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Abstract

Dengue virus is a mosquito-borne multi-serotype disease whose dynamics are not

precisely understood despite half of the world’s human population being at risk of

infection. A recent dataset of dengue case reports from an isolated Amazonian city—

Iquitos, Peru—provides a unique opportunity to assess dengue dynamics in a simpli-

fied setting. Ten years of clinical surveillance data reveal a specific pattern: two novel

serotypes, in turn, invaded and exclusively dominated incidence over several seasonal

cycles, despite limited intra-annual variation in climate conditions. Together with

mechanistic mathematical models, these data can provide an improved understand-

ing of the nonlinear interactions between the environmental and biological factors

underlying dengue transmission as well as aid in the prediction of future epidemics.

To examine the drivers of dengue in Iquitos we develop several stochastic discrete-

time models and use likelihood-based plug-and-play inference techniques to explore

potential factors that may explain the seasonal transmission pattern. By including

climate-informed variables and accounting for known vector control measures in our

model, we illustrate scenarios that can replicate the observed data and uncover the

contribution of previously overlooked factors, such as the role of disease importation

from human population migration. We discuss the implications of these results for

understanding dengue dynamics in other endemic settings.
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1. Introduction

1.1 Overview

Recent increases in interconnectivity between human populations worldwide have

intensified the public health threat of infectious diseases. Globalization trends like

regular international travel and the effects of climate change have contributed to the

geographic expansion and influence of several mosquito-borne viruses [1, 2], including

dengue, chikungunya, West Nile, Japanese encephalitis, and Zika [3, 4]. In particular,

dengue fever is the most rapidly spreading vector-borne disease (VBD), increasing

30-fold in the past five decades [5]. Dengue is currently endemic in over 100 countries

[6], continuing to both emerge in those previously unaffected and reemerge in those

formerly controlled [7]. The disease places an estimated 3 billion inhabitants of the

world’s tropical areas and approximately 120 million travelers at risk of acute infection

each year while infecting 50–100 million with roughly 24,000 annual deaths [8, 9].

There is a significant economic burden from the attempts to prevent, treat, and

control VBDs. For dengue alone, the associated cost of illness in the Americas is

estimated at $2.1 billion per year on average (2010 US dollars) [8].

Despite growing incidence and costs, current research lacks a precise understand-

ing of the factors that contribute to dengue outbreaks. Mathematical modeling of

infectious diseases can provide insight into the effectiveness of governmental policies,

public health responses, and economic resources to mitigate and eliminate future

occurrences. But, modeling efforts have not fully been able to predict what circum-
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Chapter 1. Introduction

stances and mechanisms guarantee an outbreak. Dengue transmission is a complex

phenomenon to model, the result of interactions between environmental variables and

mosquito and human populations. Adding to the difficulty is a dearth of available

and accurate, disaggregated data for parameterization and evaluation, especially for

naive populations.

The Amazonian city Iquitos, Peru provides a prime setting for exploring the drivers

of dengue outbreaks. Laboratory-confirmed dengue fever case reports from multiple

health facilities in Iquitos collected over 10 years show that, despite an established his-

tory of dengue endemicity, a non-local strain of dengue virus invaded and dominated

incidence over several seasonal cycles. Using these data, Stoddard et al. [10] com-

pare dengue incidence to climatic variables to examine how the persistent, limited

intra-annual variation of the climate conditions contribute to the seasonal pattern

of dengue transmission through the year. Their descriptive and time-series analysis

revealed a lack of conclusive evidence for a general interpretation of the temporal rela-

tionship between climate and dengue. This absence of a clear climatic driver suggests

that a more nuanced model is necessary to complete the picture of Iquiteño dengue

transmission dynamics.

Here, we construct a stochastic, compartmental host-vector model to analyze

which drivers best contribute to the seasonal dengue pattern in Iquitos. Specifically,

using a mechanistic framework we investigate the impact of control measures and cli-

matic variables. We use a neoteric method of fitting mechanistic models to time-series

data that optimizes input parameters using likelihood and only requires simulation

from a dynamic model without the need for explicit transition probabilities, i.e. the

“plug-and-play” property. With informed parameters, we are able to more directly

hypothesize about the role of dengue incidence drivers in Iquitos. Our results sug-

gest that control measures on the vector population and the importation of infected

humans play an active role in dengue transmission in Iquitos, while some temperature-

influenced parameters alone cannot adequately explain seasonal patterns.

2



Chapter 1. Introduction

1.2 Dengue

Dengue fever is a mosquito-borne viral disease common throughout tropical and sub-

tropical regions [11], and, as aforementioned, its reach is expanding. Transmission of

the virus cycles between humans and the predominate vector, female Aedes aegypti

mosquitoes [12]. Symptomatic infection in humans shows as dengue fever. Lasting

around a week, it produces flu-like symptoms, such as aching in the head, muscles

and joints, and glands. There are four distinct but related dengue serotypes of the

virus (DENV-1,2,3, and 4) [10]. Exposure to infection provides lifelong immunity to

that particular serotype [13] with only partial and temporary cross-immunity to the

others [14]. Hence repeated infection, by another serotype, is possible and can cause

an intensified symptomatic response [7]. Severe dengue, or Dengue Hemorrhagic Fever

(DHF), can be fatal if not properly recognized and treated. Although a dengue vaccine

has very recently been licensed in a few countries for adults and children over 9 years

old [15], there remains no long-term anti-viral drug solutions for dengue fever [16]. As

a result, intravenous rehydration therapy is the primary clinical treatment [17], while

vector control remains the best defense against transmission despite several challenges,

including insecticide resistance, biosafety concerns, and regular community practice

[5, 17].

Many models have been utilized to study the mechanisms that contribute to

dengue transmission and outbreaks. Previous long-term studies of dengue in several

endemic regions indicate intra-annual and inter-annual transmission patterns with

locally varying drivers [18–20]. There are, however, also some commonalities indepen-

dent of location. Short-term serotype cross-protection exists and impacts strategies

for designing vaccine studies for multi-strain disease systems [14]. Climate is another

known factor that affects dengue transmission, especially shaping the mosquito de-

velopment and the virus replication processes [21]. Temperature influences larvae

development rates, mortality, reproductive behavior, and the time it takes the virus

3



Chapter 1. Introduction

to disseminate in a mosquito, rendering the mosquito infectious, i.e. the extrinsic

incubation period (EIP) [22–26]. Precipitation can also contribute to the mosquito

lifecycle because standing water is the habitat for larvae and pupae [27].

1.3 Infectious Disease Modeling

Mathematical models of infectious disease help interpret observed epidemiological

trends in data, which enables a better understanding of the critical underlying fac-

tors that lead to outbreaks and further transmission [28, 29]. While all models make

assumptions about the relationship between variables, the statistical model aims to

best describe data without trying to explain the reasoning behind variable interac-

tions [30]. In the search for potential drivers of disease, statistical analysis can often

find correlation between incidence and other seasonal patterns even without evidence

of biological relevance [10]. A mechanistic approach, on the other hand, formulates

the underlying equations based on observation and knowledge of the phenomenon’s

behavior, necessitating the basis of model selection on scientific consideration over sta-

tistical convenience [31]. Compartmental dynamical systems are mechanistic models

whose processes flow at prescribed rates between compartments over time. Common

in epidemiology, compartmental models create a framework to describe how diseases

move through populations, from susceptibility to recovery. In this way, the mech-

anistic model can quantitatively test and compare precisely expressed ideas about

the driving factors behind a time series signal in the pursuit of finding the most

explanatory correspondence between a model’s simulated output and the observed

data.

Infectious disease is a complex, real-world phenomenon subject to nonlinearities

and randomness. Biological population models, although simplifications, must be

able to capture the process noise inherent in the data signal. Determinism assumes

that processes follow an average rate ignoring variation within the mean. But, with

the ability to capture inherent process randomness via rates defined by probability
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Chapter 1. Introduction

distribution realizations, stochasticity attains and incorporates essential dynamic in-

teractions commonly omitted by a purely deterministic skeleton [32]. Unpredictability

in the timing of births, deaths, and interactions between individuals in a population

is called demographic stochasticity. Environmental stochasticity is random variability

in the conditions in which a system operates [31] and includes the external stochastic

behavior that the model structure may not support or recognize. Failure to properly

incorporate environmental stochasticity can lead to biases in parameter estimation

effectually skewing the interpretation of results [33]. Thus, it is important to consider

both forms of stochasticity when building the most rigorous model.

1.4 Inference for Nonlinear Dynamical Systems

Fitting mechanistic models to time series data is a challenging and active area of

research [34–36]. Even simple models commonly found in the study of disease dy-

namics can not only be stochastic but also highly nonlinear, nonstationary, prone to

measurement error and latent variables, or formulated in continuous time when data

is sampled in discrete and perhaps irregular intervals [33]. The partially observed

Markov process (POMP) model is one such model class that reconciles this assort-

ment of requirements and is the focus of a new likelihood-based inference approach

to data fitting through the optimization of model input parameter estimates.

A POMP, also commonly known as a hidden Markov or a state space model,

involves an unobserved Markov state process (process model) and an explicit obser-

vational process (measurement model) [37]. State space models have applications

across many domains that require making noisy and incomplete observations, e.g.

economics, biology, and neuroscience [38]. A special brand of inference techniques,

called plug-and-play, simulation-based, or equation-free, is a class of algorithms that

can be applied to any time series data. They require only simulated samples from a

model: closed-form expressions for transition probabilities are not necessary [31]. In

other words, the mechanistic model becomes a “black box” where input parameters
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Chapter 1. Introduction

turn into sample paths. Then, the exported paths simply plug into the inference

machinery [39]. Since plug-and-play inference removes restrictions on model form, it

opens up the scope of hypotheses that can be postulated as any applicable model can

be inserted and tested, at the (potential) cost of computational effort [33].

For a mechanistic model of an epidemiological system, most parameters have an

intepretable meaning. Maximum-likelihood via iterated filtering (MIF) estimation is

a statistically efficient (no additional bias and variance in the resulting parameter

estimates) [33] approach to fitting a model to data developed in response to these

new types of dynamical system requirements [31]. MIF is a data-driven method of

optimizing the model parameters, providing the best fit based on the provided ob-

served data. By finding the most statistically consistent parameters for a soundly

representative model, these meaningful parameter values will yield insights into the

underlying dynamics of the phenomenon. Such likelihood-based methods are partic-

ularly effective in disease modeling. Previous topics of study include measles [33],

pertussis [40], polio [41], pneumonia [42], and Ebola [43].

1.5 Expected Results

Iquitos, Peru presents an ideal opportunity to study the drivers of dengue trans-

mission. First, Iquitos harbors the proper meteorological conditions for year-round

mosquito presence, promoting arboviral disease endemicity. The annual persistent

presence of disease provides a distinct domain to explore why and how epidemics

emerge. Additionally, the epidemics we will study are due to a newly introduced

serotype in the region. Gaining a better understanding of how a previously absent

serotype of dengue virus is transmitted in a new territory can yield important consider-

ations in the effort to curtail future spread. Notably, Iquitos has limited intra-annual

variation in its meteorological conditions, yet it is not clear why there is a shifting,

seasonal pattern of epidemics over many years. With reduced variability in mete-

orological conditions, historically common dengue drivers, alternative contributing
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Chapter 1. Introduction

factors to disease incidence may be more discernible.

This thesis seeks to understand which factors contribute to the inter-annual varia-

tion in timing and magnitude of Iquitos’ dengue epidemics. We develop a stochastic,

discrete-time mechanistic model that reasonably reproduces the Iquitos dengue inci-

dence data over the period of dominance for the single DENV-3 serotype, from its

initial introduction to the region in 2001 to its replacement by the next dominating

dengue serotype, DENV-4, in 2009. By using primed parameters derived from the

iterative filtering approach of plug-and-play inference in a POMP-type dynamic sys-

tem, we will investigate the impact of control and temperature-informed variables

on the mosquito population dynamics. Were the control measures taken during this

period effective or contributive to the patterns that resulted? Is the small variation in

temperature enough to affect the overall transmission outcome? Are there any over-

looked factors that gain importance as a result of this study? By addressing these

questions, this model can add to the general understanding of dengue transmission

in the ongoing mission of preventative public health.

7



2. Methods

2.1 Data

Iquitos, Peru is a mid-sized city with a 2012 population of 457, 865. It sits isolated in

the Great Plains of the Amazon drainage basin. Surrounded by the Amazon, Nanay,

and Itaya rivers, Iquitos is not connected to a road system, making it only reachable

by air and river travel. In 2000, the U.S. Naval Medical Research Center Detach-

ment (NMRCD) and the local Ministry of Health in Peru implemented a clinic-based

syndrome surveillance system to investigate human febrile illness due to arboviruses

by monitoring health clinics at several locations around Iquitos [44]. As a result, the

study produced a ten-year dataset of weekly dengue incidence categorized by serotype

(Figure 1).

While dengue has been continuously present in Iquitos since it was first reported in

1990, unlike many other dengue-endemic regions where multiple serotypes co-circulate,

here it persists largely through repeated single serotype dominated invasions [45]. Dur-

ing the period of study, DENV-3 takes over from DENV-1 in early 2002, persisting

almost exclusively until it is effectively replaced by DENV-4 around 2009. In addi-

tion, the data showcase a strong epidemic seasonality with peaks occurring during

the height of summer, albeit with irregularity in the magnitude and timing. Inter-

epidemic intervals last between 8 and 16 months based on wavelet analysis [10]. Figure

1 also highlights the five citywide control efforts that transpired during the period of

study. Houses in specific city sectors were sprayed with three different ultra low vol-

8



Chapter 2. Methods

ume (ULV), non-residual insecticides, which target adult mosquitoes. Each control

period varied in length and the number of houses sprayed. Overall, approximately

80,000 different houses were treated (Table 1).

Iquitos experiences an equatorial climate with year-round rainfall and a limited

range in temperature variation. Figure 2 shows the average daily temperature largely

between 20 to 30 ◦C (68 to 86 ◦F) based on recordings from the Iquitos airport U.S.

National Ocean and Atmospheric Administration (NOAA) weather station.

2.2 Model Structure

We build a discrete-time compartmental model that describes the transmission of

dengue between human hosts and female Ae. aegypti mosquito vector populations

utilizing an adaptation of a Reed-Frost chain binomial system to incorporate demo-

graphic stochasticity [29, 46]. By compartmentalizing based on the state of infection,

we can investigate and capture the driving mechanisms in both populations (Figure

3). We define all probabilities on a daily time interval, from [t, t + 1]. Individu-

als enter and leave population compartments via draws from governing transitional

probabilities.

The human population (Figure 3a) divides into susceptible, exposed (infected

but not infectious), infectious, and removed (quarantined, recovered, or immune)

classes, represented as SH(t), EH(t), IH(t), RH(t), respectively. Let the total hu-

man population at time t be NH(t) = SH(t) + EH(t) + IH(t) + RH(t). Similarly the

compartmentalization of the vector population (Figure 3b) divides into juvenile (pre-

liminary developmental stage) alongside adult susceptible, exposed, and infectious

classes, JG(t), SG(t), EG(t), IG(t), respectively. The total vector population at time t

is NG(t) = SG(t)+EG(t)+ IG(t). Note, the brevity of the average lifespan of a vector

precludes the inclusion of a recovery class. See Table 2 for a list of the parameters

used in the equations below.

9



Chapter 2. Methods

Human Dynamics

We use one of two versions of the daily probability of a susceptible human becoming

exposed

λH(t) = 1− exp

(
−β(t)IG(t)

NH(t)

)
(1)

λH(t) = 1− exp

(
−b0IG(t)

NH(t)

)
(2)

depending on how much emphasis seasonality should play into the exposure of the

human population. Here β(t) is the transmission rate. A simplified cosine captures a

general form of seasonal transmission

β(t) = b0

[
b1 cos

(
2π

(
t

365
+ b2

))
+ 1

]
. (3)

The parameters b0, b1, and b2 determine the shape of the curve: average value,

amplitude, and shift, respectively, where b0 ∈ R+ and b1, b2 ∈ [0, 1]. Note the only

difference from Equation (1) to Equation (2) is b1 = b2 = 0. The probability of a

host becoming infectious, σH , is defined in terms of the average intrinsic incubation

period, (σ̂H)−1

σH = 1− exp(−σ̂H). (4)

The probability that an infectious host recovers, γH , is defined in terms of the human

average duration of infectiousness, (γ̂H)−1:

γH = 1− exp(−γ̂H). (5)

As the period of interest covers almost a decade, births and deaths of humans and

mosquitoes are included in the demography setup. We converted annual births and

deaths per 1000 people for Peru in 2014 to a daily rate of a person of being born and

dying, given by φH and µH respectively. In total, the human population is described

10



Chapter 2. Methods

by the following transition probability definitions and equations:

BH(t) ∼ Poisson(NH(t)φH)

[WH(t), X
S
H(t)] ∼ Multinomial(SH(t), (1− µH)λH , µH)

[VH(t), X
E
H(t)] ∼ Multinomial(EH(t), (1− µH)σH , µH)

[UH(t), X
I
H(t)] ∼ Multinomial(IH(t), (1− µH)γH , µH)

XR
H(t) ∼ Binomial(RH(t), µH)

SH(t+ 1) = SH(t) + BH(t)−WH(t)−XS
H(t)

EH(t+ 1) = EH(t) +WH(t)− VH(t)−XE
H(t)

IH(t+ 1) = IH(t) + VH(t)− UH(t)−XI
H(t)

RH(t+ 1) = RH(t) + UH(t)−XR
H(t).

Above BH(t),WH(t), VH(t), and UH(t) represent the number of newly susceptible,

newly exposed, newly infectious, and newly recovered individuals, respectively, at

time t. Likewise, the respective X∗
H(t) signifies the number of deaths from each cate-

gory, (S,E, I, R).

Vector Dynamics

The vector population dynamics follow a similar setup but with differences reflective

of how dengue interacts with the Ae. aegypti lifecycle. We use a simple mosquito age

structure to inform entry into the SG class. The mosquito lifecyle begins with eggs

that hatch in water and undergo a “juvenile” stage, growing from larvae to pupae,

before emerging as adult insects. Recruitment begins with the parameters φ̂G, the

daily average adult female mosquito egg production rate, and θ̂G, the average rate of

egg survivorship. The probability of maturation, ρG, based on the average juvenile

vector development duration, (τ)−1, is defined as

ρG = 1− exp(−τ). (6)
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The force of transmission is slightly changed in the vector probability equation to

include the demographic importation of humans from outside of Iquitos into the city

and environmental stochasticity through a multiplicative noise term. Again, there

are two variations of the probability of infection. The first is

λG(t) = 1− exp

(
− β(t)

NH(t)
(IH(t) + η)ζ(t)

)
(7)

where η is the average daily human importation of infections and ζ(t) is Gamma

white noise with intensity ϵ. Homogeneous mixing is assumed. To capture a seasonal

η effect, the second version defines the probability of vector infection as

λG(t) = 1− exp

(
−(b0IH(t) + β(t)η)ζ(t)

NH(t)

)
. (8)

After exposure, the probability that a vector becomes infectious, σG, is defined in

terms of the average extrinsic incubation period (EIP), (σ̂G)−1:

σG = 1− exp(−σ̂G). (9)

There is empirical evidence to suggest that average EIP follows an exponential decay

with temperature based on the mechanics of virus replication in the mosquito. Hence,

in some model scenarios, we use a temperature-dependent EIP, such that

σG(T ) = 1− exp(−σ̂G(T )) = 1− exp

(
− 1

c1 exp(−c2T )

)
(10)

where covariate T = T (t) is the daily average temperature from Figure 2 and c1 and

c2 are positive real function shape parameters. Death rates differ between the juvenile

and adult vector classes. Daily juvenile deaths are given by

µJ(t) = 1− exp(−µ̂J − αJG(t)) (11)

with a background mortality rate, µ̂J , calculated to provide 80% survivorship (§A.2),

and strength of juvenile competition factor, α. Equilibrium analysis performed for α

assumes an initial mosquito population taken at a ratio of approximately 2:1 compared

12
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to humans in Iquitos (§A.3). Meanwhile, the probability of daily adult mortality, µG,

is defined based on the average adult vector lifespan, (µ̌G)−1

µG = 1− exp(−µ̌G). (12)

A separate control measure scheme alters µG to investigate the effects of control

measures during this time frame. The periods of control are given a higher probability

of daily adult mortality, weighted by the efficacy of the fumigation, i.e. the number of

sprayed houses per duration of each control period. As such, the probability of daily

adult mortality during control is defined based on a weight wi for control period i

and a new weighted average lifespan parameter, (µ̂G)−1

µG = 1− exp(−wiµ̂G). (13)

Finally, using these probabilities, the vector population dynamics are described

by the following:

BG(t) ∼ Pois(φ̂Gθ̂GNG(t))

[ZG(t), X
J
G(t)] ∼ Multinom(JG(t), (1− µJ(t))ρG, µJ(t))

[WG(t), X
S
G(t)] ∼ Multinom(SG(t), (1− µG)λG(t), µG)

[UG(t), X
E
G (t)] ∼ Multinom(EG(t), (1− µG)σG, µG)

XI
G(t) ∼ Binom(IG(t), µG)

JG(t+ 1) = BG(t)− ZG(t)−XJ
G(t)

SG(t+ 1) = SG(t) + ZG(t)−WG(t)−XS
G(t)

EG(t+ 1) = EG(t) +WG(t)− UG(t)−XE
G (t)

IG(t+ 1) = IG(t) + UG(t)−XI
G(t)

Similarly, as before, BG(t), ZG(t),WG(t), and UG(t) represent the number of newly

juvenile, newly susceptible, newly exposed, and newly infectious individuals, respec-
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tively, at time t. Additionally, respective X∗
G(t) signifies the number of deaths from

each category, (J, S, E, I).

Measurement Model

The observed data represents only a sample of the total dengue incidence in the pop-

ulation during the targeted period: those identified and recorded by the surveillance

system. The measurement feature of the state space model mirrors the reporting

process by subselecting a number of cases from all infections. The model uses an

overdispersed binomial distribution to build in higher than expected variance into

the reporting process to account for underreporting and general measurement error

that naturally occur in the precise surveillance that produced the data. We let cH

be the number of weekly case reports selected from the weekly total of true incidence

C, a sum of seven daily changes in UH , the surviving infected population en route to

recovery. The amount of case reports follows from

cH(t) |C ∼ Normal
(
ρC, ρ (1− ρ)C + (ψ ρC)2

)
(14)

where ρ ∈ [0, 1] is the reporting rate efficiency, and ψ is the overdispersion factor.

Note that ψ = 0 produces the binomial case. The sampling of the measurement

modeling is described in §A.4.

Reproductive Numbers

In epidemiology, there are standard metrics that describe the potential for disease

to spread. The basic reproductive number, R0, is the average number of secondary

cases a typical infected case generates in a completely susceptible population. For this

discrete model (neglecting human demography in the exposed and infectious periods),

the reproductive number is approximately defined [29] to be

R0(t) =

(
NG(t)βHβG
NH(t)γHµG

)(
σG(1− µG)

σG(1− µG) + µG

)
(15)
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where

βH =

⎧
⎪⎨

⎪⎩

β(t), for (1)

b0, for (2)
and βG =

⎧
⎪⎨

⎪⎩

β(t), for (7)

b0, for (8)
(16)

depending on the probability of exposure assumptions. The effective reproductive

number, Rf , takes into account changes within the susceptible population and is

defined as

Rf (t) =

(
SH(t)

NH(t)

)
R0(t). (17)

Values of Rf > 1 indicate a growing infectious population and, conversely, Rf < 1

signifies a declining infectious population.

2.3 Theoretical Background

Partially Observed Markov Process (POMP) Models

A POMP models data as noisy and incomplete observations of random variables

defined by a stochastic process known as a Markov chain {Xn, n ∈ N0}. A process is

considered Markovian if given the past states X0, X1, · · · , Xn−1 and present state Xn,

the conditional distribution of any future state Xn+1 is only dependent on the present

state Xn and independent of the past states. From the set T ⊂ R, let a time index

be defined as {ti ∈ T, i = 1, . . . , N} with initial time t0 ∈ T and t0 ≤ t1 < · · · < tN .

Then let X0:N = (X0, . . . , XN), where Xn = X(tn), a latent dynamic process, be

such an unobserved Markov chain. In our case, in which the state variables represent

a vector of various population sizes from the compartmental model, values are in

the state space X ⊂ N0
dim(X). The process X0:N is unobserved and only realized by

another process Y1:N = (Y1, . . . , YN) with observable random variable Yn valued in the

observation space Y ⊂ N0
dim(Y) at time tn. The data y∗1:N = y∗1, . . . , y

∗
N is a sequence of

N fixed observations of X1:N from Y1:N at the corresponding times t1:N . In the model

above, each Yn is a single value, unlike each Xn, and derived from the overdispersed
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binomial. Note that X0 initializes the process model, but the first observation Y1

occurs from X1. As part of a Markov chain, each state Xn is independent of all

other states (in both the state and observation process) beside the one immediately

preceding it,

P [Xn|X0, . . . , Xn−1, Y1, . . . , Yn−1] = P [Xn|Xn−1] . (18)

Meanwhile, each measurement Yn for all n = 1, . . . , N depends only on the state at

the coinciding time,

P [Yn|X0, . . . , Xn, Y1, . . . , Yn−1] = P [Yn|Xn] . (19)

Figure 4 illustrates the relationship between the state and observational process and

the inherent dependencies of the variables.

Likelihood for POMP Models

The Markov process, and inherently its states, also depend on the parameters of the

mechanistic model. Let a “particle” refer to any specific combination of parameters,

i.e. any vector θ in the parameter space Θ ⊂ Rdim(Θ). (Note that in this thesis, vector

notation for the parameter vector θ and for the process model states X0:N will not be

used for clarity of exposition.) Through statistical inference it is possible to determine

which values of θ, if any, can reasonably and most accurately represent the time series

data. The likelihood function is a metric that measures goodness of fit to the data,

defined as the probability of a given set of data D having occurred under a particular

hypothesis H, i.e. L(H;D) = P [D|H]. In this case, the data is represented by the

time series realization y∗1:N , and the hypothesis is a particular set of parameters, θ.

Separate probability density functions describe the state and measurement random

variables. Using continuous density distributions, if we combine the one-step condi-

tional transition density from latent state to state, written as fXn|Xn−1(xn|xn−1; θ), and

initial density, fX0(x0; θ), with the conditional measurement density, fYn|Xn(yn|xn; θ),
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then their joint distribution is

fX0:N ,Y1:N (x0:N , y1:N ; θ) = fX0(x0; θ)
N∏

n=1

fXn|Xn−1(xn|xn−1; θ) fYn|Xn(yn|xn; θ). (20)

Using Equation (20) and marginalizing, we form the likelihood function for a POMP:

L(θ) = fY1:N (y
∗
1:N ; θ)

=

∫ N∏

n=1

fYn|Xn(y
∗
n|xn; θ) fXn|Y1:n−1(xn|y∗1:n−1; θ) dx0:N (21)

=
N∏

n=1

fYn|Yn−1(y
∗
n|y∗1:n−1, θ). (22)

The explicit formula in Equation (21) is a high dimensional integral and, as is often

the case, may not be known or difficult to express. Yet, it exists, is theoretically

explicable as a likelihood function, and is numerically calculable through the inference

algorithm. Furthermore, the log transformation of the likelihood, the log-likelihood, is

more preferable to facilitate the ease of the maximization calculation in the algorithm

described in the next section. From Equation (22), we find the log-likelihood to be

represented as follows:

ℓ(θ) = logL(θ) = log
N∏

n=1

fYn|Yn−1(y
∗
n|y∗1:n−1; θ)

=
N∑

n=1

log fYn|Yn−1(y
∗
n|y∗1:n−1; θ)

=
N∑

n=1

ℓn|1:n−1(θ). (23)

Maximum Likelihood via Iterated Filtering (MIF)

Using the iterative filtering procedure, we can search for the best parameter set to

input into our model that will most likely result in output shaped like the observed
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data signal. MIF specifically uses iterated filtering to search for the maximum likeli-

hood estimate (MLE), the particle value θ̂ that maximizes ℓ(θ) for all particles θ ∈ Θ.

IF2 is a newly developed MIF algorithm (§B.1) that uses iterated, perturbed Bayes

maps to improve computational performance over former iterated filtering implemen-

tations [47]. In pursuit of θ̂, the intuition behind IF2 is to take an initial “swarm” of

J particles, {Θ0
j , j = 1, . . . , J}, and update each particle in the swarm via a random

walk over each time step in the time series. The process reiterates the random walk

M times, each time with a smaller variance, σm,m = 1, . . . ,M , based on a decreasing

function called the “cooling schedule.” The previous output swarm Θm−1
1:J is then

input as the starting particles for the next iteration. This procedure theoretically

converges to the region of Θ with maximal maximum likelihood [37].

Within the MIF process, the filtering occurs through the sequential Monte Carlo

(SMC) algorithm, or the “particle filter,” which provides the standard numerical

method to obtain the likelihood estimates for POMP [33]. SMC estimates the like-

lihood function from Equation (23) via iterated Bayes Maps and an approximation

technique called Importance Sampling by reducing the high-dimensional integral to

a sequence of lower dimensional problems [37]. The basic idea of the algorithm is a

recursive random walk process in time, i.e. sequential, that iterates two steps, a pre-

diction step and a filtering update step. In general at time step tn for a single swarm

particle j, the latent process state Xn,j and particle Θn,j are first predicted from the

previously found latent process state Xn−1,j and particle Θn−1,j a step before at tn−1.

Then, weights for each particle j are calculated based on their proportional “impor-

tance,” i.e. the probability that the observed data point at tn, y∗n, resulted from the

predicted sample point value Xn. Finally, the swarm particles and the latent process

states are updated through a filtering, i.e. resampling, as fresh draws based on the

new weighted probabilities of being close to y∗n. The iterations continue until n = N

when the time series ends.

Looking in more detail at how MIF processes the state random variables, let
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{
xP
n,j

}J
j=1

be a sample of point estimates for the latent state drawn from the “predic-

tion distribution” Xn|y∗1:n−1 at tn and
{
xF
n−1,j

}J
j=1

be a set of point estimates drawn

from the “filtering distribution” Xn|y∗1:n at time tn−1. The prediction distribution, in

general, is a plug-and-play simulation of the state to state process and defined as

XP
n,j ∼ fXn|Xn−1(xn|xF

n−1,j; θ). (24)

Note fX0(x0; θ) informs the first prediction distribution as xF
0,j. The weights are

derived from an Importance Sampling procedure based on an importance density

setup by a recursive relation between the time steps n and n − 1 that underlies the

entire SMC algorithm. The weight equation is defined as the probability of simulating

the observed data from the given predicted state value, written as

wn,j = fYn|Xn(y
∗
n|xP

n,j; θ). (25)

After the weights are defined from the predicted sample latent states
{
xP
n,j

}
, these

sample points are then filtered. J draws are taken from the probabilities based on a

normalization of the weights found in Equation (25) and given reordered indices k1:J

to become
{
xP
n,kj

}
, the new filtered set of latent state values to be used in the next

time step iteration to inform the prediction step, i.e. XF
n,j = XP

n,kj
. As a result, the

estimate of the log-likelihood Equation (23) can be found as follows:

ℓ̂(θ) =
N∑

n=1

ℓ̂n|1:n−1(θ)

=
N∑

n=1

log

(
1

J

J∑

j=1

P
[
y∗n|xP

n,kj ; θ
])

(26)

=
N∑

n=1

log

(
1

J

J∑

j=1

wn,kj

)
. (27)

In this way, the values closest to the data at each time step, and the model parameters

that produce them, are rewarded with higher probability, and likelihood, of being

realized while the values that are more distant are filtered out. To complete the
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MIF process, the SMC algorithm is repeated M times, starting each iteration at

the beginning of the times series. The smaller random walk variances, following the

cooling schedule, further hone the filtering process.

2.4 Analyses

The data were restricted to the period between 1 October 2001 and 1 July 2009 to

focus on the rise and fall of DENV-3. During a two week period in December 2004,

at the height of an epidemic, the surveillance system in one hospital was extended to

take advantage of the increased patient influx, resulting in increased reporting. To

reconcile the difference in reporting from the other weeks, we rescaled the cases during

these two weeks using the ratio of the maximum number of negative cases during the

heightened reporting to that in the rest of the data.

Regarding numerical implementation, we utilized the R package pomp.R [39] to

facilitate the simulation and analysis of a state space model constructed to fit the

Iquitos incidence data. In the library, a POMP model is of class pomp, created with

a detailed constructor (§B.2) and featuring four main parts. The simulation of state

to state transition fXn|Xn−1(xn|xn−1; θ) occurs in the rprocess, and the dprocess

provides an evaluation of this density. Likewise, the rmeasure section holds the

procedure for a simulation of the state to measurement transition fYn|Xn(yn|xn; θ) and

the dmeasure takes a draw. Note that simulation-based methods require an rprocess

but not a dprocess since there is no explicit function to evaluate. Other inputs to the

constructor are the specified model classes, parameter names, initial values, covariates,

and parameter constraints (to reduce the optimization search space). Also noteworthy,

the pomp class allows for simulation on a finer time scale than the data. Our model

represents a process that is best described on a daily time scale, whereas the data are

case reports aggregated at a weekly time scale.

While pomp.R contains a suite of methods to solve a variety of state space problems,

we focus on the implementation for a “full-information”, i.e. non-summary statistic-
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based likelihood function, plug-and-play, frequentist POMP model. The solution of

this specific class of POMP model results from iterated filtering, represented by the

IF2 algorithm command mif2. Inputs to mif2 include the pomp object, the number of

particles in the swarm, number of iterations, standard deviation of the random walk,

and shape of cooling schedule.

To find the maximal parameters for each model, we first create a profile design

containing the initial values for a range of particles to be optimized by MIF. Within

the profile design a single parameter is selected to be “profiled,” or explored, over a

certain range while the other parameters move freely in the random walk. Each initial

particle plugs into a mif2 command, outputting a point estimate particle with the

maximal log-likelihood. For each of our mif2 runs we use 50 iterations, 1000 filtering

particles, random walk standard deviation of 0.02 for each parameter, and a geometric

cooling schedule shape. At this stage, the single point estimate of likelihood produced

is usually an approximation of θ̂, not sufficiently reliable for inference. Hence, each

particle at the end of the mif2 command goes through 10 additional particle filters,

this time with 2000 particle-sized swarms, in order to polish the result, calculate a

standard error, and ultimately give the most accurate picture of the likelihood surface.

Finally, we pluck the top particles with the highest log-likelihood to create a new

profile design and repeat the previous mif2 and multiple particle filter progressions.
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3. Results

3.1 Preliminary Investigation

Early simple model formulations revealed information regarding the nature of some

common parameters. The shift in the transmission function, b2, failed to show signif-

icant difference from a zero value, indicating that the peak of the cosine transmission

function closely aligned with 1 December, the approximate middle of summer. As a

consequence, it was held constant at 0 and removed from subsequent particles. The

initial distribution of the human population into the model compartments affects the

model output. The initial susceptible population became a reoccurring particle param-

eter, and some experimentation indicated the initial human exposed and infectious

populations should be greater than 1. Accordingly, we used EH(t0) = E0 = 6 and

IH(t0) = I0 = 2 for all models. There was also a marked relationship between the av-

erage seasonal transmission value, b0, and the initial human population, SH(t0) = S0

(Figure 5). The inverse relationship makes sense in the context of the effective repro-

ductive number. Recall Rf (t) =
(

SH(t)
NH(t)

)
R0(t) and measures the potential for change

in the infectious population over time. Because S0 informs SH and b0 informs β(t) and

thus R0, to maintain the same Rf : if S0 is low, b0 compensates with a large value, and

conversely, if S0 is high, b0 becomes small. Using these observations, we produced five

models to test hypotheses about the driving factors of seasonal dengue transmission

and ascertain the best fitting simulated signals representative of the original incidence

data.
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3.2 Temperature-Dependent EIP Model

The magnitude of seasonal variation in the area’s climate was modest but extant. A

model with a daily average temperature-dependent EIP formulation from Equation

(10), written as EIP, investigated if this small differentiation throughout the year con-

tributed to the overall seasonality in transmission. A previous version of this model

did not incorporate background infection. Consequently, the model simulations were

unable to sustain infections beyond initialization. Therefore, to account for the rein-

troduction of infection, we added human importation via the parameter η. Then,

with the particle θ = [S0, ρ, ψ, b0, b1, c1, c2, η, ϵ], we specifically profiled over 15

equispaced values of S0 between 0 and 350, 000. Likelihood plots of each parameter

(Figure 6) show which values have the highest log-likelihood score based on all the

particles tested. Note a local regression smoothed (LOESS) curve with 95% confi-

dence region accompanies each parameter scatterplot. The initial susceptible human

population reveals little information with relatively equal maximal log-likelihood val-

ues across the entire range. Profiles of c1 and c2 also highlight the wide ranges. Both

EIP shape function parameters have particles that cluster together with some larger

values complicating the identifiability of the parameter. The other parameters ρ, ψ,

b1, and ϵ, however, demonstrate more identifiable definition, varying in a smaller value

range.

The EIP function generated by the maximal likelihood shape parameters assigns

the average EIP to be 0 days for the entire duration, meaning there is no latent

period between exposure and infection for mosquitoes. The exposed compartment

is effectively removed from the model; as soon as a mosquito is infected it is infec-

tious. The model, despite the unrealistic EIP value, produces a high log-likelihood

particle rating, −1078.19. The associated simulations of the infectious human pop-

ulation over time from this optimal particle (Figure 8) exemplify how the infectious

population is continually replenished, rarely dipping below the daily importation of
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infectious humans, in this case η = 40.61. Clearly, transmission is bolstered by a

large daily amount of external infectious humans and highly efficient transmission in

the mosquitoes, a result of a zero EIP. Simulations of the R0 curve (Figure 7b) give

values well above the expected R0 for dengue, 3− 5.

3.3 Control Measures Model

The model denoted Control tests the impact of control measures taken during this

period on transmission with particle θ = [S0, ρ, ψ, b0, b1, η, (µ̂G)−1, ϵ]. In a

profile over S0 (Figure 9), the parameters ψ, b1, (µ̂G)−1, and ϵ have distinct ranges in

which the best values arise. Specifically, the profile for (µ̂G)−1 indicates that during

control periods the weighted average adult vector lifespan should be around 8 or 9

days, less than the non-control period, 10 days. Again, the S0 values are fairly equal

across the entire range of acceptable profiled values. The remaining parameters, ρ,

b0, and η show strong bunching in a particular range but also possess relatively equal

likelihood values beyond that cluster, in effect limiting their identifiability. The basic

reproductive number (Figure 10b) illustrates the timing and overall effect of control.

The periods under control lead to drops in the R0 as a consequence of reductions in

the mosquito population. The overall maximum log-likelihood for the control model

is −1081.80. Note although the likelihood scores are about equal, Control has one less

degree of freedom than EIP as well as stronger interpretations of parameter results.

Lastly, the optimal particle simulations of the internal states (Figure 11) portray

the information tracked during each run and pictorially reinforce the notion that

stochasticity promotes small but visible differences in output for each model run.

3.4 Adjusted Vector Force of Infection Models

The large estimated values of η resulting from both EIP and Control indicate that

human importation is capturing a large portion of the transmission dynamics. To

attempt to bring supplementary insight into the timing and seasonal variation of im-
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ported infections, we proposed alternative implementations of a seasonal η through

three model hypotheses, summarized in Table 3. Each of these models alters the Con-

trol by manipulating the Force of Infection (FOI) term in the probability of exposure,

i.e. F such that λ∗(t) = 1−exp(−F∗), in the human and mosquito populations. Alter-

ing the FOI changes the assumptions about how seasonality in the model, represented

by the cosine transmission function, affects internal and external infections.

First, we hypothesized and implemented a simple seasonal human importation

scheme in ControlλG . Starting from Control, this model substitutes an altered vec-

tor force of infection into the probability of exposure λG from Equation (8) so that

the cosine transmission function affects external infectious humans but not internal

infectious humans. The separation provides a mechanism for seasonal human impor-

tation. Another S0 profile here reveals likelihoods with similar outputs as Control

(Figure 12). The ranges for the parameters ρ, ψ, b1, (µ̂G)−1, ϵ and even η are mostly

unchanged. The biggest difference among particle value trends between Control and

ControlλG occurs in a slight range extension for b0. Despite the similarity of pro-

file output, the top particle reveals some differentiation, including a lowered ρ, 0.063

from 0.27, and larger η, 24.33 compared to 10.03. ControlλG generates an improved

profile log-likelihood score of −1080.84 from its top particle, creating the simulations

in Figure 13a. Perhaps the most indicative result, an increase in the magnitude of

R0 (Figure 13b) beyond the usual 3− 5 range suggests potential complications in the

interpretability of the recovered particle values.

Using FOI modifications, we remove the current interference from the overlap

between the host and vector populations, which might be causing the high R0 read-

ings from ControlλG . Correspondingly, in addition to changing λG to Equation (8), as

done in ControlλG , the first variation ControlλG,H also updated λH from Equation (1)

to Equation (2), thereby removing seasonality from the force of human infection such

that seasonal forcing only acts on external importation. The profiles for ControlλG,H

(Figure 14) show similar results to ControlλG with no general improvement to param-
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eter identifiability. In fact with the changes, b1 loses definition altogether. The final

modification Controlb0 decouples the seasonality between the human and mosquito

populations completely by using distinct average transmission parameters in λH and

λG, denoted by bH0 and bG0 respectively. Specifically, the profiles for Controlb0 (Figure

16) show that the values for bH0 and bG0 are distinct. In both of these models, the

isolation of seasonality to external infections is apparent in the reproductive number

curves (Figure 15b and Figure 17b), no longer exhibiting the cosine shape. Further,

the values of R0 reduce to a more appropriate range compared to ControlλG .

3.5 Parameter and Model Comparison

We can check the parameters for consistency by comparing across models. Table 4

shows the top scoring log-likelihood particle from each model. We see that parameters

such as ψ and ϵ vary little across models. A parameter with consistency across models

suggests evidence for maintaining a fixed value going forward. Other parameters like

b1 varies widely indicating a stronger impact in the differences between models. More

moderation is found in the ranges of b0 as well as η, which demonstrates a value above

initial expectations.

In comparing between models, the log-likelihood score only accounts for goodness

of fit and not the differences in model complexity. The Akaike information criterion

(AIC) is a numerical means for model comparison that considers both, including

complexity via the number of free parameters. For model i, AIC is defined based on

the estimated log-likelihood calculated of the MLE from the IF2 algorithm and the

particle length, pi:

AIC = 2pi − 2
(
ℓ̂(θ̂)

)

i
. (28)

The interpretation of AIC gives preference to the model with the smallest value.

Positive evidence of a model being superior to another is given only when there is a

difference in AIC of at least 2 between models.

Table 5 summarizes the log-likelihood and AIC scores of the optimal particle
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for each model tested. EIP has the lowest AIC at 2174.38, yet the temperature-

dependent EIP curve that resulted was zeroed out, producing unrealistic parameter

values for the model since there is a known and existent EIP in the mosquito dynamics.

The difference between Control at 2179.60 and ControlλG at 2177.68 is just less

than 2, indicating there is not enough evidence to declare preference of one over

the other. However, the high value of the R0 of ControlλG indicates interpretability

issues, signaling Control as an overall better model choice in this pair. Similarly,

the difference between ControlλG,H at 2182.20 and Controlb0 at 2181.50 is also not

substantial enough to differentiate the two models. While ControlλG,H is the weakest

model tested, Controlb0 is not significantly different from Control based on AIC

alone.
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4. Discussion

4.1 Drivers of Seasonal Transmission

Dengue virus transmission dynamics in Iquitos exhibit a periodicity that suggests

seasonal forcing amid a year-round presence. With mechanistic models we were able to

directly investigate hypotheses about this pattern. The impact of control exemplifies

the power of the plug-and-play apparatus. By including a control mechanism, through

the addition of a single model parameter, we receive a strong indication that the

resulting average adult vector lifespan is shorter during periods of control than during

periods without control administered. The impact of control measures is often difficult

to detect because control is usually applied mid-outbreak. Afterwhich, if incidence

declines, it can be difficult to determine if the reduction was due to a depletion of

susceptibles or due to the positive results of the control measure. Therefore, it is often

argued to have little impact on transmission. Yet here, a simple control mechanism

based on the fumigation record shows clear influence.

These positive results are contrasted with the negative, but still informative, re-

sults surrounding the influence of average temperature on transmission. Even the

best particle from EIP produced an EIP curve defined by the parameters c1 and c2

that endowed mosquitoes exposed to the disease with immediate infectiousness. In

addition, η increased to high values, leading to the model maintaining infection al-

most exclusively via background human importation. EIP also generates evidence

for a non-zero amplitude in the transmission function β(t), further indicating that
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potential variation in the EIP alone does not capture the variation in the original

signal.

Despite the failure to explain transmission based solely on temperature-dependent

EIP, the heightened impact of background human infection, in both EIP and Control,

suggests an increased importance of importation in general as a transmission dynam-

ics driver. In fact, the isolation of Iquitos promotes the notion that outside infection

could indeed have a strong overall impact. Iquitos’ main inroad is river travel, which

is seasonally affected. Both elevations in river water level (linked to precipitation)

and heightened travel occur during the summer months, aligning with the most in-

tense period of dengue transmission. In response, ControlλG begins to explore how

to explicitly disentangle the internal infectious population from the seasonal exter-

nal infectious population in the transmission. The best reproduction of the original

data signal for a model investigating control measures came from ControlλG , but in

exchange for a small increase in accuracy, the ControlλG R0 becomes unrealistically

high. The multiplicative interaction of the two β cosine functions in Equation (15),

representing seasonality in both the host and vector probabilities of exposure, obfus-

cates the overall interpretability of the R0 measure. The interactions that result from

the multiplication of the β functions potentially duplicate the tendencies within the

true nature of transmission.

ControlλG,H and Controlb0 take the investigation of seasonal variation on FOI fur-

ther by completely eliminating seasonality from transmission, keeping it exclusively

on human importation. Although Controlb0 improved upon ControlλG,H by adding

another parameter to distinguish between host and vector average transmission val-

ues, taking the results of these models together, there is lack of support for seasonality

being exclusively due to importation and for removing the seasonality from transmis-

sion. Thus, Control, with less complexity and assumptions regarding seasonality, is

preferable to Controlb0 , despite close AIC scores.
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4.2 Modeling Process

The general proximity of scores between all models indicates that each reproduce the

original time series behavior to a relatively similar degree. Nevertheless, the goal in

this thesis was not to capture the entire data signal exactly but to capture maximal

informational meaning at minimal computational expense. As such, there is a delicate

balance between the accuracy of reproduction and the quality of information extracted

when developing these mechanistic models. We approached this issue by limiting

particle parameter selection, from 7 to 9 total, to protect feasible runtimes, around

24 hours running in parallel on an 8 core machine. Embedded in restricting particle

length is the simplification of many mechanistic processes within the model because all

other non-particle parameters are held constant over time. For instance, the average

juvenile vector development duration, τ , is known to vary depending on a multitude of

conditions such as diet, larval density, and temperature [48]. Yet, all these subtleties

are omitted for convenience. With more computation, mechanistic intuition, and

time, the inclusion of more particle parameters could potentially render a model that

more accurately reproduces the original signal and yields more substantial conclusions.

On the other hand, over-modeling has its risks. On top of the possibility of more

computation for less reward, simply adding more parameters may not be productive.

A model can fail not because it is ill-posed but because the supporting evidence for

a particular phenomenon does not exist in the data. The inherent nature of the data

under question limits the potential information that can be garnered and consequently

the hypotheses that can be tested.

In evaluating the model results, it is important to remember that the particles

selected via the MIF process are merely estimates of the theoretical MLE in the

parameter space. The optimal particle selections of the models presented here are

rather crude estimates, based on the overall low identifiability of the found param-

eters. Of course, given enough computational time, MIF will produce results that
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converge to the theoretical particle that maximizes the log-likelihood score for the

model. Nonetheless, it is important to note that inherent in MIF is an overall strug-

gle toward particle reproducibility, i.e. arriving at the same exact optimal particle in

repeated MIF explorations of parameter space. The stochasticity inherent in disease

transmission and its modeling compounds the difficulty of finding the singular best

particle to resemble the data. In a related fashion, the initial values of the particle

swarm can also play a role in the selection of the MLE. Critical to the issue is that

within the parameter space there exists both local and global extrema. It is often

difficult to know where MIF has chosen the MLE without further investigation of the

parameters.

4.3 Future Work

Our work demonstrates the flexibility and power of plug-and-play inference meth-

ods. Through these methods, the optimization of model parameter values with in-

terpretable meaning readily test specific hypotheses regarding seasonal dynamics of

dengue transmission in Iquitos, Peru. In fact, only by building specific mechanisms

into a model like control and human importation of the virus were we able to con-

sider and confirm the impact of these perhaps previously overlooked or undervalued

contributing features. However, as noted, the presented model framework only be-

gins to test and uncover ideas behind seasonal dengue transmission in Iquitos for this

dataset.

Several improvements and further questions exist and are within reach. First,

although we worked from the assumption of small, non-zero initial exposed and in-

fected populations, more investigation into the initial ratio of susceptible to exposed

to infected humans could supply better results. The initial distribution of human

population classes is important because it dictates the intensity of disease, and hence

overall shape, of the output at the onset of the signal. Currently, a non-identifiable

S0 encourages wide value ranges in the rest of the particle, particularly η. A better
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assignment of initial populations could contract the scope of parameter values and

even refine the overall log-likelihood of the models.

Second, the strong b1 signal indicates that more detail in the transmission curve

β could benefit model quality in the pursuit of seasonal transmission drivers. While

the single cosine function in the current models focuses on intra-annual variation,

building in an additional, longer period cosine signal might more successfully capture

previously omitted inter-annual behavior.

Third, neglected in these models are the effects of cross-immunity in humans

between serotypes. Cross-immunity plays an important role in a more detailed under-

standing of dengue transmission. Adding cross-immunity to the model would further

inform the initial population classes and could readily be applied through an added

partial recovery class and a human age structure system. For instance, in Thailand,

and similarly with many other endemic regions, dengue fever is so prevalent that

most of the population has a first infection before age 15 [49]. As a result, there is a

strong effect of built-in immunity throughout the population that could play a role in

transmission, especially with the rotating serotype dominance pattern seen in Iquitos.

Moreover, another study on this same incidence data in Iquitos shows that differences

between serotypes also affect treatment strategies in control and vaccination [50].

Finally, as an ultimate objective of mathematical model research in epidemiology

is to strengthen the response to public health risks through an enlightened reaction to

disease, further hypotheses using the control mechanism feature can offer suggestions

as to the optimal timing and strength of control to reduce dengue cost and morbidity.
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Figures

Figure 1: Case reports in Iquitos, Peru from 1 October 2001 to 1 July 2009 by
serotype. Each serotype time series is stacked to show the breakdown of total inci-
dence by type over time. The domination of DENV-3 starts in the summer months
of 2002 and continues for several seasons, eventually replaced by DENV-4. Seasonal
periods are irregular with most peaks in incidence occurring in the warmer summer
months. Control fumigation (grey bands), consisted of household insecticide spraying
on a citywide scale. There is clear pattern of reduced incidence after each control
period.
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Figures

Figure 2: Average temperature (◦C) in Iquitos, Peru from 1 October 2001 to 1
July 2009. Average temperature is calculated as the mean of the daily low and high
temperature recorded at the Iquitos airport US National Oceanic and Atmospheric
Administration (NOAA) weather station. The limited variation in average tempera-
ture ranges largely between 20 to 30 ◦C (68 to 86 ◦F).
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Figures

(a) Human SEIR model.

(b) Mosquito JSEI model.

Figure 3: Demographic host-vector model. The compartments show flow between
states of infection for (a) the human population and (b) the vector population. The
arrows indicate directionality of flow. Descriptions above or to the left of each arrow
signify the population that moves between compartments, and the description below
or to the right of the arrows signify the probabilities of transition. See §A.1 for a
summary of the model equations.
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Figures

Figure 4: Schematic diagram of POMP model. The arrows show variable depen-
dence (a box depends on the boxes pointing to it). At time tn, measurements, Yn,
depend on the state, Xn. The distribution of the measurement Yn is conditional on
Xn and independent of all other variables. As a Markov chain the distribution of
the state Xn+1 is conditional on Xn and independent of the values of Xk, k < n and
Yk, k ≤ n. The process model (dark green) stipulates movement from state to state,
whereas the measurement model (light green) supplies the transition rules from state
to observation.
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Figures

Figure 5: Initial susceptible human population and average seasonal transmission
value. SH(t0) = S0 and b0 show a clear pattern of dependence where smaller values
of S0 align with larger values of b0.
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Figures

Figure 6: EIP likelihood profiles. The profile is over S0 with 225 initial particles of
θ = [S0, ρ, ψ, b0, b1, c1, c2, η, ϵ].
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Figures

(a) EIP case report simulated output. Three simulations of case reports shown (purple,
cyan, olive) over time compared to the original data (red).

(b) Simulations of temperature-dependent EIP R0 and Rf . R0 is much larger than expected
for dengue, 3 − 5. The black line at 1 in the Rf plot illustrates when the infectious
population of the model is increasing (above the line) or decreasing (below the line).

Figure 7: Three simulations of the EIP: (a) reported cases, (b) reproductive numbers,
R0. and Rf .

39



Figures

Figure 8: EIP model background infection. Three example simulations of infected
human population counts (purple, cyan, olive) over time compared to the constant
human importation parameter, in this case η ≈ 41, assigned by the model from the
maximal point estimate particle. Infection continually renews and rarely dips beneath
the background infection level.

40



Figures

Figure 9: Control likelihood profiles. The profile is over S0 with 225 initial particles
of θ = [S0, ρ, ψ, b0, b1, η, (µ̂G)−1, ϵ].
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Figures

(a) Control case report simulated output. Three simulations of case reports shown (purple,
cyan, olive) over time compared to the original data (red).

(b) Simulation of Control model R0 and Rf . The control measures are visible in both
curves. The black line at 1 in the R0 plot illustrates when, at the given rate, the infection
will die out (below the line) or spread (above the line) in the population over the long-term.

Figure 10: Three simulations of the Control: (a) reported cases, (b) reproductive
numbers, R0 and Rf .
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Figures

Figure 11: Control states simulations. Three simulations (purple, cyan, olive) of
Control states, including total incidence (C), states of infection for the mosquito
population (JG, SG, EG, IG, andNG), and states of infection for the human population
(SH , EH , IH , RH , and NH). The control signal is visible in the mosquito populations
JG, SG, and NG.
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Figures

Figure 12: ControlλG likelihood profiles. The profile is over S0 with 225 initial
particles of θ = [S0, ρ, ψ, b0, b1, η, (µ̂G)−1, ϵ].
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Figures

(a) ControlλG case report simulated output. Three simulations of case reports shown
(purple, cyan, olive) over time compared to the original data (red).

(b) Simulations of ControlλG case reports, R0 and Rf . The level of R0 noticeably increases
over the R0 from Control. A higher than expected, usually 3 − 5, indicates a lack of
parameter identifiability for this model.

Figure 13: Three simulations of the ControlλG : (a) reported cases, (b) reproductive
numbers, R0. and Rf .
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Figures

4.4 ControlλG,H Plots

Figure 14: ControlλG,H likelihood profiles. The profile is over S0 with 225 initial
particles of θ = [S0, ρ, ψ, b0, b1, η, (µ̂G)−1, ϵ].
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Figures

(a) ControlλG,H case report simulated output. Three simulations of case reports shown
(purple, cyan, olive) over time compared to the original data (red).

(b) Simulations of ControlλG,H case reports, R0 and Rf . The removal of seasonality in
transmission is also visibly removed from the reproductive numbers.

Figure 15: Three simulations of the ControlλG,H : (a) reported cases, (b) reproduc-
tive numbers, R0. and Rf .
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Figures

4.5 Controlb0 Plots

Figure 16: Controlb0 likelihood profiles. The profile is over S0 with 225 initial
particles of θ = [S0, ρ, ψ, bH0 , bG0 , b1, η, (µ̂G)−1, ϵ].
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Figures

(a) Controlb0 case report simulated output. Three simulations of case reports shown
(purple, cyan, olive) over time compared to the original data (red).

(b) Simulations of Controlb0 case reports, R0 and Rf .

Figure 17: Three simulations of the Controlb0 : (a) reported cases, (b) reproductive
numbers, R0. and Rf .
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Tables

Table 1: Summary of citywide fumigation efforts

Period, i Dates (Total Days) Household effort Weight, wi

1 10/23/2002 – 02/10/2003 (111) 55,743 1
2 12/01/2004 – 01/05/2005 (36) 35,572 1.9676
3 12/27/2007 – 03/08/2008 (73) 33,633 0.91744
4 10/20/2008 – 11/03/2008 (15) 24,816 3.2944
5 02/05/2009 – 02/21/2009 (17) 32,350 3.7893
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Tables

Table 5: Model comparisons: profile log-likelihood and AIC scores

Model ℓ̂(θ̂) AIC

EIP -1078.19 2174.38

Control -1081.80 2179.60
ControlλG -1080.84 2177.68

ControlλG,H -1083.10 2182.20
Controlb0 -1081.75 2181.50
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Table 6: Equation list for demographic model

Table 6.A Host model transition probability equations.

Description Equation

P [Exposure] λH(t) = 1−exp
(
−β(t)IG(t)

NH(t)

)

P [Infection] σH = 1−exp(−σ̂H)
P [Recovery] γH = 1−exp(−γ̂H)
P [Death] µH = 1−exp(−µ̂H)

Birth recruitment BH(t) ∼ Pois
(
NH(t)φ̂H(t)

)

New Exposed, Dead [WH(t), XS
H(t)] ∼ Multinom (SH(t), (1− µH)λH , µH)

New Infected, Dead [VH(t), XE
H(t)] ∼ Multinom (EH(t), (1− µH)σH , µH)

New Recovered, Dead [UH(t), XI
H(t)] ∼ Multinom (IH(t), (1− µH)γH , µH)

Cases Reported cH(t)|C ∼ Normal (ρC, ρ (1− ρ)C + (ψ ρC)2)
Dead XR

H(t) ∼ Binom (RH(t), µH)

Table 6.B Vector model transition probability equations

Description Equation

P [JG → SG] ρG = 1−exp(−τ)
P [SG → EG] λG(t) = 1−exp

(
−β(t)(IH(t)+η)ζ(ϵ)

NH(t)

)

P [EG → IG] σG = 1−exp(−σ̂G)
Juvenile death rate µJ(t) = 1−exp(−µ̂J − αJG(t))
Adult death rate µG = 1−exp(−µ̌G)

Egg recruitment BG(t) ∼ Pois
(
φ̂Gθ̂GNG(t)

)

New Susceptible, Dead [ZG(t), XJ
G(t)] ∼ Multinom (JG(t), (1− µJ(t))ρG, µJ(t))

New Exposed, Dead [WG(t), XS
G(t)] ∼ Multinom (SG(t), (1− µG)λG(t), µG)

New Infected, Dead [UG(t), XE
G (t)] ∼ Multinom (EG(t), (1− µG)σG, µG)

Dead XI
G(t) ∼ Binom (IG(t), µG)

A.2 Vector Lifespan

We calculate (µ̂J)
−1 such that the probability of vector survival is 80%, assuming

average adult vector lifespan, (µ̌G)
−1, is 10 days:

exp(−10 ∗ µ̂J) = 0.8 ⇒ (µ̂J)
−1 =

⌈
− 10

ln(0.8)

⌉
= 45. (29)
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A.3 Density-Dependent Competition

To find the strength of juvenile competition factor α that maintains a user-defined

total juvenile population, we want to satisfy NG(t+1) = NG(t) ≡ N∗
G and JG(t+1) =

JG(t) ≡ J∗
G. The change in total adult mosquito populations comes from the previous

population combined with the incoming susceptibles and removal of adult deaths:

NG(t+ 1) = NG(t) + exp(−µ̂J − αJG(t))(1− exp(−τ))JG(t)

− (1− exp(−µ̌G))NG(t)

⇒ 0 = exp(−µ̂J − αJ∗
G(1− exp(−τ))J∗

G − (1− exp(−µ̌G))N
∗
G. (30)

Similarly, the change in juveniles results from the previous number of juveniles com-

bined with incoming of new eggs and the removal of juvenile deaths:

JG(t+ 1) = JG(t) + ψ̂Gθ̂GNG(t)− (1− exp(−µ̂J − αJG(t)− τ))JG(t)

⇒ 0 = ψ̂Gθ̂GN
∗
G − (1− exp(−µ̂J − αJ∗

G − τ))J∗
G. (31)

Since all other parameters are given, to find α it remains to solve two equations (30)

and (31) for unknowns N∗
G and J∗

G. From (30),

N∗
G =

exp(−µ̂J − αJ∗
G(1− exp(−τ))J∗

G

(1− exp(−µ̌G))
. (32)

Plugging (32) into (31) and solving for J∗
G gives

J∗
G =

1

α

[
ln

(
ψ̂Gθ̂G(1− exp(−τ)) + exp(−τ)

(1− exp(−µ̌G))

)
− µ̂J

]
. (33)

Then substituting (33) back into (32) and letting ρG = 1 − exp(−τ) and µG =

1− exp(−µ̌G) for simplification:

N∗
G =

1− exp(−τ) ln
(
ψ̂Gθ̂G(1−exp(−τ))
(1−exp(−µ̌G)) + exp(−τ)− µ̂J

)

α(1− exp(−µ̌G)
(
ψ̂Gθ̂G(1−exp(−τ))
(1−exp(−µ̌G)) + exp(−τ)

)

=
ρG ln

(
ψ̂Gθ̂GρG

µG
+ (1− ρG)− µ̂J

)

α
(
ψ̂Gθ̂GρG + µG(1− ρG)

) . (34)
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Finally solving the general form of α:

α =
ρG ln

(
ψ̂Gθ̂GρG

µG
+ (1− ρG)− µ̂J

)

NG

(
ψ̂Gθ̂GρG + µG(1− ρG)

) . (35)

Thus, to find the competition and initial juvenile population that keep the total

mosquito population at equilibrium, one simply needs to plug the desired total juve-

nile population into (35) then input the resulting α into (33). Using an appoximate

2:1 ratio of human to mosquitoes, we let N∗
G = SG(t0) = 800, 000, which yields

α = 4.2533576× 10−07 and J∗
G = JG(t0) = 3, 226, 269.

A.4 Measurement Model Sampling

The evaluation of a draw from the measurement density fYn|Xn(yn|xn; θ) with normal

cumulative distribution function Φ(·, µ, σ2) is given by

ρH = P [c | ρ,ψ, C] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ(c+ 1
2 , ρCH , ρ (1− ρ)CH + (ψ ρCH)2)

−Φ(c− 1
2 , ρCH , ρ (1− ρ)CH + (ψ ρCH)2), c > 0

Φ(c+ 1
2 , ρCH , ρ (1− ρ)CH + (ψ ρCH)2), c = 0.

(36)
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B.2 pomp Model Configuration
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Table 7: Mathematical notation for methods in pomp constructor.

pomp argument Mathematical terminology

rprocess Simulate from fXn|Xn−1(xn|xn−1; θ)
dprocess Evaluate fXn|Xn−1(xn|xn−1; θ)
rmeasure Simulate from fYn|Xn(yn|xn; θ)
dmeasure Evaluate fYn|Xn(yn|xn; θ)
initializer Simulate from fX0(x0; θ)
t0 t0
times t1:N
data y∗1:N
states x0:N

params θ

B.3 Source Code

Visit the repository https://bitbucket.org/nlevick/iquitos_thesis_pomp_code or

email levick@unm.edu for example code.
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