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Abstract

Continuum mechanics models are the main tool in structural analysis. Due to

their continuity assumption, some of them do not predict accurately the behavior of

concrete structures. While these models are widely used by design engineers, many

are flawed for fundamental reasons.

The State-Based Peridynamic Lattice Model (SPLM) is presented in this thesis

as a viable alternative to continuum models. The SPLM is shown to have a simple

formulation that allows the engineer to fully understand the underlying theory. The

elastic, plastic and damage SPLM models are presented. Moreover, SPLM is shown

to be capable of modelling essential mechanisms in concrete structures.

SPLM is run on massive parallel computers, since it requires large computa-

tional power. In this thesis, a new parallel implementation is presented, and a study

of the performance of the original and the new system is presented.
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Chapter 1

Introduction

1.1 Motivation

Over the past 200 years, continuum mechanics has been the main tool in struc-

tural analysis. However, the classical theory of continuum mechanics has been

demonstrated to have difficulties modelling concrete structures. These models are

based on the assumption of continuity. Over the years, continuum models have been

developed to capture the inelastic behavior of concrete. Consequently, continuum

models have become more and more complex, while they are widely accepted and

used. We formulate the questions: Why not instead of continuing this trend, do we

not go to the origin of the problem? Why don’t we discard the basic assumption of

continuity, and start building a more realistic and simple model from the founda-

tions?

Peridynamics is a non local solid modelling theory that has the capability of

modelling a body as a finite number of particles. Continuum peridynamics has

been developed since 2000, by Silling (Silling, 2000), with the purpose of solving the

fundamental problems of continuum models. Gerstle (Gerstle, 2015) developed the

1



Chapter 1. Introduction

State-Based Peridynamic Lattice Model (SPLM). SPLM has been demonstrated to

be capable of reasonably modelling concrete structures, but still presents some issues

and limitations.

The motivation for this thesis is to answer the previous questions, and to con-

tinue working on SPLM, studying the basis of the model, detecting its problems and

limitations, and to possibly overcome them.

1.2 Scope of Thesis

The objective of this thesis is to present an alternative to classical continuum

models. Continuum models, while used by most of the design engineers, are difficult

to understand and to use, and do not realistically predict the response of concrete

structures. We want to develop a simpler model that would be easily understandable

by a design engineer, and will predict sufficiently accurately the behaviour of concrete

structures. We choose SPLM for this purpose. But if we want SPLM to successfully

complement continuum models in design engineering, we must further develop SPLM

models.

SPLM requires significant computational power, which can be a limitation. In

this thesis, we introduce a new parallel implementation. We also study and identify

some performance issues, with the aim of blazing the path for future improvement.

1.3 Outline of Thesis

This thesis includes seven chapters: Introduction, Literature Review, New Peri-

dynamic Damage Models, New SPLM Plasticity Model, SPLM Reinforced Concrete

Beams, High Performance Computing, and Conclusions.

Chapter two presents a literature review that provides the reader with the

2



Chapter 1. Introduction

background necessary to understand this thesis. This chapter reviews some classical

models in fracture, damage and plasticity, and the simplified modified compression

field theory, and its application in the Canadian Code (CSA A23.3- 04, 2004).

Chapter three introduces, the elastic SPLM developed by Gerstle, the Bond-

based Peridynamic Lattice Damage Model (BPLDM), and presents a study on lattice

rotation. In this chapter we also present the development of the new SPLM damage

model, that is justified by the results of the BPLDM.

Chapter four focuses on the new SPLM plasticity model. This chapter also

includes a comparison of the new SPLM models with the classical continuum and

Abaqus models (Simulia, 2015).

Chapter five presents the application of these new SPLM models to analysis of

reinforced concrete beams. This chapter also includes a new bond-slip model and a

study of the size effect.

Chapter six provides some basics on high performance computing, the imple-

mentation of a parallel implementation, and a scalability analysis of the original and

new implementation.

Finally, chapter seven includes a brief summary, major findings and suggestions

for future research in SPLM.

3



Chapter 2

Literature Review

Concrete is one of the most common materials used in structures such as build-

ings, bridges and dams. Concrete presents the problem that nonlinear cracking be-

havior occurs well before structural failure. Crack initiation and propagation is one

of the most important aspects in the failure analysis of concrete structures (Lee and

Fenves, 1998). Many authors have worked on developing fracture, damage and plas-

ticity models that simulate the real response of concrete structures. In this literature

review we analyze some of the classical and state-of-the-art damage and plasticity

models. Finite Element Analysis (FEA) models are also presented using Abaqus

(Simulia, 2015). Finally, the Simplified Modified Compression Field Theory (Bentz,

et al., 2006) and the Canadian Code for concrete structures (CSA-A23.3-04, 2004)

are presented, since their equations are used as a comparison with the SPLM for

prediction of the shear strength of reinforced concrete beams.

4



Chapter 2. Literature Review

2.1 Damage And Plasticity Models in Concrete

The short-term deformation modes in concrete are essentially elastic deforma-

tion, tensile cracking and compressive crushing. Tensile cracking has been widely

modelled by applying fracture and damage mechanics models, such as the fictitious

crack model (Hillerborg et al., 1976; Hillerborg et al., 1978). Compressive crushing

has been usually modelled using the classical theory of plasticity. In recent years,

researchers have developed continuum constitutive models that couple these two

damage modes (Lubliner et al., 1989; Lee and Fenves, 1998).

2.1.1 Fictitious Crack Theory

The fictitious crack model was developed by Hillerborg (Hillerborg et al., 1976;

Hillerborg, 1978). The basic idea is to model a "fictitious" crack that can transfer

stress across a discrete crack until a certain point where the material stiffness degra-

dation is complete. The model is based on the discrete fracture mechanics approach

(Bazant and Planas, 1998).

The fracture zone is assumed to start at any point of the specimen where the

first principal stress reaches the tensile strength of the material. The development of

this fracture zone is perpendicular to the first principal stress direction. The cohe-

sive closing traction is assumed to be a function of the crack opening displacement

(COD or w), as shown in Figure 2.1. Outside the fracture process zone the material

is assumed to follow linear elastic constitutive relations.

According to classical fracture mechanics, in the process of developing a unit

area of crack surface, a certain amount of energy, Gf is absorbed. A crack will prop-

agate when the released energy (G) is equal of greater than the absorbed energy

(Gf ). Thus, the amount of energy absorbed per unit crack area in opening the crack

5



Chapter 2. Literature Review

from 0 to its limit (w1) is :∫ w1

0
σdw = Gf (2.1)

which is the area under the stress vs. crack opening displacement (w) curve, as

shown in Figure 2.1.
	
	
	
																							
	
	
																												

!	

"#	

$%	 $	

&' 	

Dugdale’s	Rectangular	model	

Hillerborg’s	linear	model	

Peterson’s	bilinear	model	

Figure 2.1: Variation of stress σ with crack opening displacement w.

To fit the σ−w curve some authors have proposed the use of a constant func-

tion (Dugdale, 1960), a linear function (Hillerborg et al., 1978), a bilinear function

(Hillerborg et al., 1976; Wittmann et al., 1988) or an exponential function. Any

approximation must fulfill the essential condition that the area under the curve must

be equal to the energy absorbed, Gf .

The fictitious crack model is beautiful in its simplicity, but it is perhaps over

simplified. Since the stiffness degradation function is based on the absorbed energy

required to open a tensile unit crack area, it is completely insensitive to the triaxial

stress conditions.

2.1.2 Plastic Damage Models for Concrete

Lubliner and coauthors (Lubliner et al., 1989) proposed a constitutive model

based on an internal variable formulation. The internal scalar variables are the dam-

6



Chapter 2. Literature Review

age variable, the elastic degradation variable and the plastic degradation variable.

These parameters are fracture-energy-based and they are calibrated using experi-

mental results.

Lubliner’s model is based on the Mohr-Coulomb and Drucker-Prager yield cri-

teria, which have the form:

F (σσσ) = c (2.2)

where F (σσσ) is a function of the stress components and c may be identified with the

cohesion. A plastic-damage variable κ, that replaces the classical "hardening vari-

able" is introduced. κ never decreases and increases if and only if plastic deformation

takes place. With this new variable, c is scaled to be c = fco, the initial yield strength

in uniaxial compression, when κ = 0 and c = 0 when κ = 1. Nonetheless, c is not

necessary a function of κ. Instead, c is an internal variable governed by its rate

equation ċ, which is proportional to κ̇.

The introduction of these internal variables modify the classical equations for

damage and plasticity. For simplicity, the governing equations of the model are pre-

sented next. Equation 2.2 represents the yield criterion, Equation 2.3 is the elastic-

plastic strain decomposition, Equation 2.4 is the flow rule, Equation 2.5 represents

the rate equation for κ and Equation 2.6 is the rate equation for c.

εεε = εεεe + εεεp = D−1σσσ + εεεp (2.3)

ε̇εεp = λ̇λλg (2.4)

κ̇ = hT (σσσ, c, κ)ε̇εεp (2.5)

ċ = κ(σσσ, c, κ)κ̇ (2.6)

where D is the undamaged stiffness tensor, σσσ is the stress tensor, λ̇ is the plastic

loading factor, g = ∂G/∂σσσ is the plastic flow vector normal to the plastic potential

7



Chapter 2. Literature Review

surface G = const. and hT is the viscoplastic potential function.

The governing equations of this model can be challenging for a practicing engi-

neer to understand since they require a considerable background in formal continuum

mechanics and plasticity theory. In addition, it is not obvious how the internal vari-

ables represent physical effects. However, let us continue presenting the model, in

order to have a global perspective.

This model requires that κ is computed using a fracture mechanics energy ap-

proach. It is necessary to have a σc − εp curve to compute the portion of κ that

accounts for compression, and a σt − εp curve to compute the tension portion. This

approach presents a fundamental problem. When the material is under tension and a

crack initiates, the strain is not homogeneous in the structure since the crack creates

a discontinuity, that makes the strain to jump theoretically to infinity. Therefore,

the model fails by relying on the plastic strain, which is not applicable near the crack

tip, and it depends upon the localization and specimen size. Moreover, these curves

are impossible to obtain objectively, since it is unclear how to get the plastic strain

part out of the total displacement experimentally.

Following the derivation presented in (Lubliner et al., 1989), Equation 2.7 con-

tains the yield surface (see Figure 2.2).

F (σ) = 1
1− α

[√
3J2 + αI1 + β〈σmax〉 − γ〈−σmax〉

]
, (2.7)

where I1 and J2 are the first and second stress invariants, respectively, and

α = (fb0/fc0)− 1
2(fb0/fc0)− 1 ,

β =(1− α)(fc0/ft0)− (1 + α),

γ =3(1− ρ)
ρ− 1 ,

ρ = γ + 3
2γ + 3 .

Lee and Fenves (Lee and Fenves, 1998) modified Lubliner’s model. The damage

8



Chapter 2. Literature Review

Figure 2.2: Lubliner yield surface in plane stress space. From (Lee and Fenves, 1998).

states are represented by two variables, one for tensile damage (κt) and the other one

for compressive damage (κc). Furthermore, the yield function is modified by using

multiple damage variables.

Lubliner’s yield function is based on the Mohr-Coulomb and Drucker-Prager

function (Equation 2.2), with some variations. The yield function depends on the

stress (σσσ) and two state variables, ft and fc, which are the uniaxial tensile and

compressive strength of the material respectively:

F̃ (σ, ft, tc) ≤ 0. (2.8)

The uniaxial strength functions can be expressed as functions of the effective stress

responses f̄t and f̄c:

ft =[1−Dt(κt)]f̄t(κt), (2.9)

fc =[1−Dc(κc)]f̄c(κc), (2.10)

where Dc and Dt are the tensile and compressive damage function respectively.

The plastic strain rate ε̇εεp and rate equation for κ are given by the following

9
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equations:

ε̇εεp = λ̇
(
s

‖s‖
+ αpI

)
, (2.11)

κ̇ = λ̇Ĥ(ˆ̄σ, κ), (2.12)

where λ̇ is the plastic consistency parameter, s is the deviatoric stress, αp is the

coefficient of plastic potential function, I is the first stress invariant and ˆ̄σ is the

eigenvalue matrix for effective stress tensor.

Finally, the yield surface from (Lubliner et al., 1989) has been modified by introduc-

ing the damage variable κ. Thus, the expression for the yield surface becomes:

F (σ, κ) = 1
1− α

[
αI1 +

√
3J2 + β(κ)〈σ̂max〉

]
− cc(κ), (2.13)

where α and β are coefficients of the yield function and cc is the compressive degra-

dation damage variable.

These two models may replicate accurately the real behavior of concrete, but

they are complicated and difficult to fully understand. Lubliner and coauthors

(Lubliner et al, 1989) proposed a constitutive model that using the classical the-

ory of plasticity can couple the tensile and compressive damage and plasticity. Their

approach was to add a set of internal variables to the plasticity equations, in order

to model damage effects. This approach is interesting, but it makes the model ex-

tremely complicated. In addition, the plastic-damage parameter κ is obtained using

a combination of σc − εp and σt − εt curves. As stated before, by definition, "strain"

is not applicable when there is a discontinuity, and the strain is dependent on how

it is measured and the localization size. In addition, if we neglect the definition of

strain, how to experimentally extract the plastic strain from the total strain is not

clear, and since, the plastic strain is rate dependent is not uniquely defined. Lee and

Fenves (Lee and Fenves, 1998) tried to solve this problem by modifying Lubliner’s

model, introducing two damage variables (κt and κc) instead of one. This modifica-

tion slightly simplified the model, but again, it is based on a fundamental assumption

10
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that I find unreasonable.

2.2 Abaqus Models

Abaqus is one of the most advanced commercial finite element programs. The

reason for reviewing the Abaqus models is to use them as a comparison with the

peridynamic models developed in this thesis.

In this section we analyse the most important aspects related to this thesis, of

the three Abaqus models for concrete, from the simplest to the most complex.

2.2.1 Abaqus Smeared Crack Model

The Smeared Crack Model is based on Smeared Cracking theory (Bazant and

Planas, 1998) to describe the post-cracking response of both plain and reinforced

concrete. According to the Abaqus User’s Guide (Simulia, 2015), the model is in-

tended to simulate concrete behavior for essentially monotonic loadings under fairly

low confining pressures.

Cracking initiates when the stresses reach the "crack detection surface", shown

in Figure 2.3, which is basically a linear relationship between the hydrostatic pressure

stress, p, and the Mises deviatoric stress, q. Additional cracking at the same point

is restricted to be orthogonal to the direction of the principal stress. The model does

not track individual "macro" cracks. Instead, constitutive calculations are performed

independently at each integration point of the finite element model.

The post-peak response of concrete is modelled using a tension stiffening rela-

tion. The user can specify the tension stiffening function by a stress-strain relation

or a fracture energy cracking criterion.

11
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Figure 2.3: Yield and failure surfaces in the (p-q) plane. From (Simulia, 2015).

The stress-strain relations are defined by the parameters that describe the curve

(Figure 2.4). The curve shape depends on factors such as the density of the rein-

forcement, the quality of the bond between the rebar and the concrete, the relative

size of the concrete aggregate compared to the rebar diameter, and the finite element

mesh. This curve should be redefined, since after the failure point, the "strain" is

dependent on the mesh size. Therefore, every time the mesh is refined, the curve

changes.

The fracture energy cracking criterion makes use of Hillerborg’s fictitious crack

model (Hillerborg et al., 1976). The post-failure response is characterized by a stress-

displacement curve, as shown in Figure 2.5. This approach requires the definition of

a characteristic length associated with an integration point, to ensure solution sta-

bility, and a displacement, u0, at which the stress decreases to zero. This ultimate

displacement is determined from the fracture energy per unit area definition (Equa-

tion 2.14). This approach also presents the inconvenience that it is mesh sensitive.

The ultimate displacement is given by:

u0 = 2Gf

σut
, (2.14)

12



Chapter 2. Literature Review

Figure 2.4: Tension stiffening model. From (Simulia, 2015).

where σut is the maximum tensile stress that the concrete can carry.

Figure 2.5: Fracture energy cracking model. From (Simulia, 2015).

In this model, the compressive behavior of concrete follows the classical theory

of plasticity, with the Mises yield surface, an associated flow and an isotropic hard-

ening function. For plane stress conditions, the yield surface simplifies as illustrated
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Figure 2.6: Yield and failure surfaces in plane stress conditions. From (Simulia,
2015).

in Figure 2.6.

This model is reasonable for modelling tensile cracking damage and problems

where plasticity or compressive damage do not govern. Its plasticity model is over-

simplified because it does not take into account excessive plastic flow as a damage

mode. In addition, as with most finite element models, it is mesh sensitive.

2.2.2 Abaqus Brittle Cracking Model

The brittle cracking model is intended for modeling specimens in which the

tensile cracking is the dominant mode of failure. It models the compressive behaviour
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always under linear elastic conditions. In addition, it assumes no plastic response.

The cracking initiation and evolution conditions are the same as in the smeared

crack model. There are some differences from the smeared crack model regarding the

definition of the post-failure tension stiffening. Thus, the shape of the post-failure

cracking strain vs. stress is different, as shown in Figure 2.7. Likewise, the fracture

Figure 2.7: Post-failure stress-strain curve. From (Simulia, 2015).

energy cracking criterion follows Hillerborg’s fictitious crack model.

This model, like the fictitious crack model, is simple and more appropriate to

model tensile cracking than the smeared crack model. Nevertheless, it is not complete

since it does not include plasticity and damage due to excessive plastic flow.

2.2.3 Abaqus Concrete Damaged Plasticity Model

The last Abaqus concrete model is the most complex and complete. The con-

crete damaged plasticity model is a continuum, plasticity-based, damage model for

concrete. In the smeared crack and brittle cracking models the primary failure mech-

anism was tensile cracking. In this model compressive crushing is added as well. As

described in the User’s manual (Simulia, 2015), the inelastic and damage behaviour

of concrete is represented as a combination of isotropic damaged elasticity in conjuc-

tion with non-associated multi-hardening plasticity.
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The degradation of the elastic stiffness (dt and dc) and the evolution of the

yield surface are characterised, similar to Lee and Fenves (Lee and Fenves, 1998), by:

dt =dt(ε̃plt , θ, fi), 0 ≤ dt ≤ 1

dc =dc(ε̃plc , θ, fi), 0 ≤ dc ≤ 1
(2.15)

where, ε̃plt and ε̃plc are the tensile and compressive equivalent plastic strains, θ is the

temperature, and fi represents other predefined field variables.

The "effective" tensile and compressive stress are defined in Equation 2.16 as

a function of the initial (undamaged) elastic stiffness E0, and the equivalent plastic

strains:

σ̄σσt = σt
(1− dt)

= E0(εεεt − ε̃̃ε̃εplt ), and

σ̄σσc = σc
(1− dc)

= E0(εεεc − ε̃̃ε̃εplc ).
(2.16)

Similar to the other two models, the tension stiffening response can be defined

using a stress-strain relation or a fracture energy cracking criterion. The fracture

energy criterion, is again based on the Hillerborg’s fictitious crack model approach

to compute the strain softening curve.

To define the post-failure stress-strain relations, the post-failure stress is given

as a function of the cracking strain, ε̃ckt . Figure 2.8 presents graphically the definition

of cracking strain in the stress-strain curve. Again, this model presents the problem

of being mesh sensitive. The cracking strain values are converted to plastic strains

using the following equation:

ε̃εεplt = ε̃εεckt −
dt

(1− dt)
σσσt
E0

(2.17)

Analogous to the approach to define the tension stiffening, the compressive

behavior is described using a stress-strain relation. The hardening effect is described

in terms of inelastic strain, ε̃inc , instead of plastic strain, ε̃plc . The compressive inelastic
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Figure 2.8: Illustration of the definition of the cracking strain ε̃ckt

strain is defined in Equation 2.18. Figure 2.9 shows the hardening and softening

response in compression.

ε̃inc = εc − εel0c; εel0c = σc
E0

(2.18)

The plastic flow potential function and the yield surface make use of the two

stress invariants: hydrostatic stress (p̄) and the Mises effective stress deviator (q̄).

The plastic flow is assumed to be nonassociated. The Drucker - Prager hyperbolic

function (Lee and Fenves, 1988) is used to compute the plastic potential function G:

G =
√

(εσto tan(ψ))2 + q̄2 − p̄ tan(ψ), (2.19)

where ψ(θ, fi) is the dilatation angle measured in the p − q plane at high confining

pressure, σto(θ, fi) is the uniaxial stress at failure, and ε(θ, fi) is a parameter referred

to as the eccentricity, that defines the rate at which the function approaches the
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Figure 2.9: Definition of the compressive inelastic strain ε̃inc used for the definition
of compression hardening data. From (Simulia, 2015).

asymptote.

The yield function utilised, was developed by (Lee and Fenves, 1998), who

modified the yield function from (Lubliner et al., 1989). The evolution of the yield

surface is controlled by the hardening variables ε̃plt and ε̃plc , that account for different

evolution of damage under tension and compression.

In Equation 2.20 the yield function is expressed in terms of the effective stresses.

F = 1
1− α

(
q̄ − 3αp̄+ β(ε̃pl)〈σ̄max〉 − γ〈σ̃max〉

)
− σ̄c(ε̃plc ) = 0 (2.20)

with

α = (σbo/σco)
2(σbo/σco)− 1 , 0 ≤ α ≤ 0.5, (2.21)

β = σ̄c(ε̃plc )
σ̄t(ε̃plt )

(1− α)− (1 + α), (2.22)
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and

γ = 3(1−Kc)
2Kc − 1 . (2.23)

Figure 2.10: Yield surface in plane stress. From (Simulia, 2015).

This model is extremely complex and also difficult to replicate due to the large

number of parameters used. In addition, some of the parameters non-physical, i.e.

they are coefficients whose only purpose is to fit the experimental data. Because

the model is based upon strain, which becomes infinite as damage evolves, it is non

objective.
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2.3 Simplified Modified Compression Field The-

ory and CSA-23.3-04

The modified compression field theory (MCFT) is an analytical model for anal-

ysis of load-deformation response of reinforced concrete beams undergoing normal

and in-plane shear stresses. The MCFT was developed by Vecchio and Collins (Vec-

chio and Collins, 1986). It assumes a series of evenly distributed cracks. Similar to

a cohesive crack model, these cracks can transmit tensile stress between its faces.

Furthermore, they are oriented normal to the principal strain direction, as shown in

Figure 2.11.

Figure 2.11: Transmission of forces across cracks. From (Bentz et al., 2006).

The first problem that arises when applying this theory is that the coefficients

are based on experimental results of reinforced beams with specific sizes and steel

ratios. The model gives a reasonable prediction for structures that have been used

to calibrate the equations, but may fail to predict problems with different geometry

or mechanical properties. The second issue, is that for membrane elements it is
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difficult to find the relationships between the axial and shear stresses, as well as

the axial and shear strains. For this last reason, Bentz, Vecchio and Collins (Bentz

et al., 2006) modified the MCFT, adding some simplifications, and developed the

Simplified Modified Compression Field Theory (SMCFT).

The SMCFT assumes shear stress failure, when failure occurs before yielding

of the transverse reinforcement, to be 0.25f ′c, where f ′c is the uniaxial compressive

strength. If failure occurs below this shear stress level, it assumes that the failure at

both fsz (stress in the shear reinforcement) and fszcr (stress in the shear reinforcement

at the crack location) are equal to the yield stress of the transverse reinforcement,

fy.

The shear strength of the structure is the summation of the concrete shear

strength plus the steel reinforcement:

v = vc + vs = β
√
f ′c + ρzfy cot θ, (2.24)

where ρz is the transverse shear ratio and θ is the inclination of the crack (see Figure

2.11). In elements with shear reinforcement β is:

β ≤ 0.18
0.31 + 24w(ag + 16) . (2.25)

The crack width w is computed as the product of the crack spacing sθ and the

principal tensile strain ε1. ag is the maximum coarse aggregate size in mm. The

cracking spacing sθ can be simplified to sx, which is the vertical distance between

bars in the x-direction.

For elements with no shear reinforcement, sθ = sx/ sin θ, and β is expressed as:

β ≤ 0.18
0.31 + 0.686sxeε1/ sin θ , (2.26)

where

sxe = 35sx
ag + 16 . (2.27)
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When the values of εx and sxe are very small, β can be rewritten as:

β = 0.4
1 + 1500εx

· 1300
1000 + sxe

. (2.28)

Finally, the angle of inclination θ can be computed as:

θ = (29◦ + 7000εx)
(

0.88 + sxe
2500

)
≤ 75◦. (2.29)

The Canadian CSA A23.3 - 0.4 - Design of Concrete Structures (CSA A23.3-

04) makes use of the SMCFT equations with some modifications for shear prediction.

Section 11.3, Design for shear and torsion in flexural members contains the equations

for computing the shear strength in reinforced concrete beams.

The factored shear resistance, Vr is calculated as:

Vr = Vc + Vs + Vp, (2.30)

where Vs is the shear strength of the reinforcement and Vp is the shear strength of

the prestress reinforcement. Vc is computed as follows:

Vc = φcλβ
√
f ′tbwdv, (2.31)

where φc is a concrete resistance factor, λ is a factor to account for low-density

concrete, bw is the beam web width or minimum effective width, and dv is the effective

shear depth, taken as the greater of 0.9d or 0.72h. β can be computed using the

Simplified Method or the General Method.

The simplified method can be used when the yield strength of the longitudinal

reinforcement does not exceed 400 MPa and the concrete strength does not exceed

60 MPa. θ is simplified to be 35◦ and β is computed as follows:

(a) If the section contains at least the minimum transverse reinforcement β = 0.18.

(b) If the section contains no transverse reinforcement and ag > 20mm: β =
230

1000+dv
s
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(c) For the same conditions than the previous one but for all aggregate sizes, dv is

replaced by

sze = 35sz
15 + ag

(2.32)

However, sze is taken as less than 0.85sz. The crack spacing parameter, sz, is

taken as dv or as the maximum distance between layers of distributed longitu-

dinal reinforcement, whichever is less.

In the general method β is calculated as:

β = 0.4
1 + 1500εx

· 1300
1000 + sze

. (2.33)

For sections containing at least the minimum transverse reinforcement sze =

300mm. Otherwise, sze is computed using Equation 2.32. If f ′c exceeds 70 MPa,

the term ag is taken as zero in Equation 2.32. As f ′c goes from 60 to 70 MPa, ag is

linearly reduced to zero.

The angle of inclination, θ, of the diagonal compressive stresses is calculated as:

θ = 29 + 7000εx. (2.34)

The longitudinal strain, εx, at mid-depth of the cross-section is computed from Equa-

tion 2.35, which accounts for the shear resistance that the longitudinal reinforcement

provides.

εx = Mf/dv + Vf − Vp + 0.5Nf − Apfpo
2(EsAs + EpAp)

. (2.35)

In evaluating Equation 2.35, the following conditions apply:

(a) Vf and Mf is taken as positive and Mf ≥ (Vf − Vp)dv.

(b) In calculating As , the area of bars that are terminated less than their devel-

opment length from the section under consideration are reduced in proportion

to their lack of full development.
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(c) If the value of εx calculated from Equation 2.35 is negative, it is taken as zero or

the value shall be recalculated with the denominator of Equation 2.35 replaced

by 2(EsAs+EpAp+EcAct ). However, εx is not taken as less than −0.20 ·10−3.

(d) For sections closer than dv to the face of the support, the value of εx calculated

at dv from the face of the support may be used in evaluating β and θ.

(e) If the axial tension is large enough to crack the flexural compression face of

the section, the resulting increase in εx is taken into account. In lieu of more

accurate calculations, the value calculated from Equation 2.35 is doubled.

(f) β and θ may be determined from Equations 2.33 and 2.34, respectively, using a

value of εx that is greater than that calculated from Equation 2.35. However,

εx is not taken greater than 3.0 · 10−3.

The MCFT and the SMCFT are two analytical models that predict very accu-

rately the shear strength of reinforced concrete beams. However, some of the basic

assumptions of the model non-physical, like the homogenous distribution of cracks

parallel to the normal direction of the principal stresses or the ability of a crack to

transfer stresses. Furthermore, I think that it is a big assumption the principle that

the aggregate interlock is one of the mechanisms that allows the cracks to transfer

tensile stress. However, we have to recognise that the model predicts accurately the

response of "standard" reinforced concrete beams, and captures the size effect rea-

sonably, but it is necessary to know its limitations.

In this chapter some continuum plastic damage models have been presented.

Abaqus FEA models have been chosen to demonstrate the complexity and flaws of

the continuum models. The MCFT and SMCFT have been introduced as analyti-

cal models to analyse concrete beams. In the next chapter the elastic and damage

SPLM models are introduced as a simpler alternative to model short terms inelastic

response of concrete.
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New Peridynamic Damage Models

In the literature of finite element models (Lubliner et al., 1989; Lee and Fenves,

1998), tensile and compressive damage, and plasticity are coupled phenomena. Con-

sequently, these models are complex since the constitutive equations incorporate

these phenomena. In SPLM tensile damage and compressive damage are two uncou-

pled modes, providing much simpler and intuitive models.

In this chapter the SPLM elasticity model for plane stress conditions is de-

veloped. Two new peridynamic damage models for tensile cracking are presented.

The first is the Bond Peridynamic Lattice Damage Model (BPLDM), which is an

anisotropic model because each bond in a particle neighbourhood can take an inde-

pendent value of damage. The BPLDM is shown to be sensitive to lattice rotation;

hence, it is not general enough to accurately model the basic concrete tests (uniaxial

tension, uniaxial compression and Brazilian split cylinder). The State Based Peri-

dynamic Lattice Damage Model is next introduced and tested. Its development is

justified by the need for the BPLDM to be more general and accurate.
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3.1 Elastic SPLM

In 2000 Silling published a paper called Reformulation of Elasticity Theory for

Discontinuities and Long-Range Forces (Silling, 2000). In this work he proposed the

original continuum peridynamics formulation. The term peridynamic comes from the

Greek roots ’peri’ (near) and ’dynamic’ (force). A pairwise force function between

each pair of particles in peridynamics is the equivalent constitutive relationship in

continuum mechanics. This pairwise force is a function only of the relative position

and relative displacement between the pair of particles. That is the reason why this

model is also called bond-based peridynamic model.

The bond-based peridynamic model was found to be not general enough to

model solid mechanics problems. In 2007 Silling presented a more general formu-

lation, the state-based peridynamic model (Silling et al., 2007). In this model the

pairwise force function is not only a function of the relative displacement and position

of a pair of particles, but also of the positions of other particles inside its material

horizon, δ.

In Silling’s formulation a body is treated as a continuum in R3. Gerstle in-

troduced the State-based Peridynamic Lattice Model (SPLM) (Gerstle, 2015), that

assumes a particle lattice rather than a particle continuum.

The linear elastic SPLM has the capability of approximately simulating linear

(small deformation) and non-linear (large deformation) elastic classical continuum

problems. In this section we are presenting the framework for the elastic SPLM in

plane stress conditions.

Figure 3.1 shows the lattice topology in 2D as well as the order of the particles.

This configuration presents the advantage that the particles can be easily stored in

an array. Every particle has a neighbour list (N [Pi]〈Bj〉), which are the particles

inside the peridynamic horizon (δ). Thus, at each time step each particle "knows"

the particles it has to interact with, saving computation time.
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1 (1,0)

3 (1
2 , √3/2 )5 (-1

2 , √3/2 )

2 (-1,0 )

4 (-1
2 , -√3/2 ) 6 (1

2 , -√3/2 )

Figure 3.1: Bond numbering order and reference coordinates X of first nearest neigh-
boring particles for the FCC lattice in 2D.

The linear elastic SPLM assumes a linear relationship between axial force as-

sociated with bond Bj and all of the bond stretches Sj associated with the bond list

B (Gerstle, 2015).

Let us start by defining the state-based total stretch matrix {Stotal} in 2D and

its relation with the classical strain matrix {ε}. The total stretch of a bond is divided

into the elastic the stretch and the plastic stretch ({Stotal} = {Se} + {Sp}). When

we use the stretch state or matrix, {S}, we are actually referring to the total stretch

matrix.

The total stretch in a bond Bj is defined as:

Stotal(Bj) = L∗ − L0

L∗
, (3.1)

where L∗ (Equation 3.2) is the length of the bond between particle i and j in the

deformed configuration, and L0 (Equation 3.3) is the length of the bond in the

reference configuration.

L∗ ≡
√

(xj − xi)2 + (yj − yi)2 (3.2)

L0 ≡
√

(Xj −Xi)2 + (Yj − Yi)2 (3.3)
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The total stretch state ({Stotal}) of particle i is expressed as a matrix that contains

the 6 bond stretches:

{Stotal}i ≡



S1
...

Sj
...

S6


i

. (3.4)

If the stretch of all bonds is small enough, the bond direction for bond Bj is the

vector of direction cosines, defined as {ns} =
(
DirXR

)
〈Bj〉 or

{ns}i ≡

 (Xj−Xi)
L0

(Yj−Yi)
L0


i

. (3.5)

If the stretch is large, the bond direction unit vector is {nL} =
(
DirxR

)
〈Bj〉 or

{nL}i ≡

 (xj−xi)
L∗

(yj−yi)
L∗


i

. (3.6)

The relation between the classical strain matrix and the SPLM stretch matrix is

given by Equation 3.7. This relation only applies if the deformation field is spatially

homogeneous.

{S} = [N ]{ε} (3.7)

or 

S1
...

Sj
...

S6


=



n2
X1 n2

Y 1 nX1nY 1
...

n2
Xj n2

Y j nXjnY j
...

n2
X6 n2

Y 6 nX6nY 6




εxx

εyy

γxy

 . (3.8)
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The [N ] matrix maps the classical strain matrix to the SPLM stretch matrix.

We can define the elastic stretch state as the total stretch state minus the plastic

stretch state:

{Se} = {STot} − {SPlast}. (3.9)

The plastic stretch state will be defined in the next chapter.

The elastic SPLM constitutive relation is a function only of the deformation

state: T = T̃(xR). The force matrix, {T}, is similar to the stretch matrix:

{T}i ≡
1
2



F1
...

Fj
...

F6


i

. (3.10)

The magnitude Fi〈Bj〉 of the pairwise force Fi〈Bj〉 acting upon particle Pi due to

interaction with its neighbor N [Pi]〈Bj〉 is obtained as:

Fi〈Bj〉 ≡ |T¯
[Pi]〈Bj〉| − |T¯

[N [Pi]〈Bj〉]〈B′j〉|, (3.11)

where B′j is the opposite to Bj.

When a homogeneous stress field σ is applied to a lattice body, a relation

between {σ} and the SPLM force matrix {T} can be derived. To find this relation

the internal virtual work under kinematically equivalent deformations of both the

classical model and the SPLM model must be equal:

δWclassical = δWSPLM , (3.12)

with

δWclassical = bσc{δε}∆V and (3.13)

δWSPLM = bF cbLic2 {δS}. (3.14)
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Combining Equations 3.12, 3.13, 3.14 and 3.7 we get Equation 3.15:

bσc∆V = 1
2bF c[Li][N ]. (3.15)

Solving for bσc leads to Equation 3.16:

{σ} = 1
2∆V [N ]T [Li]{F} = [M ]{F}, (3.16)

with ∆V =
√

3tbL2

2 , the volume of the 2D lattice particle, where tb is the thickness of

the lattice body, and

[M ] ≡ 1
2∆V [N ]T [Li] or (3.17)

[M ] =


√

2
2

√
2

2

√
2

8

√
2

8

√
2

8

√
2

8

0 0 3
√

2
8

3
√

2
8

3
√

2
8

3
√

2
8

0 0
√

6
8

√
6

8 −
√

6
8 −

√
6

8

 (3.18)

For a spatially homogeneous small-strain field, the linear elastic constitutive

relation is:

{F} = [K]{Se}, (3.19)

where [K] is the micro-elastic SPLM stiffness matrix. From linear elasticity theory:

{σ} = [D]{εe}. (3.20)

Multiplying Equation 3.16 by [N ] on both sides and combining it with Equations

3.7 and 3.16 we obtain Equation 3.21, which relates the classical constitutive matrix

with the micro-elastic stiffness matrix.

[D] = [M ][K][N ] (3.21)

[K] is found by solving Equation 3.21 assuming that the two independent variables
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are Young’s modulus E and Poisson’s ratio ν.

F1

F2

F3

F4

F5

F6



=



(a+ b) b b b b b

b (a+ b) b b b b

b b (a+ b) b b b

b b b (a+ b) b b

b b b b (a+ b) b

b b b b b (a+ b)





Se1

Se2

Se3

Se4

Se5

Se6



(3.22)

Solving for a and b using Matlab yields:

a = 2ELtb√
3(1 + ν)

and (3.23)

b = 2ELtb(1− 3ν)
6
√

3(ν2 − 1)
. (3.24)

3.2 Bond Peridynamic Lattice Damage Model

The elastic and plastic peridynamic models used in this thesis are state-based,

which means that the force between two particles is a function of the state of all

bonds inside the peridynamic material horizon δ of a particle. The Bond Peridynamic

Lattice Damage Model (BPLDM) is based on the idea that in a particle, the "damage"

process may be in different stages in each bond. This model is anisotropic because

each bond can have a different value of damage.

Damage is modelled as a variable that represents the stiffness degradation in

the material due to the breakage of the bonds at the meso level. The damage in the

bond is introduced in the force state (Equation 3.19) using the following equation:

{T dj } = (1− wj){Tj} (3.25)

In the BPLDM the condition of damage initiation in a bond is that the bond

force is greater than a critical bond force, which is a material property. The concept
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of strain can not be applied in a lattice body. Instead, the concept of "Crack Opening

Displacement", COD, is used. The COD is calculated in a bond Bj as:

COD(Bj) = Se(Bj) · L∗j , (3.26)

where Se(Bj) is the elastic stretch in bond Bj (Se(Bj) = Stot(Bj) − Splast(Bj) and

Stot(Bj) = L∗j−Lj

Lj
, with L∗j the deformed bond length), and Lj is the undeformed

length of bond Bj.

With COD computed, the damage parameter in a bond w(Bj), is calculated

using Equation 3.27. With this definition of the damage parameter, a particle can

have a bond with no damage and another one completely damaged.

The damage parameter for a bond Bj is defined as:

w(Bj) =



0.0 if 0≤COD≤COD0

1− f ′t
ES(COD1−COD0)

[
z(COD1−COD)+γ(COD−COD0)

]
if COD0≤COD≤COD1

1− γf ′t
ES

[
CODc−COD
CODc−COD1

]
if COD1≤COD≤CODc

1.0 if COD≥CODc

(3.27)

where f ′t is the uniaxial tensile strength, z is a post-peak reduction factor, γ is the

tension reduction parameter at the "knee" of the bilinear softening curve, E is the

Young’s Modulus, S is the total stretch in the bond (S = Se + Sp), and COD0,

COD1 and CODc are the COD parameters.

Figure 3.2 shows the relation between the damage, w, and the COD. When the

COD reaches the maximum tensile stretch in a bond (σt

E
L), the damage w immedi-

ately jumps to a finite value, rather than starting from zero.

Before damage initiates the force state is computed with the state-based elastic

equation ({F} = [k]{S}). When COD is greater than the maximum tensile stretch

the force in each bond is calculated as:

F ′(Bj) = (1− w(Bj))aSe(Bj), (3.28)
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w

Figure 3.2: Damage w vs COD. From (Gerstle, 2015).

where a is the stiffness coefficient, computed in Equation 3.23. Note that the bond

force is not a function of the two coefficients parameters a and b, as in the elastic

region, but only of a. We made this assumption because b is more dependent on

the Poisson’s effect than a, and it is not clear how the Poisson’s effect affects the

response of the material when it is damaged.

We can now derive a equation for the effective bond force as function of the

COD:

F ′(Bj) =



aSe + 6bSavg if 0≤COD≤COD0

2Ltb√
3(1−ν)

[
f ′t

(
z(COD1−COD)+γ(COD−COD0)

)
(COD1−COD0) −ES

]
if COD0≤COD≤COD1

2Ltb√
3(1−ν)

[
γf ′t(CODc−COD)
CODc−COD1

−ES
]

if COD1≤COD≤CODc

0 if COD≥CODc

(3.29)

where Se is the elastic stretch of the bond, Savg is the average stretch of the 6

particle bonds, tb is the material thickness, and ν is the poisson’s ratio. The first case

represents the force in a undamaged bond. The second and third cases in Equation

3.29 represent the inelastic response of the material due the damage. Similar to

the fictitious crack model (Hillerborg et al., 1976), outside the fracture zone, in the
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BPLDM, when COD ≤ COD0 for any particle’s bond, the constitutive model is

linear elastic SPLM, and inside the fracture zone the COD equation governs the

response of the material.

Figure 3.3 represents the stiffness degradation function of the material from
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Figure 3.3: Stress vs. COD curve

Equation 3.29. As can be seen, subsequent to damage initiation, the greater the

COD the smaller the effective bond force. The shape of the curve is similar to

the function that Wittmann et al. (Wittmann et al., 1988) proposed, based on

Hillerborg’s fictitious crack model (Hillerborg et al., 1976). The parameters z and γ

account for the stiffness reduction after cracking initiation. They can be set by the

user, and in this model z = 1.0 and γ = 0.25. In addition, the parameters COD0,

COD1 and CODc are used to define the curve. These coefficients were calculated

by Chapman (Chapman, 2011), so that the area under the curve approximates the

energy absorbed, Gc, per new formed unit crack area (Hillerborg, 1976, Hillerborg

et al., 1978; Wittmann et al., 1988; Bazant and Planas, 1998).
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3.2.1 Tension Test in the BPLDM

The BPLDM is completely defined in the previous section. To test the model,

it is necessary to check the dependency of the results on the material discretization,

i.e., lattice spacing and rotation. One disadvantage of using finite element methods

to model reinforced concrete is that some of its damage models are mesh sensitive, as

we have seeing in Abaqus models. A convergence study is required, but the stresses

and strains may not converge (ACI446, 2009). One of the objectives of this thesis is

to present a model, using peridynamics, simpler than the FEA models and without

their inconveniences. It is known that SPLM models may be sensitive to lattice

rotation. To test the objectivity of the BPLDM the tension and compression tests

were simulated for lattice rotations of 0◦, 15◦ and 30◦.

The direct tension test is sometimes employed to measure the uniaxial tensile

strength of a specimen. For the simulations presented in this section, the geometry

of the prismatic concrete specimen is 30 cm tall by 15 cm wide by 15 cm thick. The

bottom of the specimen is fixed in all vertical degrees of freedom (boundary code

1), while the top layer of particles are the ones that apply the time-varying vertical

displacement (boundary code 7). The maximum applied vertical displacement is set

to 3 mm, in order to get a complete crack along the diameter of the cylinder.

SPLM is capable of simulating the loading under quasi-static or dynamic con-

ditions. Quasi-static conditions, similar to the laboratory, were chosen by imposing a

sufficiently long simulation time, and therefore, a smaller loading rate. Furthermore,

the time step size is computed to be small enough to avoid instability. For all the

simulations the number of time steps is computed as follows:

End Time Step = β · fundamental period
critical time step , (3.30)

where the critical time step is a function of the material properties that ensures the

solution of the problem is stable, and the fundamental period is a function of the

specimen’s geometry. The factor β is chosen by the user, again, to ensure that the
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loading rate is low enough to reproduce quasi-static loading conditions. A study

on the loading rate effect in SPLM will be presented in the next chapter. For the

tension and compression tests, it was found that a β = 64 is large enough to simulate

quasi-static lab conditions. For other tests, like the Brazilian split cylinder, β is rec-

ommended to be around or higher than 128. However, as β increases, the simulation

time grows too, hence, a balance must be found in order to keep the simulations

feasible from an engineering point of view. As will be shown later in this thesis, the

simulation time is a limitation for some problems.

Figure 3.4 compares the time history for the uniaxial tension test, with the

same applied displacement at the top, for three lattice rotations (0◦, 15◦ and 30◦).

It can be observed that the pre-peak response is linear in the three cases, obtaining

the same slope, which means that the Young’s modulus is not affected by the lattice

rotation. The first difference that we find is the peak load between the maximum

(0◦ - 99.176kN) and the minimum (30◦ - 71.507kN), which differs by a 27.9% (15◦

- 75.396kN). Hence, we can conclude that this model is sensitive to lattice rotation.

In addition, the post-peak response for the 15◦ and 30◦ show that there is a hard-

ening process, caused by some bonds in the transversal direction that are not fully

damaged, due to their orientation.

In order to observe with more detail this hardening effect, Figure 3.5a shows

the deformed shape before the second peak, and Figure 3.5c after that peak. Both

figures show that there is a uniform distribution of damage, with low value, along

the length of the specimen. It is important to point out the lateral displacement of

the top block, which is the reason why there is a second load peak. If a closer view

is taken, as in Figure 3.5e, it is seen that the bonds that were parallel to the applied

load are unbroken. This phenomenon is due to the damage initiation and evolution

approach, which is based on the uniaxial stretch of the bonds. In the undeformed

configuration, due to the lattice rotation, the weakest direction is the transversal

inclined 15◦, since there are fewer bonds in that direction than in the others. The

36



Chapter 3. New Peridynamic Damage Models

Time, s
0 0.005 0.01 0.015 0.02 0.025 0.03

D
is

p
la

c
e
m

e
n

t 
(m

) ×10
-3

0

1

2

3
Comparison of time history for Bond-Based damage model

Lattice rotation 0º

Lattice rotation 15º

Lattice rotation 30º

Time, s
0 0.005 0.01 0.015 0.02 0.025 0.03

F
o

rc
e
 (

N
)

×10
4

0

5

10

Displacement (m) ×10
-3

0 0.5 1 1.5 2 2.5 3

F
o

rc
e
 (

N
)

×10
4

0

5

10

Figure 3.4: Time history plots for tension test bond-based damage model

same effect is observed when the lattice rotation is 30◦, but the crack is now oriented

at approximately 30◦ from horizontal (Figure 3.6c).

Finally, to conclude this study of lattice objectivity in the uniaxial tension test,

Figure 3.6 shows the last time step for the three cases. When the lattice rotation

is 15◦ and 30◦ the top block moves to right due to boundary imperfections, i.e., the

boundary is not a perfect line of particles, since the hexagonal lattice is rotated, and

some particles are out of the domain.
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Figure 3.5: Deformed shape and time history of tension test with lattice rotation of
15◦
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Figure 3.6: Deformed shape comparison for tension test
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3.2.2 Uniaxial Compression Test in the BPLDM

The uniaxial compression test is a very convenient laboratory test to measure

the uniaxial compression strength of a specimen. The properties, geometry and

simulation variables are the same as for the tension test, with the difference that the

applied vertical displacement is now downwards instead of upwards.
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Figure 3.7: Time history plots for compression test bond-based damage model

Figure 3.7 presents the time history of the compression test for the three ro-

tations (0◦, 15◦ and 30◦), and same applied vertical displacement. When the lattice

rotation is 0◦ and 15◦ the force vs. displacement curve shows a similar maximum load,

slightly higher for 15◦. Nevertheless, when the lattice rotation is 30◦ the peak load

is significantly higher. In addition, the plastic flow, characterised by the "plateau" in

the force vs displacement curve, is governing the post-peak response of the specimen.
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It is interesting to study the crack pattern when changing the lattice rotation.

Figure 3.8 contains the deformed shape at the last time step. If we compare the

three figures, we can see that the crack mechanism varies. For the first case (Figure

3.8a), there are two diagonal cracks, produced by the horizontal dilatation of the

specimen. In Figure 3.8b, the weakest path is the slightly tilted crack, produced by

the boundary imperfections. In the last case (Figure 3.8c), plasticity develops in the

whole section before damage, then two wedges form, one at each side.
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Figure 3.8: Deformed shape comparison for compression test

42



Chapter 3. New Peridynamic Damage Models

3.3 New SPLM Damage Model

In the previous section, the BPLDM has been demonstrated not to be general

enough to objectively model concrete structures. The dependency on the lattice rota-

tion and boundary imperfections are the two main issues that need to be addressed.

The State-Based Peridynamic Lattice Damage Model (SPLM damage) is developed

here, whose objective is to eliminate the BPLDM problems. Thus, we move from a

bond-based damage approach, where the damage in a bond is a function only of the

bond stretch, to a state-based damage formulation, where the damage in a particle

is a function of the state of its neighbouring particles.

The damaged force state is defined as: {T d} = (1−w){T}, or in matrix form:

T d1

T d2

T d3

T d4

T d5

T d6



= (1− w)



a 0 0 0 0 0

0 a 0 0 0 0

0 0 a 0 0 0

0 0 0 a 0 0

0 0 0 0 a 0

0 0 0 0 0 a





Se1

Se2

Se3

Se4

Se5

Se6



. (3.31)

The damaged force state is not a function of the stiffness coefficient b, as with the

BPLDM.

In this model, similar to some continuum models (Simulia, 2015), the damage

state is divided into two phases: 1) damage nucleation and 2) damage evolution.

Damage nucleation, or initiation, occurs when the maximum principal stress at a

particle, σ1, is greater or equal to the uniaxial tensile strength of the material (Ft).

This condition is similar to the Abaqus smeared crack and brittle crack models, with

the difference that a second condition must be fulfilled. The second condition is the

yield ratio, defined as:

Yield Ratio = J2

3F 2
t

(3.32)
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must be less or equal to 0.5. J2 is the second invariant parameter (Equation 4.10)

and Ft is the uniaxial tensile strength. This condition is included to separate tensile

damage from plastic yield, which will be covered in next chapter. When these two

conditions are fulfilled, a flag is turned on in the particle attributes list, and damage

can start in the particle bond list. The expressions for σ1 (Equation 4.6) and J2

(Equation 4.10) in terms of the bond forces are developed in Section 4.1.

We introduced some modifications to the stiffness degradation function from

the BPLDM. The fictitious crack model is applied again, with the same coefficients

for the bilinear stress softening curve (Figure 3.3). Considering that we have chosen

damage to be isotropic, instead of having a value of COD for each bond, we are

introducing an equivalent crack opening displacement CODeq. We can decide CODeq

to be a function of the maximum or minimum stretch in the particle. We consider

that for the problems that we are modelling, it is more convenient to relate CODeq

with the uniaxial strain of a particle. This uniaxial strain εaxial, is a function of the

average elastic stretch Seavg (Gerstle, 2015):

εaxial = Seavg

( 3
1− 2ν

)
, (3.33)

where ν is the Poisson’s ratio. One can question the assumption that CODeq does

not consider the plastic component of the stretch state. For further research we

should study the dependancy of tensile damage upon the plastic stretch. The imple-

mentation of a model that couples these two states may predict more accurately the

response of concrete, but adds more complexity.

With εaxial computed, CODeq can be computed as:

CODeq = εaxial · L. (3.34)

We need to introduce some modifications to the damage and force equations, from

the BPLDM derivation, to be consistent with the state-based formulation. By using

CODeq and Savg, the damage is a function of all the particles bonds. We rewrite the
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damage function as:

w(Pi) =



0.0 if 0≤CODeq≤COD0

1−
f ′t

(
z(COD1−CODeq)+γ(CODeq−COD0)

)
ESavg(COD1−COD0) if COD0≤COD≤COD1

1− γf ′t
ESavg

[
CODc−CODeq

CODc−COD1

]
if COD1≤COD≤CODc

1.0 if COD≥CODc

(3.35)

The bond force equation is:

F ′(Bj) =



aSe + 6bSavg if 0≤CODeq≤COD0

2Ltb√
3(1−ν)

[
f ′t

(
z(COD1−CODeq)+γ(CODeq−COD0)

)
(COD1−COD0) −ES

]
if COD0≤CODeq≤COD1

2Ltb√
3(1−ν)

[
γf ′t(CODc−CODeq)

CODc−COD1
−ES

]
if COD1≤CODeq≤CODc

0 if CODeq≥CODc

(3.36)

It is possible that a bond between two particles is completely damaged under

tension, and then undergoes a compression force that repels both particles. According

to Equation 3.36, when a bond is completely damaged it can not resist any force,

therefore there is no force that prevents the two particles to overlap. To avoid this

phenomenon, there is a condition in SPLM bond force calculation. If damage has

initiated and the bond stretch is less than zero the bond force is computed as:

F ′(Bj) = a · Se(Bj), (3.37)

with a the SPLM stiffness coefficient, and Se(Bj) the bond elastic stretch. Figure

3.9 shows the diagram of force vs elastic stretch for tension and compression.

In the next two subsections, we demonstrate the new SPLM damage model

using uniaxial tension and compression tests.
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Figure 3.9: Force vs elastic stretch

3.3.1 Demonstration of the New SPLM Using the Uniaxial

Tension Test

In this section lattice rotation is studied using the uniaxial tension test. The

geometry and boundary conditions are the same as in the tension test presented in

Section 3.2.1. The prismatic concrete specimen is 30 cm tall by 15 cm width by 15

cm thick.

In Figure 3.10, the time history for three lattice rotations (0◦, 15◦ and 30◦)

is presented. The pre-peak response is perfectly linear and identical for the three

rotations, while there are some small differences in the post-peak response due to

the rotation. However, the peak loads are within a 8.62% difference (58.120kN for

0◦, 54.563kN for 15◦, and 55.332kN for 30◦).

If we take a look at the deformed shape at the last time step in Figure 3.11, it
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Figure 3.10: Time history plots for tension test using the new SPLM

shows that the crack pattern is more uniform than the BPLDM prediction. However,

the crack direction is slightly dependent on the lattice rotation.

According to the classical theory, the peak load P is computed as P = σtA,

with σt = Ft = 2.758 · 106N/m2 and A = 0.15 · 0.15 = 0.0225m2. Therefore,

Ptheoretical = 62.068kN . The literature reports the tensile strength of direct tension

specimens. Wright (Wright, 1955) presented the average strength for 32 concrete

specimens. The average strength obtained was σt = 275psi = 1.89606Mpa. Thus,

the peak load is computed as Plab = 1.89606 · 106N/m2 · 0.0225m2 = 48.349kN .

With these results, we can conclude that the SPLM damage model provides a better

estimation than the BPLDM. However, it is important to remark that the SPLM

damage model prediction is slightly higher than the laboratory results.
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Figure 3.11: Deformed shape comparison at last time step for tension test using the
new SPLM
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3.3.2 Demonstration of the New SPLM for Uniaxial Com-

pression Test

To finish studying the new SPLM, a lattice rotation study using the uniaxial

compression test is included. The geometry and boundary conditions are the same as

in the compression test presented in Section 3.2.2. The prismatic concrete specimen

is 30 cm tall by 15 cm width by 15 cm thick.

Figure 3.12 shows the comparison of the time history in the compression test.

It can be observed that the peak load for the three rotations is the same. There is a

difference regarding the plastic response, that is predominant when the lattice rota-

tion is 30◦. Furthermore, the softening process is different. We think this behaviour

is due to boundary imperfections and a "particle interlock", similar to "aggregate

interlock" in concrete.

Figure 3.13 shows the deformed shape for compression test specimens. For the

three cases most of the particles have plastified (particles in black). The cracking

pattern varies, slightly similar to BPLDM but more homogeneous. We can observe

that there are still some dependencies on the boundary regarding the cracking direc-

tion. This phenomena is similar to the "wall effect" observed in concrete specimens.
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Figure 3.12: Comparison of time history for SBDM in the uniaxial compression test.
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Figure 3.13: Deformed shape comparison at last time step for compression test using
the new SPLM
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3.4 Conclusions

The BPLDM has been presented as a simple damage model. Due to its predic-

tions of the uniaxial tension and compression tests, we conclude that the BPLDM

model is nonobjective with respect to lattice rotation, and therefore not adequate

to model concrete specimens. In addition, we have shown that, as a result of its

bond-based approach, the model magnifies the boundary imperfections, predicting

results that in some cases are not realistic. This model, applied to a lattice body

that includes first and second nearest particles, may respond better to a homoge-

neous stress field. Nevertheless, adding more particles to the neighbour list increases

the number of interactions between particles, and hence, needs more computations.

This option should be explored in future research.

The issues regarding the BPLDM model justify the development of the new

SPLM damage model. Maintaining the philosophy of the previous model, and this

thesis, this new model presents a simple formulation that takes into account the

neighbouring particles when computing the damage function. The SPLM damage

model, has been shown to be relatively objective with respect to lattice rotation, but

there are still some problems related to the cracking pattern and boundary imper-

fections that need to be corrected. The predictions of peak-load in the tension and

compression tests show that the model reasonably replicates the laboratory results.

In conclusion, I think that the new SPLM damage model has been shown to

be capable of modelling damage in concrete structures. We still need to explore the

response of the model when applying more complex stress fields, as well as, the cases

where the COD is not only a function of the elastic average stretch. But I conclude

that, thanks to its simplicity and the reasonableness of the results, this model is

quite reasonable for simulating concrete structures.
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SPLM Plasticity Damage Model

In this chapter, a new SPLM plasticity damage model is introduced. A rate

dependency study is presented. The SPLM model is verified using the Brazilian

split cylinder test. Finally, a comparison of the SPLM constitutive model with some

continuum models is included.

4.1 New SPLM Plasticity Model

In this section we present a new SPLM plasticity damage model assuming plane

stress conditions. The plasticity governing equations are derived. The SPLM plas-

ticity model is a non-associated rate-dependent model. This model presents some

modifications from Gerstle (Gerstle, 2015). The most important novelty (see [2]) is

that the model accounts for damage due to excessive plastic flow.
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4.1.1 Plastic Damage

Similar to classical theory of plasticity, the stretch matrix {S} can be decom-

posed into the summation of the elastic stretch plus the plastic stretch. Thus, the

elastic stretch is:

Se[Pi]〈Bj〉 = S[Pi]〈Bj〉 −
1
2
(
Sp[Pi]〈Bj〉+ Sp[Pk]〈B′j〉

)
. (4.1)

Gerstle (Gerstle, 2015) assumes that the plastic flow is caused by the deviatoric

component of the force matrix, {F}, computed as:

{Fdev} ≡ {F} − {Favg} (4.2)

where {Favg} is equivalent to the hydrostatic stress (σH) in classical theory. To

derive the expression of J2 in terms of the SPLM forces in plane stress conditions, we

assume a 2D lattice where the six bond forces are reduced to three. Under a uniaxial

stress acting upon the lattice body we can take the force in the direction of bonds 1

and 2 as the average of the bond forces 1 and 2, and so, with the other two pairs of

bonds. Thus, we obtain the equivalent peridynamic stress tensor as:

{σequiv} = [M ] ·


F1

F3

F5

 , (4.3)

where [M ] (Equation 3.18) is the matrix that relates the classical stress matrix with

the SPLM force state, and F1 is the average force of bonds 1 and 2, F3 is the average

force in bonds 3 and 4, and F5 is the average force in bonds 5 and 6. Solving Equation

4.3 we obtain the equivalent average normal stress in the plane in terms of the SPLM

forces is:

σAvgInP lane = F1 + F3 + F5√
3Lt

, (4.4)
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where L is the lattice spacing and t is the thickness of the material. From Equation

4.3 we also calculate the maximum shear stress in the plane as:

τMaxInP lane =

√
F 2

1 + F 2
3 + F 2

5 − F1F3 − F3F5 − F1F5√
3Lt

. (4.5)

With the stresses in the plane the principle stresses are computed using Mohr’s circle:

σ1 =max(σAvgInP lane + τMaxInP lane, 0), (4.6)

σ2 =max(σAvgInP lane − τMaxInP lane, 0), (4.7)

σ3 =min(σAvgInP lane − τMaxInP lane, 0). (4.8)

From {σequiv}, the average component of the force is computed, similar to σH =
1
3(σ1 + σ2 + σ3)I:

{Favg} =
√

3(2F1 + 2F3 + 2F5)
9Lt . (4.9)

{Fdev} is computed using Equation 4.2. In terms of the bond forces, the second

invariant J2 is:

J2 = 1
2‖{Fdev}‖

2 = 4(F 2
1 + F 2

3 + F 2
5 )− F1F3 − F1F5 − F3F5

(Lt2)/9 (4.10)

The yield condition is reached when the norm of the deviatoric force surpass a critical

value called FdevY ield:

‖Fdev‖ ≥ FdevY ield. (4.11)

{FdevY ield} can be expressed in terms of the SPLM bond forces:

FdevY ield = J2

3F 2
t

= 4(F 2
1 + F 2

3 + F 2
5 )− F1F3 − F1F5 − F3F5

3(FtLt)2 , (4.12)

where Ft is the uniaxial yield strength of the material.

When a particle is in yield condition, the plastic stretch can initiate and evolve.
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The change in the plastic stretch matrix,
{

∆Spj
}
, at a given time step is computed

as:

{
∆Spj

}
= ∆λ {Fdev}

Fdevyield
, (4.13)

where ∆λ is a proportionality constant, similar to the constant in Levy-Mises flow

equations (dεpij = dλσDij) that ensures isochoric plastic flow. Hence, the rate of

plastic flow depends upon how far the force state lies outside the yield surface. Since

the SPLM plasticity model is rate-dependent, it is not necessary to iterate within

each time step to achieve equilibrium.

The proportional constant, ∆λ is modified from (Gerstle, 2015), since a flow

parameter is introduced:

∆λ = σyield
E

( ‖Fdev‖
FdevY ield

− 1
)
·MatF lowParam. (4.14)

This MatF lowParam parameter, set to 0.01 is a scaling factor, that in conjunction

with the yield strain (σyield

E
) has the objective of keeping the proportionality constant

at the same order of magnitude as the yield strain, otherwise, ∆λ would be very

small when the time step is very small.

This model includes a condition of damage due to plasticity. When the maxi-

mum plastic stretch in a bond,max({Sp〈Bj〉}), exceeds the maximum plastic stretch,

Material Plastic Damage Initiation, the damage in the bond Bj is set to 1, which

means that the bond is completely damaged.

Figure 4.1 shows the elastoplastic material response. When the deviatoric com-

ponent of the force reaches the yield surface the material flows plastically. As we see

in the figure, the response of the material is perfectly plastic. As defined previously,

the yield surface does not evolve, and therefore does not account for hardening or

softening phenomena.
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Figure 4.1: Elastoplastic response.

4.1.2 Rate Dependency

In this section, the Brazilian split cylinder is used to study the plastic flow

dependency on the loading rate and the size of the time step. The Brazilian split

cylinder is a commonly used laboratory test used to measure the tensile strength for

plain concrete specimens. It is interesting to use this test in this section because

a tensile stress is generated along the diameter of the cylinder, and concurrently, a

compressive normal stress is generated in the section.

The specimen modelled with SPLM has a diameter of 15 cm and a thickness

of 30 cm. Two steel loading plates of 2.5 cm width and 1.25 cm tall, transmit the

applied displacement (0.5 mm) to the top and to the bottom of the cylinder.

Figure 4.2 shows the force vs displacement curves for the Brazilian split cylinder

test. The applied displacement is fixed, while the simulation time varies from 32

fundamental periods to 256 periods. Thus, as the simulation time increases, the

force is applied more slowly, and consequently, the loading rate decreases. The peak

load decreases as the simulation time increases. This phenomenon, the fracture strain

increment with an increment of the strain rate, has been reported in the literature
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(ACI446.4R, 2004). The area under the force vs displacement curve grows with

the simulation time, which means that the specimen fracture energy increases when

loading is slower. The plastic flow grows as the simulation time increases, as shown

in Figure 4.2. This response is due to the proportionality constant, which accounts

for how far the deviatoric force is from the yield surface.
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Figure 4.2: Force vs Displacement curves for the Brazilian split cylinder varying the
simulation time

Figure 4.3 shows the deformed shape for the four simulation times. We can see

that the number of particles that have plastified, increases slightly. In Figure 4.3d,

we observe that the tensile crack has not propagated, instead, the particles near the

loading plate have plastified.

Figure 4.4 shows the force vs time curves for the Brazilian split cylinder test

when the size of the time step changes. The time step sizes are:

1. 6.74573777534234E − 008s.

2. 2.13318958683190E − 007s.

3. 3.01678564481074E − 007s.

4. 6.74573777534234E − 007s.
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Figure 4.3: Deformed shape of Brazilian split cylinder
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We can observe that as the time step size increases, the plastic flow decreases, similar

to Figure 4.2.
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Figure 4.4: Force vs time for Brazilian split cylinder test when the size of the time
step varies

Finally, to verify the results, we need to compare the peak load with the labo-

ratory results. Assuming linear elastic behaviour, the split strength in the middle of

the cylinder is

fsp = 2Pmax
πLD

. (4.15)

Wright (Wright, 1955) reported that the average split strength for 32 specimens was

405psi = 2.792MPa. Hence, the peak load is

Plab = πLDfsp
2 = π · 0.15m · 0.3m · 2.792MPa

2 = 203.728kN. (4.16)

The SPLM average prediction is approximately 400 kN, which is twice as the

laboratory result. There are four possible sources of error:

1. The elastic SPLM.

2. The tensile damage SPLM.

3. The plastic damage SPLM.
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4. The boundary conditions.

In order to completely verify the model we need to check that the boundary conditions

and the loading rate match with the laboratory conditions. Furthermore, is difficult

to calibrate the plastic and damage model since its parameters rely on the post-peak

response of the specimen, which is not clearly reported in the literature due to the

dynamic cracking nature and limitations of the data acquisition systems.

4.2 Comparison of SPLM with Continuum Mod-

els

With the elastic SPLM model and the new tensile SPLM damage model pre-

sented in the previous chapter, and the new SPLM plasticity model included in this

chapter, we have the SPLM model for concrete completely defined. Now we can com-

pare the SPLM model for concrete with the continuum models and Abaqus models

presented in the literature review.

The objective of this thesis is to present SPLM as a viable alternative to contin-

uum mechanics models, that without making non-realistic assumptions, and keeping

the governing equations simple, can reasonably predict the response of a concrete

structure.

As explained in Chapter 3, the tensile damage model is similar to the approach

that Hillerborg et al. (Hillerborg et al., 1976) presented for the fictitious crack model,

and similar to the smeared crack and brittle crack models in Abaqus. The Abaqus

smeared crack model and plastic damage model have the fundamental problem of

defining the stiffness degradation as function of the strain, which we have previously

discussed. Moreover, these models define a parameter called "cracking strain", which,

first does not make sense in consideration of the definition of strain, and second, it is
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not objective. Our alternative is SPLM, that avoids this issue because the stiffness

degradation function, or COD function, is a function of the bond stretches.

In Figure 4.5, a comparison of the force vs. time curves for the Brazilian split

cylinder using SPLM and the Abaqus brittle cracking model is presented. The prop-

erties, geometry and loading conditions are identical. We can see that both models

predict a slightly similar peak load. SPLM predicts a gradually decrease of the force

after the peak-load is reached, due to the tensile cracking combined with the plastic

flow. The Abaqus brittle crack model predicts a drop in the force after the peak-load,

followed by a hardening that is not reasonable. However, we have to remember that

this model does not include plasticity. This hardening effect could be caused by the

elimination of elements.

Figure 4.6 shows the vertical displacements U2 in the specimen. The mesh is

composed of quadrilateral elements as shown in Figure 4.6a. The time step incre-

mentation was set to 20, to save computation time. Figure 4.6b shows the first time

step increment where the fully damaged elements are removed. As the crack grows,

more elements are removed, as shown in Figure 4.6c. The tensile crack is predicted

similarly to SPLM. This Abaqus model does not account for plasticity, hence that is

why we do not see particles plastifying near the supports as expected, and shown in

the SPLM simulations.

Figure 4.5: Comparison of force vs time for the Brazilian split cylinder using SPLM
and Abaqus brittle crack model.
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(a) Vertical displacement U2 for time
step 1.

(b) Vertical displacement U2 after
crack initiation.

(c) Vertical displacement U2 for last time step.

Figure 4.6: Vertical displacements in the Brazilian split cylinder using Abaqus Brittle
Crack Model.

The Abaqus plastic-damage model is based on Lubliner’s and Lee and Fenves

models (Lubliner et al., 1989; Lee and Fenves, 1998). These models present a consti-

tutive relation that accounts for tensile damage and compressive crushing. Although

the idea is plausible, the result of its implementation is inconvenient, since the model

is too complex, and relies on too many parameters. Furthermore, their basic assump-

tion of stress-strain constitutive behavior is not realistic. On the contrary, SPLM

separates tensile damage and compressive crushing into two independent models.
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One can argue that perhaps this assumption does not replicate the behavior of con-

crete when tensile damage and plasticity take place concurrently, and what therefore,

there should be a dependency between these two SPLM models. However, we have

found that despite this simplification, SPLM reasonably predicts the response of the

Brazilian split cylinder, that has widely spatially varying stress states. It is difficult

to calibrate the post peak response with the experimental data available. We can

conclude that SPLM, with its own limitations and improvement potential, can com-

pete with the Abaqus models, at least for the problems studied in this thesis.

The SPLM plasticity model has been shown to reasonably predict the response

of a plain concrete specimen. I think that the damage due to plasticity function

is perhaps oversimplified. But, contrary to Lubliner’s models, where the internal

variables (c and κ) are function of each other, SPLM can be easily modified, without

reformulating the whole model, . SPLM uses the Mises yield criterion which is sim-

ple compared with the Drucker-Prager, Lubliner’s or Lee’s yield criteria. The yield

surface in SPLM does not translate or evolve, due to damage, as in Lubliner’s, Lee’s

and Abaqus plastic-damage models. This assumption in SPLM results in a much

simpler equation for the yield area.

The following table contains a comparison of Abaqus and SPLM models.
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4.3 Conclusions

In conclusion, the new SPLM plasticity damage model has been shown to reason-

ably predict the response of plain concrete specimens. There are some simplifications

and assumptions that may need to be changed, and there are some limitations to the

model, such as the Brazilian split cylinder prediction. However, as a comparison with

Abaqus models, for example, SPLM constitutive models have demonstrated that are

capable of analysing concrete structures, without relying on a complex formulation.

66



Chapter 5

SPLM Reinforced Concrete Beams

The objective of this chapter is to present some modelling considerations of

reinforced concrete beams using the new SPLM constitutive model. A new bond-

slip model is also presented. Four three-point bending reinforced concrete beams

are simulated with SPLM. The Canadian Code (CSA A23.3-04, 2004) and the ACI

Code (ACI318.08, 2008) are chosen for comparing the strength prediction. The

Canadian Code predicts the shear strength and captures the size effect better than

the ACI Code. A size effect study is presented. Finally, the chapter concludes with

a discussion of the accuracy of the results, the limitations of the model, and future

research suggestions.

5.1 Bond-Slip Models

With SPLM, bond-slip modelling between concrete and rebar is essential to

predict the response of reinforced concrete structures. Gerstle (Gerstle, 2015) defined

the stiffness K of an individual SPLM bond between a concrete and a steel particle
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as:

K = (1− wconcrete)aconcrete
(

msteel

mconcrete

)
S (5.1)

where aconcrete is the stiffness parameter for the concrete lattice body (Equation 3.23),

wconcrete is the damage of the concrete particle, msteel and mconcrete are the masses

of the steel and concrete lattice particles, and S is the total stretch of the particle.

The ratio msteel

mconcrete
ensures that the elastic stiffness of the bonds connecting the steel

body to the concrete body will not be so high that numerical instability arises. The

peridynamic horizon (δ) between a concrete and a steel particle is assumed to be the

maximum lattice spacing L of the steel and concrete lattices.

McVey (McVey, 2015) proposed a new expression for the bond stiffness, that

does not account for the damage in the damage in the bond:

K = αaconcrete
min(mconcrete,msteel)

mconcrete

, (5.2)

where α is a parameter that defines the numerical stability of the bond.

We introduce a new modification in the calculation of K. Thus, the stiffness

of bond connecting a steel particle with a concrete particle is denoted by

K[Pi]〈Bj〉 = β(1− w) ·min(a(concrete), a(steel)), (5.3)

where β is the bond-slip parameter, similar to α in McVey’s model, set to 0.01, w

is the damage parameter, taken as the maximum of the steel and concrete particles

damage, and a is the stiffness parameter for the lattice body in plane stress condi-

tions.

The force between a steel and a concrete particle in a bond 〈Bj〉 is computed

as

F [Pi]〈Bj〉 = dc〈Bj〉(K[Pi]〈Bj〉S + linkForceDamp), (5.4)

where dc〈Bj〉 is the direction cosine vector of bond Bj, S is the total stretch between

the two particles, and linkForceDamp is the damping.
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In this thesis, Equations 5.3 and 5.4 are used for the reinforced concrete simu-

lations.

5.2 Beam Simulations

To test the applicability of the new SPLM constitutive models, a reinforced

concrete beam was simulated in three-point bending and plane stress conditions.

The test was repeated, changing only the steel ratio (ρ1 = 0.2%, ρ2 = 0.5%, ρ3 = 1%

and ρ4 = 2%). The geometry of the beam is presented in Figure 5.1. The longitudinal

reinforcement was originally modelled as a single equivalent bar, that concentrates

the total steel area. For these simulations, we decided to divide that area in two

layers, thus, the number of bonds between concrete and steel particles increases and

bond-slip effects can be minimized.

The vertical displacement ∆(t) applied at midspan is assumed as:

∆(t) = ∆max

2

(
1− cos πt

tEndRamp

)
, (5.5)

where ∆max = 0.01m is the maximum vertical applied displacement, and tEndRamp is

the simulation time when the applied force is constant. The end ramp time is set by

the user to the 90% of the simulation end time, which means that in the last 10% of

the simulation, the displacement is constant.

The material properties are presented in Table 5.1, for concrete, and in Table

5.2, for the steel rebars and loading plates. Table 5.3 contains the parameters used in

SPLM. Each test had 8225 particles, a simulation time of 0.16 s, 459400 time steps

and took approximately 4 hours running on four processors.

We use the Canadian Code (CSA.3-04, 2004) and the ACI code (ACI318-08,

2008) as a comparison with the SPLM predictions. The flexural beam strength

prediction using the CSA and ACI is computed in Equation 5.6 for this first case
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Figure 5.1: Geometry of reinforced concrete beam analyzed.

Parameter SI Value
Compressive strength, F ′c 27.58 MPa

Young’s Modulus, E 24.86 GPa
Poisson’s ratio, ν 0.20
Mass density, ρ 2323 kg/m3

Lattice spacing, L 2 cm
Internal damping ratio, ξinternal 0.20

Tensile strength, Ft 2.758 MPa
COD at "knee" of bilinear curve, w1 0.026 mm

Ultimate tensile COD, wc 0.26 mm
Tensile damage parameter, γ 0.25

Table 5.1: Material properties for plain concrete.

Parameter SI Value
Yield strength, Fy 413.7 MPa
Young’s modulus, E 200 GPa
Poisson’s ratio, ν 0.3
Mass density, ρ 7850 kg/m3

Lattice spacing, L 1.0 cm
Damping ratio, ξ 0.2

Table 5.2: Material properties for steel rebars.
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SPLM Parameter Value
Plastic flow parameter 0.01

Material stretch at which plasticity
causes total damage 0.002
Bond slip parameter 0.01

Table 5.3: SPLM material properties.

where ρ = 0.2%:

As = ρbd = 0.002 · 0.3m · 0.24m = 1.44 · 10−4m2,

a = φsAsfy
φcαff ′cb

= 1 · 1.44 · 10−4m2 · 413.7MPa

1 · 0.85 · 27.58MPa · 0.3m = 7.1 · 10−4m,

Mn = Asfy(d− a/2) = 1.44 · 10−4m2 · 413.7 · 106N/m2(0.24m− 7.1 · 10−4m/2) =

11.739kN ·m,

Pnbending = 4Mn

L
= 23.4787kN,

(5.6)

where φs and φc are the material safety factor, assumed to be 1 because we are

"comparing" the design code prediction with a simulation prediction, and αf is the

angle between the shear friction reinforcement and shear plane, which is equal to

0.85 according to the code (CSA.3-04, 2004).

The shear strength prediction using the CSA’s simplified method is:

β = 230
1000 + dv

= 230
1000 + 0.9 · 240 = 0.1855,

Vn = φcλβ
√
f ′cbdv = 1 · 1 · 0.1855

√
27.58 · 300mm · 240mm = 70.1352kN,

PnShearCSA = 2Vn = 143.039kN.

(5.7)

ACI predicts a shear strength of:

Vn = 2λ
√
f ′cbd = 2 · 1

√
4000psi · 6894.8Pa/psi0.3 · 0.24 = 62.78kN,

PnShearACI = 2Vn = 125.58kN.
(5.8)
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Figure 5.2: Comparison of time history for a reinforced concrete beam with 4 steel
ratios.

Figure 5.2 shows the time history for the three-point bending beam modelled with

four different steel ratios. As we observe, the capacity of the specimen, measured as

the maximum applied load, increases as the reinforcement increases.

The unmagnified deformed shape at the last time step, for ρ1 = 0.02% case,

is shown in Figure 5.3. The specimen is failing in bending, due to yield of the

reinforcement. For all the figures in this chapter, the colours code is: grey for steel

particles that have yielded, black for concrete particles that have plastified, and

from blue (low damage value) in a scale to red (completely damaged), the damaged
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concrete particles. There is a "clean" vertical crack at midspan, under the loading

plate, and two additional cracks are propagating. The steel rebars yield at the same

time small cracks, in the tension side, are growing. SPLM predicts a maximum load

of 49.810 kN, while the CSA and ACI predict a maximum load of PnBending = 23.478

kN in bending. Figure 5.4 shows the unmagnified deformed shape for the beam
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Figure 5.3: Unmagnified deformed shape RC beam with ρ = 0.2%.

with ρ2 = 0.5%. There is non uniform plastic deformation along the rebars. This

effect is perceptible in the displacement vs force curve (Figure 5.2), where one can

see that when the specimen reaches it maximum elastic strength, the force keeps

approximately constant when increasing the displacement until it completely fails.

Two shear cracks propagated completely, producing an important debonding at the

left side. Furthermore, there is compressive crushing at the top, under the loading

plate, I think due to the loading rate. For this case, SPLM predicts a maximum

force of 114.244 kN, while the Canadian Code predicts a maximum load in bending

of PnBending = 57.382 kN. If the steel ratio is increased to ρ3 = 1% we clearly see

that the concrete is governing the maximum capacity of the beam. Figure 5.5 shows

that the failure mechanism is shear cracking and debonding of the rebar. In this

case, the rebars barely plastify, but they are debonded in both sides of the beam.

Also notice that the shear cracks that propagate near the rebars, go to the top of

the beam near the supports. The Canadian Code predicts a maximum bending load
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Figure 5.4: Unmagnified deformed shape RC beam with ρ = 0.5%

of PnBending = 110.384 kN and shear capacity of PnShearCSA = 143.038 kN which is

interesting because, although the equations assume the bars to be fully developed,

the beam is failing due to shear cracking. The ACI code predicts a shear strength of

PnShearACI = 125.58kN . Finally, the SPLM prediction is 177.910 kN, which again,

is higher than the code prediction. To finish with this section we are discussing
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Figure 5.5: Unmagnified deformed shape RC beam with ρ = 1%

the last case, where ρ = 2%. Figure 5.6 shows a cracking pattern similar to the

previous case. The compressive crushing under the loading plate is more significant

in this case. The time history plot (Figure 5.2) shows quite significant "vibrations",

which are due to all the cracks that are initiating and propagating. SPLM predicts

a maximum force of 205.084 kN, while the Canadian Code predicts a pretty close

bending load of PnBending = 203.248 kN and shear capacity of PnShearCSA = 143.0388
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kN, and the ACI PnShearACI = 125.58kN .
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Figure 5.6: Unmagnified deformed shape RC beam with ρ = 2%

5.3 Size Effect Study

Size effect is defined by Bazant (Bazant and Planas, 1998) as the reduction of the

structural strength, produced by a change of structure size, of the actual load capacity

of a structure from the load capacity predicted by plastic limit analysis. In the design

of a big structure, since there is more energy stored, fracture mechanics analysis is

essential, besides stress analysis. In this section we repeat the three-point bending

beam test with ρ = 1%, now incrementing the beam size.

Due to time limitation only three simulations were performed. The span, height

and applied load are multiplied by a scalar factor, but the thickness remains constant

(b = 0.3m). The computational capacity has been a limiting factor, therefore, only

three beams with a scale factor of 1, 4 and 6 were simulated. For the beams with

a scale factor of 4 and 6 the simulation were stopped after 20 hours running in the

supercomputer. The beam with scale factor of 4, was run on 16 processors, and the

one with scale factor of 6 was run on 32 processors. It was not possible to output a

deformed shape figure since the beams had 112,000 and 305,000 particles respectively.

Figure 5.7 shows the force vs displacement curve for three beams. Comparing
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the peak load of the smallest beam with the largest, one can say that indeed, the

SPLM is predicting a size effect, since the load is not six times higher. However, I

can not conclude that this statement is completely right. Figure 5.8 shows the size

effect plot, where the y-axis is the nominal strength calculated as σn = Pn

bD
, where b

is the thickness and D is the span. Note that b is constant and equal to 0.3 m for the

three cases. The results show that there is a size effect prediction, since the nominal

strength decreases with the structure size.

When at the same time we increase the size of the problem, the simulation

time is increased by the same factor. However, Figure 5.7 shows that the vibrations

due to cracking are much significant when the size factor is 6. Therefore, I can not

conclude that the reduction of predicted strength with respect to the stress analysis

solution, is purely due to a size effect or the dynamic cracking response governs the

problem.
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Figure 5.7: Comparison of force vs displacement for a RC of 3 sizes with ρ = 1%.

When the scale factor is 4, the ACI predicts a shear strength of:

Vn = 2
√

4000 · 6894.8Pa/psi · 0.3m · 1.14m = 298.27kN

PnShearACI = 2 · 298.27kN = 596.54kN.
(5.9)

The CSA predicts a maximum bending strength of PnBending = 941.9511 kN

and a shear strength of PnShearSimplified = 373.251 kN with the simplified method.
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Figure 5.8: Size effect plot

The shear strength prediction using the general method, that captures the size effect,

is computed next.

First we calculate the moments and shear loads:

M = Msw +Mload = (γcbh)L2

8 + PL/4;

V = Vsw + Vload = (γcbh)L/2 + PL/2.

The size factor and strain are

sze = 35sz
15 + ag

;

ε = (M)/dv + V

2EsAs
.

(5.10)

We then express β in terms of the maximum load P , and substitute sze and ε :

β = 0.4
1 + 1500ε ·

1300
1000 + sze

(5.11)
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We substitute β in next equation and we equal it to the applied shear:

Vc = φcλβ
√
f ′cbwdv = V (5.12)

Solving for P using Matlab we obtain PnShearGeneral = 356.22 kN. SPLM predicts

a maximum load of 379.889 kN, which is slightly higher than the Canadian Code

prediction. ACI predicts a maximum shear load of PnShearACI = 596.54kN , which

is higher than the SPLM prediction and the CSA.

When the scale factor is 6, SPLM predicts a maximum load of 654.802 kN.

The Canadian Code predicts a load of PnBending = 1412.901 kN for bending and

PnShearSimplified = 454.53 kN and PnShearGeneral = 396.513 kN for shear failure. ACI

predicts a maximum shear load of PnShearACI = 910.50kN , which again is higher

than the CSA and SPLM predictions, since it does not account for size effect.

5.4 Discussion and Conclusions

SPLM is shown to reasonably predict the strength and crack pattern in re-

inforced concrete beams. Comparing the SPLM prediction of the strength with

Canadian Code, we find that SPLM gives a slightly higher capacity. We have to

remember that we can not compare directly a modelling tool with a design code,

since a design code is based on experience and experimental data, and its prediction

is always conservative. However, this comparison gives us an idea of where we are in

the improvement process, and what we need to modify next.

Furthermore, the cracking patterns seem realistic in all of the cases, knowing

that it is also affected by the bond-slip model. I think the main reason bond slip

takes place in almost all the simulations is because the reinforcement has been mod-

elled as two groups of bars. This fact makes the diameter of the reinforcement very

big and therefore, the force is concentrated only in a few particles.
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As mentioned in the size effect section, there is a limitation regarding compu-

tational capacity. This tests require an enormous computational capacity and that

makes it unfeasible to run big tests with the resources we have available at this time.

In addition, since we have to limit the duration of the tests, in some cases the load-

ing conditions makes the problem somewhere between a quasi-static and a dynamic

problem. I think it is essential to verify the results using a non-linear dynamic anal-

ysis, with Abaqus or Ansys for example, or compare the results with experimental

data.

In conclusion, we have shown that SPLM is capable of modelling reinforced

concrete beams with a reasonable level of accuracy. It is possible to detect and

consider the limitations of the model to continue improving it.
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High Performance Computing

Small SPLM models can be run on a personal computer. However, for large

models with hundreds of thousands of particles and millions of time steps it is nec-

essary to run the program in a parallel computer. In this chapter we are introducing

the basics of High Performance Computing (HPC) and the OpenMP and MPI par-

allel libraries. MPI is employed in the program pdQ, which allows SPLM to run on

a massively parallel supercomputer. A hybrid OpenMP plus MPI implementation of

pdQ is presented. A scalability analysis of the pure MPI system (original pdQ) and

the new hybrid OpenMP plus MPI system in pdQ is included.

6.1 Basics of High Performance Computing

Flynn’s Taxonomy is commonly used to classify parallel computer architectures

(Pacheco, 2011). The first architecture is the Single Instruction Single Data (SISD),

which is the classical Von Neumann architecture. In a Single Instruction Multiple

Data (SIMD) system, the same instruction is applied to multiple data. This system

can be thought as having a single control unit and multiple Arithmetic Logic Units
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(ALUs). This architecture is commonly used in vector programming and Graphics

Processing Unit (GPU) programming. In a Multiple Instruction Single Data (MISD)

architecture, many cores work on the same data buffer. It is widely used when the

communication is more expensive than the computation itself, and also with high-

reliability computers, to compare results between cores. The last parallel architecture

is the Multiple Instruction Multiple Data (MIMD). It typically consists of a collec-

tion of fully independent processing units or cores, each of which has its own control

unit and its own ALU. Inside, each instruction can be further parallelized. This is

the architecture of a "cluster", or a massive parallel computer or "supercomputer".

MIMD systems can be mainly classified into two types: shared-memory sys-

tems and distributed-memory systems. In shared-memory systems, a collection of

autonomous processors are connected to a memory system via an interconnection

network, and each processor can access each memory location. In this architecture,

the processors usually communicate implicitly by accessing shared data structures.

On the other hand, in distributed-memory systems, each processor is paired with

its own private memory, and the processor-memory pairs communicate over an in-

terconnection network. The processors usually communicate explicitly by sending

messages or using special functions that provide access to the memory of another

processor, as shown in Figure 6.1.

	
	
	
	

	

Memory	

Core	0	 Core	1	 Core	0	 Core	1	 Core	2	

Network	

Memory	0	 Memory	1	 Memory	2	

a)	Shared-memory	system		 b)	Distributed-memory	system		

Figure 6.1: Shared-memory and distributed memory system configurations
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6.2 Message Passing Interface (MPI)

MPI is the prevalent protocol for distributed-memory systems. MPI stands for

Message-Passing Interface. It consists on a library of functions and instructions that

can be called from C, C++, and Fortran programs. In a MIMD system, with mul-

tiple cores per node, and distributed-memory, MPI provides the set of instructions

used to send and receive data from cores that are on the same node or on different

nodes. Figure 6.2 shows the basic MPI setup for a cluster with two nodes and four

cores in each node. The Core 0 of Node 1 is set to be the master, therefore is in

charge of setting up the communication between cores on the same node (intran-

odal communication) and between cores that are located on other nodes (internodal

communication) through the network.
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	

Core	0	

Memory	0	

Core	1	

Core	2	 Core	3	
	

Node	1	

Core	0	

Network	

Memory	1	

Core	1	

Core	2	 Core	3	

	

Node	2	

M
as
te
r	c
or
e	

Intranodal	MPI	
Communication	

In
te
rn
od

al
	M

PI
	

Co
m
m
un

ica
tio

n	

Figure 6.2: MPI setup in a MIMD system with two nodes and 4 cores per node.

The directive MPI_INIT must be included at the beginning of the parallel region

in order for the compiler to be able to process the parallel instructions. Any MPI

function called before MPI_INIT will result in an error. At the end of the parallel

section MPI_FINALIZE must be invoked, so the compiler knows that from that point

the code will be executed in serial, and also to free any resources allocated for MPI.

The basic MPI communication is between pairs of processes in a communicator,
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which can be COMM_WORLD for all the processes (it is initialized using MPI_INIT) or

a communicator created by the user. In the following piece of code, two communica-

tion setup functions are called. MPI_Comm_Size returns the number of processes in

the communication

COMM_WORLD and MPI_Comm_Rank the rank of all the processes inside the communi-

cator.

MPI_INIT( )

MPI_Comm_Size(MPI_COMM_WORLD, &Comm_sz)

MPI_Comm_Rank(MPI_COMM_WORLD, &my_rank)

!Parallel Region

...

!End of parallel region

MPI_FINALIZE( )

Communication in MPI is two-sided, i.e., the sender must call send and

receiver must call receive. In addition, the sender specifies a destination and a

tag associated (an integer value), and the receiver specifies a source and a tag, and

they must match. A common source of errors in MPI communication occurs when

a processor calls send or receive and no processor calls receive or send. Another

common issue is called deadlock. It happens when a thread is waiting for a buffer

of data that nobody is sending to it, or is on a cyclic dependency (P1 is waiting for

P2, P2 for P3, and so on and Pn waits for P1). In these two situations, the program

will not proceed and will wait forever.

One simple way to avoid deadlocking due to communication or cycle depen-

dency is to use the function MPI_SENDRECV(), in which the user defines the thread

that sends and the one that receives and the subsystem takes care of the synchro-

nization and dependencies issues. This function signature is:

MPI_SENDRECV(ptclSend, sendSize, MPI_DOUBLE_PRECISION
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,toRnk, tag, ptclRecv, maxSizeMsg, MPI_DOUBLE_PRECISION,

fromRnk, tag, MPI_COMM_WORLD, status, ier) . Chapter 3 of Pacheco (Pacheco,

2011) describes in detail the setup of this instruction.

6.3 OpenMP

OpenMP is the result of an agreement between hardware vendors and com-

piler developers and is considered to be an "industry standard": it specifies a set of

compiler directives, library routines, and environment variables that can be used to

specifiy shared-memory parallelism in Fortran and C/C++ programs (Hermanns,

2002). "Open" means that the standard is defined through a specification accessible

to anyone and "MP" stands for Multi Processing.

OpenMP is a shared-memory parallel programming system, which means that

all the processors in the node can access every memory buffer directly. Hence, it is

not necessary to define a communicator, as in MPI, nor to explicitly set the buffers

of data that are exchanged between threads, which results in a more user-friendly

implementation. In addition, since data management is handled implicitly at run-

time by the compiler the probability of having a deadlock is drastically decreased.

One of the advantages of using OpenMP is that a serial compiler can run a

parallel program in serial ignoring the OpenMP directives. This is possible because

the OpenMP compilers can read !$OMP and !$ at the beginning of the directives as

OpenMP functions, whereas a normal compiler would treat those lines as comment

lines. A program can contain multiple serial and parallel regions. In Figure 6.3 there

are two serial and two parallel regions. Before the parallel region, Thread 0 is in

charge of creating N threads, that are then merged in the serial region after the

parallel region.

In OpenMP the variables used in the parallel regions can be specified as private
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Figure 6.3: Execution of a program with openMP regions and serial regions. From
(Hermanns, 2002).

or shared. When a variable is declared as private (!$OMP PARALLEL PRIVATE(var1,

var2)) each thread has its own copy inside the parallel region, so each thread

can modify it safely. Otherwise, a variable declared as shared (!$OMP PARALLEL

shared-memory(var1, var2)) is accessible for all the threads. In Figure 6.3 the

variable a is private since each thread has its own copy and a has independent values

in each thread. In the case shown in Figure 6.3, the clause !$OMP THREADPRIVATE is

invoked so each thread keep its own copy of the variable until the end of the program.

For example in pdQ we must describe the particle attributes (position, velocity, force

...) as private to avoid having two or more processors overwriting the same memory

location or particle attributes.

When a block of code must be executed by only one thread at a time (criti-
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cal section), a function to ensure mutually exclusive access to the section is needed.

If two or more processors attempt to simultaneously execute a critical section, an

error can occur or the outcome of the computation may depend upon the order of

the execution. This effect is called race condition. OpenMP includes the directive

!$OMP critical to ensure that only one thread execute that block at a time. In

our implementation, this function is called when the program updates the particles

attributes at the end of each time step.

When a loop, that for example goes from 0 to 100, is executed by 4 threads,

the master thread (usually thread 0) divides the work among the four threads, so

each thread execute 25 iterations, for example. The task of assigning each thread a

piece of "work" is called scheduling. In OpenMP four schedules can be specified at

the beginning of the parallel region. In a static schedule, the iterations are assigned

before the section is executed. On the other hand, in a dynamic schedule, the itera-

tions are assigned to the threads while the section is executing, thus after a thread

completes its current set of iterations it can request more from the run-time system.

This schedule is convenient when the thread load is not balanced. OpenMP includes

an automatic schedule called auto, where the compiler and/or the run-time system

determine the schedule. Finally, in a runtime schedule the schedule is determined at

run-time.

Although the objective of the parallelisation is to run the maximum percentage

of the program in parallel, there are still some parts that need to run in serial. To

delimit the parallel region, the next two directives must be called:

!$OMP PARALLEL clause1 clause2 ...

!Parallel Region

...

!End of parallel region

!$OMP END PARALLEL
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In the clauses we can specify the scope of the variables (private or shared) or

the schedule (static, dynamic ..).

6.4 Hybrid Implementation OpenMP + MPI in

pdQ

The motivation for implementing the hybrid OpenMP and MPI is to make

the most of the parallel computer resources. A cluster can be thought as a set

of independent computers connected by an interconnection network. Hence, each

node has its own memory, which access faster than a memory buffer located in a

different node. Since each node usually has a number of processors, depending on its

architecture, it is logical to think that may be feasible to implement OpenMP (shared

memory) inside each node and MPI (distributed memory) between the nodes to

communicate the data. With this implementation, when a number of threads, located

in the same node, are working on the same data, there is no need for the processors

to get their own copy of the data, unless the variables are private. Furthermore,

MPI, which in some cases can be expensive, is limited to internodal communication.

Figure 6.4 shows the schematic of this implementation.

6.4.1 pdQ

PdQ is the acronym for "particle dynamics - quantum". This domain decomposi-

tion algorithm was developed by Dr. Atlas and Dr. Gerstle at the University of New

Mexico, along with their graduate students Navid Sakhavand, Vijay Janardhanam,

and Hossein Honarvar (Sakhavand, 2011), (Honarvar, 2013) in 2009. PdQ allows the

use of parallel computers for solving SPLM problems.

PdQ decomposes the specimen into a number of subdomains defined by the
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Figure 6.4: Hybrid OpenMP + MPI setup in a cluster

user. Each subdomain is assigned to a single core, and is additionally decomposed

in a core and a set of walls. pdQ incorporates a set of subroutines, that set the

communication for exchanging the particles that are in the walls, and at the end of

a time step pull the data necessary to write to disk, when is set by the user. Figure

6.5 shows the topology of the domain decomposition. In addition, each subdomain

core iCore, the particles are divided into cells. For further information see (Gerstle,

2015) and (Honarvar, 2013).

In each time, step after calculating the forces, displacements and mechanical

properties (particle attributes) for all the particles, there is a call to a function called

ExchangePtclAttributes, that sets the communication between cores for the particles

that are in the same wall for two different processors. Depending on the problem

size this function doesn’t usually take more than a 20% of the total processing time,

and above this percentage it is recommended to decrease the number of processors

to boost the efficiency.
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Figure 6.5: Particle exchange between processors. (From (Gerstle, 2015)).

6.4.2 OpenMP implementation in userForce

The force calculation subroutine usually takes around 70% of the total time.

This subroutine loops through all the particles of the subdomain, computing the

state forces and stretches. In the domain decomposition, the body is divided in the

number of MPI cores and in addition, each subdomain is divided in cells in X, Y and

Z to accelerate the calculations. The cell decomposition makes use of the neighbor

matrix (N [Pi]〈Bj〉). Thus, each particle need only to loop over its neighbor list.

Consequently, openMP can be easily implemented in the subroutine userforce, and

the total number of cells in the domain are divided among the openMP threads.

In this implementation if for example we have a specimen with 1000 particles

and we can use two nodes of the cluster, each node is having 500 particles. These 500

particles are also divided into 100 cells, for example. If each node has 8 processors, in

each time step when the program executes the module userForce 8 openMP threads

are initiated. Thus, each openMP thread works on 12 cells (integer(100/8)). When

all the threads have finished, the openMP master thread close them. The program

continues to run in serial, but using just by one MPI thread on each node. At the
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end of each time step, the master MPI thread at each node sends and receives the

data for the particles in the wall.

6.5 Scalability Analysis

To measure the wall time of the program, pdQ outputs a text document which

contains the MPI_WALL time in each subroutine (userforce, writeout, exchangeptclat-

trs ...) and the percentage of the total time. A simulation constant, K, introduced

by Gerstle (Gerstle, 2015), is also output to provide a unique measure of the perfor-

mance of the code. K is defined as the ratio processor−seconds
particle−timestep and is usually around

2 · 10−5 processor−seconds
particle−timestep for a parallel computer of the 2010 era.

To study the scalability of the original pdQ and the hybrid OpenMP plus MPI

implementation, a strong scaling test is performed. This test consists of measuring

the time spent by the program, for a large fixed size, while increasing the number of

processors. This test was repeated five times using 1, 2, 4, 8 and 16 processors, and

8 processors per node.

Figure 6.6 shows the total running time spent in the main subroutines. Some

subroutines (CellAndProcDecomp, Populate, userSetup, userWriteOut and UserIn-

tegrate) are only executed by one core. For codes displaying linear scaling, when

increasing from 1 to 2 the number of processors the total time should decrease by a

factor of 2. However, Figure 6.6 shows an increase in time when two processors are

used. Looking at the figure one can see that the time spent in the subroutines in

exchange of particles and write out, have significantly increased, while the time spent

in other subroutines has not decreased in the same rate. This shows that for prob-

lems with a half-million particles, the communication and write out time dominates

over the computation time. Figure 6.7 presents a closer view of the subroutine

userForce. The parallel ideal time Tideal is defined as the serial time, Tserial over the
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Figure 6.6: Strong Scaling test in the original pdQ

number of processors p, Tideal = Tserial/p. When comparing the "real" time with

Tideal, we see that the userForce subroutine strongly scales.

Figure 6.8 contains the wall times for four subroutines: total time, ExchangePtcls,

cell and processor decomposition and writeOut. The total time curve presents

a peak, when 2 processors are running, due to the increase of time in exchange par-

ticles and write out subroutines. The ExchangePtcls subroutine shows a decrease

of time when increasing the number of processors, since the data buffers are smaller.

The subroutine domain decomposition (cellAndProc) stays constant, as expected,

since the domain decomposition is done by one processor. With these results we can

conclude that we need to do the write out to file more efficiently in order to be able

to simulate and postprocess larger problems.

Figure 6.9 contains the strong scaling results for the hybrid pdQ. The total
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Figure 6.7: Strong Scaling for userForce in the original pdQ

time increases linearly with the number of threads, reaching its maximum when 8

processors are running. When 16 processors are running, two nodes are working, and

both openMP (intranodal communication) and MPI (internodal communication) are

active. Hence, the total time should increase because of the communication between

nodes, but the response is the opposite.

Figure 6.10 shows the strong scaling test results for both pdQ versions. While

the pure MPI code (original pdQ) somehow scales, the hybrid system response seems

completely wrong. This issue has been reported in the literature (Rabenseifner et

al., 2013). Against all predictions, the pure MPI implementation is more efficient

than the hybrid. The key factor in this problem is the cache memory.

The cache memory is a collection of memory locations, that are accessed faster

than other memory locations (Pacheco, 2011). It is divided into levels: the first level

(L1) is the smallest and the fastest, and higher levels (L2, L3, ..) are larger and
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Figure 6.8: Strong Scaling of 4 subroutines in the original pdQ

slower. In practice when the CPU needs to access and instruction or data it starts

from the first level and goes down hierarchy. In MPI, the variables that are used by

each processor at each time are explicitly defined by the programmer. Hence, when

a processor needs a variable, it is copied to cache memory, and it remains there until

the same processor needs another variable, so it is copied to the cache memory. The

fewer times a processor needs to copy a data buffer to the cache memory, the more

efficient is the algorithm. On the other hand, data treatment in OpenMP is implicitly

defined by the compiler, consequently, the programmer is not able to define the data

buffer copies to cache memory. Hence, the increased in time showed in Figure 6.10

is due to all the processors copying and deleting data from the cache memory.

Another source of performance issues is the pdQ data structure. When the

element of an array is needed by a processor, the compiler loads it into the cache

93



Chapter 6. High Performance Computing

Number of processors
2 4 6 8 10 12 14 16

T
im

e
 (

s
).

 (
A

v
e
ra

g
e
 o

f 
5
 t

e
s
ts

)

0

200

400

600

800

1000

1200

1400

1600

1800

Strong Scaling: 493893 particles and 100 time steps

writeOut
userForce
ExchangePtcl
Totaltime

Figure 6.9: Strong scaling of the hybrid pdQ

memory first. But it does not load just one element of the array. Instead, a piece

of the array is loaded, which size and orientation depends on the compiler. In C

and C++, the compiler loads a row of elements, while the Fortran compiler loads

a column. The userForce subroutine loops through all the particles in the domain

within each time step. The particle attributes are loaded in a row of elements. As a

result, in a single time step the compiler needs to copy the same data buffer multiple

times.

An attempt was made to change the data structure. However, due to lack of

time it was not successful. This alteration of the pdQ code is therefore proposed as

future research.
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Figure 6.10: Strong Scaling test for userforce subroutine for original pdQ and hybrid
pdQ.

6.6 Conclusions

In conclusion, the original pdQ is shown to be not scalable. The subroutine

userForce in the original pdQ is strongly scalable. We can conclude that we should

work to improve the communication between processors and the write out algorithm.

The hybrid implementation presented performed worse than the original pdQ. The

reason for this poor performance is the data treatment by OpenMP and the trashing

of the cache memory. As future work, the data structure in pdQ should be changed, in

order to be more efficient. In addition, as shown in previous chapters, computational

capacity is still a limitation on the size and duration of the simulations. Perhaps

pdQ is more suitable for a different parallel computer architecture, with millions of

processors, thus each processor has only one particle. But we still need to find more

efficient ways to run pdQ with the parallel computers that we have now.
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Chapter 7

Conclusions

7.1 Summary

In this thesis we presented a new constitutive model for the State-Based Peri-

dynamic Lattice Model (SPLM), applied to concrete structures. We started with a

review of some continuum models, the elastic SPLM model and the simplified mod-

ified compression field theory.

We developed the bond peridynamic lattice damage model, which we found not

to be insufficiently objective to model concrete structures. This finding justified the

development of the SPLM damage model, which is more general. We verified the

model using uniaxial tension and uniaxial compression tests.

We continued working on the new constitutive model by studying and modi-

fying the plasticity model. We tested the model using the Brazilian split cylinder

test. With the new constitutive model completely defined (elasticity, plasticity, and

damage) we compared it with some continuum finite element models.

We also applied the new SPLM to reinforced concrete beams. We performed

some simulations where we could study the effect of the longitudinal reinforcement,
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the bond-slip of the rebars, and the size effect of the beams. We used the Canadian

and ACI codes for comparison.

Finally, we presented some basics of high performance computing. We devel-

oped a new parallel implementation of pdQ using OpenMP plus MPI, and studied

the scalability of the original and new implementations.

7.2 Major Findings

We have found that the bond peridyamic lattice damage model (BPLDM) is not

objective with respect to lattice rotation. We conclude that a bond-based approach

is inadequate for modelling damage in peridynamics. We found that the SPLM

damage model gives a more objective prediction, but is still slightly dependent on

lattice rotation.

We also found that the SPLM plasticity model rationally simulates plastic flow

in a concrete structure. However, the strength prediction for the Brazilian split

cylinder is not close from the literature. When we applied the new SPLM plasticity

and damage models to reinforced concrete beams, we found that both the maximum

and load cracking patterns are reasonably simulated. We showed then, that SPLM

is capable of modelling plain concrete structures and reinforced concrete structures.

Finally, we found that an implementation of openMP plus MPI in our code is

less efficient than the original pure MPI implementation. We also found that the

current data structure is not optimized for the Fortran compiler, and the write out

is not efficient.
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7.3 Future Research

If we want SPLM to be a viable alternative to continuum models for design

engineering, we need to make some improvements.

The SPLM damage model has only been tested under plane stress fields. We

need to explore the response under different conditions. In addition, the stiffness

degradation function is computed in terms of the average stretch at a particle. We

need to investigate other options, like being a function of the maximum stretch, or

the stretch in the bond direction.

The SPLM plasticity model is predicting a reasonable response, but for the

splitting strength of the Brazilian split cylinder, that we need to revisit. The second

invariant J2 computed from the average force in each bond direction, is perhaps too

simple. Hence, we should explore how the prediction changes when J2 is calculated

without taking the average force in the bonds. In addition, the damage due to exces-

sive plastic flow is oversimplified, and a more gradual model should be developed. It

may be interesting to develop a plasticity model whose yield surface evolve in time,

to account for hardening or softening phenomena.

In the SPLM reinforced concrete beam study, it was recognized that in some

cases, the failure mechanism of the beam was bond-slip. We need to refine the bond-

slip model. The steel area is divided into a number of bars in the vertical direction,

usually one or two. We should divide the steel area in the vertical and horizontal, so

the steel area is distributed along the beam section better.

Finally, it is essential to overcome the computational limitations, such as the

data structure of the code, communication or write out. We need to improve the code

to make it more efficient and explore some alternative parallel implementations.

98



Bibliography

[1] ACI318. (2008). ACI 318 Building Code Requirements for Structural Concrete.
Farmington Hills, Michigan: American Concrete Institute.

[2] ACI446 (2004). ACI 446.4R-04: Report on dynamic fracture of concrete. Farm-
ington Hills, Michigan: American Concrete Institute.

[3] ACI446 (2009). ACI 446.3R-97: Finite element analysis of fracture in concrete
structures: state-of-the-art. Farmington Hills, Michigan: American Concrete
Institute.

[4] Bazant, Z. P. and Planas, J. P. (1998). Fracture and size effect in concrete and
other quasibrittle materials. Boca Raton, Florida: CRC Press.

[5] Bazant, Z. P., and Yu, Q. (2004). Size effect in concrete specimens and struc-
tures: new problems and progress. Fracture Mechanics of Concrete Structures,
153-162.

[6] Bentz, E. V., Vecchio, F. J., and Collins, M. P. (2006). Simplified Modified
Compression Field Theory for Calculating Shear Strength of Reinforced Concrete
Elements. ACI Structural Journal, July-August 2006, Tittle no. 103-S65.

[7] Canadian Standard Association (2004). A23.3 - 04. Design of Concrete Struc-
tures. Ottawa: Canadian Standards Association.

[8] Carmona, S., Gettu, R., and Aguado, A. (1998). Study of the post-peak behavior
of concrete in the splitting-tension test. Proceedings FRAMCOS-3, AEDIFICA-
TIO, Freiburg, Germany.

[9] Chapman, S. (2011). MS Thesis: Clarification of the notched beam level II test-
ing procedures of ACI 446 committee report 5 Albuquerque: University of New
Mexico.

99



Bibliography

[10] Gerstle, W. H. (2015). Introduction to practical peridynamics: Computational
solid mechanics without stress and strain. (Frontier research in computation and
mechanics of materials and biology, vol. 1). New Jersey: World Scientific.

[11] Hermanns, M., (2002). Parallel Programming in Fortran 95 using OpenMP.
Universidad Politecnica de Madrid, April, 2002, Spain.

[12] Hillerborg, A., Modeer, M., and Petersson, P. E. (1976). Analysis of crack for-
mation and crack growth in concrete by means of fracture mechanics and finite
elements. Cement and Concrete Research, 773-782.

[13] Hillerborg, A. (1978). A model for fracture analysis. (Report TVBM; Vol. 3005).
Division of Building Materials, LTH, Lund University.

[14] Honarvar Gheitanbaf, H., (2013). MS Thesis: Parallel simulation of particle dy-
namics with application to micropolar peridynamic lattice modeling of reinforced
concrete Structures. Albuquerque: University of New Mexico.

[15] Lee, J., and Fenves, G. L. (1998). Plastic-Damage model for cyclic loading of
concrete structures. Journal of Engineering Mechanics: 124(8): 892-900.

[16] McVey, S. M. (2015). MS Thesis: The state-based peridynamic lattice model and
reinforced concrete structures. Albuquerque: The University of New Mexico.

[17] Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). A plastic-damage model
for concrete. International Journal of Solids and Structures: January 1989, Vol.
25, No. 3, pp 299-326.

[18] Lubliner, J. (2008). Plasticity Theory. New York: Courier Corporation.

[19] Malarics, V., and Muller, H. S. (2010). Evaluation of splitting tension test for
concrete from a fracture mechanical point of view. Proceedings of fraMCoS-7,
May 23-28, 2010.

[20] Pacheco, P. S., (2011). An Introduction to Parallel Programming. Morgan Kauf-
mann, 2011, USA.

[21] Rabenseifner, R., Hager, G., Jost, G., (2013). Hybrid MPI and OpenMP. Par-
allel Programming. Tutorial at SC13, November 17, 2013, Denver (CO) USA.

[22] Silling, S.A. (2000). Reformulation of elasticity theory for discontinuities and
long-range forces. Journal of the Mechanics and Physics of Solids: 2000, V. 48,
175-209.

100



Bibliography

[23] Silling, S.A., Epton, M., Weckner, O., Xu, J., and Askari, E. (2007). Peridy-
namic States and Constitutive Modeling. Journal of Elasticity, pp. 151-184.

[24] Simulia (2015). Abaqus 6.14 user’s guide. Simulia
(http://bobcat.nus.edu.sg:2080/v6.14/index.html).

[25] Sakhavand, N., (2011). MS Thesis: Parallel Simulation of Reinforced Concrete
Structures Using Peridynamics. Albuquerque: University of New Mexico.

[26] Vecchio, F. J., and Collins, M. P. (1986). The Modified Compression-Field The-
ory for Reinforced Concrete Elements Subjected to Shear. ACI Journal, March-
April, tittle no. 83-22.

[27] Vemuganti, S. (2015). MS Thesis: Analysis of brazilian split cylinder using the
state based peridynamic lattice model. Albuquerque: University of New Mexico.

[28] Witmann, F. H., Rokugo, K., Bruhwiler, E., Mihashi, H., and Simonin, P.
(1988). Fracture energy and strain softening of concrete as determined by means
of compact tension specimens. Materials and Structures: 1988, 21, 21-32.

[29] Wright, P. J. F. (1955). Comments on an indirect tensile test on concrete cylin-
ders. Magazine of Concrete Resarch, 7, 20, 87-95.

101


	University of New Mexico
	UNM Digital Repository
	Fall 11-28-2016

	High Performance Computing Applied to Structural Analysis of Concrete Structures
	Jose A. Mena Ortiz
	Recommended Citation


	tmp.1480356700.pdf.MPRhv

