparation errors in this expression,

f =M′[ρa] + e,

=M[ρr] + X [ρa] +M[Y ] + e,

= p+ x+ y + e, (3.9)

where p =M[ρr] the probability of each outcome expected from a rank-r state, x =

X [ρa] the contribution of the measurement errors, and y = M[Y ] the contribution

from the preparation errors. We assume that the contribution of measurement errors

and noise is bounded for any quantum states, σ, ‖X [σ]‖2 ≤ η, and ‖e‖2 ≤ ξ. Then

the total error and noise level can be bounded,

‖f − p‖2 = ‖x+ y + e‖2 ≤ η + ξ + ‖M[Y ]‖2 = ε+ ‖M[Y ]‖2. (3.10)

where we define ε = η + ξ, for reasons that will be clear later.

The value of ‖M[Y ]‖2 is related to the magnitude of the preparation errors, υ.

This is seen by separating the distance, ‖ρa − ρr‖2 into two terms corresponding to

the projection onto the Kernel (π⊥[·]) and Image (π[·]) (the subspace of the operator

space orthogonal to the Kernel),

‖ρa − ρr‖2
2 = ‖π[ρa − ρr]‖2

2 + ‖π⊥[ρa − ρr]‖2
2 ≤ υ2. (3.11)

The first term can be bounded by an inequality similar to Eq. (2.43), 1
λmax
‖M[[ρa −

ρr]‖2 ≤ ‖π[ρa − ρr]‖2
2, where λmax is the maximum eigenvalue of Ξ†Ξ, the POVM

matrix squared. Rearranging Eq. (3.11) gives,

‖π[ρa − ρr]‖2
2 ≤ υ2 − ‖π⊥[ρa − ρr]‖2

2,

‖M[ρa − ρr]‖2
2 ≤ λmaxυ

2 − λmax‖ρa − ρr‖2
2 ≤ λmaxυ

2. (3.12)

This leads to the bound, ‖M[Y ]‖2 ≤
√
λmaxυ.

Noise and errors also cause the failure set to have an effect on bounded-rank

QST. Finkelstein showed that in the presence of noise and errors the failure-set in
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fact has a finite measure [53]. Therefore, there is a nonzero probability that the

actual state lies within this failure set. In this case the measured outcomes from the

rank-r strictly-complete POVMs would fail to produce a robust estimate. In this

section, we ignore the effects of the failure set but discuss it in the context of specific

POVMs in the next chapter.

3.4.1 Estimation with Rank-r strictly-complete POVMs

The estimate produced from a strictly-complete POVM are provably robust to all

sources of noise and errors, including all preparation errors. This is formalized in the

following corollary:

Corollary 3.2 (Robustness) Let Xa be the actual prepared PSD and let f =

M′[Xa] + e be the measurement vector (with noise and errors) of a rank-r strictly-

complete POVM, such that ‖M[Xa]−f‖ ≤ ε and ‖Xa−Xr‖ ≤ υ, for some bounded-

rank PSD matrix Xr. Then the PSD matrix, X̂, that produces the minimum of,

minimize :
X

C(X)

subject to : ‖M[X]− f‖2 ≤ ε

X ≥ 0, (3.13)

or,

minimize :
X

‖M[X]− f‖2

subject to : X ≥ 0, (3.14)

where C(X) is a any convex function of X, is robust: ‖X̂ −Xr‖2 ≤ C1ε + C2υ and

‖X̂ −Xa‖2 ≤ C1ε + 2C2υ, where ‖ · ‖2 is the Hilbert-Schmidt distance, and C1 and

C2 are constants which depends only on the measurement.
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Proof: The proof comes from Definition 3.2, which states for a strictly-complete

POVM, Xr ∈ Sr and X ∈ S, ‖Xr − X‖ = 0 if and only if ‖M[Xr] −M[X]‖ = 0.

We can express this as an inequality relation,

α‖Xr −X‖ ≤ ‖M[Xr]−M[X]‖ ≤ β‖Xr −X‖, (3.15)

where α and β are real and depend on the POVM. The definition of rank-r strict-

completeness constrains the value of α to be strictly positive, α > 0 [79]. Otherwise,

there may exist a case where ‖M[Xr] −M[X]‖ = 0 when ‖Xr − X‖ 6= 0, which

contradicts the definition. The RHS side can be derived from Eq. (3.12), such that

β =
√
λmax.

Now, if we take X = X̂ for Eq. (3.15), which is the estimated PSD matrix from

either program in Eqs (3.13) or (3.14), then,

‖Xr − X̂‖ ≤
1

α
‖M[Xr]−M[X̂]‖,

≤ 1

α
(‖M[Xr]− f‖+ ‖M[X̂]− f‖︸ ︷︷ ︸

≤ε

),

≤ 1

α
(‖X [Xa] +M[Y ] + e‖︸ ︷︷ ︸

≤ε+βυ

+ε),

≤ 2(ε+ βυ/2)

α
= C1ε+ C2υ, (3.16)

by expanding f and where C1 = 2/α and C2 = β/α. The second term in the second

line is from the the constraint in the convex optimization program in Eq. (3.13) or

the optimization function in Eq. (3.14). The first term in the third line is from the

bound on the noise and magnitudes in Eq. (3.10) as well as the bound on preparation

errors from Eq. (3.12). To get the second inequality of the corollary, which compares
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the prepared PSD matrix to the estimate, we apply the triangle inequality,

‖Xa − X̂‖ ≤ ‖Xa −Xr‖+ ‖X̂ −Xr‖︸ ︷︷ ︸
≤ 2ε
α

+βυ
α

,

≤ 1

α
‖M[Y ]‖︸ ︷︷ ︸
≤βυ

+
2ε

α
+
βυ

α
,

≤ 2(ε+ βυ)

α
= C1ε+ 2C2υ. (3.17)

The first line uses the result from Eq. (3.16) and the second line uses the bound on

the preparation errors in Eq. (3.12). �

In the context of QST, Xa = ρa and Xr = ρr, the actual density matrix prepared

and a nearby bounded-rank density matrix, respectively. We do not have an analytic

expression for the constant α. In Ref. [75], a similar proof was given for the particular

choice C(X) = Tr(X) for QST. In this proof the constant C1 is derived in more detail,

but still has no known analytic form.

In Ref. [61], Corollary 3.2 was also studied in the context of compressed sens-

ing measurements. As in the ideal case, the trace constraint is not necessary for

Corollary 3.2, and in fact leaving it out allows us to make different choices for C(X),

as was done in Ref. [75]. However, for a noisy measurement vector, the estimated

matrix X̂ is generally not normalized, Tr(X̂) 6= 1. The final estimation of the state

is then given by ρ̂ = X̂/Tr(X̂). In principle, we can consider a different version of

Eqs. (3.13) and (3.14) where we explicitly include the trace constraint.

The corollary assures that if the actual quantum state is close to bounded-rank

and is measured with strictly-complete POVM, then it can be robustly estimated

with any convex program, constrained to the set of PSD matrices. In particular, it

implies that all convex estimators perform qualitatively the same for low-rank state

estimation. This may be advantageous, especially when considering QT of high-

dimensional systems. This also unifies previously proposed estimation programs
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for bounded-rank QST, such as trace-minimization [58], maximum-likelihood, and

maximum entropy [65, 80]. While we cannot currently derive an analytic expression

for the constant α for an arbitrary POVM, the scaling of the robustness bound

in Corollary 3.2 is linear, which is exactly the same as full-IC POVMs, derived

in Sec. 2.4.4. Therefore, strictly-complete POVMs perform very similar to full-IC

POVMs in realistic applications.

3.5 General bounded-rank quantum tomography

The methodology we applied to bounded-rank QST can be generalized to both de-

tector (QDT) and process tomography (QPT). The inherent feature that allows for

this conversion is that, like quantum states, both detectors and processes are repre-

sented by PSD matrices. For detector tomography the PSD matrices are the POVM

elements while for QPT the PSD matrix is the process matrix. Moreover, there often

exists prior information that these PSD matrices are bounded-rank, or near bounded-

rank. Therefore, QDT and QPT fit the framework outlined for bounded-rank QST.

This means we can create ways to characterize bounded-rank readout devices and

processes that are more efficient than the standard methods described in Sec. 2.2.

Mathematically, the estimation problem for the three different types of QT differ

by the trace constraint, as outlined in Sec. 2.4. However, in Definitions 3.1 and 3.2

as well as in Corollaries 3.1 and 3.2, we ignored the trace constraint for QST. We

comment on the effect of this constraint in bounded-rank QDT and QPT below.

3.5.1 Bounded-rank QDT

Many quantum information protocols require quantum readout devices that are

described by rank-1 POVM elements, for example, the SIC POVM introduced in
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Ref. [11]. Rank-1 POVM elements can be expanded similar to pure states, Eµ =

|φ̃µ〉〈φ̃µ|, except in this case |φ̃µ〉 is an unnormalized vector. This differs from QST

only in that the trace of the POVM elements are not constrained, since |φ̃µ〉 is un-

normalized. Therefore, if we perform the estimation for QDT on individual POVM

elements, which was the second method discussed in Sec. 2.2.2, then we can directly

apply the definitions and corollaries from above to develop efficient methods for QDT.

The notion of rank-1 completeness and strict-completeness for QDT applies to

the set of probing states used to characterize the POVM elements. We can construct

sets of probing states that satisfy Definition 3.1 and 3.2, and we consider such sets

in the next chapter. Therefore, these probing states are able to fully characterize

rank-1 projectors with less than the d2 states required for full-IC QDT, discussed in

Sec. 2.2.2.

In most real applications, the POVM elements that describe the detector are not

exactly rank-1. In this case, measurement errors in the physical apparatus cause

the readout device to be described by a different POVM. This is equivalent to the

preparation errors we discussed in Sec. 3.4 for QST. By analogy to the the robustness

bounds derived above for preparation errors, a set of rank-1 strictly-complete probing

states are robust to errors in the implementation of the POVMs, and also to errors

in the preparation of the states and noise in the measurement.

We have so far discussed QDT with the second method from Sec. 2.2.2, which is

individually estimating the POVM elements. However, in Sec. 2.2.2, we introduced

another method for estimation in QDT, which performs the estimation collectively

with all POVM elements. For this method, we are able to apply the trace constraint

within the convex optimization program. While the definitions of rank-r complete

and strictly-complete are independent of this constraint, including it in the estimation

may allow for the creation of sets of probing states with even less elements.
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3.5.2 Bounded-rank QPT

The prior information that a process is rank-1 corresponds to knowledge that it

is a unitary process. Unitary processes are required in most quantum information

protocols such as quantum computing. The process matrix that represents a unitary

process is χ = |U)(U |, where |U) is the vectorized form of a unitary matrix U . While

the process matrix is a d2× d2 matrix, we can still directly apply the definitions and

corollaries from above to QPT.

The notion of rank-1 complete and strictly-complete for QPT applies to the com-

bination of probing states and POVMs used to characterize the process matrix.

We can construct a combination of states and POVMs that satisfy Definition 3.1

and 3.2. Therefore, rank-1 complete and strictly-complete measurements are able to

fully characterize a unitary process with less than the d2 probing states and full-IC

POVM that is required for the standard method of QPT. We consider such methods

in Chapter 5.

In most real applications, the process is not exactly unitary due to sources of

errors such as decoherence, inhomogeneity in the control, or imperfect calibrations.

We call these process errors, and they cause the process matrix that describes the

actual process to not match the target unitary process. This is equivalent to the

preparation errors we discussed in terms of QST in Sec. 3.4. By analogy to the

robustness bounds derived above for QST, a set of rank-1 strictly-complete probing

states and POVMs for QPT is robust to process errors. Moreover, by the same

reasoning, such sets are also robust to to errors in the preparation of the states,

implementation in the POVMs, and noise in the measurement.

We have so far discussed QPT without applying the TP constraint, which was

derived in Sec. 2.1.2. This constraint can be used to create sets of probing states

and POVMs with less elements than ones derived from Definitions 3.1 and 3.2. In
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Chapter 5, we introduce such measurements and discuss how the TP constraint plays

in a role in their construction.

3.6 Summary and conclusions

QST is a demanding experimental protocol, but in this chapter, we showed that

certain types of POVMs, called rank-r complete and rank-r strictly-complete, can

accomplish QST more efficiently when there is prior information that the prepared

state has bounded-rank. This prior information corresponds to the goal of most

quantum information processors, so it is reasonable in most applications. Moreover,

we proved that even when the actual state is not exactly pure, strictly-complete

POVMs still produce a robust estimate. This is very similar to the result for full-

IC POVMs. We also generalized these results to QDT and QPT where the same

definitions and corollaries hold, since processes and readout devices are described

by PSD matrices, and we often have prior information that they are bounded-rank.

While strictly-complete POVMs are robust to preparation errors, we still have yet to

show how many POVM elements are required. We answer this question in the next

chapter.
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Chapter 4

POVMs for bounded-rank

quantum state tomography

In this chapter, we construct rank-r complete and strictly-complete POVMs for

bounded-rank QST that have significantly less elements than fully information-

ally complete (full-IC) POVMs. We present three separate construction techniques.

The advantage of having multiple construction techniques is that one can chose the

method that is best suited for the experimental apparatus. Many experiments have

so-called natural measurements, that are easier to implement. For example, some

experiments can easily apply bases, introduced in Sec. 2.1.3. Therefore, for these

experiments, it is best to construct POVMs for bounded-rank QST that consist of

bases. In each technique, we assume the ideal limit of QST, where there are no errors

and the probabilities are known exactly as this defines informational completeness.

From the previous chapter, we know that if we can prove a POVM to be rank-r

strictly-complete in the ideal limit, then it will be robust to noise and errors. We

also present examples of each construction technique, though the methods are gen-

eral and can be used to build new constructions based on the specific operation of a

given experiment. With these construction we will also be able to determine which
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is more efficient, rank-r complete or rank-r strictly-complete.

4.1 Decomposition methods

The first method we consider applies to the construction of rank-1 complete POVMs.

The method is based on the decomposition of a rank-1 density matrix into the state

vector, |ψ〉. The state vector is described by 2d − 2 free parameters that make up

the state amplitudes in some basis, |ψ〉 =
∑

k ck |k〉. If we take the ideal limit for

QST, when the probability of each outcome is known exactly, we can relate the free

parameters in {ck} to the probabilities by the Born rule. If we can solve for each free

parameter, then we can reconstruct |ψ〉 and thus ρ. Since the decomposition assumes

that ρ is rank-1 then this technique can show if the POVM is rank-1 complete.

An examples of this technique was studied by Flammia et al. [52], who introduced

the following POVM,

E0 = a |0〉 〈0| ,

Ek = b(1+ |0〉 〈k|+ |k〉 〈0|), k = 1, . . . , d− 1,

Ẽk = b(1− i |0〉 〈k|+ i |k〉 〈0|), k = 1, . . . , d− 1,

E2d = 1−

[
E0 +

d−1∑
n=1

(Ek + Ẽk)

]
, (4.1)

with a and b chosen such that E2d ≥ 0. When c0 > 0, we can chose c0 =
√
p0/a

(setting the phase of this amplitude to zero). The real and imaginary parts of

ck, k = 1, . . . , d − 1, are related to the probabilities by Re(ck) = 1
2c0

(pk
b
− 1) and

Im(ck) = 1
2c0

( p̃k
b
− 1), respectively when we assume Tr(ρ) = 1. There are then a set

of 2d − 1 quadratic equations that we can use to uniquely solve for all amplitudes,

{ck}. When c0 = 0, the set of equations are not solvable; however this is a set of zero

volume corresponding to the failure set allowed in Definition 3.1. The POVM has a
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total of 2d POVM elements, and therefore it is efficient compared to standard QST,

which requires at least d2 POVM elements. Flammia et al. [52] also proved this to

be the minimum number of POVM elements to be rank-1 complete.

Goyeneche et al. [54] constructed another POVM and proved it was rank-1 com-

plete by this strategy. They proposed four orthogonal bases,

B1 =

{
|0〉 ± |1〉√

2
,
|2〉 ± |3〉√

2
, . . . ,

|d− 2〉 ± |d− 1〉√
2

}
,

B2 =

{
|1〉 ± |2〉√

2
,
|3〉 ± |4〉√

2
, . . . ,

|d− 1〉 ± |0〉√
2

}
,

B3 =

{
|0〉 ± i |1〉√

2
,
|2〉 ± i |3〉√

2
, . . . ,

|d− 2〉 ± i |d− 1〉√
2

}
,

B4 =

{
|1〉 ± i |2〉√

2
,
|3〉 ± i |4〉√

2
, . . . ,

|d− 1〉 ± i |0〉√
2

}
. (4.2)

Denoting p±k = |1
2
(〈j| ± 〈k + 1|)|ψ〉|2, and p±i

k = |1
2
(〈k| ∓ i 〈k + 1|)|ψ〉|2, we obtain,

c∗kck+1=1
2
[(p+

k −p
−
k )+i(p+i

k −p
−i
k )] for k = 0, . . . , d−1, and addition of indices is taken

modulo d. We then have a set of d quadratic equations, which Goyeneche et al. [54]

showed has a unique solution when we include the trace constraint,
∑

k |ck|2 = 1;

therefore, the construction is rank-1 complete. When ck = 0 and ck+l = 0, for l > 1

the quadratic equations do not have have a unique solutions. This corresponds to

the failure set of the POVM. Since the bases have a total of 4d POVM elements, this

construction requires less resources than standard QST but more elements than the

minimum POVM proposed by Flammia et al. [52].

While the method of reconstructing the state vector amplitudes is very intuitive,

it is limited to rank-1 complete POVMs. To construct a rank-1 strictly-complete

POVM, we cannot assume the pure-state structure of the measured state, as we did

here. Moreover, the generalization to rank-r complete constructions is not obvious.

In this case, one needs to consider ensemble decompositions, ρ =
∑r−1

i=0 λi|ψi〉〈ψi|,

where 〈ψi|ψj〉 = δi,j, which require a greater number of quadratic equations.
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4.2 Element-probing POVMs

Another, more adaptable method to construct both rank-r complete and rank-r

strictly complete POVMs applies to a class of POVMs we will define as element-

probing (EP) POVMs. An EP-POVM allow for the reconstruction of matrix elements

of ρ. More formally, there is a linear mapping between the probabilities from an EP-

POVM and the elements of the density matrix, which is an inverse of the Born rule,

{pµ} → {ρi,j}. If the POVM is not full-IC, then there necessarily exist a subset of

elements reconstructed, called the measured elements.1 We denote the remaining

elements as the unmeasured elements. In this section, we will show that based on

the structure of the measured elements, we can determine if a given EP-POVM is

rank-r complete or rank-r strictly-complete for any value of r.

The POVMs considered in the previous section, given in Eq. (4.1) and Eq. (4.2),

are in fact examples of EP-POVMs. For Eq. (4.1), the measured elements are the

first row and column of the density matrix. The probability p0 = Tr(E0ρ) trivially

determines ρ0,0 = 〈0|ρ|0〉, and the probabilities pn = Tr(Enρ) and p̃n = Tr(Ẽnρ) de-

termines ρn,0 = 〈n|ρ|0〉 and ρ0,n = 〈0|ρ|n〉, respectively. For Eq. (4.2), the probabili-

ties, {p±k , p
±i
k } determine the density matrix elements ρk,k+1=1

2
[(p+

k −p
−
k )+i(p+i

k −p
−i
k )]

for k = 0, . . . , d− 1, and addition of indices is taken modulo d.

4.2.1 Linear algebra relations for EP-POVMs

We prove here whether an EP-POVM is rank-r complete or strictly-complete based

on the Schur complement and the Haynsworth matrix inertia [81, 82]. Consider a

1An EP-POVM may give information about other parts of the density matrix besides the mea-
sured elements. For this case, we ignore this additional information and only study the measured
elements.
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block-partitioned k × k Hermitian matrix,

M =

A B†

B C

 , (4.3)

where A is a r× r Hermitian matrix, and the size of B†, B and C is determined ac-

cordingly. The Schur complement of M with respect to A, assuming A is nonsingular,

is defined by

M/A ≡ C −BA−1B†. (4.4)

The inertia of a Hermitian matrix is the ordered triple of the number of negative, zero,

and positive eigenvalues of the matrix, In(M) = (n−[M ], n0[M ], n+[M ]), respectively.

We will use the Haynsworth inertia additivity formula, which relates the inertia

of M to that of A and of M/A [81],

In(M) = In(A) + In(M/A), (4.5)

A corollary of the inertia formula is the rank additivity property,

rank(M) = rank(A) + rank(M/A). (4.6)

With these relations, we can determine the informational completeness of any EP-

POVM. A similar approach was taken for classical matrix completion in Ref. [83].

4.2.2 Application to rank-r complete POVMs

As an instructive example, we use the above relations in an alternative proof that

the POVM in Eq. (4.1) is rank-1 complete without referring to the state amplitudes.

The POVM in Eq. (4.1) is an EP-POVM, where the measured elements are ρ0,0, ρn,0

and ρ0,n for n = 1, . . . , d− 1. Supposing that ρ0,0 > 0 and labeling the unmeasured
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(d− 1)× (d− 1) block of the density matrix by C, we write

ρ =


ρ0,0 ρ0,1 · · · ρ0,d−1

ρ1,0

... C
ρd−1,0

 (4.7)

Clearly, Eq. (4.7) has the same form as Eq. (4.3), such that M = ρ, A = ρ0,0, B† =

(ρ0,1 · · · ρ0,d−1), and B = (ρ0,1 · · · ρ0,d−1)†. Assume ρ is a pure state so rank(ρ) = 1.

By applying Eq. (4.6) and noting that rank(A) = 1, we obtain rank(ρ/A) = 0. This

implies that ρ/A = C −BA−1B† = 0, or equivalently, that C = BA−1B† = ρ−1
0,0BB

†.

Therefore, by measuring every element of A, B (and thus of B†), the rank additivity

property allows us to algebraically reconstruct C uniquely without measuring it

directly. Thus, the entire density matrix is determined by measuring its first row

and column. Since we used the assumption that rank(ρ)=1, the reconstructed state

is unique to the set S1, and the POVM is rank-1 complete.

This algebraic reconstruction of the rank-1 density matrix works as long as ρ0,0 6=

0. When ρ0,0 = 0, the Schur complement is not defined, and Eq. (4.6) does not apply.

This, however, only happens on a set of states of measure zero (the failure set), i.e.

the set of states where ρ0,0 = 0 exactly. It is exactly the same set found by Flammia et

al. [52].

The above technique can be generalized to determine if any EP-POVM is rank-r

complete for a state ρ ∈ Sr. In general, the structure of the measured elements will

not be as convenient as the example considered above. Our approach is to study

k × k principle submatrices (square submatrices that are centered on the diagonal)

of ρ such that k > r. Since ρ is a rank-r matrix, it has at least one nonsingular r× r
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principal submatrix,

ρ =


. . . (

M
(k×k)

)
. . .

 . (4.8)

Assume for now that a given k × k principal submatrix, M , contains a nonsingular

r× r principle submatrix A. We can apply a k×k unitary, U , to map the submatrix

M to the form in Eq. (4.3),

UMU † =

 A
(r×r)

B†
(k−r×r)

B
(r×k−r)

C
(k−r×k−r)

 . (4.9)

From Eq. (4.6), since rank(M) = rank(A) = r, rank(M/A) = 0, and therefore

C = BA−1B†. This motivates our choice of M . If the measured elements make up A

and B (and B†) then we can solve for C and we have fully characterized UMU †, and

therefore also M . An example application is considered in Appendix A. In general,

an EP-POVM may measure multiple subspaces, Mi, and we can reconstruct ρ only

when the corresponding Ai, Bi, Ci cover all elements of ρ. We label the set of all

principle submatrices that are used to construct ρ by M = {Mi}. Since we can

reconstruct a unique state within the set of Sr this is then a general description of

a rank-r complete EP-POVM. The failure set, in which the measurement fails to

reconstruct ρ, corresponds to the set of states that are singular on any of the Ai

subspaces.

4.2.3 Application to rank-r strictly-complete

The framework defined above also allows us to determine if a given EP-POVM is

strictly-complete. As an example, consider the rank-1 complete POVM in Eq. (4.1).

Since ρ/A = 0, by applying the inertia additivity formula to ρ we obtain,

In(ρ) = In(A) + In(ρ/A) = In(A). (4.10)
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This implies that A is a positive semidefinite (PSD) matrix since ρ is, by definition, a

PSD matrix. For the POVM in Eq. (4.1), A = ρ0,0, so this equation is a re-derivation

of the trivial condition ρ0,0 ≥ 0. Let us assume that the POVM is not rank-1 strictly-

complete. If so, there must exist a PSD matrix, σ ≥ 0, with rank(σ) > 1, that has the

same measurement vector and thus measured elements as ρ, but different unmeasured

elements. We define this difference by V 6= 0, and write

σ =


ρ0,0 ρ0,1 · · · ρ0,d−1

ρ1,0

... C +V
ρd−1,0

 = ρ+

0 0

0 V

 . (4.11)

Since σ and ρ have the same probabilities, for all µ, Tr(Eµσ) = Tr(Eµρ). Summing

over µ and using
∑

µEµ = 1, we obtain that Tr(σ) = Tr(ρ). This implies that V

must be a traceless Hermitian matrix, hence, n−(V ) ≥ 1. Using the inertia additivity

formula for σ gives,

In(σ) = In(A) + In(σ/A). (4.12)

By definition, the Schur complement is

σ/A = C + V −BA−1B† = ρ/A+ V = V. (4.13)

The inertia additivity formula for σ thus reads,

In(σ) = In(A) + In(V ). (4.14)

Since A = ρ0,0 > 0, n−(σ) = n−(V ) ≥ 1 so σ has at least one negative eigenvalue, in

contradiction to the assumption that it is a PSD matrix. Therefore, σ 6≥ 0 and we

conclude that the POVM in Eq. (4.1) is rank-1 strictly-complete.

A given POVM that is rank-r complete is not necessarily rank-r strictly-complete

in the same way as the POVM in Eq. (4.1). For example, the bases in Eq. (4.2), cor-

respond to a rank-1 complete POVM, but not to a rank-1 strictly-complete POVM.
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For these bases, we can apply a similar analysis to show that there exists a quantum

state σ with rank(σ) > 1 that matches the measured elements of ρ.

Given this structure, we derive the necessary and sufficient condition for a rank-r

complete EP-POVMs to be rank-r strictly-complete. Using the notation introduced

above, let us choose an arbitrary principal submatrix M ∈ M that was used to

construct ρ. Such a matrix has the form of Eq. (4.3) where C = BA−1B†. Let σ be

a higher-rank matrix that has the same measured elements as ρ, and let M̃ be the

submatrix of σ that spans the same subspace as M . Since σ has the same measured

elements as ρ, M̃ must have the form

M̃ =

A B†

B C̃

 ≡
A B†

B C + V

 = M +

0 0

0 V

 . (4.15)

Then, from Eq. (4.5), In(M̃) = In(A) + In(M̃/A) = In(A) + In(V ), since M̃/A =

M/A + V = V . A matrix is PSD if and only if all of its principal submatrices

are PSD [82]. Therefore, σ ≥ 0 if and only if M̃ ≥ 0, and M̃ ≥ 0 if and only if

n−(A) + n−(V ) = 0. Since ρ ≥ 0, all of its principal submatrices are PSD, and in

particular A ≥ 0. Therefore, σ ≥ 0 if and only if n−(V ) = 0. We can repeat this

logic for all other submatrices M ∈M . Hence, we conclude that the measurement

is rank-r strictly-complete if and only if there exists at least one submatrix M ∈M

for which every V that we may add (as in Eq. (4.15)) has at least one negative

eigenvalue.

A sufficient condition for an EP-POVM to be rank-r strictly-complete is given in

the following proposition.

Proposition 4.1 Assume that an EP-POVM is rank-r complete. If its measurement

outcomes determine the diagonal elements of the density matrix, then it is a rank-r

strictly-complete POVM.

Proof. Consider a Hermitian matrix σ that has the same measurement probabilities
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as ρ, thus the same measured elements. If we measure all diagonal elements of

ρ (and thus, of σ), then for any principal submatrix M̃ of σ, cf. Eq. (4.15), the

corresponding V is traceless because all the diagonal elements of C are measured.

Since V is Hermitian and traceless it must have at least one negative eigenvalue,

therefore, σ is not PSD matrix and the POVM is rank-r strictly-complete. �

A useful corollary of this proposition is any EP-POVM that is rank-r complete can

be made rank-r strictly-complete simply by adding POVM elements that determine

the diagonal elements of the density matrix.

4.3 Random bases

The final technique we consider for constructing strictly-complete POVMs is to mea-

sure a collection of random orthonormal bases. Measurement with random bases

have been studied in the context of compressed sensing (see, e.g., in [84, 85]). How-

ever, when taking into account the positivity of density matrices, we obtain strict-

completeness with fewer measurements than required for compressed sensing [61].

Therefore, strict-completeness is not equivalent to compressed sensing. While for

quantum states, all compressed sensing measurements are strictly-complete [61], not

all strictly-complete measurements satisfy the conditions required for compressed

sensing estimators.

We perform the numerical experiments to determine rank-r strictly-complete

measurement for r = 1, 2, 3. To achieve this, we take the ideal case where the

measurement outcomes are known exactly and the rank of the state is fixed. We

consider two types of measurements on a variety of different dimensions: (i) a

set of Haar-random orthonormal bases on unary qudit systems with dimensions

d = 11, 16, 21, 31, 41, and 51; and (ii) a set of local Haar-random orthonormal bases

on a tensor product of n qubits with n = 3, 4, 5, and 6, corresponding to d = 8, 16, 32,
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and 64, respectively. For each dimension, and for each rank, we generate 25d Haar-

random states. For each state, we calculate the noiseless probability vector, p, with

an increasing number of bases. After each new basis measurement we use the con-

strained least-square (LS) program, Eq. (3.7), where ‖ · ‖ is the `2-norm, to produce

an estimate of the state. We emphasize that the constrained LS finds the quantum

state that is the most consistent with p without restrictions on the rank. The pro-

cedure is repeated until all estimates match the states used to generate the data

(up to numerical error of 10−5 in infidelity). This indicates the random bases used

correspond to a rank-r strictly-complete POVM.

Dimension
Unary Qubits

Rank 11 16 21 31 41 51 8 16 32 64

1 6 6
2 7 8 8 9 9 10
3 9 10 11 12 12 13 12 15

Table 4.1: Number of random orthonormal bases corresponding to strict-
completeness. Each cell lists the minimal number of measured bases for which
the infidelity was below 10−5 for each of the tested states in the given dimensions
and ranks. This indicates that a measurement of only few random bases is strictly-
complete POVM.

We present our findings in Table 4.1. For each dimension, we also tested fewer

bases than listed in the table. These bases return infidelity below 10−5 for most states

but not all. For example, in the unary system with d = 21, using the measurement

record from 5 bases we can reconstruct all but one state with an infidelity below

the threshold. The results indicate that measuring only few random bases, with

weak dependence on the dimension, corresponds to a strictly-complete POVM for

low-rank quantum states. Moreover, the difference between, say rank-1 and rank-

2, amounts to measuring only a few more bases. This is important, as discussed

below, in realistic scenarios when the state of the system is known to be close to
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pure. Finally, when considering local measurements on tensor products of qubits,

more bases are required to account for strict-completeness when compared to unary

system; see for example results for d = 16. We do not know if any of these bases

suffer from a failure set but we see no evidence in our numerical simulations.

4.4 Numerical studies of constructions with noise

and errors

The techniques described in the previous sections allow for the construction of dif-

ferent rank-r strictly-complete POVMs. However, we have yet to study how these

measurements perform in the presence of noise and errors. In Sec. 3.4.1 we saw that

rank-r strictly-complete measurements are robust to all sources of noise and errors

but we do not have an analytic form for the constant α in Eq. (3.15) that describes

the robustness. We can, however, use numerics to estimate this constant for a given

POVM.

To determine α, we generate many pairs of quantum states, one rank-r, ρr, and

one full-rank, σ. To generate each state, we first select a random unitary U , from the

Haar-measure and a d-dimensional vector, ~λ, which has r nonzero entries and d− r

zero entries. We renormalize ~λ such that
∑

i λi = 1. Then, the random rank-r state

is defined by, ρr = Udiag[~λ]U †, where the operation, diag[·] puts the vector in the

diagonal elements of the zero matrix. The full-rank state is generated by choosing all

d elements of ~λ to be nonzero, which is equivalent to generating a mixed state by the

Hilbert-Schmidt measure. We then calculate the ratio of the HS-distance between

the states to the distance between the measurement records, which is bounded by

1/α,

‖ρr − σ‖2

‖M[ρr − σ]‖2

≤ 1

α
, (4.16)
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Figure 4.1: Simulation of bounds for robustness inequality with random
states. We generated 104 pairs of a rank-r state and a full-rank state and calculate
the ratio of the HS distance and the `2-distance of the probabilities between the two.
We repeat for three different types of measurements. Top row: Haar-random bases
for the unary system. Middle row: Tensor products of Haar-random local bases on
qubit subsystems. Bottom row: The GMB construction given in Appendix A.1.

where M represents the map of a rank-r strictly-complete POVM. We test three

different types of POVMs in various dimensions: a qudit measured with Haar-random

bases for d = 11, 16, 21, and 31, a collection of n = 3, 4, 5, and 6 qubits measured

with a series of Haar-random bases on each qubit, and finally n = 3, 4, 5 and 6 qubits

measured with rank-r generalization of the measurement proposed by Goyeneche et

al. [54], defined in Appendix A.1. A similar study was performed in Ref. [74], for a

different rank-1 strictly-complete measurement.
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By Definition 3.2, we know α is not zero and therefore 1/α is bounded. However,

an arbitrarily large value of 1/α makes the robustness bound in Corollary 3.2 blow

up. We see in Fig. 4.1 that the values of ‖ρr − σ‖2/‖M[ρr − σ]‖2 is concentrated

in peaks. As the ratio goes to infinity the number of times we see that ratio in the

numerics goes to zero. This means that it is very unlikely to get the largest values

of the ratio. We can also see that the position of the peaks is very dependent on

the dimension and rank. As dimension increases the peak shifts to to the right,

i.e. larger ratios. As rank increases the peak shifts to the left, i.e. smaller ratios.

If we let 1/αmax be the maximum value then from Fig. 4.1, we that the 1/αmax

is not too large (the maximum value for all ranks, dimensions and measurements

is 4.7784). Therefore, the robustness bound will likely not blow up for the three

different measurements considered.

In order to determine the success of each measurement for QST, we perform

a numerical study with realistic noise and errors. We simulate a realistic scenario

where the state of the system is full-rank but high-purity and the experimental data

contains statistical noise but no measurement errors. From Corollary 3.2 we expect

to obtain a robust estimation of the state by solving any convex estimator of the form

of Eqs. (3.13) and (3.14). We calculate three estimates (using the MATLAB package

CVX [86]) from the following programs: trace-minimization (given in Eq. (2.41)),

constrained least-squares (given in Eq. (2.37)), and maximum-likelihood (given in

Eq. (2.39)). In the trace-minimization program the trace constraint is not included

hence ρ̂ = X̂/Tr(X̂).

We apply the three measurements discussed above in three selected dimensions

to a realistic system. For each measurement and dimension we generate 100 Haar-

random pure-states (target states), {|ψ〉}, and create the actual prepared state,

σ = (1 − q)|ψ〉〈ψ| + qτ , where q = 10−3, and τ is a random full-rank state gen-

erated from the Hilbert-Schmidt measure by the same procedure described above.
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d = 21 d = 31

3 qubits 4 qubits 5 qubits

3 qubits 4 qubits 5 qubits

Number of measured bases

In
fi

de
li

ty
In

fi
de

li
ty

In
fi

de
li

ty

d = 11

1 5 10 15

10-3

10-2

10-1

100

1 5 10 15

10-2

10-1

100

1 5 10 15

10-2

10-1

100

1 5 10 15

10-3

10-2

10-1

100

1 5 10 15

10-2

10-1

100

1 5 10 15

10-2

10-1

100

1 5 10 15

10-3

10-2

10-1

100

1 5 10 15

10-2

10-1

100

1 5 10 15

10-2

10-1

100

Least-squares
Min trace
Max-likelihood

Figure 4.2: Simulation of QST under realistic conditions. We assume that
the state of the system is a full-rank state close to a target pure state. We plot the
median infidelity (on a log-scale) between the target pure state and its estimation as
a function of measured bases for three different estimators Eqs. (2.37)-(2.39). The
error bars show the interquartile range (middle 50%) of the infidelities found over 100
numerical experiments. Top row: Haar-random measurement for a unary system.
Middle row: Tensor products of Haar-random local bases on qubit subsystems.
Bottom row: The GMB construction given in Appendix A.1.

The measurement vector, f , is simulated by sampling m = 300d trials from the cor-

responding probability distribution. For each number of measured bases, we estimate

the state with the three different convex optimization programs listed above.

In Fig. 4.2 we plot the average infidelity (over all tested states) between the

target state, |ψ〉, and its estimation, ρ̂, 1 − 〈ψ|ρ̂|ψ〉. As ensured by Corollary 3.2,

the three convex programs we used robustly estimate the state with a number of

bases that correspond to rank-1 strictly-complete POVM, that is, six bases for the
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case of Haar-random basis measurements, and five bases based on the construction

of Goyeneche et al. Ref. [54], reviewed in Appendix A.1. Furthermore, in accordance

with our findings, if one includes the measurement outcomes of only a few more

bases such that the overall POVM is rank-2 strictly-complete, or higher, we improve

the estimation accordingly. The study does not provide evidence that the failure set

impairs the estimation, despite the large magnitude of noise. The GMB construction

is known to suffer from such a failure set but still produce a robust estimate. It is

unknown whether the random bases suffer from such a failure set but both types of

random bases produce robust estimates.

4.5 Constructions for QDT

As discussed in Sec. 3.5.1, in QDT we typically have prior information about the

POVM elements, for example, that they are rank-1 operators. We can apply the same

techniques for constructing target POVMs for bounded-rank QST, to construct sets

of probing states for bounded-rank QDT. We express each unknown POVM element

in the rank-1 decomposition,

Fµ = |φ̃µ〉〈φ̃µ|, (4.17)

where |φ̃µ〉 =
∑

k e
(µ)
k |k〉 is an unnormalized state vector. We use the letter F

for the unknown POVM element to differentiate it from the known POVM elements

discussed in the previous sections for QST. In QDT, we measure the POVM elements

by applying the unknown readout device to a set of known probing quantum state,

{ρν}. The conditional probability of getting outcome µ for the νth state is then,

pµ,ν = Tr(Eµρν) = 〈φ̃µ|ρν |φ̃µ〉 (4.18)

Therefore, constructing the set of probing states for bounded-rank QDT is very

similar to constructing the POVM for bounded-rank QST. In fact, any POVM for
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QST can be translated to a set of probing states for QDT. For example, given {Eµ},

which is a POVM for QST, we can translate each element to to a probing state for

QDT. Since each element is already positive, all that is required is normalization,

ρν =
Eν

Tr(Eν)
. (4.19)

However, the translation does not guarantee that the informational completeness for

{ρν} is the same as the informational completeness of {Eν}. For example, if {Eν}

is rank-1 strictly-complete for QST, the set {ρν} is not necessarily rank-1 strictly-

complete for QDT.

Let us consider a concrete example, the POVM in Eq. (4.1). The translated

probing states are then,

ρ0 = |0〉 〈0| ,

ρk =
1

d
(1+ |0〉 〈k|+ |k〉 〈0|), k = 1, . . . , d− 1,

ρ̃k =
1

d
(1− i |0〉 〈k|+ i |k〉 〈0|), k = 1, . . . , d− 1, (4.20)

where we omitted the translation of the final POVM element since it is not required

in the proof of rank-1 completeness. Similar to the discussion in Sec. 4.1, we can

reconstruct the amplitudes {e(µ)
k } from the probability of each outcome. When e

(µ)
0 >

0, we find that e
(µ)
0 =

√
p0. The real and imaginary parts of e

(µ)
k , k = 1, . . . , d − 1,

are related to the probabilities by Re(e
(µ)
k ) = 1

2e
(µ)
0

(pk − Tr(Fµ)) and Im(e
(µ)
k ) =

1

2e
(µ)
0

(p̃k − Tr(Fµ)). However, unlike with Eq. (4.1) for QST, we cannot solve these

equations for Re(e
(µ)
k ) and Im(e

(µ)
k ) since we do not know Tr(Fµ). In QST, all POVMs

measure the trace of the density matrix due to the constraint
∑

µEµ = 1. However,

from equation Eq. (4.20),
∑

ν ρν 6= 1. Therefore, in order to form a rank-1 complete

set of probing states we need to complement Eq. (4.20) with a set of probing states

that measures the trace of the POVM element, Tr(Fµ), for example the maximally

mixed state ρ = 1
d
1. If it is not easy to create the maximally mixed state, the set

ρk = |k〉〈k| for k = 0, . . . d− 1 accomplishes the trace measurement as well.
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The same translation can be applied to the other constructions provided in

Sec. 4.1 and Sec. 4.2. We can also apply the same type of numerical analysis to

QDT as was discussed in Sec. 4.3. For QDT, instead of random bases, we generate

random quantum states from some measure, e.g. Bures, Hilbert-Schmidt, etc., and

use them to probe an bounded-rank POVM element with random trace. We pro-

duce the corresponding probability vector for various number of quantum states and

apply the LS program to reconstruct the POVM element. When the reconstruction

matches the original POVM element exactly then the set of probing states is likely

rank-r strictly-complete.

4.6 Summary and conclusions

We provided methods to construct rank-r complete and rank-r strictly-complete

POVMs. Having multiple methods allows one to create the POVM that is best

suited for a given experiment. We also provided a way of comparing rank-r strictly-

complete POVMs by numerically estimating the robustness constant, α, in Eq. (4.16).

We generalized these results to QDT and showed how to translate a POVM for

bounded-rank QST to a set of probing states for QDT.

In the previous chapter, we showed that rank-r strictly-complete POVMs are

compatible with convex optimization, and therefore offer an advantage over rank-

r complete POVMs. In this chapter, we saw that there is little difference in the

number of POVM elements in rank-r complete POVM vs the number in a rank-r

strictly-complete POVM. Therefore, there is no known advantage to rank-r complete

measurements, which enforces our conclusion that rank-r strictly-complete measure-

ments are superior for QST.
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Chapter 5

Process tomography of unitary

and near-unitary quantum maps

Quantum process tomography (QPT) is an even more demanding task than QST.

In order to estimate an arbitrary quantum process, standard methods require O(d4)

measurements. This makes even small systems, e.g. three or more qubits, impracti-

cal for experimental application. However, in QPT, there is usually prior information

about the applied quantum process, much like in QST where there is prior informa-

tion about the quantum state. Most quantum information protocols require unitary

maps, and therefore many experimental implementations try to engineer processes

that are as close as possible to unitary. Through previous diagnostic procedures,

e.g., randomized benchmarking [38, 39], there is usually have high confidence that

the applied map is close to a target unitary. In this chapter we will demonstrate that

such prior information can be used to drastically reduce the resources for QPT.

Previous workers have developed methods to diagnose devices that are designed to

implement target unitary maps. Reich et al. [87] showed that by choosing specially

designed sets of probe states, one can efficiently estimate the fidelity between an
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applied quantum process and a target unitary map. Gutoski et al. [88] showed that

the measurement of 4d2−2d−4 Pauli-like Hermitian (i.e., two outcome) observables is

sufficient to discriminate a unitary map from all other unitary maps, while identifying

a unitary map from the set of all possible CPTP maps requires a measurement

of 5d2 − 3d − 5 such observables. These types of measurements, as well as the

measurements we present in this chapter, are analogous to the rank-1 complete and

rank-1 strictly-complete POVMs we discussed in the context of QST.

In this chapter, we further study unitary QPT to establish the most efficient

methods. We numerically show that some of these methods are equivalent to strict-

completeness, and therefore robust to noise and errors. We additionally study the

performance of these methods in the presence of noise and errors. We also find that

while all estimators are robust, not all estimators behave the same with different

sources of errors. We demonstrate that this difference can be used to diagnose

sources of errors in the implementation of the unitary.

5.1 Standard techniques for QPT

We begin by reviewing quantum processes and expanding on the basic definitions

given in Sec. 2.1.2. An unknown quantum process, E [·], which is a dynamical map

on operator space, is represented by a process matrix χ,

χ =
d2∑

α,β=1

χα,β|Υα)(Υβ|, (5.1)

where (Υα|Υβ) = δα,β is an orthonormal basis. A completely positive (CP) quantum

process is represented by a PSD process matrix. A trace preserving quantum process

has process matrix that satisfies,∑
α,β

χα,βΥ†βΥα = 1. (5.2)
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A rank-1 process matrix corresponds to a unitary map, χ = |U)(U |.

The choice of basis for χ can have important consequences in estimation programs

for QPT. One choice of {Υα} is the “standard” basis {Υα = Υij = |i〉 〈j|} with

the relabeling of α = 1, . . . , d2 is replaced by the pair ij with i, j = 0, . . . , d − 1.

However, we can make many choices for {Υα}, as will be the case in subsequent

sections. Additionally, we can express χ in diagonal form,

χ =
d2∑
α=1

λα|Vα)(Vα|, (5.3)

with eigenvalues λα and eigenvectors |Vα).

In standard QPT, we prepare a set of d2 input states, {ρin
ν }, and evolve them

with the unknown quantum process to a set of output states, E [ρin
ν ] = ρout

ν . The

output states are then measured with a POVM, {Eµ}. The probability of observing

an outcome µ for state ρout
ν , is pµ,ν = Tr(ρout

ν Eµ), and expressed in terms of the

process matrix using Eq. (5.1),

pµ,ν = Tr

[
d2∑

α,β=1

χα,βΥαρ
in
ν Υ†βEν

]
,

= Tr[Dµ,νχ]. (5.4)

Here (Dµ,ν)α,β , Tr[ρin
ν Υ†βEµΥα], are the elements of a d2×d2 matrix. The standard

set of probing states were introduced in Ref. [4], as,

|k〉 , k = 0, . . . , d− 1,

1√
2

(|k〉+ |n〉), k = 0, . . . , d− 2, n = k + 1, . . . , d− 1,

1√
2

(|k〉+ i |n〉), k = 0, . . . , d− 2, n = k + 1, . . . , d− 1, (5.5)

and form a linearly independent set that spans the operator space. In standard QPT,

we measure the output of such states with a full-IC POVM, such as the SIC or MUB,

introduced in Sec. 2.2.1. Therefore, standard QPT requires implementing at least d4

POVM elements to reconstruct an arbitrary CP map.
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5.2 Numerical methods for QPT

In any application of QPT, there will necessarily exist sources of noise and errors

that affect the measurement vector. Therefore, in order to characterize the quantum

process in question, one must employ numerical estimators. The optimal solution

for an estimator for QPT can be found using convex semidefinite programs (SDPs),

given convex constraints χ ≥ 0 (CP constraint) and
∑

α,β χα,βΥ†βΥα = 1 (TP con-

straint). We consider three programs for QPT, two of which are based on the classical

technique of compressed sensing.

One of the original estimation techniques for QPT, was based on the classical

maximum-likelihood principle [89,90]. However, in this chapter we consider the least-

squares program, which can be seen as an approximation of maximum-likelihood.

The LS program minimizes the (square of the) `2-distance between the measurement

vector and the expected probability vector subject to the CPTP constraints,

minimize :
χ

∑
µ,ν

Tr(Dµ,νχ)− fµ,ν |2

subject to:
∑
α,β

χα,βΥ†βΥα = 1

χ ≥ 0. (5.6)

The estimated process matrix is χ̂LS. The LS program does not include assumptions

about the nature the of process matrix we are attempting to reconstruct, such as it

being a unitary map.

The second type of program we consider is Tr-norm program, originally proposed

in the context of compressed sensing for quantum states [58]. We generalize the

program here for QPT. In QPT, the trace of the process matrix is constrained by

the one equation in the TP constraint. Therefore, to minimize the trace we must

drop that part of the TP constraint. In order to maintain the maximal number of
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constraint equations, we take the basis as the set of traceless Hermitian matrices,

{Hα}, thereby ensuring that there is only one equation related to the trace of the

process matrix, which is dropped. We thus define the Tr-norm program for QPT as

follows:

minimize :
χ

|Tr(χ)

subject to:
∑
µ,ν

|Tr(Dµ,νχ)− fµ,ν |2 ≤ ε

∑
α,β 6=1

χα,βH
†
βHα = 0

χ ≥ 0, (5.7)

where now χ and Dµ,ν are represented in a basis with H1 = 1√
d
1 and the elements

Hα 6=1 are orthogonal traceless Hermitian matrices. The sum in the second constraint

include all the terms except α = β = 1. The first constraint equation now requires

that the probabilities from our optimization variable should match our measurement

frequencies up to some threshold ε. The threshold is chosen based on a physical

model of the statistical noise sources for the measurements. The estimated process

matrix, χ̂Tr, must be renormalized such that Tr[χ̂] = d.

The final program we consider is the `1-norm program, originally proposed for

QPT in Ref. [91], and also inspired by compressed sensing techniques. The `1-norm

program is advantageous when the process matrix is sparse in a known basis. This is

common in many applications. For example, if the goal is to implement a quantum

logic gate, one is attempting to build a target unitary map Ut. We therefore expect

that if the error in implementation is small, when expressed in an orthogonal basis

on operator space, {Vα}, that includes the target process as a member, V1 = Ut, the

process matrix describing the applied map will be close to a sparse matrix. This

in turn implies that the `1-norm optimization algorithm can efficiently estimate the
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applied process. We define the `1-norm estimator as follows:

minimize :
χ

‖χ‖1

subject to:
∑
µ,ν

|Tr(Dµ,νχ)− fµ,ν |2 ≤ ε,

∑
α,β

χα,βV
†
β Vα = 1,

χ ≥ 0. (5.8)

We take the basis {Vα} = {Ut, UtH2, . . . , UtHd2−1}, where {Hα} are the basis of

traceless Hermitian observables. We express Dµ,ν also in the {Vα} basis such that

Dµ,ν,α,β = Tr[ρin
ν V

†
αEµVβ]. Again, we constrain the probabilities to match the mea-

surement vector, with some threshold ε based on the noise and errors present.

We can regard the representation of the applied process matrix in this basis as

a transformation into the “interaction picture” with respect to the target map; any

deviation of the applied process matrix from the projection onto |Ut) indicates an

error. Therefore the `1-norm program directly estimates the error matrix studied in

detail in Ref. [92]. This feature holds also if the target map is not a unitary map. In

this situation, we represent the applied map in the eigenbasis of the target map.

To determine the success of the QPT we use the process fidelity [93]. The process

fidelity between two arbitrary process matrices χ1 and χ2, is defined as,

F (χ1, χ2) =
1

d2

(
Tr
√√

χ1χ2
√
χ2

)2

. (5.9)

The best measure of the success of QPT is the fidelity between the actual quantum

process to the estimated process. However, in a real application of QPT, we do

not know the actual process. Therefore, in the numerical simulations below, we

also compare the estimated process to the target process. In this chapter the target

process is always a unitary such that, χt = |Ut)(Ut|. Therefore, the process fidelity
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between the target and an estimated process matrix χ̂ is,

F (χ̂, Ut) =
1

d2
(Ut|χ̂|Ut). (5.10)

5.3 Reconstruction of unitary processes

We begin by studying unitary QPT, or rank-1 QPT, in analogy to the previous

chapters on rank-1 QST. In this section, we assume the ideal setting for QPT, when

we know the density matrices that describe the input states and the probabilities

of each outcome exactly. Since a quantum process is determined by both states

and POVMs, we simplify the discussion by assuming each output state is measured

with an informationally complete (IC) POVM. Here, we define IC as any POVM

that is either full-IC, rank-r complete, or rank-r strictly-complete. Therefore, the

question of whether the unitary map can be reconstructed in the ideal situation is

only dependent on the input states that probe the process.

5.3.1 Minimal sets of input states

If reconstruction of a set of output states uniquely identifies an arbitrary unitary map

within the set of all unitary maps, we call the set “unitarily informationally com-

plete” (UIC). This is analogous to rank-1 complete POVMs for QST, which uniquely

identify a pure state within the set of all pure states. A similar problem was stud-

ied by Reich et al. [87]. They developed an algebraic framework to identify sets of

input states from which one can discriminate any two unitary maps given the corre-

sponding output states. In particular, a set of input states, {ρin
ν }, provides sufficient

information to discriminate any two unitary maps if and only if the identity operator

is the only operator that commutes with all ρin
ν ’s in this set. If the reconstruction of

the input states discriminate any two unitary maps then they also uniquely identify
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any unitary map within the set of all unitary maps. Therefore, these sets of states

are UIC.

An example of such a set on a d-level system consist of the two states,

S =

{
ρin

0 =
d−1∑
n=0

λn |n〉 〈n| , ρin
1 = |+〉 〈+|

}
, (5.11)

where the eigenvalues of ρin
0 are nondegenerate, {|n〉} is an orthonormal basis for the

Hilbert space, and |+〉 = 1√
d

∑d−1
n=0 |n〉. Reich et al. [87] considered S in order to

set numerical bounds on the average fidelity between a specific unitary map and a

random CPTP map. In fact, S is the minimal UIC set of states for QPT of a unitary

map on a d-dimensional Hilbert space.

To see that S is a UIC set, we write the unitary map as a transformation from

the orthonormal basis {|n〉} to its image basis {|un〉},

U =
d−1∑
n=0

|un〉 〈n| . (5.12)

In its essence, the task in QPT of a unitary map is to fully characterize the basis

{|un〉}, along with the relative phases of the summands {|un〉 〈n|}. By probing the

map with ρin
0 , we obtain the output state ρout

0 = Uρin
0 U
† =

∑d−1
n=0 λn |un〉 〈un|, which

we measure with a IC POVM to obtain a full reconstruction. We then diagonalize

ρout
0 and learn {|un〉 〈un|}. Without loss of generality, we take the global phase of

|u0〉 to be zero. Next, we probe the map with ρin
1 , and fully characterize the output

state ρout
1 = 1

d

∑d−1
n,m=0 |un〉 〈um| with a full-IC POVM (this state requires a full-IC

POVM since it is full rank). The {|un〉} are calculated according to the relation,

|un〉 〈un| ρout
1 |u0〉 = 1

d
|un〉. This procedure identifies a unique orthonormal basis

{|un〉} if and only if the map is a unitary map and requires a total of d2 + 2d POVM

elements.

While S is the minimal UIC set, in practice we may not have reliable methods

to produce a desired mixed state, ρin
0 . We thus turn our attention to minimal UIC
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sets that are composed only of pure states (arbitrary pure states can be reliably

produced using the tools of quantum control [45]). Such UIC sets are composed of

d pure states that form a nonorthogonal vector basis for the d-dimensional Hilbert

space. For example, the set

|ψn〉 = |n〉 , n = 0, . . . , d− 2,

|ψd−1〉 = |+〉 =
1√
d

d−1∑
n=0

|n〉 , (5.13)

is a minimal UIC set of pure states. A similar set (with d+1 elements) was considered

in Ref. [87]. Here, we focus on a different set of d pure states that is UIC,

|ψ0〉 = |0〉 ,

|ψn〉 =
1√
2

(|0〉+ |n〉), n = 1, . . . , d− 1. (5.14)

This is a subset of the standard states used in QPT from Eq. (5.5). The only operator

that commutes with all of the projectors {|ψn〉 〈ψn|}, n = 0, . . . , d−1, is the identity.

With Eq. (5.12), we can show that the set of probing states in Eq. (5.14) is UIC.

Starting with the first state, |ψ0〉 the output state is then U |ψ0〉 = |u0〉, which we

characterize with an IC POVM. From the eigendecomposition we obtain the state

|u0〉 (up to a global phase that we can set to zero). Next, we act the unitary map on

|ψ1〉 and perform an IC POVM on the output state U |ψ1〉 〈ψ1|U †. From the relation

U |ψ1〉 〈ψ1|U † |u0〉 = 1
2
(|u0〉 + |u1〉) we obtain the state |u1〉, including its phase

relative to |u0〉. We repeat this procedure for every state |ψn〉 with n=1, . . ., d−1,

thereby obtaining all the information about the basis {|un〉}, including the relative

phases in the sum of Eq. (5.12), and completing the tomography procedure for a

unitary map. Since the unitary operator is uniquely identified by a series of linear

equations then the set of states and POVM elements are rank-1 complete for QPT.

If we choose the minimal rank-1 strictly-complete POVM in Eq. (4.1) , which has 2d

elements, to apply to each of the d output states then this procedure requires a total
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of 2d2 POVM elements. This approach is substantially more efficient than standard

QPT.

We can further reduce the resources required for unitary process tomography by

including the trace constraint. In this case the trace constraint assures that the states

|un〉 are orthonormal. In the procedure considered above, we did not take this fact

into account. By leveraging this constraint, we can reduce the number of required

measurement outcomes on each output state. The first step is, as before, to use |ψ0〉

as a probe state, and perform an informationally complete measurement, which has

2d outcomes, on the output state, |u0〉. This procedure fails for states with c00 = 0,

a set of measure zero. Next, we probe the unitary map with |ψ1〉 of Eq. (5.14), and

perform an IC PVOM on the output state, 1√
2
(|u0〉 + |u1〉). However, since |u1〉 is

orthogonal to |u0〉, it is sufficient to make a POVM that yields only the first d − 1

probability amplitudes c1n = 〈n|u1〉, n = 0, . . . , d− 2 and then use the orthogonality

condition 〈u0|u1〉 = 〈u1|u0〉 = 0 to calculate the dth amplitude, c1,d−1. A measure-

ment with 2d− 2 outcomes can be, for example, the measurement of Eq. (4.1), but

with n = 0, . . . , d − 2. Therefore, to measure the state |uk〉, k = 0, . . . , d − 1 we

perform a measurement with 2d− 2k outcomes, and use 2k orthogonality relations.

This leads to a total requirement of d2 + d POVM elements.

5.3.2 Reconstruction for unitary QPT

UIC sets provide an efficient way to characterize a unitary process, since they require

only d states instead of the standard d2. However, in analogy to rank-1 QST, there

may be other sets of input states that uniquely identifies the the unitary within the

set of all CPTP maps. The corresponding output states must then be measured with

either a rank-1 strictly-complete or full-IC POVM. These states would then be anal-

ogous to rank-1 strictly-complete POVMs in QST, and therefore are advantageous
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for QPT since they would be compatible with convex optimization.

Riech et al. proved that the set of states in Eq. (5.13) plus the additional state

|ψd−1〉 = |d− 1〉, uniquely identify a unitary within the set of all CPTP maps. In this

section we give numerical evidence that the set of states in Eq. (5.13) and (5.14),

when measured with a rank-1 strictly-complete POVM is in fact rank-1 strictly-

complete for QPT. We generate a set of 100 Haar-random unitary maps for a 5-

dimensional Hilbert space. We then evolve the three different sets of states: (dotted

red) the standard set of states for QPT, given in Eq. (5.5), (dashed green) the UIC

set of states given in Eq. (5.13) supplemented with d2−d other linearly independent

states, and (solid blue) the UIC set given in Eq. (5.14) supplemented with d2 − d

other linearly independent states. The output states are then measured with the

POVM in Eq. (4.1), which we proved is rank-1 strictly-complete in Sec. 4.2. We

assume the ideal situation for QPT, when we have direct access to the probabilities

of each outcome and use the LS program to reconstruct the process matrix. We then

compare the estimated process matrix to the process matrix of the Haar-random

unitary that was used to generate the probabilities.

The results of the numerical study are plotted in Fig. 5.1. We can see that each

set of probing states reaches unit fidelity well before d2 = 25 states. This indicates

that at this point the set of probing states uniquely identifies the unitary within the

set of all CPTP maps. It is important to note that while each point is an average

over 100 Haar-random target unitary maps, there is zero variance in the fidelity,

i.e. the resulting fidelity is independent of the applied unitary. For the states in

Eq. (5.13) and Eq. (5.14), we see unit fidelity is reached for d = 5 probing states.

This corresponds to the UIC set, which was proven rank-1 complete in the previous

section. The standard set of states, shown by the red dotted line, have a unique,

plateau feature. These indicate that we gain information only from particular states

in that set, while others do not provide additional information. The positions of the
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Figure 5.1: Comparison of different UIC sets of states Fidelity between
a unitary map on a d = 5 dimensional Hilbert space and the LS estimate of the
process matrix from (red) the standard order of quantum states given in Eq. (5.5),
(green) the UIC set of states given in Eq. (5.13), and (blue) the UIC set given in
Eq. (5.14). Each point is an average of 100 Haar-random target unitary maps and
has zero standard deviation.

plateaus occur for the same input state for each of the sampled unitary map, and they

are independent of their details. To see this point more clearly, take for example the

two input states with k = 0 and n = 1 of Eq. (5.5), 1√
2
(|0〉+ |1〉) and 1√

2
(|0〉+ i|1〉).

Probing a unitary map with these two states giving us the same information, namely

the image |u1〉. Since probing the unitary map with either states gives the same

information, for efficient reconstruction it is sufficient to probe the map only with

one of the states.
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5.4 Near-unitary process tomography

While the previous section established the notion of UIC sets of states to reconstruct

unitary processes, in any physical implementation the process is never exactly unitary

due to errors in the apparatus. We call such errors, process errors and they cause

the applied map to differ from our target unitary map. Process errors are similar in

nature to preparation errors in QST, considered in Sec. 3.4. Therefore, since rank-1

strictly-complete POVMs are robust to preparation errors, we expect the UIC set

considered in Eq. (5.14) to also be robust to process errors in QPT. However, the

robustness property does not guarantee that each estimation program behaves the

same, and in fact the behavior of the programs is very dependent on the type of

process error present. We asses these differences in this section.

We consider two types of process errors in the implementation of a quantum map:

“coherent” errors and “incoherent” errors. A coherent error is one where the applied

map is also unitary, but “rotated” from the target. All other errors are defined

to be incoherent errors, for example, statistical mixtures of different unitary maps

arising from inhomogeneous control or decoherence. We define the target unitary

map Et = |Ut)(Ut|, with corresponding process matrix χt. The actual applied map

in the experiment has errors. We denote it, Ea, with corresponding process matrix

χa. We assume good experimental control so that the implementation errors are low,

hence, χa is close to χt.

For both types of errors, we numerically model the applied process, Ea, by a

composing the target process and an error process,

Ea = Eerr ◦ Et. (5.15)

For coherent errors,

Eerr[·] = Uerr[·]U †err, (5.16)
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where the unitary error map is generated by a random, trace one, Hermitian matrix,

selected by the Hilbert-Schmidt measure Uerr = eiηH , with η ≥ 0. Such that the

applied map is

Ea[·] = UerrUt[·]U †tU †err. (5.17)

We numerically generate an incoherent error as

Eerr[·] = (1− ξ)[·] + ξ
d2∑
n=1

An[·]A†n, (5.18)

which is not the only type of incoherent error possible but serves our numerical study.

The applied map is then given by,

Ea[·] = (1− ξ)Ut[·]U †t + ξ
d2∑
n=1

AnUt[·]U †tA†n. (5.19)

The set {AnUt} are Kraus operators associated with a CP map and ξ ∈ [0, 1]. The

{An}’s are generated by choosing a Haar-random unitary matrix U of dimension d3,

and a random pure state of dimension d2 from the Hilbert-Schmidt measure, |ν〉,

such that An = 〈n|U |ν〉 where the set {|n〉} is a computational basis [94].

We first numerically test the sensitivity of the all three programs to the type

of preparation error and magnitude. We choose d = 5 and prepare the five input

quantum states defined by Eq. (5.14). We evolve each state with 50 randomly chosen

applied processes, once with coherent errors and once with incoherent errors. We

measure each output state with the MUB [12], introduced in Sec. 2.2.1, and include

noise from finite sampling. In Fig. 5.2, we plot the fidelity between the applied

process matrix, χa, and the estimated matrices, χ̂, determined by each of the three

estimators, as a function of the fidelity between the applied process, χa, and the

target, χt. The latter fidelity, F (χt, χa), is a measure of the magnitude of the error

in the applied process. As expected by the robustness bound, all of the estimators

return reconstructions that have high fidelity with the applied map when the applied

87



Chapter 5. Process tomography of unitary and near-unitary quantum maps

0.60.650.70.750.80.850.90.951

0.8

0.85

0.9

0.95

1

0.60.650.70.750.80.850.90.951
0.8

0.85

0.9

0.95

1

(a)

(b)

Figure 5.2: Comparison of reconstruction for UIC sets of states. The fidelity
between the estimate and the applied map as a function of the fidelity between the
target map and the applied map for the case of (a) coherent errors, given by Eq. (5.17)
with η ∈ [0, 3], and (b) and incoherent errors given by Eq. (5.19) with ξ ∈ [0, 0.6].
The error bars represent the standard deviation. The estimates are obtained with
data from only the five states of Eq. (5.14). Each data point in the plots is obtained
by an average over 50 random target unitary maps each with a random error map.

map is close to the target unitary map Ea[·] ≈ Ut[·]U †t . In particular in our simulations

F (χ̂, χa) & 0.95 when F (χt, χa) & 0.97.

However, as the magnitude of the preparation error increases, i.e. F (χt, χp)

decreases, the performance of the three estimators depends strongly on the nature

of the errors. The `1-norm program is more sensitive to coherent errors than the

Tr-norm and LS program, as seen in Fig. 5.2a. Using the data from five input states,

the fidelity between the `1-norm estimate and the applied map begins to fall below

∼90% in these simulations for F (χt, χa) . 0.9 while the Tr-norm and LS estimators
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maintain their high fidelity. This trend is reversed for incoherent errors, as seen in

Fig. 5.2b. The `1-norm program is more robust to incoherent errors of the form

of Eq. (5.19) than either the Tr-norm or LS programs because the process matrix

is no longer close to a low-rank matrix, but it is still relatively close to a sparse

matrix in the preferred basis. As the incoherent error magnitude increases, the `1-

norm program returns an estimate with (on average) higher fidelity with the applied

map than either the Tr-norm or the LS estimates. We thus conclude that when the

applied map is sufficiently far from the target unitary map the performance of the

three estimators varies in a manner that depends on the type of the error.

We can use the different behavior of the estimators as an indicator of the type of

error that occurred in the applied process. This is seen when comparing the fidelity

between the estimate and the applied map (Fig. 5.3a) and between the estimate

and the target map (Fig. 5.3b) as a function of the number of input states. We

plot the fidelity averaged over 50 Haar-random applied maps. The plots on the top

and bottom rows correspond to different levels of coherent and incoherent errors.

Again, the robustness property is verified since the fidelity after d = 5 input states

is proportional to the error magnitude. While the Tr-norm and the LS estimators

require the d states in Eq. (5.14) to reliably characterize the applied map, with

proper formulation, the `1-norm program returns a reliable estimate with information

obtained from a single input state.

The estimator based on the `1-norm is somewhat unstable when the reconstruc-

tion is based on data taken from very few input states. To overcome this instability,

one can use the same data obtained from the first d input states, in different orders,

to estimate the process, and then average over the resulting processes. This reduces

the sensitivity to the specific choice of state of the first input state. In Fig. 5.3 we

have used such averaging for estimating the process based of 1, 2, . . . , d = 5 input

states. Each estimated process is an average of the 5 reconstructed process matrices,
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Figure 5.3: Comparison of estimators for QPT on a UIC set of states. The
fidelity between the estimate and the applied map, F (χ̂, χa) (a), and the estimate
and the target map, F (χ̂, χt), inset (b), as a function of the number of input states,
averaged over 50 applied processes, using different estimators, and under different
error models for the applied map. Error bars represent the standard deviation. Each
column corresponds to a different magnitude of implementation error, represented
by the fidelity between the applied and target map, F (χt, χa). Top row: Coherent
errors as in Fig. 5.2a. and bottom row: Incoherent errors as in Fig. 5.2b.

each based on the data associated with an informationally complete measurement

record on the 5 states |ψn〉, n = 0, 1, . . . , 4 of Eq. (5.14), taken in cyclic permutations.

If the error in the applied map is not small, we can infer the dominant source of

the imperfection by examining the behavior of the different estimators. As seen in

Fig. 5.3a, with F (χt, χa) = 0.83 ± 0.005, when employing the `1-norm program, a

large coherent error results in a curvature in F (χ̂, χt) as a function of the number of

input states. Additionally, for the same data, using the Tr-norm and LS programs,
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we see that F (χ̂, χt) exhibits a sharp cusp after d UIC probe states. In contrast,

when the errors are dominantly incoherent, we see that when employing the `1-norm

program, F (χ̂, χt) is more or less a constant function of the number of input states.

In addition, there is a more gradual increase of F (χ̂, χt) for the Tr-norm and LS

estimators around d states; the cusp behavior is smoothed. These variations are

signatures of the nature of the error in implementing the target unitary map.

In the regime 0.90 . F (χt, χa) . 0.97 it is difficult to distinguish, with high

confidence, the nature of errors based solely on the behavior of F (χ̂, χt) as a function

of input state, and additional methods will be required to diagnose process matrix.

Nonetheless, a low fidelity of F (χ̂, χt) . 0.95 after d input states challenges the

validity of our assumptions and indicates the presence of noise.

A similar procedure could be adapted for strictly-complete POVMs in QST, or a

set of strictly-complete probing states for QDT. In these cases the Tr-norm and `1-

norm programs can be used to diagnose the type of preparation error or measurement

error present. In Sec. 2.4, we introduced the Tr-norm program for QST, and the form

for QDT is similar. The `1-norm program can easily be translated to both QST and

QDT as well.

5.5 Summary and conclusions

We have studied the problem of QPT under the assumption that the applied process

is a unitary or close to a unitary map. We found that by probing a unitary map on

a d-level system with d specially chosen pure input states (which we called UIC set

of states), one can discriminate it from any other arbitrary unitary map given the

corresponding output states. In the ideal case of no errors, we can use a UIC set

of states and a rank-1 strictly-complete POVM to characterize an unknown unitary

with 2d2 POVM elements. We then numerically demonstrated that this combination
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is rank-1 strictly-complete for QPT.

We used the methods of efficient unitary map reconstruction to analyze a more

realistic scenario where the applied map is close to a target unitary map and the

collected data includes statistical errors. Under this assumption, we studied the

performance of three convex-optimization programs, the LS, Tr-norm and `1-norm.

For each of these programs we estimated the applied process from the same simulated

measurement vector obtained by probing the map with pure input states, the first d

of which form a UIC set. We considered two types of errors that may occur on the

target map, coherent errors, for which the applied map is a unitary map but slightly

“rotated” from the target map, and incoherent errors in which the applied map is full

rank but with high purity. In our simulation, shown in Sec. 5.4, we used the states of

Eq. (5.14) to probe a randomly generated (applied) map with the desired properties

verifying the robustness property applies for QPT. Our analysis suggests that when

the prior assumptions are valid the three estimators yield high-fidelity estimates with

the applied map using only the input UIC set of states. We found that the sensitivity

of these methods for various types of errors yields important information about the

validity of the prior assumptions and about the nature of the errors that occurred in

the applied map. In particular, probing the map with a UIC set of d pure states and

obtaining low fidelity between the estimates and the target map indicates that the

errors are actually not small and the applied map is not close to the target unitary

map. Furthermore, the performance of the different estimators under coherent and

incoherent noise, enables the identification of the dominant error type. One can then

take this this information into account to further improve the implementation of the

desire map.
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Experimental comparison of

methods in quantum tomography

We have introduced many different methods for QT that offer theoretical advantages

in efficiency and robustness. However, QT is designed to be a diagnostic tool for

experiments in quantum information, so the performance of these methods must

be verified in this context. In this chapter, we compare different methods for QST

and QPT in an experimental platform, conducted in collaboration with the group of

Prof. Poul Jessen at the University of Arizona. The quantum system we study is the

hyperfine spin of 133Cs atoms in their electronic ground state, which corresponds to

a 16-dimensional Hilbert space for encoding quantum states, processes, and POVMs.

In this system, there are many ways to accomplish QT. For this chapter we compare

different choices to illustrate the tradeoff between efficiency and robustness in QT

protocols. Experiments were performed at the University of Arizona by Hector Sosa-

Martinez and Nathan Lysne [1].
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6.1 Physical system

The physical system is an ensemble of approximately 106 laser-cooled cesium atoms

in ground manifold, 6S1/2. Each atom is (almost) identically prepared and addressed

such that the quantum state, ρN , that describes the entire system is well approxi-

mated by a tensor product of the internal state of each atom, ρN = ρ⊗N . The internal

state is confined to the hyperfine ground manifold with Hilbert space described by

a tensor product of the nuclear and electron spin states, H = HI ⊗HS. Cesium has

a nuclear spin of I = 7/2 and, since it is an alkali metal, it has a single valence elec-

tron, so S = 1/2. The ground manifold is then described by a (d = 16)-dimensional

Hilbert space, which provides a large testbed for QT protocols. The Hilbert space

can also be expressed as the direct sum of two hyperfine subspaces, H = H+ ⊕H−,

where H± are the Hilbert spaces corresponding to the total hyperfine angular mo-

mentum quantum numbers, F (+) = 4 and F (−) = 3 spins. Each spin has 2F (±) + 1

degenerate magnetic sublevels.

6.1.1 Quantum control of the cesium system

In order to prepare quantum states, create evolutions, and readout information, we

need control over the hyperfine manifold. In the experiment, the system is con-

trolled with time-dependent magnetic fields applied approximately uniformly to the

ensemble. The Hamiltonian that describes the dynamics is,

H = AI · S− µ ·B(t), (6.1)

where the first term is due to the hyperfine interaction (since L = 0 in the ground

manifold) and A is the hyperfine coupling. The second term describes the in-

teraction with the time-dependent external magnetic fields, B(t), where µ is the

atomic magnetic moment. We can express the hyperfine interaction in terms of
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the total angular momentum, F (±), since I · S = 1
2

(F2 − I2 − S2), and therefore

AI · S = ∆EHF
2

(Π(+) − Π(−)), where ∆EHF , AF (+) is the hyperfine splitting, and

Π(±) is the projection onto the plus or minus spin subspace.

The interaction between the atoms and the magnetic fields is defined by the

atomic magnetic moment, which is the sum of the spin and nuclear magnetic mo-

ments, µ = µS + µI . The contribution from the nuclear moment is extremely

small, µB � µN , i.e. the Bohr magneton is much larger than the nuclear magneton.

Therefore, we approximate the total magnetic moment as −µ ·B(t) ≈ µBgsS ·B(t).

When µB|B(t)| � A, i.e., the magnitude of the external field is much weaker than

the hyperfine coupling, we can apply the Landé projection theorem to express the

interaction in terms of the total angular momentum,

µBgsS ·B(t) ≈ gsµB
∑
i=±

S · F(i)

F (i)(F (i) + 1)
F(i) ·B(t),

= g+µBF(+) ·B(t) + g−µBF(−) ·B(t) (6.2)

where g± , ± gS
2F (+) = ± 1

F (+) .

The magnetic field is applied as three separate fields,

B(t) = B0ez + BRF (t) + BµW (t), (6.3)

where the first term is the bias field, which breaks the degeneracy of each hyperfine

sublevel, shown in Fig. 6.1. The other two fields oscillates at radio (RF) and micro-

wave (µW ) frequencies respectively. Since the bias field is time-independent, we

group it with the hyperfine interaction to form the “drift” Hamiltonian,

H0 =
∆EHF

2

(
Π(+) − Π(−)

)
+ Ω0

(
F (+)
z − F (−)

z

)
(6.4)

where Ω0 ,
µBB0

F (+) .

The RF field is a combination of two fields in the ex and ey direction,

BRF (t) = Bxex cos [ωRF t+ φx(t)] +Byey cos [ωRF t+ φy(t)] . (6.5)
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Figure 6.1: Level-diagram of the hyperfine ground state of cesium with
control fields

The RF fields cause Larmor precession on the F (+) = 4 and F (−) = 3 spins, shown

in Fig. 6.1, with corresponding Hamiltonian,

HRF (t) = Ωx

(
F (+)
x − F (−)

x

)
cos [ωRF t+ φx(t)]

+ Ωy

(
F (+)
y − F (−)

y

)
cos [ωRF t+ φy(t)] , (6.6)

where Ωx,y ,
µBBx,y
F (+) .

The µW field is tuned to resonance with the |4, 4〉 and |3, 3〉 transition, as shown

in Fig. 6.1. This causes Rabi oscillations between the two magnetic sublevels, with

resulting Hamiltonian,

HµW (t) = ΩµWσx cos [ωµW t+ φx(t)] , (6.7)

where ΩµW is the Rabi frequency of the µW interaction and σx = |4, 4〉〈3, 3| +

|3, 3〉〈4, 4|.
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In the experiment, the system is controlled by varying the the phases φx(t), φy(t),

and φµW (t), which are referred to as the “control parameters.” To eliminate the time

dependence in the Hamiltonian, outside of the control parameters, we move to the

rotating frame defined by the unitary,

U = exp
[
−iωRF t

(
F (+)
z − F (−)

z

)]
exp

[
−itωµW − 7ωRF

2

(
Π(+) − Π(−)

)]
. (6.8)

We apply U to each term in the total Hamiltonian such that H ′ = U †HU . By the

rotating wave approximation, all terms proportional to cos(2ωRF t) and cos(2ωµW t)

are approximately zero. We include the term, Hrot. = −iU † dU
dt

, which is due to

the rotating frame, with the drift Hamiltonian, since it is also time independent.

Therefore,

H ′0 ≈ U †H0U − iU †
dU

dt
,

=
∆µW

2

(
Π(+) − Π(−)

)
+ ∆RF

(
F (+)
z − F (−)

z

)
, (6.9)

where ∆µW , ωµW −∆EHF − 7ωRF and ∆RF , ωRF −Ω0. The RF and µW control

Hamiltonians are

H ′RF (t) ≈ Ωx

2
cos [φx(t)]

(
F (+)
x − F (−)

x

)
− Ωx

2
sin [φx(t)]

(
F (+)
y + F (−)

y

)
+

Ωy

2
cos [φy(t)]

(
F (+)
y − F (−)

y

)
+

Ωy

2
sin [φy(t)]

(
F (+)
x + F (−)

x

)
,

H ′µW (t) ≈ ΩµW

2
(cos [φµW (t)]σx + sin [φµW (t)]σy) . (6.10)

where σy is the Pauli-y operator across the |4, 4〉 and |3, 3〉 subspace. Higher order

terms in the rotating wave approximation were derived in Ref. [95].

Full controllability with the RF and µW magnetic fields was proven in Ref. [96].

Therefore, the magnetic fields can create any unitary map in SU(16). To produce a

given unitary, we numerically search for a set of the phases, φx(t), φy(t), and φµW (t),

that optimize an objective function (further details are given in Appendix B and

Ref. [97]). The procedure is also made robust to inhomogeneities in the control fields
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to minimize errors [45, 97]. Therefore, we can prepare any pure state or apply any

unitary evolution to the 16-dimensional Hilbert space.

6.1.2 Stern-Gerlach measurement

The quantum state is measured with a Stern-Gerlach analyzer that creates a signal

proportional to the population of each magnetic sublevel. This is accomplished by

applying a gradient magnetic field in the z-direction, parallel to the bias field, that

separates the atoms spatially, shown in Fig. 6.2b. The separation is proportional

to the spin projection, mF , in the z-direction. The atoms are then dropped, and

fall through a sheet of laser light that is resonant with a transition between the

hyperfine-ground manifold and an excited state, shown if Fig. 6.2c. This causes

fluorescence that is detected in discrete time bins. Each bin corresponds to a time-

of-flight measurement of the atoms trajectory. Since the signal is proportional to mF ,

the procedure is repeated for each submanifold, F (±). An example signal is shown

in Fig. 6.3 for F (+).

The gradient magnetic field acts to entangle the internal spin projection with

the position of the atoms. This interaction can be described by a unitary map, UB

on tensor product space of the atoms internal spin (labelled with subscript s) and

position (labelled with subscript p),

ρsp = UB (ρs ⊗ ρp)U †B. (6.11)

The time-of-flight signal is then related to the position of each atom by classical

dynamics. Therefore, the POVM elements that describe the measurement are pro-

jectors onto the position. Since the signal is discrete, the POVM elements correspond

to a projection onto a range of positions, δx,

Ex =

∫ x+δx

x

dx|x〉〈x|. (6.12)
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(a) (b) (c)

Figure 6.2: Stern-Gerlach analyzer (Figure provided by Hector Sosa-Martinez)
(a) The atoms are initially prepared in a single cloud. (b) A gradient magnetic field
is applied to spacial separate the atoms based on the internal spin thus entangling
their position with the spin state. (c) The atoms are dropped and fall through a
sheet of laser light and the fluorescence signal is detected.

In principle, we could accomplish QST with the raw signal from the time-of-flight

measurement and the POVM elements in Eq. (6.12). However, the number of time

bins that correspond to the different measurement outcomes is potentially very large,

and therefore implementing the estimation required for QST may be expensive.

Instead of directly using the discrete time-of-flight signal and POVM in Eq. (6.12),

we perform “two-step” QST by first extracting most of the information from the

signal, then using this information for state estimation. The signal for each F (±)

submanifold contains 2F (±) + 1 peaks that correspond to the 2F (±) + 1 magnetic

sublevels, which are pulled apart into separate clouds by the gradient magnetic field.

The distribution is proportional to the 2F (±) + 1 real numbers that specify the

population in each magnetic sublevel. In order to extract these real numbers, we fit

the signal to 2F (±) + 1 template functions. A numerical description of the template

functions is found by applying the Stern-Gerlach analyzer to the ensemble without
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Figure 6.3: Sample Stern-Gerlach signal for the F = 4 subspace (Figure
provided by Hector Sosa-Martinez) (a) The raw signal from from the detector. (b)
The nine fit functions for each of the magnetic sublevels overlapping the signal shown
in various colors. (c) The resulting fit to the date shown by the dashed yellow line.

the gradient magnetic field. The result is a single peak that describes the distribution

of the falling atoms. The template function is then fit to each of the 16 peaks

when the gradient field is applied, with fitting parameters proportional to the height,

width, and center of each fit function, as shown in Fig. 6.3b. There are additional

parameters that scale the template function proportional to the trajectory of the

different magnetic sublevels.

The result of the fitting is used to estimate the fraction of spins in each magnetic

sublevel, which is then related to the populations, {ρF,mF }. Therefore, we have

extracted the measurement vector that corresponds to the Fz-basis measurement,

Bz = {|4,−4〉 , . . . , |4, 4〉 , |3,−3〉 , . . . , |3, 3〉}. (6.13)

where the states are written as |F,mF 〉 basis. While we are not directly, making a
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projective measurement in this basis, the measurement vector returned by the fitting

program is in good approximation the populations we seek.

We can use the control Hamiltonians to also determine the measurement vector

of an arbitrary orthonormal basis measurement. In the following discussion, we

label |µ〉 = |F,mF 〉, such that µ = 0, . . . , 15, referred to as the “standard basis,”

for convenience. An arbitrary orthonormal basis measurement, Bψ = {|ψµ〉}, has

probability of each outcome

pµ = 〈ψµ|ρ|ψµ〉 = 〈µ|W †ρW |µ〉 (6.14)

where |ψµ〉 = W |µ〉. Therefore, to approximate the measurement vector of the basis

Bψ, we apply the unitary map, W † =
∑

µ |µ〉〈ψµ|, before the Stern-Gerlach analyzer.

Then, the measurement vector from the fitting procedure is an approximation of

the probability of each outcome from the basis Bψ. We can search for a control

parameters that implements the unitary W † with a unitary control objective, which

is described in Appendix B.

We can also approximate the measurement vector of a basis on s-dimensional

subspaces of the total Hilbert space, Bψ = {|ψ1〉, . . . , |ψs〉} with a partial isometry.

A partial isometry is a mapping of s < d orthonormal states to another set of s

orthonormal states. Partial isometries require less total time to implement then a

full unitary map, which is advantageous when there exist sources of errors or noise

that compound with time. In order to implement Bψ, we need the partial isometry

mapping, {|ψµ〉} → {|µ〉} for s orthonormal pairs of states. Partial isometry control

objectives are described in detail in Appendix B.

We can additionally use partial isometries to determine the measurement vector

of a POVM with N ≤ 16 rank-1 elements, nonorthogonal elements Eν = |φ̃ν〉〈φ̃ν |, on

an s-dimensional subspace of the total Hilbert space by the Neumark extension [98].

The Neumark extension is accomplished by determining a basis measurement on the
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16-dimensional Hilbert space whose projection onto the s-dimensional subspace is

the desired POVM elements. That is, a basis, Bφ = {φ1, . . . , φ16}, accomplishes the

Neumark extension if Πs|φν〉〈φν |Πs = |φ̃ν〉〈φ̃ν |, where Πs is the projection onto the

s-dimensional subspace.

The choice of Bφ is not unique, in that there are many bases that have the same

projection onto the s-dimensional subspace. This freedom can be exploited to make

more accurate POVMs by using a partial isometry control. To see this, we organize

the set of vectors {|φν〉} into an s×N matrix,

V =


↑ ↑

|φ̃1〉 · · · |φ̃N〉

↓ ↓

 =


← 〈ψ1| →

...

← 〈ψN | →

 (6.15)

where 〈ψα| =
∑

ν Vα,ν 〈ν| are the rows of V and Vα,ν = 〈α|φ̃ν〉 are the elements of V .

The rows of V are orthonormal,

〈ψα|ψβ〉 =
∑
µ,ν

Vα,µV
∗
β,νδµ,ν =

∑
ν

〈α|φ̃ν〉〈φ̃ν |β〉 = δα,β, (6.16)

due to the POVM condition,
∑

ν |φ̃ν〉〈φ̃ν | = 1. We then implement the partial

isometry mapping, {|α〉} → {|ψα〉} for s states, where {|α〉} is the standard basis

elements that span the s-dimensional subspace. Therefore, the partial isometry maps,

ρin =
∑

α,β ρα,β|α〉〈β| to ρout =
∑

α,β ρα,β|ψα〉〈ψβ|, where ρα,β = 〈α|ρin|β〉. Then,

after applying the Stern-Gerlach analyzer, the probability of getting µth outcome is,

pµ = 〈µ|ρout|µ〉,

=
∑
α,β

〈µ|ψα〉〈α|︸ ︷︷ ︸
V ∗α,µ〈α|

ρin |β〉〈ψβ|µ〉︸ ︷︷ ︸
Vβ,µ|β〉

, (6.17)

by the definition of V ,
∑

α V
∗
α,µ 〈α| = 〈φ̃µ| and Vβ,µ |β〉 = |φ̃µ〉. Therefore,

pµ = 〈φ̃µ|ρin|φ̃µ〉, (6.18)
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such that the probability of each outcome of the standard basis measurement is equal

to the probability of each POVM outcome. Therefore, if we apply the partial isometry

mapping before the Stern-Gerlach analyzer, the measurement vector approximates

the N -element POVM, {Eν}.

6.1.3 Sources of noise and errors

There are several sources of noise and errors that can reduce the accuracy of QT in

the cesium spin system. One major source of error comes from inexact implemen-

tation of the control fields that perform the unitary maps and partial isometries.

This error is caused by inhomogeneities and variation from the ideal control fields.

The inhomogeneities are a result of nonuniform magnetic fields across the ensemble

of atoms in the extended cloud. Therefore, each atom does not interact with the

magnetic field equally and the final state of the system will not be in exact tensor

product of N identical states. The effect of inhomogeneities is reduced by the robust-

ness procedures used in the control [97,99]. The other source of control error comes

from variation in the phases that are actually applied to the atomic ensemble from

the ideal behavior. As discussed in Appendix B, the control phases (φx(t), φy(t),

and φµW (t)) are designed to be a piecewise-constant functions of time. However,

this is not exactly true in the experiment because of the finite response time of the

controllers. Deviation from the piecewise-constant function causes coherent control

errors.

The magnitude of all control errors was previously characterized by a randomized

benchmarking inspired technique in Refs. [44, 45]. This procedure determines the

average fidelity, F , associated with all unitary mappings and is independent of other

sources of errors, such as errors in the Stern-Gerlach analyzer. It was found that each

unitary on the 16-dimensional space has average fidelity, F = 0.975 [44]. A similar
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method was used to determine the error associated with partial isometry mappings of

any dimension; for example, in Ref. [45] the state preparation fidelity was measured

as F = 0.995.

There will also necessarily exists statistical noise from finite sampling, since there

are a finite number of atoms that are measured. While there are approximately

106 atoms prepared, only a fraction of fluorescing atoms produce photons that are

detected. However, the effect of the finite sampling is still much smaller than the

other control errors. In previous diagnostics, it was seen that the final measurement

vector barely fluctuates between repetitions of the Stern-Gerlach analyzer with the

same controls, so finite sampling effects are negligible.

There are other sources of of noise and errors present in the experiment. One

possible source of errors is decoherence due to interactions with stray light and

background magnetic fields. There may be other errors associated with implementing

the Stern-Gerlach analyzer that are less well understood. For example, the gradient

magnetic field may not be exactly aligned with the bias field meaning the POVM that

we think describes the measurement is slightly rotated. Also, there is shot noise due

to measuring the fluorescence of the photons in the signal and other technical noise

associated with the photon detection. However, we believe all these other sources to

be small compared to the control errors.

6.2 Implemented POVMs

Several different POVMs were implemented in the experiment. All measurement vec-

tors were produced via the two-step procedure described in Sec. 6.1.2 and extracted

by a least-squares-fit to the time-of-flight signal. If we precede the Stern-Gerlach

analyzer by the appropriate unitary map, we can extract the measurement vector

in an arbitrary basis on the full 16-dimensional Hilbert space, or on any subspace.
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Alternatively, via the Neumark extension, we can implement any POVM with up

to 16 rank-1 POVM elements with states that live is an s < d-dimensional Hilbert

space. The study was carried out for Hilbert spaces in d = 4 and d = 16 dimensions.

The measurement vector of the following full-IC POVMs were approximated via

the two-step method described in Sec. 6.1.2:

• Symmetric informationally complete POVM: (SIC POVM), originally

proposed in Ref. [11] and described in further detail in Sec. 2.2.1. The SIC

POVM has d2 outcomes and has a known construction for all dimensions d ≤

67 [100]. In the experiment, the SIC is applied only for d = 4, and 16 POVM

elements are implemented with the Neumark extension.

• Mutually unbiased bases: (MUB) originally proposed in Ref. [12] and de-

scribed in further detail in Sec. 2.2.1. The MUB consists of d+ 1 orthonormal

bases and has an analytic expression for dimensions that are primes or powers

of primes [12]. Therefore, the MUB can be implemented in both the d = 4 and

16 systems.

• Gell-Mann bases: (GMB) an extension of the five bases proposed in Ref. [54]

and discussed Sec. 4.1. The GMB consists of 2d − 1 orthonormal bases for

dimensions that are powers of two with algorithm provided in Appendix A.1.

(Constructions for other dimensions exist but are more complicated.) The

GMB is applied for both d = 4 and d = 16 in the experiment.

The measurement vector of the following rank-1 strictly-complete POVMs was

estimated by the two-step procedure in Sec. 6.1.2:

• PSI-complete: (PSI) originally proposed Ref. [52] and proven to be rank-1

complete therein. The PSI-complete POVM has 3d−2 rank-1 POVM elements

in any dimension. A construction of the the POVM and a proof that it is rank-1
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strictly-complete is provided in Appendix A. We implement the PSI-complete

POVM for d = 4 via the Neumark extension.

• Five Gell-Mann bases: (5GMB) originally proposed in Ref. [54] as a rank-1

complete measurement. The 5GMB are the first five orthonormal bases of the

GMB. In Appendix A.1, we use the matrix completion method from Sec. 4.2

to prove that the 5GMB are also rank-1 strictly-complete. Since the GMB are

applied for both d = 4 and 16 we can also apply the 5GMB for both systems.

• Five polynomial bases: (5PB) originally proposed in Ref. [74] and proven

to be rank-1 strictly-complete therein. The 5PB are the 4PB, discussed below,

plus the basis, Bz. The remaining four bases are constructed from a set of

orthogonal polynomials. The construction applies for any dimension, so we

implement them for both d = 4 and 16. We provide an explicit construction

of the five bases in Appendix A. The measurement vector for the first bases is

taken from the first bases of the 5GMB, since it is the same basis measurement.

• Five Mutually unbiased bases: (5MUB) Numerical simulations, similar to

the ones performed for random bases in Sec. 4.3, indicate that the first five bases

of the MUB correspond to a rank-1 strictly-complete POVM. We only apply

the 5MUB for d = 16 since the 5MUB in d = 4 is full-IC. The measurement

vector for the 5MUB is the same measurement vector as the first five bases of

the MUB.

Finally, the measurement vector for the following rank-1 complete POVMs were

estimated by the two-step procedure described in Sec. 6.1.2:

• Four GMB: (4GMB) originally proposed in Ref. [54] and given in Eq. (4.2).

The 4GMB are four of the orthonormal bases that make up the GMB. Since the

GMBs can be implemented for d = 4 and 16 the first four can be implemented
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in both dimensions as well. The measurement vector for the 4GMB is the

measurement vector from four bases of 5GMB.

• Four polynomial bases: (4PB) originally proposed in Ref. [50]. The 4PB

consists of four orthonormal bases that are constructed based on a set of or-

thogonal polynomials for any dimension. We generate the 4PB based on the

Hermite polynomial and apply them for both d = 4 and 16. We provide an

explicit definition of the four bases in Appendix A. The measurement vector

for the 4PB is the measurement vector from the last four bases of the 5PB.

6.3 Quantum state tomography results

In the experiments performed in the Jessen lab, each measurement was applied to

a fixed set of 20 different Haar-random pure states prepared by the state-to-state

mapping described in Appendix B. To determine how each measurement and esti-

mation procedure performs, we would like to compare the actual prepared state, ρa,

to the estimated state, ρ̂. However, as with any QT experiment, we do not know the

actual prepared state, so instead, we compare the estimated state to the target state,

ρt. From Ref. [45], we know that the prepared state is close to the target state (the

average fidelity of state preparation is F = 0.995), and therefore this comparison is a

reasonable measure of QT. We use the infidelity between two quantum states, which

is the standard measure of QST, to quantify the comparison,

1− F (ρt, ρ̂) = 1− |〈ψt|ρ̂|ψt〉| (6.19)

where ρt = |ψt〉〈ψt|, since in the experiment all target states are pure. (We use the

script letter, F , to denote the average fidelity but the capital F to denote fidelity

between two particular quantum states.)

The value of ρ̂ will depend on the type of estimator chosen. In Sec. 2.4, we
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presented many estimators for QST such as, linear-inversion (LI), least-squares (LS),

maximum-likelihood (ML), and trace-norm minimization (Tr-norm). In this section

we forgo applying the LI estimator since it does not produce a physical state so

Eq. (6.19) does not apply. We determine the estimate from LS and ML with the

CVX package [86] in MATLAB for each of the full-IC and rank-1 strictly-complete

discussed in Sec. 6.2. For the rank-1 complete POVMs, we use the LS program

and rank-r-projection algorithm described in Sec. 3.3.1. We discuss the Tr-norm

estimates in further detail later. The results are plotted in Fig. 6.4

All POVMs and estimators produce low infidelity estimates of the quantum state.

The ML estimate produces a consistently lower infidelity than the LS. This would

be expected if the experiment was limited by finite sampling, since LS differs from

ML when there are a finite number of copies [7]. However, the measurements in this

experiment are not limited by finite sampling, so we do not believe the difference is

caused by this effect. Instead, the difference is likely due to the positivity condition

that changes the shape of the likelihood function. This effect will be studied in future

work that investigates how each estimator behaves in the presence of the positivity

constraint. While the estimate from ML has lower infidelities, it does require greater

computational effort to produce the ML estimate since the log-likelihood function is

less smooth, so more difficult to optimize over. We find that when computational

effort is not a limitation, ML is the best estimator, though the gain is modest.

Interestingly, for d = 4, Fig. 6.4 shows that the estimates from the rank-r-

projection algorithm with the rank-1 complete POVMs yield the lowest infidelities.

However, it is not fair to compare different POVMs when the data is fed into different

estimators. To make a fair comparison, we apply the rank-r-projection algorithm to

the data from the rank-1 strictly-complete POVMs. In this case, we find the infi-

delities of the rank-1 strictly-complete POVMs to be 1 − F5GMB = 0.0068(0.0010)

and 1 − F5PB = 0.0115(0.0019), which are comparable to the values found for the
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Full-IC
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Figure 6.4: Mean infidelity of estimate and target state for each POVM
Estimates are created with LS (blue circles), ML (green exes) , and the rank-r-
projection algorithm in Sec. 3.3.1 (cyan triangles). The markers indicate the average
over the 20 Haar-random pure states and the error bars correspond to the standard
error in the mean. The POVM used to create the measurement vector is given on
the x-axis. The top figure corresponds to d = 4, while the bottom corresponds to
d = 16. The type of POVM is labelled on the graph. For d = 16, with the 4GMB
and 4PB the LS estimator is omitted since it produces very large infidelity.

4GMB, 1−F4GMB = 0.0931(0.0010) (standard error in the mean are in parentheses).

Therefore, the low infidelities produced by the rank-1 complete POVMs should be

attributed to the rank-r projection algorithm that is required for this type of POVM.

However, this algorithm is not always desirable. Beyond the issue of convergence,

discussed in Sec. 3.3.1, the algorithm is, by construction, biased to produce only pure

states. Therefore, the estimate lacks information about preparation errors that may

cause the actual state to be mixed. Moreover, since the estimate is always pure it

may be much closer to the target state, which is also pure, than the actual state. In

this case, comparing the different POVMs by the infidelity between the target state

and the estimate would not be an accurate measure of success. For these reasons,

we do not consider rank-1 complete POVMs for the remainder of the discussion.
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We focus on LS (blue circles) in order to compare the different POVMs, since ML

and LS have similar trends. For both dimensions, the results mostly match what we

expect based on previous discussions of informational completeness. Since we have

prior information that the state is near, but certainly not exactly pure, we predict the

full-IC POVMs to perform the best, since they can characterize an arbitrary full-rank

state. However, since the state is near-pure, we expect the strictly-complete POVM

to perform almost as well, since these POVMs are robust to preparation errors. For

d = 4, we see that the full-IC POVMs, GMB and MUB, indeed produce the lowest

infidelity estimates, followed by the strictly-complete POVMs, 5GMB and the 5PB,

which matches our predictions. The results are similar for d = 16, the MUB and

GMB produce the lowest infidelity estimates, followed by the 5MUB, 5GMB and then

the 5PB. However, for d = 4, the SIC curiously performs worse than the 5GMB and

the 5PB despite the fact that it is full-IC. The PSI also performs much worse than

expected. Therefore, there is some other difference between the POVMs, besides

their informational completeness properties.

In order to shed light on the differences between the POVMs, we re-plot the

infidelity for the LS estimate from Fig. 6.4 as a function of the number of POVM

outcomes in Fig. 6.5. We omit the rank-1 complete POVMs for the reasons discussed

above. The results show a strong correlation between the infidelity of the LS estimate

and the number of POVM elements. POVMs that contain more elements, like the

GMB and MUB, produce the lowest infidelity estimates, while the ones with the less

elements, like SIC and PSI, produce the highest infidelity estimates. This correlation

arises because POVMs with more elements contain repeated information, which has

the effect of reducing the noise and error level. Since the state is near-pure it is almost

entirely described by the 2d − 2 free parameters that describe a pure state. The

relation between these free parameters and the measured outcomes is nonlinear and

very complex. However, POVMs with more than 2d − 2 elements provide repeated

information that is averaged to reduce the noise and error level. It is important
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Figure 6.5: Mean infidelity of LS estimate versus the number of POVM
elements Each point represents the infidelity between the LS estimate and the
target state averaged over the 20 different target states. The error bars show the
standard error in the mean. The POVM used is labelled next to the point.

to keep in mind that in this experiment the dominant source of noise and errors is

the control errors, which are essentially random but fixed for a given control field.

Therefore, POVMs that contain more than 2d− 2 elements produced with multiple

control fields should perform the best, since the effect of the control errors will be

reduced by the redundant information.

With this understanding, we can explain the results in Fig. 6.5. The PSI POVM

contains the fewest elements (2d) and is implemented with a single control field.

Therefore, it contains no averaging of the control errors, explaining the high infi-

delity. The SIC, which has redundancy in the d2 elements, performs poorly since

it is implemented with a single control field, and therefore has no averaging of the

errors. The other POVMs contain at least 5d elements that are implemented with

at least five control fields, so have some averaging of the errors. For d = 16, the

GMB perform worse than the MUB, which is contrary to this understanding. The
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reason could be related to the fact that GMB requires many more bases and the

state preparation may have drifted slightly for each measurement.

The results in Fig. 6.5 demonstrate that, in practice, not all rank-1 strictly-

complete POVMs are equal. Some rank-1 strictly-complete POVMs produce lower

fidelity estimates in the presence of noise and errors, such as the 5GMB or 5PB than

others, such as the PSI. However, the lower fidelity comes at the price of more mea-

surements. This demonstrates an important concept in the practical implementation

of QST, which is the tradeoff between efficiency and robustness. For example, while

the GMB is robust, i.e., produces a low infidelity estimate, it is not very efficient,

i.e., it requires the most POVM elements. As shown in Fig. 6.5, after a certain point

the gains in robustness are modest and must be weighed with the loss of efficiency.

This effect becomes more pronounced as the dimension increases, as seen with d = 4

versus the d = 16 plots in Fig. 6.5. To accomplish effective QST, it is desirable to

look for POVMs that have a satisfactory tradeoff between efficiency and robustness,

such as the MUB for d = 16.

We can also see the tradeoff of efficiency and robustness in POVMs that consist

of multiple basis measurements, such as the GMB and MUB. For this case, we

study the infidelity of the estimate as a function of the number of orthonormal

bases measured. After each basis that makes up the GMB and MUB, we compile

the measurement vector for all previous bases and apply the two programs, LS and

ML. For this comparison, we also estimate the state with the Tr-norm program,

since this situation is similar to the quantum compressed-sensing for which Tr-norm

was proposed. The value of ε in the Tr-norm program was created by numerically

modeling the types of errors expected in the control fields used to produce the unitary

maps [1]. We calculate the infidelity between the estimate and the target state. The

results are plotted in Fig. 6.6.

As expected both POVMs and all estimators produce a low infidelity estimate
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Figure 6.6: Fidelity of estimate and target state as a function of number
of bases Estimates are created with (blue circles) LS, (green exes) ML, and (red
squares) Tr-norm. The error bars correspond to the standard error of the mean. The
POVM used to create the measurement vector is (top) the GMB and (bottom) the
MUB

with five bases, since for both, five bases form a rank-1 strictly-complete measure-

ment and all three programs satisfy the form given in Corollary 3.2. This is only

possible due to the positivity constraint on quantum states, and thus the existence

of rank-1 strictly-complete measurements. By measuring more bases, we refine the

estimate and the infidelity slowly decreases. This matches the comparison shown in

Fig. 6.5 that demonstrated the tradeoff between robustness and efficiency for differ-

ent POVMs. After a certain number of measurements, the gain in robustness, i.e.

decrease in infidelity, is modest.

We see that the Tr-norm estimator has slightly lower infidelity than LS and ML.
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This is due to the “bias” in the estimator towards pure states as was true with

the rank-r-projection algorithm. While the Tr-norm is not as biased as the rank-

r-projection algorithm (it does not constrain the state to be pure) it has a similar

effect when we compare the estimate to the target state. Since the estimate is biased

towards pure states it may be closer to the target state, which is also pure, than

the actual state, which is likely full rank. Therefore, we conclude that this type

of estimator is not desirable for QST, when we are looking to diagnose preparation

errors.

Another factor that may impact the performance of the rank-1 strictly-complete

and rank-1 complete POVMs is the failure set discussed in Chapters 3 and 4. This is

the subset of measure zero within the set of quantum states where the probabilities

from the POVM cannot uniquely identify the quantum state. The PSI, 5GMB and

4GMB suffer from such failure sets. Since the set has zero volume, we do not expect

to randomly select states that are within such sets, and in fact none of the 20 Haar-

random states are within any of the failure sets. However, Finkelstein [53] showed

that in the presence of noise and errors, the failure set in fact has a finite measure.

Therefore, the failure set will have a non-negligible impact on estimation in QST. The

failure set for each POVM is not the same, as shown in Chapter 4 and Appendix A.

Some POVMs have more complicated failure sets, which translate to smaller finite

volume sets in the presence of noise and errors. For example, we show in Appendix A

that the 5GMB have a complicated failure set, while the PSI has a very simple set.

Therefore, we expect that the PSI would suffer from such a failure set more than

the 5GMB. However, there is no clear indication of this effect in the experimental

results. While the PSI, does perform worse than all other POVMs, this could also

be explained by the fact that the PSI has the least number of POVM elements and

is implemented with a single control field. Moreover, while the 5GMB suffers from

the failure set, it still produces a lower infidelity estimate than the 5PB, which has

the same number of elements but no failure set. Therefore, while the failure set may
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be effecting the estimation, we do not see any clear indication, and therefore do not

believe it to be a practical limitation of such POVMs.

6.4 Comparison of POVMs with Hilbert-Schmidt

distance

We saw in the previous section that the number of POVM elements correlates with

the success of the POVM. In this section, we formalize this relation by studying the

structure of POVMs. The results are presented in terms of Hilbert-Schmidt (HS)

distance squared,

∆2(ρ̂, ρt) = ‖ρ̂− ρt‖2
2, (6.20)

which we define in terms of the target state, ρt, since we do not know the actual

prepared state. For comparison, the HS-distance squared ranges in values from

∆2(ρ̂, ρt) = 0, when the states are identical, to ∆2(ρ̂, ρt) = 2, which occurs with

two orthonormal pure states. The HS-distance offers the advantage that it is more

straightforward to study analytically. We have used the HS-distance frequently in

previous chapters. For example, in Chapter 2 and 3, we derived the robustness

bound for full-IC and rank-r strictly-complete POVMs based on HS-distance. More-

over, Scott [10] showed that the estimate returned from certain POVMs, referred to

as “tight,” minimize the expected HS-distance over all realizations of the experiment

when the measurement is only limited by finite sampling. These POVMs are, there-

fore, optimal for this particular situation. Two common examples of tight POVMs

were implemented in the experiment, the SIC and the MUB. We reassess the experi-

mental results with respect to the HS-distance and compare the results to theoretical

predictions.
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6.4.1 Comparison of full-IC POVMs

We start with the full-IC POVMs and only consider the linear-inversion estimate, ρ̂ =

R̂. While this estimate is not necessarily a quantum state, and thus not appropriate

for many applications, it is a useful mathematical tool for comparing POVMs. This

was the approach taken by Scott [10], who showed that tight POVMs, such as the

SIC and MUB, produce the lowest, average HS-distance squared when there is a fixed

number of copies and the experiment is only limited by the resulting finite sampling

noise. The experimental results with the HS-distance for the full-IC POVMs and

the linear-inversion estimate are given in Table 6.1. From the table, we see that for

d = 4 d = 16

SIC 0.0466 (0.0048) -

MUB 0.0111 (0.0011) 0.0586 (0.0035)

GMB 0.0067 (0.0008) 0.0710 (0.0020)

Table 6.1: Experimental value of HS-distance squared for full-IC POVMs
Each cell gives the HS-distances squared between the linear-inversion estimate and
the target state averaged over all 20 Haar-random pure states, with standard error
of the mean given in parentheses.

d = 4 the GMB produce the minimum average HS-distance squared, followed by the

MUB, and then the SIC POVM. This matches the infidelity results in the previous

section. For d = 16, the MUB produces the lower value of the HS-distance than the

GMB, which is the same as when we compared infidelity. Therefore, the HS-distance

results match the same trends we saw with infidelity.

While the HS-distances follows a similar trend as infidelity, they do not match

the result by Scott [10] for two reasons. First, we know that the experiment is not

limited by finite sampling since repeating the Stern-Gerlach analyzer with the same
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control parameters produces a nearly identical measurement vector. Instead, the

measurements are actually limited by errors in the control fields. Second, the SIC

POVM is implemented with a single run of the Stern-Gerlach analyzer while the

MUB and GMB are done with many runs. Therefore, if the experiment was limited

by finite sampling, it would be as if the SIC used m copies, the MUB used (d+ 1)m

copies, and the GMB used (2d − 1)m copies. While we know the finite sampling

noise is negligible, the difference in the number of applications of the Stern-Gerlach

analyzer still has an impact on the accuracy of the POVM.

To gain better insight into the experimental results, we construct a general frame-

work for predicting the HS-distance in the presence of arbitrary noise and errors. This

framework is an extension of the work by Scott [10] and will allow us to compare

arbitrary full-IC POVMs in the presence of any type of noise or error. In any exper-

iment, random noise may determine the exact value of the HS-distance squared. So

instead of studying the HS-distance squared, we focus on the expected HS-distance.

This is defined by,

∆̄2(R̂, ρt) = E
[
‖R̂− ρt‖2

2

]
, (6.21)

where the expectation value is over all realizations of the experiment. We wish to

relate the value of ∆̄2(R̂, ρt) to the POVM in order to compare different POVMs.

The linear-inversion estimate provides a method to make such a relation, which

motivates the choice of linear-inversion in this section. It can be expressed in terms

of the reconstruction operators, {Qµ}, which can be derived from Ξ+, discussed in

Sec. 2.4,

R̂ =
∑
µ

fµQµ. (6.22)

For the SIC and MUB the reconstruction operators, {Qµ}, have a “painless” form

and are only proportional to the POVM elements [10]. We can also express the target

state in terms of these reconstruction operators, ρt =
∑

µ pµQµ, where {pµ} are the
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probability of each outcome given the target state. If we substitute Eq. (6.22) into

Eq. (6.21) then,

∆̄2(R̂, ρt) = E

[
Tr

(∑
µ,ν

(fµQµ − pµQµ)† (fνQν − pνQν)

)]
,

=
∑
µ,ν

E [(fµ − pµ)(fν − pν)] Tr[QµQν ]. (6.23)

We define Gµ,ν = Tr[QµQν ] as elements of the “Gramian matrix,” G. Similarly,

we define Yµ,ν(ρt) = E [(fµ − pµ)(fν − pν)] as elements of another matrix, called the

“noise/error matrix,” Y (ρt). We call this the noise/error matrix because the noise

and errors perturb the measurement vector from the probabilities. The noise/error

matrix is a function of ρt, since the noise and errors may be state dependent, as is

the case with finite sampling noise. This leads to the following compact equation,

∆̄2(ρt) = Tr [Y (ρt)G] , (6.24)

where we have dropped the dependence on R̂ since it is contained within Y (ρt). We

have thus cleanly related ∆̄2(ρt) to two matrices, one that is only dependent on the

POVM, G, and one that is only dependent on the noise/errors present, Y . In general,

POVMs that have small values of G will produce smaller ∆̄2(R̂, ρt). This matches

with Table 6.1, since the G matrix from the GMB has the smallest elements, followed

by the MUB, and then the SIC. However, this does not explain why, for d = 16, the

MUB produces a lower value of the HS-distance squared than the GMB. The reason

is likely related to the fact that ∆̄2(R̂, ρt) is also dependent on the type of noise

and errors present, which is contained in Y (ρt). Therefore, in order truly compare

POVMs, we also need to know the form of the noise and errors.

In the cesium spin system, the dominate source of error is in the imperfections

in the implementation of unitary maps that produce each basis measurement, which

defines each POVM. These errors are only dependent on the control field, and there-

fore independent of the state that is measured, so Y (ρt) = Y for all ρt. Moreover,
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for a given control field, the errors are constant, i.e. systematic errors. This was ver-

ified experimentally by repeating the measurement with the same control field and

determining that the measurement vector is constant between repetitions. Then, Y

is a constant for all realizations of the experiment with the given control field. The

value of Yµ,ν is proportional to errors in the unitary map, which not a straightfor-

ward relation. Therefore, without further study the control errors, we cannot exactly

determine the form of Y .

While we do not know the exact form of Y for the cesium spin system, the

University of Arizona group performed an additional experiment that gives insight

into the magnitude of the errors present. This experiment was based on repeating

the SIC POVM but each repetition was done with a different control fields. Due to

the nature of numerical control optimization, there exist infinitely other control fields

that implement the same unitary. Different control fields may have different errors

associated with them. Therefore, if we repeat the same POVM but implement it with

different control fields, we effectively randomize over some control errors. There may

be some errors that cannot be randomized over, such as decoherence. These errors

then remain systematic errors. Based on the behavior of ∆2(R̂, ρt), we can determine

the magnitude of the random errors compared to the systematic errors.

To accomplish this, we build two theoretical models of the behavior of ∆̄2(R̂, ρt)

and compare them to the experimental results. Since we assume that Y is indepen-

dent of the measured state, we denote ∆̄2 = ∆̄2(R̂, ρt). The two models we consider

are two different forms of the noise/error matrix. The first is that the control errors

are totally random. Then, the value of fµ − pµ = eµ is a random variable with zero

mean, and Yµ,ν = E[eµeν ] is the covariance matrix. In this case, we label Y = C,

for covariance. With random errors, repeating the SIC POVM n times will decrease

∆̄2 by a factor of 1/n since covariance matrices add, and we average over the n
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repetitions. Therefore, ∆̄2 is a function of the number of repetitions,

∆̄2(n) =
1

n
Tr [CG] =

xrand

n
, (6.25)

where xrand , Tr [CG].

The second model we consider is when there exists both random and systematic

errors in the control fields. In this case, fµ − pµ = eµ + kµ, where eµ represents the

random errors and kµ represents the systematic errors, and we have assumed that

both error sources are uncorrelated. The systematic errors, kµ, are constant for all

realizations of the experiment, such that E[fµ − pµ] = kµ. The elements of Yµ,ν are

then,

Yµ,ν = E[(fµ − pµ)(fν − pν)] = E[(eµ + kµ)(eν + kν)] = E[eµeν ] + kµkν , (6.26)

where the middle terms are zero, since E[eµ] = 0 and we previously assumed the

errors are uncorrelated. The first term is the covariance of the random errors, so we

again label the elements as Cµ,ν . The second term is constant for all realization due

to the definition of the systematic errors and we label the elements as Kµ,ν = kµkν .

We now plug this expression into Eq. (6.24),

∆̄2(n) =
1

n
Tr [CG] + Tr [KG] =

xrand

n
+ xsys. (6.27)

where xsys , Tr [KG].

In the experiment, the SIC POVM was implemented with 10 different control

fields and each was applied to 10 Haar-random pure states. Since ∆̄2(n) is the same

for any target state, we can approximate the value of ∆̄2(n) by averaging over the

10 experimentally measured values of ∆2(R̂, ρt) for each repetition. We denote the

average as ∆2(n) for n repetitions of the SIC POVM. In Fig. 6.7, we plot ∆2(n) as a

function of the number of repetitions of the SIC POVM (blue). Fig. 6.7 also contains

two fits to the Eq. (6.25) (green) and Eq. (6.27) (red), created with MATLAB’s fit
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Figure 6.7: Repetitions of SIC POVM with different control fields Experi-
ment data and theoretical predictions for ∆2 between the target state and estimate
from linear inversion as a function of the number of repetitions of the SIC POVM.
(Blue) experimental data averaged over 10 Haar-random pure states, with point cor-
responding to the mean of all ∆2 values and error bars corresponding to standard
error in the mean. (Green) Theoretical model for the behavior when there only exists
random errors, fit to the experimental data. (Red) Theoretical model for the behav-
ior when there exists both random and systematic errors, fit to the experimental
data based.

function. For the fit to Eq. (6.25), we find,

xrand = Tr [CG] = 0.0491 (0.03772, 0.0605), (6.28)

with r2 = 0.5283 (parentheses contain 95% confidence interval). For the fit to

Eq. (6.27), we find,

xrand = Tr[CG] = 0.0326 (0.0290, 0.0363),

xsys = Tr[KG] = 0.0087 (0.0073, 0.0101), (6.29)
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with r2 = 0.9816. From the figure we see that averaging over the control errors does

decrease the HS-distance; however, the experimental data more closely matches the

model that contains both random and systematic errors. In this model, the random

term dominates but the systematic term has a significant contribution. Therefore,

we can conclude that a majority of the control errors are due to effectively random

sources associated with each control fields. This means, in principle, that the esti-

mation from any of the POVMs can be improved by repeating the POVM with a

different control fields and averaging the results.

An important contribution to the systematic error term in the analysis above is

due to preparation errors, and therefore not really a systematic error per se. The

fidelity of state preparation was measured to be F = 0.995 [45], which corresponds

to ‖ρt− ρa‖2 = 0.01− (1−Tr[ρ2
p]) ≤ 0.01. We believe ρa is highly pure (Tr[ρ2

a] ≈ 1),

but even with a small amount of impurity, (1 − Tr[ρ2
p]) the preparation error has a

non-negligible contribution to the value of xsys. Therefore, the estimate found may

contain information about the preparation errors that can be used to develop better

state preparation procedures.

6.4.2 Comparison of rank-1 strictly-complete POVMs

In Chapter 3, we proved that the estimate produced from the measurement vector

of rank-1 strictly-complete POVMs are robust to noise and errors. The robustness

bound was given in terms of the HS-distance between the target state and an estimate

returned by a convex program in the form given in Corollary 3.2. We calculate the

HS-distance squared with the experimental results to see if they are consistent with

the robustness bound. We only compare the HS-distance with the estimate from

the LS program for simplicity. The experimental results are given in Table 6.2.

We see from the table that all POVMs in both dimensions produce a low average
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d = 4 d = 16

PSI 0.0710 (0.0160) -

5GMB 0.0092 (0.0013) 0.2119 (0.0180)

5PB 0.0124 (0.0017) 0.1991 (0.0256)

5MUB - 0.0905 (0.0065)

Table 6.2: Experimental values of HS-distance squared for rank-1 strictly-
complete POVMs The result is an average over all twenty random pure states
with standard error of the mean given in parentheses.

HS-distance squared. For d = 4, the 5GMB produce the smallest value of the HS-

distance squared, followed by the 5PB, and then the PSI. These trends match the

infidelity results shown in Fig. 6.4. For d = 16, the 5MUB produce the smallest

value, followed by the 5PB, and then the 5GMB. This is counter to the infidelity

results, which showed the 5GMB perform better than the 5PB. However, in both

cases the values for the 5GMB and 5PB are very similar, and the standard error

in the mean overlap. Therefore, the experimental results are consistent with the

robustness bound, and the infidelity and HS-distance results roughly agree.

As with the full-IC POVMs, we would like a method to compare different POVMs

based on their structure. The approach taken in the previous section, based on

theoretically predicting ∆̄2, cannot be extended to rank-1 strictly-complete POVMs

since the linear-inversion estimate is not unique. Instead, we compare different rank-

1 strictly-complete POVMs by the robustness constants, α, used in the derivation of

Corollary 3.2,

‖ρ1 − ρ2‖
‖M[ρ1 − ρ2]‖

≤ 1

α
. (6.30)
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where the constant α contributes to the robustness bound,

‖ρa − ρ̂‖ ≤ C1ε+ 2C2υ (6.31)

where C1 = 2
α

and C2 = β
α

. There is no known analytic form for this constant,

but in Sec. 4.4, we presented a numerical method for estimation. To accomplish

this, we generate 104 pairs of density matrices, one that is rank-1 and one that is

full-rank, chosen by the method described in Sec. 4.4. We then calculate the ratio

of the HS-distance between the two density matrices, to the `2-distance between the

probability vectors of a strictly-complete POVM, that is the LHS term in Eq. (6.30).

We then bin the number of times each ratio is determined numerically. The results

are shown in Fig. 6.8 for both d = 4 and 16 and follow the same trend outlined in

Sec. 4.4, where the distributions are centered around a peak. It should be noted that

since each pair of states is randomly generated, the numerical test is very unlikely to

sample a state from the failure set, which has zero volume. Therefore, this numerical

test is independent of this failure set and the results offer a way to compare POVMs

separate from this effect.

For d = 4, the 5GMB and 5PB produce approximately the same distribution.

The distribution for the PSI is, however, significantly shifted to larger ratios and

wider. This means that the robustness constant, 1/α, is much larger. The bound

in Eq. (6.31) is then much larger for the PSI POVM. Therefore, we expect that the

HS-distance between the estimated state and the actual state for PSI is much larger

than the same measure for the other POVMs. This matches with the experimental

data shown in Table 6.2. Numerically, we find that the range for the ratio for the

5GMB and 5PB is reasonable, 0.6117 − 2.3769, such that the robustness constants

for both are not too large and the bound in Eq. (6.31) is small. For d = 16, the

three distributions are roughly centered on the same value and have a similar range

of the ratio, 0.9277 − 2.7747. However, the width of each distribution is different,

where the 5MUB is the narrowest, followed by the 5PB, and the 5GMB. We expect
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Figure 6.8: Numerical simulation of robustness parameters rank-1 strictly-
complete POVMs We generate 104 pairs of with one Haar random pure states and
one random mixed state with the HS-measure. We then calculate the ratio between
the HS-distance and the `2 norm of the measurement record, given in Eq. (6.30). We
repeat for the 5GMB, 5PB, PSI-complete (d = 4 only), and 5MUB (d = 16 only)
for (top) d = 4 and (bottom) d = 16. The results are binned and the number of
occurrences of each bin is plotted.

that a narrower distribution will have smaller values for 1/α. Therefore, narrow

distributions correspond to measurements that produce a smaller bound in Eq. (6.31),

and thus better estimation. This matches the experimental values of ∆2 in Table 6.2,

which show the 5MUB produce the smallest value, followed by the 5PB, and then

the 5GMB. The difference between the 5PB and 5GMB is small, which is reflected

in the similar distribution in Fig. 6.8.

The results of the numerical test match both the experimental results for HS-

distance and the intuition established in Sec. 6.3 about the tradeoff of efficiency

and robustness. The reason that the PSI performs so badly is likely related to the

fact that it has much fewer elements. However, since we do not have an analytic
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expression for the robustness constants it is not currently possible to formalize this

relation. The numerical test also provides further evidence that the failure set is not

what is limits the PSI or effects the 5GMB since the results are independent of the

failure set. Therefore, we conclude that the failure set is not a practical limitation

for strictly-complete POVMs.

6.5 Process tomography

Sosa-Martinez et al. also experimentally tested the efficient methods for QPT that

were outlined in Chapter 5. In the experiment, the target quantum process was a

unitary map. However, due to control errors, or other sources outlined in Sec. 6.1.3,

the applied process is not exactly unitary. From previous tests, such as the random-

ized benchmarking inspired protocol [44], we know that the magnitude of these errors

is small. Therefore, we have strong evidence that the applied process is near-unitary

and the methods for QPT with UIC sets of states should produce a robust estimate.

QPT was implemented for both the d = 4 subspace and the full d = 16 Hilbert

space. For d = 4, Sosa-Martinez et al. generated 10 Haar-random unitary maps

as the target processes. The actual near-unitary processes are probed with the d

UIC set of states given in Eq. (5.14), supplemented with a set of d2 − d linearly

independent states from Eq. (5.5). The output was then measured with the MUB.

The measurement vector was analyzed with the three estimation programs, LS, Tr-

norm and `1-norm, outlined in Sec. 5.2. The estimated processes were then compared

to the target processes to determine the process fidelity, given in Eq. (5.10), after

each input state is measured. The results are plotted in Fig. 6.9.

In Fig. 6.9, we see that the estimation programs follow similar trends to what

was discussed in Sec. 5.4. The LS and Tr-norm produce high fidelity estimates after

d = 4 input states. This verifies that the applied process is in fact near-unitary.
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Figure 6.9: Experimental results for QPT of a 4-dimensional Hilbert space
with efficient order of probing states The quantum process was estimated af-
ter each ordered input state with (solid blue) the LS program given in Eq. (5.6),
(dashed green) Tr-norm minimization given in Eq. (5.7), and (dotted red) `1-norm
minimization given in Eq. (5.8).

The `1-norm program produces a high fidelity estimate for all input states since it

has more prior information about the applied process. As outlined in Sec. 5.4, the

fact that the `1-norm estimate has near constant fidelity for all input states, and

the Tr-norm program produces estimates with slightly higher fidelity, indicates that

the applied process has incoherent errors. This is consistent with the types of errors

seen in QST and discussed in Sec. 6.4.1. Therefore, we conclude that (1) the UIC

set of input states accomplishes efficient QPT in an experimental setting and (2)

that the dominant error in the each unitary map implemented in the experiment

is likely incoherent due to averaging the ensemble over random local Hamiltonians,
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Figure 6.10: Experimental results for QPT of a 16-dimensional Hilbert space
with efficient order of probing states The quantum process was estimated after
each ordered input state with the LS program given in Eq. (5.6), and implemented
with a gradient-projection algorithm.

e.g., random bias magnetic fields.

Sosa-Martinez et al. also implemented QPT for the full d = 16 Hilbert space.

For d = 16, it is not practically feasible to evolve d2 = 256 input states, which are

required for standard QPT. For one, it would take a very long time to perform an

experiment with 256 states and effects, such as drift in the experimental settings,

may contaminate the results. Also, the classical computation required to produce

an estimate for such a large system is not possible with current convex optimiza-

tion algorithms. Therefore, the efficient set of UIC states is mandatory for QPT of

such a large system. In the experiment, the 16 states from Eq. (5.14), along with
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four extra states for comparison, were used to probe a single, near-unitary process.

After measuring each state, we calculate an estimate with only the LS program. In-

stead of using the CVX package for MATLAB, as was done for d = 4, we applied a

gradient-projection algorithm. This algorithm is different form the rank-r-projection

algorithm discussed above. The gradient-projection algorithm used for d = 16 QPT

only projects to the set of CPTP quantum process, i.e. PSD matrices with proper

TP constraint. Therefore, it does not have the same type of bias issues associated

with the rank-r-projection algorithm for rank-1 complete POVMs and is an imple-

mentation of the standard LS program. We then compared the estimate from this

algorithm to the target unitary with the process fidelity given in Eq (5.10). The

results are plotted in Fig. 6.10.

For d = 16, we are still able to reconstruct a high-fidelity estimate of the quantum

process with the UIC set of states given in Eq. (5.14). This is the largest Hilbert

space that QPT has been implemented and is only made possible by using the UIC

set. Given the large amount of data it is difficult to implement the Tr-norm and `1-

norm estimation programs in order to determine the type of errors present. However,

the estimation provided by the LS program is still useful for diagnosing errors in the

map by other methods, such as the ones discussed in Refs. [92, 101].

6.6 Summary and Conclusions

The experiments performed by Sosa-Martinez et al. demonstrated many different

methods for measurement and estimation in QT. We found that full-IC POVMs

produce the lowest infidelity estimation of the quantum state with ML. However,

rank-1 strictly-complete POVMs also produce low infidelity estimates even for larger

systems. This demonstrates the tradeoff between efficiency and robustness in QST.

While the full-IC POVMs produce the lowest infidelity estimate, they require many
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POVM elements. Conversely, we saw that while rank-1 strictly-complete POVMs

theoretically offer both efficiency and robustness, some constructions, such as PSI,

are not accurate enough for practical use. Therefore, it is important to choose

POVMs for real implementations of QST that offer sufficient robustness and are still

efficient.

The experiment also demonstrates that estimators that are required for rank-1

complete POVMs are biased. In order to reliably produce an estimate for these

POVMs, we must use the rank-r-projection algorithm, which projects to pure states.

This algorithm produces estimates that have much lower infidelity with the target

state than expected. Therefore, these estimates cannot be trusted for QST. This is

another drawback of rank-1 complete POVMs.

We also discussed methods of comparing the structure of POVMs for QST based

on the HS-distance. For full-IC POVMs, we presented a mathematical framework

that can predict how each POVM will perform when there exists knowledge about the

noise and errors that effect the experiment. Currently, in the cesium spin experiment,

we do not know the exact form the noise and errors, and therefore cannot apply this

result. We were able to determine the magnitude of random control errors and

systematic errors by studying the experimental results of the repeated SIC POVM.

This test showed that random control errors dominate but systematic errors do have a

non-negligible contribution. For the rank-1 strictly-complete and complete POVMs,

we applied a numerical study in order to estimate the robustness parameters to

understand how each POVM performs. We saw that this method matched with the

experimental results for the rank-1 strictly-complete POVMs.

The QPT results by Sosa-Martinez et al. show that UIC sets of states produce

efficient and robust estimates. Moreover, different estimations strategies for QPT

were used to determine that incoherent errors likely dominate the processes. For

the d = 16 system, the UIC set serves as an example of the power of efficient QT
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techniques. QPT in this system would not be possible with standard techniques;

however, with the UIC set we are able to produce high fidelity estimates of a near-

unitary process.
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Chapter 7

Conclusions and outlook

In this dissertation, we introduced new methods for quantum tomography (QT) that

are more efficient to implement and robust to noise and errors. We showed that

these methods are made possible by applying prior information about the quantum

system that is consistent with the goals of most quantum information processing

experiments. Specifically, for quantum state tomography (QST) the prior informa-

tion is that the quantum state is close to pure and for quantum process tomography

(QPT) it is the process is close to unitary. Pure states and unitary processes are

required for most quantum information processing protocols, and therefore most ex-

periments work to engineer states and processes near this regime. We showed that

the new methods for QST and QPT produce robust estimates even if the states

are not exactly pure and the processes are not exactly unitary. Therefore, these

results offer a way to accomplish QT in larger dimensional Hilbert spaces than were

previously possible with standard techniques.

We began the dissertation by outlining the mathematical framework for standard

QT in Chapter 2. Standard QT is defined by the notion of full informational com-

pleteness (full-IC). We reviewed how this notion applies to QST, QPT, and QDT in
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the ideal case where we have direct access to the probabilities. We showed that, in

this case, QT is a linear algebra problem where the probabilities are linearly related

to the free parameters that describe an arbitrary state, process, or POVM. However,

in any real application of QT, there necessarily exist noise and errors, and therefore

we do not have direct access to the probabilities. To study this case, we formalized

the effect of noise and errors in QT. We also presented previously proposed numer-

ical algorithms for estimating the quantum states, processes, and detectors in this

situation. We showed that the standard methods are robust to such noise and errors.

However, standard QT requires resources that scale polynomially with the dimension

of the Hilbert space, and therefore are limited to small systems.

In order to accomplish QT more efficiently, we devised methods to incorporate

prior information about the the quantum system into the measurements and esti-

mation. We began by focusing on QST in Chapter 3. We showed that there exists

POVMs that fully characterize pure states with less elements than needed for stan-

dard QST in the ideal setting when we have direct access to the probabilities. We

defined two types of these POVMs: rank-1 complete and rank-1 strictly complete.

Rank-1 complete POVMs uniquely identify pure states from within the set of all

pure states while rank-1 strictly-complete POVMs uniquely identify pure states from

within the set of all quantum states. The notion of rank-1 strictly-complete POVMs

is only made possible by the positivity constraint on quantum states, i.e., all density

matrices are constrained to be positive semidefinite (PSD).

The difference between rank-1 complete and rank-1 strictly-complete POVMs has

significant consequences for QST in the presence of noise and errors. In this case,

numerical optimization is required to produce an estimate of the measured quantum

state. The two different types of POVMs demand different strategies for numerical

optimization. Rank-1 complete POVMs necessitate algorithms that are restricted to

the set all pure states. This is a nonconvex constraint and so is difficult to incorporate
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in numerical optimization. Rank-1 strictly-complete POVMs require optimization

that is restricted to the set of quantum states, which is a convex set. Therefore,

rank-1 strictly-complete POVMs are compatible with the well established methods

for convex optimization while rank-1 complete POVMs are not. Moreover, we proved

that for rank-r strictly complete POVMs, the estimate returned by certain convex

programs are robust to all sources of noise and errors. This includes preparation

errors, which necessarily exist in any experiment and cause the actual state to be not

exactly pure. This property makes rank-1 strictly-complete POVMs advantageous

for pure-state QST.

We went on to discuss different methods to produce both rank-r complete and

strictly-complete POVMs in Chapter 4. We showed, that while rank-1 strictly-

complete POVMs are inherently related to positivity, which is a difficult constraint

to treat analytically, we can still construct POVMs that are provably rank-1, and

more generally, rank-r strictly-complete. We provided two methods for constructing

strictly-complete POVMs. The first applies to a certain type of POVM, which we

called element-probing (EP) POVMs. EP-POVMs allow for the direct reconstruction

of density matrix elements. For these types of POVMs, we introduced tools based

on the Schur complement and the Haynsworth matrix inertia to prove an EP-POVM

is rank-r complete or strictly-complete. These tools can also be used to construct

new rank-r strictly-complete POVMs, with two examples given in Appendix A. We

also demonstrated numerically that a set of random orthonormal basis measure-

ments form a rank-r strictly-complete POVM. We applied these two methods to a

simulation of QST to show that the quantum state could be efficiently and robustly

estimated in the presence of sources of noise and errors. Therefore, we conclude that

strictly-complete POVMs are the best choice for bounded-rank QST, due to their

efficiency, robustness, and compatibility with convex optimization.

At the end of both Chapter 3 and Chapter 4, we identified how the ideas of rank-r
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strictly-complete POVMs can be generalized to QDT and QPT. This relation is made

possible by the fact that a positivity constraint exists for both matrices that define

QDT and QPT. For QDT, the POVM elements that we diagnose are constrained to

be PSD matrices. For QPT, the condition that the process is completely positive

(CP) is equivalent to the process matrix being PSD. Since the definition of rank-r

strictly-complete is only with respect to PSD matrices and not just quantum states,

the same notion applies for both QDT and QPT. For QDT, the generalization is

straightforward since the unknown POVM element is probed with a set of quantum

states. We can translate many constructions for rank-r strictly-complete POVMs in

QST to a strictly-complete set of probing states for QDT, as was shown in Sec. 4.5.

It is not as straightforward to generalize the notion of strict-completeness to QPT,

but in Chapter 5, we presented such a generalization. Most quantum information

protocols require unitary process, which is prior information that can be applied to

QPT. Unitary processes are represented by rank-1 process matrices, so unitary QPT

is analogous to pure-state QST. We defined sets of states that uniquely identify a

random unitary process within the set of all unitary maps, called unitarily informa-

tionally complete (UIC) sets. We provided a few example constructions and also gave

numerical evidence that these UIC sets also uniquely identify any random unitary

process from within the set of all CPTP maps. In any real application of QPT, the

process being measured is not exactly unitary. Therefore, we studied the problem

of near-unitary QPT and considered two different types of error models that may

disrupt the target unitary process. We showed that different estimators for QPT

respond differently to these two types of error models, and therefore could be used

to diagnose which types of errors are present.

QT is fundamentally an experimental protocol to characterize a quantum system,

so any new method for QT should be tested experimentally. In Chapter 6, we

discussed experimental tests on an ensemble of cesium atoms performed by Hector
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Sosa-Martinez and Nathan Lysne in the lab of Prof. Poul Jessen at the University of

Arizona. Different rank-1 complete and strictly-complete POVMs were implemented,

and various numerical estimation programs were compared. It was found that the

POVMs with the most elements produced the lowest infidelity estimates for QT.

However, some POVMs with less elements produce estimates with almost as low

infidelity. The results illustrate the tradeoff between efficiency and robustness in

QT. While POVMs with many elements are the most robust, and thus produce the

best estimates, they require much more experimental effort. Rank-1 strictly-complete

POVMs produce estimates with almost as low infidelity but are much more efficient.

For QPT, the experiment demonstrates that the UIC set does produce a high fidelity

estimate of the unknown unitary process that also indicates of the type of noise

present. The set also allowed for the implementation of QPT for a d = 16 Hilbert

space, which is infeasible with standard techniques.

The experiment opens three avenues for future theoretical research in QT. First,

while we have some theoretical and numerical methods to compare POVMs, the

experimental results do not exactly match, as discussed in Sec. 6.4. This may be due

to sources of noise and errors that are unique to the experiment. Current theoretical

and numerical methods for comparing POVMs do not take such differences into

account. For example, in the original work by Scott [10], it was proven that so-called

“tight” POVMs, such as the SIC and MUB, are optimal for QST. However, this proof

holds under the assumption that the experiment is only limited by finite sampling.

This is not the case for the cesium spin experiment as well as most real applications

of QT. It would be useful to derive methods to compare POVMs with arbitrary types

of noise or errors.

Second, the experiment also confirmed that each estimator for QST and QPT

perform differently, which has consequences on how we compare different methods.

For example, the Tr-norm and the rank-r-projection algorithms produce infidelities
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much lower than LS and ML. However, the Tr-norm and rank-r-projection algorithms

are biased towards pure states, and therefore may overestimate the performance of

QT. This effect must be better understood in order to not make false claims of

superior methods that are only due to the bias estimation. In general, it is important

to study how all estimators performs in different error regimes to make sure that the

estimation is reliable. If we are given prior information about the type of errors

present, we may be able to choose the best suited estimator.

Finally, the estimates produced in both QST and QPT from the experimental

data exemplifies an outstanding question in QT research: what do we do with the

estimates? In Chapter 6, we compared the infidelity to the targets states and process,

but the density and process matrices in theory contain all information about the

quantum states and processes. However, it is not straightforward to extract this

information. Previous work has made some relations between density and process

matrices to useful quantities. For example, it was shown that entanglement measures

can only be calculated with full tomographic reconstructions [102, 103]. There have

also been a proposal for QPT that relates certain elements of the process matrix

to different sources of errors [92]. However, we lack a well defined framework for

understanding both the density matrix and the process matrix. Future work, which

may flush out important relations, would allow for the diagnosis of noise or error

sources and make QT the useful experimental tool that is only now a promise.

The outlook for QT as a whole is mixed. Originally, QT was only feasible for

small systems (e.g. a couple of qubits). However, with the unifying techniques

proposed in this dissertation, as well as related work in compressed sensing [58,

59], QT is now possible for larger systems (e.g. 3-10 qubits). These systems are

common in today’s state-of-the-art experiments, so QT is currently a useful tool

for experimentalists. However, with new technological advances, it is expected that

soon still larger systems (e.g. > 10 qubits) will be more common. For these systems,
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even strictly-complete methods for QT, will not be feasible. This is due to the fact

that most methods for QT, even the ones proposed here, scale exponentially with

the number of qubits. It may be that other types of prior information, such as

matrix product states [104], can be leveraged to make QT feasible in larger systems.

In this case the notions of completeness and strict-completeness may have useful

generalizations that allow for efficient and robust methods. However, it seems that

QT’s likely future is as one tool in the toolbox for diagnosing quantum systems. In

order to build quantum information processors that demonstrate advantages over

classical techniques, we will require many such tools and the fact that QT is now

possible with larger systems makes it a tool of greater value.
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Other rank-r strictly-complete

POVM constructions

In this appendix we present four rank-r strictly-complete POVMs. The first three

(GMB, 5PB, and PSI) were implemented in the experiment discussed in Chapter 6.

The final POVM is a generalization of the POVM given in Eq. (4.1) to be rank-r

strictly-complete.

A.1 Gell-Mann bases (4GMB, 5GMB, and GMB)

Goyeneche et al. [54] proposed two sets of bases for pure-state QST, which we refer to

as the 4GMB (consisting of four bases and given in Eq. (4.2)) and 5GMB (consisting

of the 4GMB plus the computational basis). Goyeneche et al. [54] proved that both

these constructions are rank-1 complete by the decomposition method discussed in

Sec. 4.1. In Sec. 4.2, we showed that the 4GMB form an EP-POVM, and the same

can be shown for the 5GMB. In Ref. [54], the 5GMB were proposed in order to avoid

the failure set by adaptively constructing four of the bases based on the measured
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outcomes of the first basis. We do not consider such adaptive techniques here.

Instead, we treat the 5GMB as fixed, and use the EP-POVM framework to prove

the 5GMB are in fact rank-1 strictly-complete. We then show that this type of basis

measurement can be extended to bounded-rank QST, and provide an algorithm to

generate 4r+ 1 bases that are provably rank-r strictly-complete. When r ≥ d/2, the

algorithm constructs the full-IC POVM referred to as GMB, which was applied in

the experiment and discussed in Chapter 6.

All of the constructions discussed in this section (4GMB, 5GMB, and GMB) are

EP-POVMs that allow for the reconstruction of density matrix elements that make

up the diagonals. For convenience, we label the upper-right diagonals 0 to d − 1,

where the 0th diagonal is the principal diagonal and the (d − 1)st diagonal is the

upper right element. Each diagonal, except the 0th, has a corresponding Hermitian

conjugate diagonal (its corresponding lower-left diagonal). Thus, if we measure the

elements on a diagonal, we also measure the elements of its Hermitian conjugate.

The computational basis corresponds to measuring the 0th diagonal.

We begin by considering the 5GMB construction. In Sec. 4.2, we showed the

4GMB allows for reconstruction to of the elements on the first diagonals. The 5GMB

additionally includes the computational basis measurement, which allows us to re-

construct of all elements on the 0th diagonal. To show that the 5GMB is rank-1

complete, we follow the general strategy outlined in Sec. 4.2.2. First, choose the

leading 3× 3 principal submatrix,

M0 =


ρ0,0 ρ0,1 ρ0,2

ρ1,0 ρ1,1 ρ1,2

ρ2,0 ρ2,1 ρ2,2

 , (A.1)

where, hereafter, the elements in bold font are the unmeasured elements. By applying

a unitary transformation, which switches the first two rows and columns, we can move
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M0 into the block matrix form,

M0 → UM0U
† =


ρ1,1 ρ1,0 ρ1,2

ρ0,1 ρ0,0 ρ0,2

ρ2,1 ρ2,0 ρ2,2

 . (A.2)

This matches the form in Eq. (4.3), with A = ρ1,1, B† = (ρ1,0, ρ1,2) and C is the

bottom 2 × 2 submatrix. Form Eq. (4.6), we can solve for ρ0,2 and ρ2,0, since C =

ρ−1
1,1BB

†. The set of states with ρ1,1 = 0 corresponds to the failure set. Note that the

diagonal elements of C, ρ0,0 and ρ2,2, are also measured. We repeat this procedure

for the set of principal 3× 3 submatrices, Mi ∈M for i = 0, . . . , d− 2,

Mi =


ρi,i ρi,i+1 ρi,i+2

ρi+1,i ρi+1,i+1 ρi+1,i+2

ρi+2,i ρi+2,i+1 ρi+2,i+2

 , (A.3)

For each Mi, the upper-right and the lower-left corners elements ρi,i+2 and ρi+2,i

are unmeasured. Using the same procedure as above, we reconstruct these elements

for all values of i and thereby reconstruct the 2nd diagonals. We repeat the entire

procedure again choosing a similar set of 4×4 principal submatrices and reconstruct

the 3rd diagonals and so on for the rest of the diagonals until all the unknown

elements of the density matrix are reconstructed. Since, we have reconstructed all

diagonal elements of the density matrix and used the assumption that rank(ρ) = 1

the 5GMB is rank-1 complete POVM. The first basis measures the 0th diagonal, so

by Proposition 4.1 the 5GMB is also rank-1 strictly-complete.

The failure set corresponding to M is when ρi,i = 0 for i = 1, . . . , d − 2. Addi-

tionally, the 5GMB provide another set of submatrices M ′ to reconstruct ρ. This

set of submatrices results from also measuring the elements ρd−1,0 and ρ0,d−1, which

were not used in the construction of M . The failure set for M ′ is the same as the

failure set of M , but since M ′ 6= M , we gain additional robustness. When we

consider both sets of submatrices the total failure set is ρi,i = 0 and ρj,j = 0 for
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i = 1, . . . , d − 2 and i 6= j ± 1. This is the exact same set found by Goyeneche et

al. [54].

We generalize these ideas to measure a rank-r state by designing 4r+1 orthonor-

mal bases that correspond to a rank-r strictly-complete POVM. The algorithm for

constructing these bases, for dimensions that are powers of two, is given in Algo-

rithm A.1. In principle, sets of orthonormal bases with similar properties can be

designed for any dimension. Technically, the algorithm produces unique bases for

r ≤ d/2, but since d + 1 mutually unbiased bases are full-IC, for r ≥ d/4 one may

prefer to measure the latter. The corresponding measured elements are the first r

diagonals of the density matrix.

Given the first r diagonals of the density matrix, we can reconstruct a state

ρ ∈ Sr with a similar procedure as the one outlined for the five bases. First, choose

the leading (r + 2)× (r + 2) principle submatrix, M0. The unmeasured elements in

this submatrix are ρ0,r+1 and ρr+1,0. By applying a unitary transformation, we can

bring M0 into canonical form, and by using the rank condition from Eq. (4.6) we

can solve for the unmeasured elements. We can repeat the procedure with the set of

(r + 2)× (r + 2) principle submatrices Mi ∈M for for i = 0, . . . , d− r − 1 and

Mi =


ρi,i · · · ρi,i+r+1

...
. . .

...

ρi+r+1,i · · · ρi+r+1,i+r+1

 . (A.4)

From Mi we can reconstruct the elements ρi,i+r+1, which form the (r+ 1)st diagonal.

We then repeat this procedure choosing the set of (r+ 3)× (r + 3) principle subma-

trices to reconstruct the (r + 2)nd diagonal and so on until all diagonals have been

reconstructed. This shows the POVMs are rank-r complete. By Proposition 4.1,

since we also measure the computational bases, the POVMs are also rank-r strictly-

complete.

The failure set corresponds to the set of states with singular r × r principal
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submatrix

Ai =


ρi+1,i+1 · · · ρi,i+r

...
. . .

...

ρi+r,i · · · ρi+r,i+r

 , (A.5)

for i = 1, . . . , d − r − 1. This procedure also has robustness to this set since, as in

the case of r = 1, there is an additional construction M ′. The total failure set is

then when Ai is singular for i = 0, . . . , d− r − 1 and Aj is singular for j 6= i± 1.
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Algorithm A.1 Construction of 4r + 1 bases in the GMB

1. Construction of the first basis:

The choice of the first basis is arbitrary, we denote it by,

B0 = {|0〉, |1〉, . . . , |d− 1〉}. (A.6)

This basis defines the representation of the density matrix. Measuring this basis

corresponds to the measurement of the all the elements on the 0th diagonal of

ρ.

2. Construction of the other 4r orthonormal bases:

for k ∈ [1, r], do

Label the elements in the kth diagonal of the density matrix by ρm,n where

m = 0, . . . , d− 1− k and n = m+ k.

For each element on the kth and (d− k)th diagonal, ρm,n, associate two,

two-dimensional, orthonormal bases,

b
(m,n)
x =

{
|x±m,n〉 =

1√
2

(|m〉 ± |n〉)
}
,

b
(m,n)
y =

{
|y±m,n〉 =

1√
2

(|m〉 ± i|n〉)
}
, (A.7)

for allowed values of m and n.

Arrange the matrix elements of the kth diagonal and (d− k)th diagonal

into a vector with d elements

~v(k) = (ρ0,k, . . . , ρd−1−k,d−1︸ ︷︷ ︸
kth diagonal elements

, ρ0,d−i, . . . , ρk−1,d−1︸ ︷︷ ︸
(d− k)th diagonal elements

) ≡ (v1(k), . . . , vd(k)).

(A.8)
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Find the largest integer Z such that k
2Z

is an integer.

Group the elements of ~v(k) into two vectors, each with d/2 elements, by

selecting ` = 2Z elements out of ~v(k) in an alternative fashion,

~v(1)(k) = (v1, . . . , v`, v2`+1, . . . , v3`, . . . , vd−2`+1, . . . , vd−`)

= (ρ0,i, . . . , ρ`,i+`, . . .),

~v(2)(k) = (v`+1, . . . , v2`, v3`+1, . . . , v4`, . . . , vd−`+1, . . . , vd)

= (ρ`+1,i+`+1, . . . , ρ2`,i+2`, . . .).

for j = 1, 2 do

Each element of ~v(j)(k) has two corresponding bases b
(m,n)
x and b

(m,n)
y

from Eq. (A.7).

Union all the two-dimensional orthonormal x-type bases into one basis

B
(k;j)
x =

⋃
ρm,n∈~v(j)(k)

b
(m,n)
x . (A.9)

Union all the two-dimensional orthonormal y-type bases into one basis

B
(k;j)
y =

⋃
ρm,n∈~v(j)(k)

b
(m,n)
y . (A.10)

The two bases B
(k;j)
x and B

(k;j)
y are orthonormal bases for the d-

dimensional Hilbert space.

end for

By measuringB
(k;j)
x andB

(k;j)
y for j = 1, 2 (four bases in total), we measure

all the elements on the kth and (d − k)th off-diagonals of the density

matrix.

end for
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A.2 5PB: Construction by Carmeli

The five polynomial bases (5PB) was proposed by Carmeli et al. [74] and proven

to be rank-1 strictly-complete therein. The 5PB is an extension of the four bases

polynomial bases (4PB) proposed by Carmeli et al. [50], which were proven to be

rank-1 complete. Both constructions are based on a set of orthogonal polynomials,

hence the name. We provide a summary of the construction here. Full details are

given in Ref. [50], and the proof of rank-1 completeness and strict-completeness can

be found in Ref. [50] and [74] respectively.

The index-0 basis is the computational basis,

B0 = {|0〉 , . . . , |d− 1〉}, (A.11)

the same as for the GMB, discussed in Sec. A.1. We can generate the remaining

four bases from a set of orthogonal polynomials labelled pn(x), with degree n. An

n-degree polynomial has n roots, labelled by the set {xj}. The amplitudes for the

projectors that make up the first basis correspond to the roots of a d-degree poly-

nomial. We evaluate a set of {p0(x), . . . , pd−1(x)} polynomials at the roots of the

d-degree polynomial such that,

|φ̃(1)
j 〉 = [p0(xj), p1(xj), . . . , pd−1(xj)]

> . (A.12)

By the definition of orthogonal polynomials, each vector, |φ̃(1)
j 〉, is orthogonal, i.e.

〈φ̃(1)
j |φ̃

(1)
k 〉 = δj,k‖ |φ̃(1)

j 〉 ‖2. We normalize each projector, |φj〉(1) = |φ̃(1)
j 〉 /‖ |φ̃

(1)
j 〉 ‖2

to get the projectors that make up the first basis,

B1 = {|φ(1)
0 〉 , . . . , |φ

(1)
d−1〉}. (A.13)

The amplitudes for the projectors that make up the second basis correspond to

the roots of a (d − 1)-degree polynomial, which we denote by the set {yj}. We
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evaluate a set of {p0(x), . . . , pd−1(x)} at the roots of the (d − 1)-degree polynomial

such that,

|φ(2)
j 〉 = [p0(yj), p1(yj), . . . , pd−1(yj)]

> , (A.14)

for j < d− 1, which are also orthogonal by the definition of orthogonal polynomials.

This expression only applies for j < d − 1 since a (d − 1)-degree polynomial only

has d− 1 roots. Therefore, we supplement the d− 1 vectors in Eq. (A.14) with the

final vector |φ(2)
d−1〉 = [0, . . . , 0, 1]>. Then after normalizing each, the second basis is

defined as

B2 = {|φ(2)
0 〉 , . . . , |φ

(2)
d−1〉}. (A.15)

The third and fourth bases are found by shifting the amplitudes in the first and

second bases by a phase eiαk, where α is not a rational multiple of π, such that,

|φ̃(3)
j 〉 =

[
p0(xj)e

iα, p1(xj), . . . , pd−1(xj)e
iα(d−1)

]>
,

|φ̃(4)
j 〉 =

[
p0(yj)e

iα, p1(yj), . . . , pd−1(yj)e
iα(d−1)

]>
, (A.16)

and we again renormalize each and supplement the final basis with the state |φ(4)
d−1〉 =

[0, . . . , 0, 1]>. This gives the final bases,

B3 = {|φ(3)
0 〉 , . . . , |φ

(3)
d−1〉},

B4 = {|φ(4)
0 〉 , . . . , |φ

(4)
d−1〉}. (A.17)

Carmeli et al. [50] showed the four bases, {B1,B2,B3,B4} (4PB), are rank-1 complete

and Carmeli et al. [74] showed that the five bases, {B0,B1,B2,B3,B4} (5PB), are

rank-1 strictly-complete, each without a failure set.

A.3 PSI: Construction by Flammia

The PSI construction was also proposed by Flammia et al. [52] and proven to be a

rank-1 complete POVM by the decomposition method. The POVM consists of 3d−2
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rank-1 operators in the following form,

E0 = a|0〉〈0|,

Ej,1 =
b

2

(
Pj−1,j +

2
√

2

3
Xj−1,j −

1

3
Zj−1,j

)
,

Ej,2 =
b

2

(
Pj−1,j −

√
2

3
Xj−1,j +

√
2

3
Yj−1,j −

1

3
Zj−1,j

)
,

Ej,3 =
b

2

(
Pj−1,j −

√
2

3
Xj−1,j −

√
2

3
Yj−1,j −

1

3
Zj−1,j

)
, (A.18)

for j = 1, . . . , d − 1 and a and b are chosen such that
∑

µEµ = 1. The operator,

Xj,j−1 = |j〉〈j−1|+ |j−1〉〈j|, is the Pauli σx operator across the subspaces spanned

by |j − 1〉 and |j〉, similar definitions apply for Yj−1,j and Zj−1,j. The operator Pj−1,j

is that projection onto the subspace.

We can show that this POVM is rank-1 strictly-complete by considering the

density matrix elements that are defined by the probability of each POVM element.

For j = 1, the four elements E0, E1,1, E1,2, and E1,3 are parallel to the elements

that make up the 2-dimensional SIC POVM, a.k.a. the tetrahedron. Since the SIC

POVM is full-IC, these four elements define probabilities that uniquely reconstruct

the matrix that spans the |j − 1〉 and |j〉 subspace. Therefore, the density matrix

elements ρ0,0, ρ0,1, ρ1,0, and ρ1,1 are measured. We can combine the value of ρ1,1

with the three POVM elements for j = 2 to reconstruct the ρ1,2, ρ2,1, and ρ2,2

density matrix elements. The procedure can be repeated to reconstruct all elements

{ρj,j, ρj−1,j, ρj,j−1}. Thus, the POVM uniquely reconstructs all elements on the main

diagonal (or 0th diagonal with the notation in Sec. A.1) and first off-diagonal (or

1st diagonal). Then, we apply the same method introduced as Sec. A.1, which takes

principle submatrices to reconstruct the higher diagonals, to show that this POVM is

rank-1 strictly-complete. For this POVM, the failure set corresponds to any ρj,j = 0

for j < d− 1, which is still a set of measure zero. However, this is a “larger” set of

measure zero since it requires that all populations are not equal to zero.
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A.4 Rank-r Flammia

Finally, we provide an additional rank-r strictly-complete POVM that was not imple-

mented in the experiment. This construction is based on the rank-1 strictly-complete

POVM proposed by Flammia et al. [52], and given in Eq. (4.1). We construct an

EP-POVM with (2d− r)r+ 1 elements and prove it is rank-r strictly-complete with

the methods form Sec. 4.2. The POVM elements are,

Ek = ak |k〉 〈k| , k = 0, . . . , r − 1

Ek,n = bk(1+ |k〉 〈n|+ |n〉 〈k|), n = k + 1, . . . , d− 1,

Ẽk,n = bk(1− i |k〉 〈n|+ i |n〉 〈k|), n = k + 1, . . . , d− 1,

E2d−r,r+1 = 1−
r∑

k=0

[
Ek +

d−1∑
n=1

(Ek,n + Ẽk,n)

]
, (A.19)

with ak and bk chosen such that E(2d−r)r+1 ≥ 0. The probability pk = Tr(Ekρ) can

be used to calculate the density matrix element ρk,k = 〈k|ρ|k〉, and the probabilities

pk,n = Tr(Ek,nρ) and p̃k,n = Tr(Ẽk,nρ) can be used to calculate the density matrix

elements ρn,k = 〈n|ρ|k〉 and ρk,n = 〈k|ρ|n〉. Thus, this is an EP-POVM which

reconstruct the first r rows and first r columns of the density matrix.

Given the measured elements, we can write the density matrix in block form

corresponding to measured and unmeasured elements,

ρ =

A B†

B C

 , (A.20)

where A is a r × r submatrix and A, B†, and B are composed of measured ele-

ments. Suppose that A is nonsingular. Given that rank(ρ) = r, using the rank

additivity property of Schur complement and that rank(A) = r, we obtain ρ/A =

C − BA−1B† = 0. Therefore, we conclude that C = BA−1B†. Thus we can recon-

struct the entire rank-r density matrix.
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Following the arguments for the POVM in Eq. (4.1), it is straight forward to show

that this POVM is in fact rank-r strictly-complete. The failure set of this POVM

corresponds to states for which A is singular. The set is dense on a set of states of

measure zero.

The POVM of Eq. (A.19) can alternatively be implemented as a series of r − 1

POVMs, where the kth POVM, k = 0, . . . , r − 1, has 2(d− k) elements,

Ek = ak |k〉 〈k| ,

Ek,n = bk(1+ |k〉 〈n|+ |n〉 〈k|), n = k + 1, . . . , d− 1,

Ẽk,n = bk(1− i |k〉 〈n|+ i |n〉 〈k|), n = k + 1, . . . , d− 1,

E2(d−k) = 1−

[
Ek +

d−1∑
n=1

(Ek,n + Ẽk,n)

]
. (A.21)

For this POVM, the measured elements are the same as from Eq. (A.19), and the

proof of rank-r strict-completeness follows accordingly.
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Quantum control with partial

isometries

Quantum control is the procedure for applying external fields to a quantum system

in order to create a desired quantum evolution. Quantum control is required for

any QT protocol in order to prepare states, or create different POVMs. We discuss

techniques for closed system control, where the evolution is unitary.

B.1 Closed system control objectives

In closed system control, the system is evolved with unitary dynamics created by a

Hamiltonian, written in standard form,

H(t) = H0 +
m∑
j=1

cj(t)Hj, (B.1)

where H0 is referred to as the “drift” Hamiltonian and all Hj’s are referred to as the

“control” Hamiltonians. The control Hamiltonian describes an external field that

is applied to the quantum system and varied in time in order to create the desired
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evolution. The constants, cj(t) are called the control parameters. The corresponding

evolution is found by integrating the Schrödinger equation,

U = exp

[
−i

∫ T

0

dtH(t)

]
, (B.2)

from time t = 0 to a final time t = T . A system is said to be controllable if the

drift and control Hamiltonians togeteher generate the Lie algebra su(d); that is the

linear combinations of all Hamiltonians, {H0, Hj}, along with all combinations from

the Lie bracket, [Hi, Hj], span the Hermitian operator space. When the system is

controllable, there exists a set of control parameters that generate any U ∈ SU(d).

Since the Hamiltonian is time dependent, we cannot analytically express the

unitary at the final time for arbitrary control parameters. In order to define such an

analytic expression, we consider control parameters are piecewise defined, such that,

cj(t) =



cj,1, if 0 ≤ t < t1,

cj,2, if t1 ≤ t < t2,

...

cj,n, if tn−1 ≤ t < tn = T.

(B.3)

When each control parameter is piecewise defined for the same time intervals then

the elements ~cj,k make up an m × n matrix C, where m is the number of control

Hamiltonians and n is the number of control steps, i.e., piecewise elements of c(t).

The columns of C are vectors that describe a time-independent control Hamiltonian

for a given time interval. For example, ~ck specifies the control Hamiltonian for

tk−1 ≤ t < tk. When the Hamiltonian is time-independent, the Schrödinger equation

is analytically solvable. Therefore, the total evolution is described by a series of

unitary maps,

U(C) = U(~cN)U(~cN−1) · · ·U(~c1). (B.4)
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We assume that each time interval is constant, ∆t = tk − tk−1 = T/n.

Closed system quantum control can be used to accomplish partial isometries. A

one-dimensional isometry is a state-to-state map; a full d-dimensional isometry is a

unitary map of the full Hilbert space. Intermediately, the partial isometry maps and

subspace of the Hilbert space to any other subspace of the same dimension, while

preserving the inner product. The goal of state-to-state mappings is to evolve an

initial state, |ψ0〉 to a target state, |φ〉. The final state from the controlled evolution,

|ψ(T )〉 = U(C) |ψ0〉 . Therefore, the success of a state-to-state mapping is defined

by the infidelity, or overlap, between the target and final states,

J1[C] = 1− |〈φ|ψ(T )〉|2,

= 1− |〈φ0|U(C)|ψ0〉|2. (B.5)

When J1 = 0 then the state-to-state mapping is performed perfectly and the final

state matches the target state.

In unitary control, the goal is to specify the entire unitary. This is equivalent

to specifying d state-to-state mappings that take the fiducial basis to any desired

orthonormal basis. The success is defined by the Hilbert-Schmidt distance squared

between the target unitary, W , and the unitary created by the control, U(C),

Jd[C] =
1

2d
‖W − U(C)‖2,

= 1− 1

d
ReTr(W †U(C)), (B.6)

since W and U(C) are unitaries, Tr(|W |2) = Tr(|U(C)|2) = d. The “ReTr(·)”

operator stands for Re(Tr(·)). We also include a normalization factor of 1
2d

, such

that Jd = 0 when U(C) = W , i.e. the control achieves the objective unitary map

exactly. The functional Jd[C] is dependent on the global phase difference between

W and U(C) but often, the global phase is irrelevant physics. The relevant unitaries

are in the special-unitary group, SU(d). Therefore, we define a functional that is
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not proportional to the global phase,

J̄d[C] = 1− 1

d2

∣∣Tr(W †U(C))
∣∣2 , (B.7)

and similarly J̄d[C] = 0 when W = e−iθU(C) for any phase θ based on the normal-

ization. The advantage is that this reduces the number of free parameters that must

be specified by the control, thereby reducing the total time required.

State-to-state and unitary control are the two extreme cases of closed-system con-

trol. For the state-to-state control, the goal is to evolve a single state to a target state.

For unitary control, the goal is equivalent to evolving a set of d orthonormal states

to a different set of d orthonormal states. In between, we evolve n ≤ d orthonor-

mal states, {|ψi〉} to n orthonormal states target states, {|φi〉}. The corresponding

control objectives are then,

Jn[C] = 1− 1

n
Re

[
n∑
i=1

〈φi|U(C)|ψi〉

]
,

J̄n[C] = 1− 1

n2

∣∣∣∣∣
n∑
i=1

〈φi|U(C)|ψi〉

∣∣∣∣∣
2

. (B.8)

When n = 1, Eq. (B.8) reduces to Eq. (B.5). If we define |ψi〉 = W |φi〉, then for

n = d, the objectives in Eq. (B.8) reduce to Eq. (B.6) and Eq. (B.7) respectively. We

refer to control objectives with n 6= 1 or d as “partial-isometry control.” The total

time required to implement a partial isometry roughly scales with n2, since this is the

number of free parameters that specify the partial isometry control task. Therefore,

partial-isometry control is more efficient than unitary control and is desirable in

certain applications, such as the measurements of subspaces discussed in Chapter 6.

We can alternatively write a partial isometry in bra-ket notation,

Xn =
n∑
i=1

|φi〉〈ψi|, (B.9)

and if n = d recover a unitary matrix. This can also be expressed as a rank-n
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projectors, An =
∑

i |ψi〉 〈ψi|, that acts on full unitary

Xn = WAn. (B.10)

We can also express the control objective functional in terms of the projector and

unitary,

Jn[C] = 1− 1

n
ReTr

[
AnW

†U(C)
]
,

J̄n[C] = 1− 1

n2

∣∣Tr
[
AnW

†U(C)
]∣∣2 . (B.11)

B.2 Numerical control search

To implement closed system control, we need to find the control parameters, C∗,

that minimizes Jn[C] or J̄n[C]. One way to accomplish this is through numerical

optimization. There are several different choices of algorithms to determine the

control parameters that minimize the objective functionals. We use a variant of

the gradient ascent pulse engineering (GRAPE) algorithm, originally proposed in

Ref. [105] and further discussed in Ref. [106]. GRAPE starts with a set of random

control parameters and evaluates the functional and the gradient of the functional.

The algorithm then steps in the direction of descending1 direction by some amount

and recalculates the objective functional and the gradient. It continues this process

until a measure of the gradient is smaller than some threshold. This point then

corresponds to a local minima in the functional. If the functional was convex then

this local minima would be guaranteed to be the global minima. However, none

of the objective functionals discussed above are convex. In Refs. [107–109], it was

shown that while the functionals are not convex, i.e., there is not a single global

minima, they do have a favorable landscape for gradient-based algorithms. Instead

1The original proposal stepped in ascending direction but we look to minimize our control
objective so the step is in the descending direction.

155



Appendix B. Quantum control with partial isometries

of having a single global minimum the functionals introduced in the previous section

have many global minimum but all give the same value of the functional. Therefore,

any time the algorithm stops, with the gradient equal to zero, then the corresponding

control parameters produce one of the many global minimum. However, this does

mean that there are many (in fact infinite) different control parameters that achieve

the same control objective.

In order to use the gradient descent methods we need to know the gradient of the

objective functional. This was originally derived in Ref. [108] for the partial isometry

objective. We present a brief outline here only for J̄n[C] objective in Eq. (B.11), but

the derivation is similar for Jn[C]. The gradient with respect to the control parameter

cj,k is,

∂Jn[C]

∂cj,k
= − 2t

n2
Tr

[
AnW

†∂U(C)

∂cj,k

]
, (B.12)

where t = Tr
[
AnA

†
nW

†U(C)
]
. The partial derivative of the unitary can be found by

expanding in terms of Eq. (B.4),

∂U(C)

∂cj,k
= U(~cN) · · ·U(~ck+1)

∂U(~ck)

∂cj,k
U(~ck−1) · · ·U(~c1). (B.13)

The partial derivative of the unitary for the kth control parameter was solved in

Refs. [106, 107] by expanding in the eigenbasis of U(~ck) = V ΛV †, with eigenvalues

{λα} and corresponding eigenvectors {|λα〉},
∂U(~ck)

∂cj,k
= V Dj,kV

† (B.14)

where Dj,k is a d× d matrix with elements in the eigenbasis of U(~ck),

〈λα|Dj,k|λβ〉 =

∆t〈λα|Hj|λβ〉e−i∆tλα if λα = λβ,

i∆t〈λα|Hj|λβ〉 e
−i∆tλα−e−i∆tλβ

∆t(λα−λβ)
if λα 6= λβ.

(B.15)

We combine Eq. (B.13)-(B.15) into Eq. (B.16) to write the general form of the

gradient,

∂Jn[C]

∂cj,k
= − 2t

n2
Tr
[
AnW

†U(C)D′j,k
]
. (B.16)
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where D′j,k = U †(~c1) · · ·U †(~ck)V Dj,kV
†U(~ck−1) · · ·U(~c1). This expression can also be

used to show that there are no local minimum under a few assumptions, which was

done in Ref. [108].

With the analytic form of the gradient of Jn[C] and J̄n[C], and the assumption

that there exist no local minimum, we can use gradient based algorithm to efficiently

find a global minimum of either functional. We apply MATLAB’s fminunc routine

which uses the BFGS quasi-Newton technique with variables {cj,k}. The algorithm

calculates the function value and gradient at a given point and then numerically

finds the hessian in order to calculate how large a step to take in the direction of the

gradient. It then repeats this iteration until the maximum value in the gradient is

below a pre-specified threshold.
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[30] M. Cooper, M. Karpiński, and B. J. Smith, “Local mapping of detector
response for reliable quantum state estimation,” Nat. Commun. 5 (2014)
4332.

[31] G. Brida, L. Ciavarella, I. P. Degiovanni, M. Genovese, L. Lolli, M. G.
Mingolla, F. Piacentini, M. Rajteri, E. Taralli, and M. G. A. Paris,
“Quantum characterization of superconducting photon counters,” New J.
Phys. 14 (2012) 085001.

160

http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1103/PhysRevLett.91.120402
http://dx.doi.org/10.1103/PhysRevA.72.013615
http://dx.doi.org/10.1063/1.1785151
http://dx.doi.org/10.1038/nphys1133
http://dx.doi.org/10.1038/nphoton.2012.107
http://dx.doi.org/10.1038/ncomms5332
http://dx.doi.org/10.1038/ncomms5332
http://dx.doi.org/10.1088/1367-2630/14/8/085001
http://dx.doi.org/10.1088/1367-2630/14/8/085001


Bibliography

[32] P. C. Humphreys, B. J. Metcalf, T. Gerrits, T. Hiemstra, A. E. Lita,
J. Nunn, S. W. Nam, A. Datta, W. S. Kolthammer, and I. A. Walmsley,
“Tomography of photon-number resolving continuous-output detectors,” New
J. Phys. 17 (2015) 103044–103056.
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