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Abstract

This thesis proposes an open-source, maintainable system for detecting human

activity in large video datasets using scalable hardware architectures. The system

is validated by detecting writing and typing activities that were collected as part of

the Advancing Out of School Learning in Mathematics and Engineering (AOLME)

project. The implementation of the system using Amazon Web Services (AWS)

is shown to be both horizontally and vertically scalable. The software associated

with the system was designed to be robust so as to facilitate reproducibility and

extensibility for future research.
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Chapter 1

Introduction

There is strong interest in the development of distributed video analysis systems that

can be used to analyze large video databases. Unfortunately, the overwhelming ma-

jority of software packages for automated video analysis, are not necessarily designed

to scale in order to handle processing on vast video databases.

An example of a large-scale video database is provided by the advancing out of

school learning in mathematics and engineering (AOLME) project. AOLME contains

over a thousand hours of high quality video data that need to be analyzed so as to

understand how middle school students acquire basic programming skills. Currently,

most of this analysis is done manually [38] to extract pertinent features for researchers

to analyze.

Manual video annotation and transcription is extremely tedious and unsustain-

able for large datasets. Because of these inhibitory factors, most of these encoded

videos are left untouched and unanalyzed, potentially leaving thousands of hours

of valuable information about the learning process unexplored and underutilized.

Clearly there is a need for a tool to aid researchers in properly analyzing these video

datasets efficiently.
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Chapter 1. Introduction

1.1 Motivation

Current methods in video analysis systems are extremely application dependent and

are inadequate computationally to sufficiently investigate video datasets at such a

large scale. As such, there is a propensity for a system that is accurate, scalable and

flexible in nature to handle a variety of challenges in automated video analysis.

Computationally, there is clearly a need for video analysis methods that can

be efficiently implemented in heterogenous compute hardware (such as GPUS and

CPUS), and have said hardware function in a distributed environment. Being able to

leverage heterogenous computer hardware greatly increases the efficiency and speed

of certain, heavily used, video processing algorithms such as 2D convolutions. Fur-

thermore, having this system exist in a distributed environment will greatly speed

up ephemeral operations and makes it possible to scale up to address large scale

problems. Thus this thesis is motivated by the challenges associated with analyzing

large scale video databases.

The human activities that will be considered as part of this thesis are illustrated

in Figure 1.1. The thesis explores the problem of classifying typing versus no-typing

and writing versus no-writing using optical flow methods.

The proposed research represents a novel extension of prior research undertaken at

the image and video processing and communications laboratory. Prior efforts focused

on the development AM-FM representations [43] [13] [3] [36] [1] [37] [42] [2] [41] [46]

[47] [54] [50] [34] [33] [48] [49] and the development of dynamically reconfigurable

architectures [12] [35] [27] [45] [26] [25] [24].

2



Chapter 1. Introduction

1.2 Thesis Statement

The thesis of this research is that it is possible to scale, accurately classify and

process videos using a carefully designed video analysis system for human activity

recognition. The basic idea is to distribute video segments and computational tasks

among compute nodes so as to enable scalable computation. The focus of the the-

sis is to identify computationally intensive feature extraction methods that can be

pre-computed and have their reduced feature space processed by the master node.

Furthermore, the system should be highly scalable so as to support future extensions.

Figure 1.1: Example of features that have been manually extracted from the dataset
for training and testing. For the above example, we need to classifiers for each
activity to determine if the activity is being performed, or it is not.

1.3 Contributions

This thesis contributes to the computer engineering community by providing both al-

gorithms and an architecture for efficient, scalable and rapid processing of extremely

large video datasets in a cloud environment. Additionally, all the code written for

this thesis is distributed under the MIT open source license so that the software can

3



Chapter 1. Introduction

be used freely in the community and will thus facilitate reproducibility and extensi-

bility in this field of research.

1.4 Summary

In this thesis, we show that it is possible to reduce the feature set of videos on the

order of Megabytes down to tens of Kilobytes, and then accurately classify those

features at very high accuracy as a particular human activity. We also create an

architecture that is capable of scaling to dozens of compute notes, and potentially

hundreds thus making the heavy lifting operations, such as computing optical flow

vectors, a trivial task that can be efficiently performed in the AWS cloud, thus

enabling researchers to extract germane features from videos in a matter of minutes

instead of hours.

4



Chapter 2

Background

Human activity classification in videos is not only a difficult problem to solve al-

gorithmically but also pushes current computing solutions to the edge of their ca-

pability, especially when attempting to keep up with real-time video rates. Many

solutions have been proposed for robust activity classification in videos [44] [7] [51]

[28]. Methods such as [7] rely on principal component analysis (PCA) and hidden

Markov models (HMMs) to attempt to classify motions using trajectories; however,

all the datasets study consist of hardware augmentation (a motion tracking device

for example), used to track motions of hands etc, and do not rely solely on the video

source for classification. Our method requires no other augmentation other than the

videos. Other methods such as [44], use similar techniques that are done in this

thesis, however they do not address the computational burden of producing a his-

togram of features to use for classification. We extend parts of their idea and create

a distributed that scales both horizontally and vertically. Finally, new deep learn-

ing methods such as convolutional neural networks are also gaining popularity in

activity classification in videos because there is no need to select the type of features

a-priori, you let the network select what is important for classification [28]. This

technique is computationally expensive, requires huge amounts of data to properly

5



Chapter 2. Background

classify activities [28] and also lacks insight into what is or is not functioning properly

in the network, essentially rendering the CNN as a black box. The study presented

by Laptev et al. [32] showed that it is possible to reduce a video dataset size sig-

nificantly using optical flow and a technique called bag of features (BoF) which is

ultimately used by a machine learning algorithm, such as non-linear support vector

machines to classify the activities. The BoF technique, however, lacks scalability

and proposes no solution to this problem. Indeed we use a similar method to reduce

the feature set, but we augment the bag of features and propose solution that is also

scalable.

Much of the work that has been done in the area of activity recognition and video

analysis in the cloud is found in Table 2.1. The table lists several studies that are

used as the literature review for this thesis. Many of these papers present exceptional

work in both human activity classification as well as video analysis using distributed

systems. However, none of them fully address the problem presented in this thesis.

From Table 2.1, it is evident that human activity classification as well as distributed

video analysis is an unsolved problem and many researchers continue to publish

in this area. Further more, it is obvious that many of these studies either address

activity classification or distributed video systems, but none effectively combine both

ideas.

6



Chapter 2. Background

Study Features Classification Comments
Human activity
recognition [58]

edge trajectories,
optical flow his-
tograms, Fisher
Vector

multi-class SVM Accurate classif.
of various human
activities using
edge trajectories
in combination
with optical flow

Large-scale video
analysis [59]

N/A N/A Using google
cloud to analyze
videos in a secure
and robust way

Video segmenta-
tion and activity
recognition [31]

Fisher Vectors,
structured tem-
poral models and
Gaussian mixed
models

SVM and PCA Classif. of activi-
ties as well as at-
tempting to au-
tomatically parse
out activities in
the videos

Action recogni-
tion [10]

Dynamic trajec-
tory and static
deep features

Linear SVM Combining deep
learning tech-
niques with
trajectory fea-
tures.

Cloud resource
management [29]

N/A N/A Scaling resources
effectively on
the cloud to
minimize cost
and maximize
performance.

Large-scale video
classif. [28]

N/A Convolution Neu-
ral Networks

1 million youtube
videos with 487
classes, not im-
plemented on
a distributed
framework

Activity classif.
[44]

spatio-temporal
synchrony

synchrony auto-
encoder

Quick motion es-
timation using lo-
cal features and
high classif. rate.

Table 2.1: Latest work in video analysis in the cloud and human activity classification

7



Chapter 2. Background

In addition to reviewing the studies in Table 2.1, we also summarize many of the

datasets used in this field of research in Table 2.2. This table illustrates some of

the common datasets that are used in benchmarking how well a given classification

algorithm works in comparison with other methods. Our dataset for AOLME is much

bigger and is considered to be truly a dataset that is “in the wild”. Additionally,

the common datasets that are currently being used do not include learning activities

that we are interested in automatically analyzing and thus are not a good fit for this

thesis. Though for this thesis we use a subset of our entire AOLME video database,

we can in the future leverage the nearly terabyte sized dataset as soon as we begin

manually classifying and segmenting the videos for validation of our methods.

Title Description URL
UCF101 [55] A dataset of 101 human

actions (13,320 videos)
http://www.thumos.

info/download.html

KTH Six types of human activ-
ity (2391 sequences)

http://www.nada.kth.

se/cvap/actions/

Olympic [44] 16 olympic sports gath-
ered from youtube

http://vision.

stanford.edu/

Datasets/

OlympicSports/

Toy Assembly [57] 29 sequences of 2-3
minute long sequences
of a human assembling
a toy from five different
bins

http://www.cc.

gatech.edu/~nvo9/

sin/

CMU-MMAC [56] Database that contains
multimodal measures of
activities such as cooking
and food preparation

http://kitchen.cs.

cmu.edu/main.php

MPIICooking [52] Database of 65 cooking
activities (8.7GB of AVI
formatted video), contin-
uously recorded in a real-
istic setting

http://tinyurl.com/

nvcoh6w

Table 2.2: Common datasets used for activity recognition
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Chapter 2. Background

Thus we have defined some of the important research in this area and where

it is lacking. In the following sections, we explore important algorithms that are

foundational to the success of our classification and scalable architecture. In section

2.1.1 we review optical flow and how it can be used for classification and then in

section 2.2 we explore the current state-of-the-art cloud computing techniques and

how they can be utilized to create a flexible and scalable architecture.

2.1 Human Activity Classification in Videos

Human activity classification in video is an unsolved problem and has attracted a

variety of different image and video processing techniques. One of the main con-

tributing factors to its difficulty is the sheer size of the data, videos tend to be very

large and pose a very interesting problem to the big data community. Another con-

tributing factor in making videos difficult to classify is the scale and frequency in

which activities appear in the videos. In other words, if the activity we are searching

for is typing, then it is difficult to find that activity when the action could be taking

up the entire frame or only tens of pixels. Furthermore, we must also account for

the speed of the action. Depending on the frame rate, the actions in the video could

appear to be slower in some scenarios than in others, therefore any algorithm must

account for time-varying activities.

In current big data processing techniques, a method that is employed to reduce

the data size to discover important features about data is known as map-reduce [17].

Many software packages have since been developed to implement the ideas in [17] such

as Hadoop, Spark, Storm and many others. However, these frameworks assume that

individual pieces of the large dataset are atomic and relatively small. For example,

Amazon needs to process information about products that they sell. They can use

9



Chapter 2. Background

a relatively small amount of information to represent this each product (especially

compared to videos). As a result they are able to distribute these small amounts of

data to thousands of clusters to build a product recommender system and associate

every product to every other product to create similarities between products. All

of this processing can easily be done with Hadoop[60] or Spark. However, passing

messages around that contain video segments is not feasible with these systems and is

not advised. Since video human activity classification would require such a message

passing system, we innovate in this area by proposing a framework that is simple,

robust and extremely fast using Amazon Web Services for human activity recognition

in videos.

Encoding videos as succinct datasets that can easily be classified and are rep-

resentative of the underlying features is another area that this thesis attempts to

address. In Learning to encode motion using spatio-temporal synchrony [30] they at-

tempt to address this need by detecting synchrony between frames in videos. They

were robustly able to classify motions in datasets KTH, UCF sports, Hollywood2 and

YUPENN in the low to mid 90s classification rate. However, training and testing

the system varied between 2-3 minutes all the way up to days. In this thesis, we

not only get very good classification rates, but because the system is horizontally

scalable, we can train the system in a matter of minutes assuming relatively small

video segments (videos on the order of 1-2 MB).

More modern approaches use various compound techniques in an attempt to solve

human activity recognition such as [58]. In this paper the authors showed that they

can classify many of the existing datasets very well using a combination of optical

flow histograms, edge trajectories, and support vector machines for classification. In

this thesis, we do not attempt to beat the results in this paper, we strive to provide a

method for activity classification that can distributed on a cloud like infrastructure

and that can be used in real time. Furthermore, the datasets that they use are

10



Chapter 2. Background

not from videos in the wild. Our AOLME dataset contains thousands of hours of

video that are not ideal for training and testing activity recognition algorithms. This

makes tuning and tweaking the parameters for any algorithm, edge trajectories or

not, very difficult. Like them though, we are using optical flow which is well studied

and robust for video activity recognition. An other contribution of this thesis that

is not provided in [58] is that we openly provide our software as open source so that

other studies can be easily conducted.

2.1.1 Optical Flow

There are many varieties of algorithms that aid in the analysis of motions in videos.

Farneback, Lucas-Kanade and Horn-Schunck [22] are all well studied and successful

algorithms for this analysis. In this paper though, we have chosen to limit the scope

to two optical flow methods that are available to a variety of languages. We explain

the implementation of the Farneback optical flow algorithm [19], also known as dense

optical flow, and the pyramidal, Lucas-Kanade approach to optical flow [9].

2.1.2 Optical Flow Methods

In this thesis we attempt to classify two types of activities in video, typing and

writing. Since both of these activities involve motion, i.e. a change of apparent

structure position from one video frame to the next, optical flow algorithms are a

suitable tool for attempting to extract germane features from the video.

We use both Lucas-Kanade [39] and the Farneback [19] optical flow algorithms

to attempt to extract important motion features from the AOLME videos. Both

algorithms attempt to solve a common problem known as the aperture problem. The

problem is defined by assuming that there have been small changes in both the x,
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y and time components of a video scene. This is outlined in Equation 2.1 Equation

2.1

I(x, y, t) = I(x + dx, y + dy, t + dt) (2.1)

where I is the image, x & y are the column row coordinates respectively, and t

is the time between two adjacent image frames. Taking the Taylor series expansion

of Equation 2.1 results in Equation 2.2

fxu + fyv + ft = 0 (2.2)

where

fx =
∂f

∂x
; fy =

∂f

∂y
u =

dx

dt
; v =

dy

dt
(2.3)

Equation is 2.3 is known as the Optical Flow equation. The object is to deter-

mine what u and v are given that fx and fy are the image gradients and ft is the

time gradient. Since in Equation 2.2 we have only two unknowns, we cannot solve

the system without additional constraints. This is known as the aperture problem.

Both the Lucas-Kanade method and the Farneback method attempt to estimate

this problem. Lucas-Kande attempts to reframe the problem such that we have an

overdetermined system, solving it and then providing motion vectors for only features

that move. The Farneback solution, on the other hand, argues that is possible to

solve the aperture problem by first approximating each neighborhood of both frames

with quadratic polynomials, and then estimating the displacement fields between

the frames using polynomial expansion. Rather than providing only a few motion
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vectors, the Farneback method provides dense optical flow. That is to say that there

is a motion vector for every pixel between the frames [19].

2.1.3 Lucas-Kanade Method

We leverage a common C++ library that has already implemented a specialized

version of the general Lucas-Kanade algorithm which uses pyramids to solve the

optical flow at different scales of motion [9]. This algorithm is provided freely in a

C++ computer vision library known as OpenCV [23]. Essentially, this algorithm is

much like the original paper published by Lucas and Kanade, but it solves the issue of

large motions between frames and at different scales. By definition, the Lucas-Kande

method assumes that the displacement of features in the image between two frames

is small and roughly constant within a pixel neighborhood. This algorithm, then,

by definition cannot handle large motions between frames, and hence the algorithm

presented in [9] attempts to more robustly solve optical flow. The Lucas-Kanade

method in OpenCV is often used with Shi-Tomasi [53] detection points to estimate

what are good features to track in a frame. This allows the Lucas-Kanade algorithm

to perform calculations on a sparse matrix rather than computing dense optical flow.

2.1.4 Farneback Method

Again, we leverage the C++ OpenCV library to calculate the motion vectors for

Farneback optical flow. Unlike the previous method, the Farneback algorithm does

not require any track points to estimate motion vectors because it is a dense optical

flow algorithm, i.e. 100% of the pixels has an associated optical flow vector. The

main idea behind calculating the motion vectors in this method, is to use polynomial

expansion for a neighborhood of pixels [19] and then use that estimation to find a

global translation between the two frames. This essentially aids with global back-

13



Chapter 2. Background

ground movement so that unique movements in the foreground can be accurately

measured.

2.2 Cloud Computing

Cloud computing has become a common practice among scientists, engineers and

business owners alike for solving computationally expensive problems at a relative

low cost. Cloud computing offers services on demand rather than provisioning hard-

ware and software ahead of time. This has opened the door to researchers who

require thousands of computers but don’t necessarily have the funds or access to

a cluster of their own [6]. Cloud computing offers a model that is pay as you go,

you only pay for what you use. This contrasts with the traditional way of solving

computationally expensive problems by acquiring hardware and software ahead of

time to run on dedicated machines. This has the advantage that the owner of the

hardware has full control of its resources, but it has the disadvantage of costing a

significant amount of money and there is a chance that the originally allocated hard-

ware is either insufficient for the task or is overdone, therefore wasting money and

computational resources. At its core, information technology resources are now a

programmable resource in the cloud, rather than one that has to be manually setup

and configured.

The programming model for cloud computing is fundamentally different than

traditional software models. In the traditional infrastructure of computing, appli-

cations ran on servers and often times relied on the state of a particular server to

perform computations [5]. That model must be broken in order to efficiently develop

applications for the cloud. Clearly, not all applications can be stateless, but the

keys is to eliminate as many stateful components as possible and replace them with

stateless ones. When this paradigm is followed, along with designing software with
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well defined interfaces, it makes creating a scalable, flexible application easy using

cloud service providers [5] and how to make auto deployment a snap for rapid test-

ing and distribution using container technologies such as docker. An example of a

well defined interface is a representational state transfer (RESTful) one, which is an

interface that provides easy interoperability between compute nodes on a network.

Typically an interface like this communicates over http or https.

In the following subsections we explore the current state of cloud computing

and what types of applications can leverage a cloud like infrastructure, a high level

overview AWS and a few of the services that can benefit a video processing applica-

tion.

2.2.1 What’s in the cloud?

In most of the modern cloud architectures such as Amazon Web Services (AWS),

Microsoft’s Azure and Google’s Cloud Platform, services offered range from compute

power to database solutions. However, the resources that are often most important

are access to compute resources, highly available networks and redundant and durable

storage. With these three resources available, its possible to create almost any kind

of application in a cloud architecture. The idea is to eliminate servers, and instead

replace them services. Buzzwords that emerge from this context are software as a

service (SaaS), hardware as a service (HaaS), and X as a service (XaaS) where X can

refer to any number common IT processes.

The compute resources that are provided are simply virtual machines that can

be created programmatically, usually through some kind of application program in-

terface (API) provided by the cloud company. These virtual machines can usually

be provisioned with almost any kind of operating system that is supported by the

cloud company of choice. As a result, developers can easily stand up thousands of
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virtual instances in the cloud with their operating system of choice with the click of

a button, and tear them down just as quickly.

Storage resources are also crucial to effective cloud software development. Making

storage resources highly available has the advantage of there being no single point of

failure in the data and also facilitates fast access to the data because no one network

interface will be throttled on the network. In a distributed computing sense, this is

extremely important so that data can be operated upon efficiently over potentially

thousands of nodes.

Without a well provisioned network, this could be the ultimate bottleneck for a

software package attempting to leverage the cloud. Fortunately, network as a service

(NaaS) is also available in most commercially available clouds. Most providers will

supply very basic networking for free, but then as with most resources available in

the cloud, it is something that can be upgraded, provisioned and tailored to the

developer’s desire.

2.2.2 Amazon Web Services

Amazon Web Services (AWS) is the most mature cloud solution architecture avail-

able to the public. A popular streaming service in the United States, Netflix, recently

moved all of its streaming services to AWS [61]. This is important to note because

Netflix almost exclusively serves streaming video to hundreds of thousands of cus-

tomers everyday. It’s obvious from this move alone that there is a lot of potential

in AWS for processing videos. Netflix cites many reason as to why they moved their

monolithic video streaming app to hundreds of micro services that are run on the

AWS cloud, but a few that truly stand out are “scalable computing and storage

needs”, “service availability”, and “cost reduction” [61]. All of these reasons are

enough for any academic institution to begin leveraging the power of micro services
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and cloud infrastructure.

AWS provides a number of services that are important to scaling our architecture

both horizontally and vertically. Several services that are important to our video

processing paradigm are:

• Elastic compute cloud (EC2) - These are virtual machines that can be provi-

sioned quickly and can be configured a number of ways. They are the work

horses for operating effectively on the AWS cloud. Furthermore, you can pro-

vision one, a thousand, or have them created as you begin to saturate existing

instances.

• Simple storage service (S3) - This services provides storage that is enormous,

durable and distributed over regions in the united states. Petabytes of data

can be easily accessed from anywhere within an Amazon region and have the

advantage of being redundant and fault tolerant. That is to say, the data is

not simply stored on a hard drive at amazon, but is replicated over hundreds

of machines and locations.

• Simple queue service (SQS) - Is a distributed queue that allows asynchronous

reads and writes to any node in a cluster that has access. This service allows

extremely reliable communication between micro services.

• Amazon Auto Scaling (AAS) - Auto scaling is a service that allows users to

scale their EC2 instances automatically based on CPU and memory saturation.

It is a key service that allows users to keep costs low yet perform at maximum

capability.

• Elastic container service (ECS) - This services provides orchestration for au-

tomatic deployment of containers. This is an especially useful service if your

application is deployed into a Docker container.
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The list provided is by no means meant to be exhaustive, but rather provide a

brief summary of the services that are important to creating an application that can

be horizontally scaled on the cloud. AWS offers dozens of services, each one can be

tailored to the specific needs of the developer and the application requirements.

EC2 instances are the work horses in the Amazon cloud. Not only are they im-

portant for horizontal scalability, but they are also important for vertical scalability.

There are a number of instance types that can be chosen for customized applications

needs. For example, instances can be provisioned with a single CPU of moderate

frequency and several hundred MBs of random access memory (RAM) or they can

be vertically scaled to contain state-of-the-art GPUs with dozens of CPU cores and

hundreds of GBs of RAM. In fact, AWS is one of the few cloud services providers

that does provide access to instances with GPUs, which is extremely important for

video processing algorithms that leverage efficient GPU algorithms written in CUDA

and/or OpenCL. Thus applications can be scaled vertically and horizontally using

these EC2 instances.

2.2.3 Activity Recognition Using the Cloud

Until this point, we have only presented the basics of how the cloud can be used

to perform computationally heavy tasks. In this subsection, we investigate how

other research has leveraged the cloud to perform similar video processing tasks.

One of the latest works is “A Cloud-Based Large-Scale Distributed Video Analysis

System” [59]. In this paper, the authors attempt to make a robust, scalable and

secure platform for performing video analysis using the Google cloud computing

infrastructure. Their system proposes video analysis modules that are pluggable and

therefore could perform a multitude of tasks and they also detail the data model

for processing videos. However, their infrastructure lacks the continuous deployment
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and ease of deployment that the architecture in this thesis provides and they do not

provide the software they wrote as a deliverable as we do. Many of the same concepts

are shared between our thesis and this paper in terms of architecture, but they are not

automatically orchestrating their services from software development to deployment.

Our proposal not only supports a cloud like infrastructure for analyzing videos, but

also proposes a delivery system that is not only convenient for the end users of our

video analysis package, but is also convenient for developers wishing to plug their

particular application into our architecture. Furthermore this thesis provides all the

software openly to the public so that experiments can easily be redone and leveraged

for future work.

2.2.4 Docker

Over the last two years, Docker has gained significant traction amongst software

developers for application deployment. Docker is a software package that allows a

variety of *nix type machines to run applications developed on different platforms

to be run natively. For example, if an application was developed to run on Ubuntu

14.04, a user who has Docker installed on Cent OS 7 will be able to run that same

byte code. This has a significant impact on the way that software is deployed. With

Docker, gone are the days when software had to be compiled on multiple architectures

or having users install hundreds of third party libraries just to run the release version

of the software.

This paradigm has significant advantages for deploying scalable applications in

a cloud infrastructure. The first advantage being that as long as a *nix machine is

being run on an EC2 instance, you can deploy the package to the instance as fast

as it takes to download the docker image. As a result, maintaining packages on

the instance is not needed. All the software needed for the application is packaged

19



Chapter 2. Background

into the docker image. Secondly, ECS makes it a trivial task to deploy your Docker

container to thousands of instances with only a few commands. With ECS you

can start and stop services, orchestrate varieties of instances and also perform load

balancing to ensure that your application is being run at top performance and not

costing exorbitant amounts of money.
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Methods

In this chapter we review the basic implementation details of our distributed video

processing cloud architecture. First we cover the overall distributed architecture on

the cloud. We delve into details of how all the compute nodes communicate with the

primary node and how this can be done at any scale. Another step we take in this

thesis, is to cover the development process and release process utilized for this open

source package. The details of continuous integration and test driven development

are important driving factors in developing reliable, scalable, and useable code. Then

we cover how we use Lucas-Kanade and Farneback optical flow algorithms to reduce

the feature space to only six 25 bin feature vectors. Finally, with the reduced feature

space, we outline how to classify the videos using several well known machine learning

algorithms such as K-nearest neighbors and support vector machines (SVM).

3.1 Scalable Architecture

A core principal for a well designed, horizontally scalable application, is to design it

such that it does not contain state [5]. When state is required, the software com-
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plexity increases substantially and makes it difficult to distribute the system over

a scalable amount of nodes. However, if the software was designed such that each

service can operate and stand on its own, it is the perfect embarrassingly parallel

computing task to tackle. For this thesis we focus on ensuring that our feature ex-

tractor, as described in Section 3.5, is completely stateless. This is a design feature

that has allowed us the flexibility to scale our system over as many nodes as are avail-

able on the AWS cloud. A stateless architecture greatly increases the chances of any

program to be turned into a micro service on the cloud. As a result, more and more

parts of any application can be horizontally scaled across any number of compute

nodes. So unless access to stateful services are necessary, such as database accesses,

it is almost always best to design software stateless to create scalable services. This

also has the added advantage

3.1.1 Architecture Overview

Our system builds upon AWS to create an easy-to-maintain and easy-to-scale video

processing system. We use S3 storage to put small video clips that have been ex-

tracted from our AOLME dataset. These clips are made available to to all process-

ing nodes. The processing nodes communicate with the master node using Amazon’s

simple queue service (SQS). Figure 3.1 illustrates the basic distributed system design

and the psuedo-code for the entire system is shown in Figure 3.2 and Figure 3.3.
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Figure 3.1: Dataflow of the distributed video system using AWS components
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1: for each video in pre-segmented videos do
2: UploadToS3(video)

3: AddVideosToSqsQueue(video list.txt)
4: while videos in video list.txt are still in processing do
5: Sleep(1)

6: output.txt = WriteCdfsToFile(PopAllCdfsFromQueue(output queue name))
7: dataframe = ReadCsv(output.txt)
8: for sample index in 1 to len(dataframe) do . Leave-one out algorithm for

training and testing
9: train data = dataframe[-sample index]

10: test data = dataframe[sample index]
11: knn result = knn(train data, test data, k=3)
12: svm model = svm(train data, kernel=linear, cost = 0.001...10000)
13: svm result = predict(svm model, test data)

14: WriteExperimentResults(knn result, svm result)

Figure 3.2: Pseudocode for proposed method in the master node. In the above
pseudo-code, indentation indicates the beginning and end of a block of code, in
other words when the indentation ends in a for loop, it means that is the end of the
for loop. Additionally, all function names represent the same function names that
were created in the actual code.
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1: video uri = PopVideoFromQueue()

2: segmented video = DownloadS3Video(video uri)
3: previous frame = nullptr
4: for each frame in segmented video do . Block extracts features from video

frames
5: current frame = frame
6: if previous frame == nullptr then
7: continue
8: optical flow = CalculateOpticalFlow(current frame, previous frame)
9: mag = optical flow.GetMagnitude()

10: max mag = Max(mag)
11: magnitude = mag > max mag× 0.25
12: orientation vectors = optical flow.GetOrientations()
13: blobs = GetBlobs(magnitude)
14: for each blob in blobs do
15: centroid x, centroid y = GetCentroids(blob)
16: blob orientations = GetBlobOrientations(blob)
17: background mag = GetMotionAround(mag, blob)

18: num bins = 25
19: pdfs = GetPdfs(magnitude, orientation vectors

centroid x, centroid y, blob orientations, background mag, 25)

20: cdf features = Normalize(pdfs)
21: PushToSqsQueue(cdf features, output queue name)

Figure 3.3: Pseudocode for proposed method. In the above pseudo-code, indentation
indicates the beginning and end of a block of code, in other words when the inden-
tation ends in a for loop, it means that is the end of the for loop. Additionally, all
function names represent the same function names that were created in the actual
code.

From Figure 3.1 we see that the first step is to upload the videos to S3. We keep

the videos very small, because as we show in our experiments section, it takes quite

a long time to process large videos therefore there is a significant benefit to keeping

the video chunks relatively small so that many machines could potentially work on

the feature extraction process. The next step is to place a message on the SQS queue

specifying which video to process and what its classification is. For the purposes of

this thesis, we manually place messages on the queue so that we can control the flow
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of messages. In a production system though, we would have the S3 bucket notify the

SQS queue that a new video was uploaded and ready for processing. The third step

is the processing step. In our setup, we create 20 EC2 instances running our feature

extractor application. Each one of these instances polls the SQS queue waiting for a

message to arrive. As soon as one does, it downloads the appropriate video from the

S3 bucket, processes the video, and then places the results on another SQS queue.

At this point, the master node is polling the results queue and collecting the results

into a csv file. Finally, the csv file can be used to train the SVM in the R code.

3.1.2 Master Node Configuration

The master node in our system is responsible for sending out jobs to process and then

coalescing the results from the calculations performed by the slave nodes. All of these

processes are done using the boto3 [4] Python software development kit (SDK). The

core implementation of AWS uses a representational state transfer like (RESTful)

interface to communicate to all the services that Amazon offers in a programatic

way, but they also offer several easy-to-use object oriented libraries written in several

languages to make programming easier for the end user. The master node need not

be any specific operating system as long as the Python language can be interpreted

on it. In this thesis, we use Ubuntu 14.04 to run our master node logic, but it could

just as well be OS x or any other flavor of linux.

The master node performs several basic tasks. The first of which is to put mes-

sages on the SQS queue. This is orchestrated by reading a csv file that consists of

an S3 link to a video segment, the classification of the segment, the SQS queue to

which to output the features and finally the optical flow method to use. An example

of the file is shown in Table 3.1.
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path classification sqs queue algorithm
aolme/data/typing/seg 1.mp4 1 feature queue farneback
aolme/data/notyping/seg 1.mp4 2 feature queue farneback

Table 3.1: Example of data file that is used by the master node to place messages
on the SQS queue.

From the example data shown in Table 3.1, we can see that the nodes have the

ability to switch the algorithm as well as associate a classification from the video.

Having the ability to switch method types allows us to easily benchmark using Lucas-

Kanade optical flow versus Farneback. We also put the output queue in the message

so that the slave nodes know to which queue to place the results of their calculations.

This information is also necessary for the master to know which queue to wait on

to collect all the results. Additionally, if we need more information to be passed

to the slave nodes so that they can effectively do their job, we can easily put that

information in the queue with the message trivially.

Once the master node has sent all the messages to the queue, it then polls on the

queue it placed the messages on to verify that all the messages have been remove by

the slave nodes. This is an important step to validate that the slave nodes are indeed

popping messages off the SQS queue and processing the videos that are associated

with each message. Once this has been validated, the master node begins to poll

on the designated output queue for the results output from each of the slave nodes.

Once all the results have been collected, the master node places each of the vectors

into a comma separated features file. The pseudo code for the operations performed

by the master are shown in Figure 3.4.

As we have shown in this section, very little needs to be configured on the master

node other than the ability to run Python and the AWS python utilities. This makes

running our software from almost any type of machine very easy with just a few setup

steps. The master node plays an important role in sending and receiving the data
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1: videos to process← ReadInputData(input.csv)

2: for i = 0; i < len(videos to process); ++i do
3: sqs message← CreateMessage(videos to process[i])

4: output queue uri← videos to process[i].output queue uri
5: SendSqsMessage(sqs message, sqs uri)

6: while MessagesRemainingInQueue(sqs uri) 6= 0 do . Poll queue every second
7: Sleep(1)

8: while MessagesRemainingInQueue(output queue uri) 6= 0 do
9: feature vectors← ReceiveSqsMessage(output queue uri)

10: Sleep(1)

11: WriteFeaturesToDisk( feature vectors )

Figure 3.4: Pseudo code for collecting the features in the master node

that the user wishes to process and is an enabling part of our system. That is to say,

it really doesn’t matter what software we are running on our slave nodes, as long

as the slave nodes fulfill the contract that we have defined in our messaging format.

This means that we don’t necessarily have to run our C++ extract features program

on the slave nodes, but we could be running any flavor of algorithm we wish with no

configuration changes on the master node. Not only is this setup scalable, but it’s

highly flexible because of this idea.

3.1.3 Slave Node Configuration

The next very important piece to our innovative architecture is the algorithm that is

run on all the slave nodes. This algorithm simply polls on a single queue, then once

a messages is received, it downloads the small S3 video segment, processes it using

our feature extraction technique, puts the results on a queue that it has discovered

on the incoming message, deletes the video locally and then begins polling on the

queue again. Figure 3.5 illustrates this idea clearly.

We can see that the slave node logic is, like the master node, very simple. We
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1: while True do
2: sqs message← ReceiveMessages(queue name) . Blocking call
3: video path← DownloadS3Video(sqs message.video path)
4: features cdf ← ExtractFeatures(video path) . Call C++ Code
5: SendS3Message(sqs message.output queue, features cdf)
6: DeleteSqsMessage(sqs message) . Remove message from queue
7: Sleep(1)

Figure 3.5: Slave Node Implementation Pseudo-Code

simply wait for messages to come in from one queue, process the video, and then

output the features onto another queue. However, there is a piece missing from Figure

3.5 that makes the slave nodes a truly innovative part of our overall architecture and

that is the orchestration and deployment of our highly refined C++ code.

One of the big hurdles in launching applications that run on a cluster is that

all the nodes on the cluster must be running the same libraries, operating system,

and versions of the software so that all the answers are returned from the slaves are

repeatable and reliable. In traditional systems, this action was typically performed

by system admin and as a result, you had to rely on third party packages and libraries

that were deployed with the cluster. So if the software under development needed

some updates to a package or some bug fixes, you were out of luck. You had to work

around those bug fixes and/or write the updates by hand to get similar functionality.

This is not so with our system. Using ECS, EC2 and Docker [40], we have developed

a system that allows any flavor of linux to be deployed with any version of software

that is required to run on the slave nodes seamlessly. For example, we developed our

C++ code using OpenCV 3.0 and g++4.8 all on Ubuntu 14.04 and built a Docker

container that packaged all that software together. We were then able to deploy our

software to an Amazon machine image (AMI) running an Amazon flavor of Linux

that was built for running docker and for communicating to an ECS cluster. We did

all that without configuring a single Linux instance by hand. And should we choose
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to roll back to an earlier version of OpenCV or upgrade our compiler to the latest

standard, we could do so by changing the configuration of our Docker container and

our development environment. This method in no way hinders either vertical or

horizontal scalability. With Docker, we can still pass flags that allow the container

to take over the host’s GPUs so that any code written specifically for the GPUs can

still be run in a container.

3.2 Automatic Deployment of Software and the

Development Process

An aspect of this thesis that separates us from many of the techniques proposed

in the background section, is the way we have developed our system to be readily

repeatable, easy to use and flexible to allow to future improvements. This is especially

important to UNM’s image and video processing and communication lab ivPCL lab

so that future graduate students can leverage the work done in this thesis to get

a head start on future developments of the proposed feature extraction algorithm.

In this section we cover several topics that demonstrate that we have done more

than just provide an innovative solution to classifying activities in video, but have

also created a system after which other projects can model themselves. Specifically,

we cover how the proposed architecture’s underlying C++ code is developed and

how it is automatically and seamlessly deployed to AWS all the while maintaining a

vertically and horizontally scalable architecture.

3.2.1 Vertical Scalability

Since the ivPCL is strongly geared towards vertically scalable solutions using FPGAs

and GPUs, it is fitting that we should also make the goal of this thesis to leverage
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those technologies. To do so, we have developed our software to take advantage of

OpenCV’s transparent API known as TAPI. The transparent API is an enabling

technology to be able to seamlessly switch between GPU, CPU and or any hardware

technologies without the software programmer having to select one at compile time

or at run time explicitly. TAPI uses Open Computing Language (OpenCL) has its

underlying technology to achieve significant improvements over its base algorithm

suite. This fundamental technology allows the programmer to write software for

a variety of hardware implementations without being burdened with implementing

the algorithms by hand. For example, the Farneback optical flow algorithm that

is already provided in the OpenCV library can be run easily on either the GPU

or the CPU with almost no extra programming on the programmers part. This is

also a powerful idea for users who want to distribute software to wide community,

but have hardware accelerations that can be added to speed the software up when

the hardware is available on the system. So if the programmer has attached an

accelerated algorithm for computing the discrete radon transform as demonstrated

in [11], it is completely possible to plug that implementation into OpenCL and in

turn, program the abstraction layer into the OpenCV library. This also means that

the horizontally scalable aspect of this thesis still holds so that we can distribute the

same algorithm to nodes with less capable hardware. Although it is optimal to have

a cluster of machines with FPGAs hanging from the PCI express bus, implementing

the software in OpenCL gives users the option to run the code on almost any compute

device. This means that the code can run on machines in AWS or in a local cluster.

Furthermore, machines that have the necessary hardware and are accessible in the lab

can perform some of the heavy lifting before farming out the rest of the data to the

slave nodes on the AWS cloud. So even though the system is designed with horizontal

scalability in mind, the option of going vertically scalable for certain computations

has been in no way hindered.
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3.2.2 Continuous Integration

Its all too often that software is written and completely forgotten about because the

build process is too complicated and burdensome on the users of the interface. A

goal of this thesis is to maximize reusability and maintainability. We accomplish this

using a popular software technique called continuous integration [18]. Continuous

integration is the idea that software should be constantly giving developers feedback

about the state of their software to ensure robustness and to have an obvious tool for

developers to use document the build process of the software. This is an especially

important tool for teams of developers so that failures of new commits can easily be

observed quickly and effectively. This has the advantage of addressing errors early

on in the software development phase so that errors are addressed immediately.

For this thesis, we chose to use an online tool called Travis-CI for our continuous

integration. Travis easily hooks into our Github repository and automates the build

process of our extract features program. The build of our C++ program consists of

compiling and linking against all third party libraries, running all of our google test

unit tests, and then deploying the Docker image to AWS to be used for deployment

on the ECS cluster. This tool significantly unburdens the developer from having to

do these steps manually. Continuous integration also ensures that the unit tests that

have been developed for the software work on the deployed environment specifically

in the docker image. In other words, we develop the software locally on any flavor of

linux, but there is a chance that any new changes that we have made to the software

do not work in the deployed system. Travis-CI acts as an automated alert that

something might not be right in the software.

The fact that the continuous integration also pushes our Docker image up to our

ECS cluster is also huge advantage. This process ensures that our Cluster is always

running the latest compiled and unit tested version. So not only have we made
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deployment of our software easy using a Docker container to package it up, we’ve

also automated the entire deployment process of our software simply by pushing our

code to our Github repo.

Making the deployment and build of our software automated has guaranteed us

that we will have repeatability in our code and that we have the latest functioning

version running on our compute cluster. Furthermore, if mistakes are made at the

local development level and they are not caught until the developer has pushed their

changes to a Git repo, the automated build system will trigger a failure and not

deploy the system. A key contribution with using the automated build system is

that anyone from anywhere will be able to repeat the experiments that we have

performed in this paper with very little software configuration. We have essentially

frozen the code in a working state. Even if AWS goes away, the core Docker image

is available to be run on any *nix type machine with Docker installed. So if future

users decide that they want to use our extract features algorithm, it is ready to run.

Figure 3.6 illustrates the general flow of the continuous integration.

3.2.3 Test Driven Development

For the majority of our C++ development, we used a software engineering technique

called test driven development (TDD) [8]. This technique is germane to our method’s

section because repeatability of our experiments and future extension of our work

depends on well developed, robust software. The main idea is that before we ever

wrote code to implement a new algorithm, we first design a failing test and then

write code to make that test pass. This has several advantages over not writing tests

for code:

• It gives developers a predictable way to code. Rather than thinking abstractly

about what goals a developer is attempting to accomplish, the developer writes
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Figure 3.6: Automated deployment of the proposed feature extraction method to the
AWS cloud using continuous integration

concrete tests that should validate the behavior that is desired.

• It allows for lessons to be learned early on about the implementation details of

the software. If a developer delves directly into solving a software problem with

a single mindset about how it should be implemented, then the opportunity

for a different design pattern to be used is extinguished. The main idea being

that if test driven development is used for designing an algorithm then the best

design pattern for the problem will be chosen, not just the one the developer

is familiar with.
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• Test driven development forces developers to be accountable. All too often

code is written with the mindset that its okay to commit hundreds or even

thousands of lines of code most of which is barely tested. And thus the code

becomes riddled with bugs and other developers end up having to fix those

issues. With TDD, this is a less frequent occurrence because developers must

write a test for every logical unit of code.

For this thesis we use TDD to develop our extract features program and to design

several programs that we use for experimental purposes. In order to facilitate the

development, we use google test as our C++ testing framework [21]. An example

of a test we have written to test receiving a single video frame from a file is shown

in Appendix C. This test uses a concept from the TDD community known as a

mocked object. The philosophy behind using a mocked video reader as illustrated

in the test, is that we don’t want to design our tests to be reliant on the state of

the current system. If we do so, the second we push our code to the repository,

our continuous integration tool will fail. Mocked objects give us the ability to test

our algorithms without having to rely on the state of our development machine, the

network or other variable elements. This is a powerful concept because it ensures that

our tests run fast and also forces us to program to interfaces rather than concrete

objects. In order to fully leverage the power of mocked objects, we use a design

pattern, as shown Appendix C, known has dependency injection [20]. The idea

behind dependency injection is that we can inject our dependencies into an algorithm

at runtime or compile time to have our object get the resources it needs to perform

a calculation in a variety of ways. For example, in our test in Appendix C, we inject

the interface called “Reader”. “Reader” is a specific example of high-performance

dependency injection because no virtual interfaces are used. This concept can only

be used at compile time and the interfaces cannot be swapped out at runtime. High

performance dependency injection is achieved by using only templates, which by
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their nature, can only be determined at compile time and not run time. In order to

achieve type inference at runtime, we would need to use a virtual interface instead

which has the additional overhead of doing a virtual table lookup. As a result of

using this reader interface instead of using OpenCV’s video reading capabilities, we

give ourselves the flexibility to read from hierarchical data format (HDF5) files, a

web interface, or anything as long as we adhere to the contract we have defined in

the interface code. And thus we can also write a mocked object, which is to say, an

object that we can easily define the inputs and outputs of on the fly so that we can

test a variety of scenarios in our motion estimation algorithm without having to rely

on any external resources. Figure 3.7 illustrates how dependency injection looks for

our MotionEstimation class.

Figure 3.7: High performance dependency injection using templates to implement
the motion estimation class with different types of video readers.

The appendix example demonstrates how we now have a failing test, and we can

then begin implementing the code that causes test to pass. As a result, if we push

our failing test to Github, our current build will not be deployed to the cluster until
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we have our tests passing. Figure 3.8 illustrates what a commit looks like when it

is passing on our Github project and Figure 3.8 shows what it looks like when the

build is failing because of a test, compilation issues, or problems pushing to the AWS

cloud.

Figure 3.8: An example of two commits that were pushed to our repository. The top
figure shows how the build is marked as passing with a green check mark, and the
bottom shows the build failing with a red x.

3.3 Implementing Optical Flow

In our software, we use two OpenCV library calls, goodFeaturesToTrack and

calcOpticalFlowPyrLK to implement the Lucase-Kanade Pyrmidal optical flow.

The first function is used to find features that can be easily tracked from one frame

to the other using the Shi-Tomasi algorithm [53]. The next method then calculates

the optical flow between the good points using the pyramidal implementation of

the Lucas-Kanade algorithm [9]. Figure 3.9 outlines the general program flow for

calculating motion vectors in the proposed feature extraction method.

The algorithm used in our proposed architecture is similar to Figure 3.9 but

contains fewer steps since there is no need to get good features to track. In the C++

software, we also implemented Farneback method. The Farneback implementation

is shown in Figure 3.10.

As can be seen in 3.10, we don’t need any good features to track because we
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1: procedure CalculateVectors(frame1, frame2)
2: if track points initialized then
3: opticalflow ← calcOpticalFlowPyrLK(track points, frame1, frame2)
4: else
5: track points← goodFeaturesToTrack(frame1)
6: track points initialized← True
7: optical flow ← CalculateVectors(frame1, frame2)

return optical flow

Figure 3.9: Calculating Lucas-Optical Flow from Videos

1: procedure CalculateVectors(frame1, frame2)
2: optical flow ← calcOpticalFlowFarneback(frame1, frame2)
3: return optical flow

Figure 3.10: Calculating Farneback Flow from Videos

are calculating the optical flow globally between frames, rather than selecting a few

features. This has the advantage of tracking optical flow objects that may fail the

Shi-Tomasi method for tracking, but because it is no discriminant in the features,

the resulting motion vectors are dense.

3.4 Comparison of Methods

We implemented the Lucas-Kanade method first in our research because in general,

performance is a concern and, as long as not too many features or too few features

are detected, the Lucas-Kanade algorithm will be faster [16]. Despite this fact, we

found that our classifier did not perform as well on features extracted from the Lucas-

Kanade method, as it did using the Farneback method. Hence most of the results

in this thesis have been calculated with Farneback optical flow unless otherwise

specified.
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3.5 Feature Extraction from Optical Flow

The first step that needs to be done in our software is to open a video file. All of the

videos that are used in this thesis are compressed before reaching an S3 bucket, and

then are later decompressed within each compute node. This is important to note

because bandwidth is a limiting factor when transferring videos from an S3 bucket

to the compute node. Therefore the first step is to have OpenCV read the file in and

decompress it before reducing the feature space. Figure 3.11 illustrates how a video

is first read in to extracting the features from each of the cropped videos producced.

The CalculateVectors function in both Figure 3.9 and 3.10 returns several dense

matrices that represent the features that we can extract from the optical flow output.

These features are magnitude, orientation, x direction and y direction of the optical

flow features. These are ultimately the features that we use to train and classify

using an SVM. However, if we had two N ×M video frames as the input, we now

have 4×N ×M features. Clearly we have not yet reduced the input feature space.

Thus, based on information that we know a-priori, we can reduce our feature space

significantly.
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Figure 3.11: Processing of a single raw video to feature extraction as implemented
in the proposed architecture.
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In the case of typing and writing, we know we can expect there to be motion

from one frame to the next. We don’t know by how much, but we do know that

it is not zero. Using this knowledge, we can then threshold the optical flow vectors

that we get back from Figure 3.9 and 3.10. The threshold value used was empirically

calculated from doing multiple runs on the AOLME videos. We found we got the

best results by only retrieving optical flow vectors with a magnitude greater than

75% of the max value. The set of Equations in 3.1 illustrate this idea.

V = (Vx,Vy)

Vm =

1, if ‖V‖ ≥ max(‖V‖)× 0.25

0, otherwise

(3.1)

where Vx and Vy are the optical flow vectors in the x and y directions respec-

tively. Vm is the bit mask that is then used to extract the subset of data from each

of the dense matrices.

Let:

‖V′‖ = ‖V‖ ◦Vm

Vx′ = Vx ◦Vm

Vy′ = Vy ◦Vm

Φ′ = Φ ◦Vm

(3.2)

Using the optical flow bitmask, Vm, we can then extract features from each

one of our dense matrices using the Hadamard product as shown in Equation 3.2,

where ‖V′‖,Vx′,Vy′,Φ′ are subset matrices for the magnitude, x and y direction

and orientation respectively. We have now reduced the feature space somewhat, but

depending on the size of the video and the amount of entropy per frame pair, we
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could still have a significant amount of data to process for classification, this idea is

especially true for Farneback optical flow.

In addition to extracting generic vectors from the video, we also add geomet-

rical centroids, blob orientation and background motion around the blobs to the

optical flow statistics being used for classification. We implement these methods to

attempt to leverage information that could be useful during classification. In order

to calculate the geometrical centroids and orientations of each blob, we use some

well known algorithms available in OpenCV, connectedComponentsWithStats and

findContours [23]. connectedComponentsWithStats is a function that allows us to

compute the centroid for each blob of connected pixels. The input to this function

is our binary mask image, Vm. Once we have all the connected blobs, we can then

calculate the orientation of each one of those blobs using findContours in combina-

tion with with fitEllipse. The full implementation of this algorithm is outlined in

Appendix A. The final step is to then dilate each blob, and then retrieve the mag-

nitude of the optical flow in this region. Appendix B gives the C++ code that was

used for these calculations. Figure 3.12 illustrates the idea of acquiring the centroid

and orientation of the blobs from Vm.

When the previous optical flow features have been generated, their values are

then organized into a probability density function (PDF) with 25 bins. That is to

say that each frame pair generates a PDF and that PDF is accumulated for every

subsequent frame in the video sequence. When our software reaches the end of the

video file, a normalized, cumulative distribution function (CDF) is calculated and

output for each vector. So for each input video there will be one CDF with 25 bins

for blob orientation, blob centroid x and y, motion vector magnitude, motion vector

orientation and background motion vector magnitude. Figure 3.13 clearly illustrates

this concept.

Ultimately, these are the features that are then accumulated for multiple AOLME
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Figure 3.12: Example of orientation measurement on the left, and the centroid cal-
culation on the right.

videos and used for classification.

3.6 Classifying the Reduced Feature Space

At this point we now have accumulated a bag of features for videos. The features

that are collected are stored in a comma separated file (csv) that can be read in

by the any of the popular machine learning packages such as those provided by the

R language or Python’s SciKit-Learn. The file contains labels that have filename,

centroid x CDF, centroid Y CDF, background motion CDF, motion magnitude CDF,

motion orientation CDF and classification. We can then use an SVM to classify the

features. To validate our results, we use leave-one-out cross validation to ensure that

we have not overfit the data.

This thesis uses the SVM software that is included in the R language for accurate
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Figure 3.13: Flow of the extract features program. For every input video, it will
return a CDF with 25 bins for each of the extracted features from the motion vectors

classification. The algorithm is based off the original paper written by Vapnik [15]

but was then much improved for computational efficiency by Chang & Lin in 2011

[14] with their award winning software package known as LIBSVM. This library

was originally written in C, but many fans of the algorithm have created software

bindings for multiple languages, including R.

The classification of our feature vectors is very simple since the majority of the

hard work has already been implemented in the machine learning algorithms we use

to do the classification. The process is as follows

• Load features from CSV file into an R data frame

• Plot statistics about the features

• Loop over data frame using leave one out cross correlation

• Select most accurate results between K nearest neighbors and tuned, non-linear

support vector machine.

The R code used to do the classification is shown in Appendix D.
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Results & Discussion

4.1 The AOLME Dataset

The AOLME dataset is an enormous repository of over 900 hours of video recordings

of students. The videos contain students interacting with facilitators, their peers and

computers to write code in Python on the Raspberry Pi. The dataset is wealth of

information but difficult to exploit in its current state. The data used for this thesis

is a subset of the entire AOLME dataset. By hand, we have selected several videos

and extracted typing and writing clips from the original dataset and are using these

as ground truth for measuring the accuracy of our methods.

As Figure 1.1 suggests, we are only using a cropped version of the video. The

reason for this is that we are not attempting to solve the tracking problem in this

thesis, only the classification problem. Hence, we assume that the videos entering

into our software have already been clipped and cropped with the target activities

inside of them and the corresponding lack of the activity. Our subset of the AOLME

database consists of the following:
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• Twenty videos of typing

• Twenty videos of no typing

• Twenty videos of writing

• Twenty Videos of no writing

4.2 Accuracy of Classification

In this section we explore how well our results are for both the classification of typing

and writing videos using the techniques described in methods chapter.

For our first set of results, we ran to classifying typing motions in videos. The

input messages into the cluster are shown in Table 4.1. The original dataset, however,

contains 10-20 for each of the training classifications, we have left them out in this

table for brevity.

Using our R code, we then plot some statistics about the vectors that have come

back from the cluster.
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path classification sqs queue algorithm
aolme/data/typing/seg 1.mp4 1 feature queue farneback
aolme/data/typing/seg 2.mp4 1 feature queue farneback
aolme/data/typing/seg 3.mp4 1 feature queue farneback
aolme/data/typing/seg 4.mp4 1 feature queue farneback
aolme/data/typing/seg 5.mp4 1 feature queue farneback
aolme/data/typing/seg 6.mp4 1 feature queue farneback
aolme/data/typing/seg 7.mp4 1 feature queue farneback
aolme/data/typing/seg 8.mp4 1 feature queue farneback
aolme/data/typing/seg 9.mp4 1 feature queue farneback
aolme/data/typing/seg 10.mp4 1 feature queue farneback
. . . . . . . . . . . .
aolme/data/notyping/seg 1.mp4 2 feature queue farneback
aolme/data/notyping/seg 2.mp4 2 feature queue farneback
aolme/data/notyping/seg 3.mp4 2 feature queue farneback
aolme/data/notyping/seg 4.mp4 2 feature queue farneback
aolme/data/notyping/seg 5.mp4 2 feature queue farneback
aolme/data/notyping/seg 6.mp4 2 feature queue farneback
aolme/data/notyping/seg 7.mp4 2 feature queue farneback
aolme/data/notyping/seg 8.mp4 2 feature queue farneback
aolme/data/notyping/seg 9.mp4 2 feature queue farneback
aolme/data/notyping/seg 10.mp4 2 feature queue farneback

Table 4.1: Data that is sent to the SQS for calculation on the cluster. The original
dataset includes 10-20 for both classifications

With those feature vectors, we found that we were able to get the confusion

matrix shown in Table 4.2

typing no typing
typing 19 1
no typing 3 17

Table 4.2: Confusion matrix for classification accuracy for typing

From Table 4.2 we can see that we get 90% accuracy for classifying typing motions

on the keyboard. We had difficulty classifying videos that had significant motion
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in them, but the motion was not typing and we also found that we had trouble

classifying the videos where there is was not much typing in the videos that were

classified as typing. But overall, when the scene clearly had typing and when it

clearly did not, we found that we had 90% accuracy.

Our results for determining writing, however, were not as good as our results for

classifying typing. Our CDFs for typing are shown in figure

writing no writing
writing 18 2
no writing 11 9

Table 4.3: Confusion matrix for classification accuracy for typing

As can be seen in Table 4.3, we did not get as good as results for writing, only

about 65% classification. In these results we find that our algorithm struggled more

with classifying videos that had no writing in them as having writing in them. This

may mean that the motion vectors we are extracting are highly dependent on the

type of scene we are looking at. Furthermore, the original algorithm was developed

in Matlab and then ported to C++ for this thesis. We saw differences in the feature

vectors between the two implementations; however, classification results proved to

be very similar.

4.3 Proof of Scalability

In order to show that our system is scalable, we record the time it takes for the

cluster to perform certain repetitive tasks. For the first experiment, we have the

cluster operate using only a single EC2 instance, and then scale the experiment by

one instance and compare how long it takes to calculate 10 2.1MB videos. For this

experiment, we used Amazon’s t2.micro instance which contains 1 virtual CPU run-
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ning on a high frequency Intel Xeon processor with turbo up to 3.3GHz and contains

1GB of memory. Because t2 instances are designed to have burstable performance,

Amazon does not list any specific processor on their webpage as can be seen in Figure

4.3. Amazon designed these instances like this so that the user is not consistently

charged for using high performance CPUS, but rather only when they need the per-

formance are they charged for those compute cycles. As a result, T2 instances can

take advantage of Intel capabilities such as native instructions for AES encryption

(AES-NI) Advanced Vector Extensions (AVX) for floating point and Turbo Boost

where the CPU core can be made to run faster. So for this reason, we cannot give

an exact chip type that was used when performing these computations because it is

possible that the virtual CPU that we were initially assigned, is not the same CPU

that we received later on in the experiment. This is the instance that is considered

to be part of the free tier program. Our instance runs a special Amazon Machine

image The results from this experiment are show in Figure 4.3

From Figure 4.3, we can see that as long as the number of instances that we have

divides evenly into the number of videos that calculate, then we get a linear increase

in speed. In other words, we get 10x speed up when using 10 instances rather than

just using a single instance.

The size of the videos does matter. The smaller that the videos are, the less the

overhead is when running the cluster. The reason for this is because not only does

it take longer to transfer larger videos, but it also takes more time to process them.

So from our experiments, it looks like keeping the videos under 2MB is optimal for

distributing and processing the videos. We tested how well the t2.micro instances

performed against our MacBook Pro 15 inch with an Intel Core i7 clocked at 2.7

GHz and has 16GB of RAM. It should also be noted that the Macbook Pro contains

an AMD Radeon R9 M370X GPU with 2048 GB of memory. This allows us to

take advantage of the TAPI programming model that we leverage as described in
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Figure 4.1: A subset of instances that can be used for processing on the cloud. Notice
how t2 instances are not associated with any specific processor, only the processor
family.

the Methods section. As shown in figure 4.3, we can see that even though we have

significant processing power locally, we still must receive the message from the queue

and then process the videos; therefore there is actually little gained in terms of

performance even though we are able to leverage the onboard GPUs. Figure 4.3 also

demonstrates that 10 instances run at exactly the same speed as a single instance.

So from this graph we can also infer that even though we have a higher power CPU

technically on the t2.micro instance, we are able to leverage OpenCV’s transparent

API and take advantage of the local GPU on the Macbook Pro.
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Figure 4.2: Leaving the number of videos to process the same, we increase the number
of EC2 instances to illustrate the speed up.
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Figure 4.3: Comparison of the time it takes for a single node to process 1 video vs
the time it takes a cluster to process 10 videos. Videos vary in size to test the efficacy
of choosing to send smaller vs larger videos to the cluster. A single t2.mirco instance
was included to show that a single instance takes just as long as 10 instances.
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Additionally, we can see that the performance of S3 has a linear download and

upload speed from an EC2 instance. We have collected data that calculates the

mean of 10 sample download-upload pairs of a given file size. The results of this

are shown in Figures 4.4 and 4.5. So as expected, we can rely on S3 to give us

a linearly predictable download and upload rate. Because though, it can take a

significant time to download, process, and upload videos, it is more beneficial for

the distributed system to break videos into smaller pieces so that no one node is

occupied for a long period of time. If this notion is followed, it is much easier to

scale the feature extractions horizontally.

Figure 4.4: Average time to upload varying file sizes in S3 using an EC2 instance.

The upload times can be seen in Table 4.4

The download times can be seen in Table 4.5

When we consolidate the numbers above, we find that we end up with an average

upload speed of 37.0486495118 MB/s and an average download speed of 40.149124154

MB/s.
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File Size Seconds

Upload 1MB (s) 0.135685
Upload 2MB (s) 0.152184
Upload 4MB (s) 0.231676
Upload 8MB (s) 0.336037
Upload 16MB (s) 0.732164
Upload 32MB (s) 0.963004
Upload 64MB (s) 1.269231
Upload 128MB (s) 1.989168
Upload 256MB (s) 3.567965
Upload 512MB (s) 7.608010

Table 4.4: Average upload speeds in seconds on an EC2 instance to an S3 bucket

Figure 4.5: Average time to download varying file sizes in S3 using an EC2 instance.

54



Chapter 4. Results & Discussion

File Size Seconds

Download 1MB (s) 0.078182
Download 2MB (s) 0.082242
Download 4MB (s) 0.181033
Download 8MB (s) 0.186510
Download 16MB (s) 0.263108
Download 32MB (s) 0.661547
Download 64MB (s) 1.542783
Download 128MB (s) 2.976941
Download 256MB (s) 4.990264
Download 512MB (s) 9.406564

Table 4.5: Average Download speeds in seconds on an EC2 instance from S3
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4.4 Discussion

In the previous sections we showed that we can accurately classify typing in small

segments of video and demonstrated how to we can horizontally and vertically scale

our system in the cloud. In order to achieve this, we had to find the optimal points

to break the system apart so that the computationally expensive aspects of the

system could be handled by the compute cluster, and the quick computations could

be handled by the master node, or a client node. The quick computations in the

master or client node are made possible by the cluster of computers reducing the

video files down to only a few significant CDFs. Thus, given a set of CDFs that

are only tens of kilobytes in size, we were able to quickly train a machine learning

algorithm using some ground truth videos, and then could quickly classify features

being output from the system in microseconds.

Based on the plot in Figure 4.3, we showed that the system we have proposed

in this thesis is horizontally scalable to at least 10 nodes. More nodes could have

easily been selected, but in an attempt to keep the cost of this thesis low, we decided

to only use what is available by default in the AWS cloud. However, based on the

success of other applications, such as Netflix that have used cloud technologies to

scale their system to hundreds or even thousands of nodes, there is no reason to

believe that this system would not scale to the same order of magnitude, though

more care would probably need to be taken to scale the nodes strategically on the

AWS network services.

Finally we showed that is possible to create a greatly reduced feature space from

videos and accurately classify when students are typing at nearly 90%. Because the

feature space is so significantly reduced after processing the videos on the cloud, clas-

sification of videos becomes a task that takes only milliseconds once the system has

been trained. Furthermore, even training, once the feature space has been reduced,
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only takes a matter of minutes for very large datasets. As we also showed, we did

not get very statistically significant results for classifying writing. It is unclear why

the motion vectors for this activity were not as significant as they were for typing.

4.4.1 Limitations

One of the limitations of this research was retrieving sufficient ground truth data for

the videos that are analyzed. Many of the datasets that were used in other research

in this area have large datasets with ground truth associated with them. Since the

dataset we use in this paper is novel, we didn’t have the time nor the resources to

generate a dataset with hundreds of samples with ground truth.

Additionally, we were resource bound financially for this research. If we had more

money to conduct the research, we could have tested the system at a larger scale to

prove that it would work beyond just ten nodes.

Since most of the focus on this paper is primarily to investigate how to efficiently

distribute and analyze videos in the AWS cloud, there was less time for investigation

in determining the best ways to classify the human activity. One of the short comings

of this research was that it didn’t address trying to classify typing against writing.

In other words, the paper doesn’t investigate classification of typing from writing, it

only investigates whether we classify a video as having typing in it, or not having

typing in it.
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Future Work & Conclusion

5.1 Future Work

This thesis investigates the basic idea how to efficiently distribute and classify human

activity in the AOLME dataset and as a result there a few areas where the research

can be greatly improved. The first suggestion to improve the in the field of this

research is to greatly increase the size of truth data for more statistically significant

data. The research done in this paper consists of 40 video subsets, many of which

contained clips from the same footage but at varying times. Increasing this database

to several hundred would improve research here.

We also didn’t investigate whether we could accurately classify typing vs writing.

This would be an extension of this research that would be important so that we

could investigate if our algorithm could determine the difference between the two

activities.

In other aspect that would be worth investigating for extending this thesis, is

to attempt to add an interactive aspect to training and testing. In other words, it
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would be interesting to precompute and train the machine learning algorithms on

multiple human actions and then interactively searching through the feature space

to then observe the videos that matched the classification. Work in this area would

greatly aid with the manual analysis of the AOLME videos that is currently being

done.

Finally, we found that we didn’t get very good results for classifying writing.

Investigation into this would be interesting to see why the results here varied so

much from the results we obtained from typing classification. It’s still unknown why

the bag of features failed to classify writing accurately as it did for typing. As a

suspicion, with no supporting evidence, it may have something to do that general

hand movement around paper is similar to that of writing, therefore the algorithm

may struggle for this reason.

5.2 Conclusion

We presented a novel video processing architecture and algorithm for human activity

classification in large video databases such as the AOLME dataset. Our method is

both horizontally and vertically scalable thanks to enabling technologies in the cloud

as well as convenient APIs provided by OpenCV for easy switching between CPU

and GPU implementations of Lucas-Kanade and Farneback optical flow methods.

In addition to the scalability of our system, we also presented an accurate method

for detecting typing in video segments extracted from the AOLME dataset. Our

algorithm greatly reduced the original feature space of gigabytes down to just a few

kilobytes, which makes the bandwidth limit on the cloud very manageable. Because

the output feature space is quite small compared with the original size of the videos

input into the system, training and testing can be done very rapidly and in turn

automatic classification can be done once the system has been trained at near real-
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time rates. Finally, all of the source code can be retrieved and used from our Github

Repo located at https://github.com/AcidLeroy/OpticalFlow.
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Appendix A

Retrieving Centroids and

Orientations from Blobs

This is a snippet of code that illustrates how we retrieve orientations and centroids

from blobs of grouped motion vectors. This code is used to extract additional features

from each video frame pair as described in the methods section.

void UpdateCentroidAndOrientation(const cv::Mat& thresholded_image,

cv::Mat* orientations, cv::Mat* centroids) {

cv::Mat labels, stats, current_centroids;

cv::connectedComponentsWithStats(thzresholded_image, labels, stats,

current_centroids);

// Don’t care about background centroid, hence the range.

if (centroids->empty()) {

current_centroids(cv::Range(1, current_centroids.rows),

cv::Range(0, current_centroids.cols)).copyTo(*centroids);

} else {

cv::vconcat(*centroids,
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current_centroids(cv::Range(1, current_centroids.rows),

cv::Range(0, current_centroids.cols)),

*centroids);

}

std::vector<std::vector<cv::Point>> contours;

cv::findContours(thresholded_image, contours, cv::RETR_LIST,

cv::CHAIN_APPROX_NONE);

for (size_t i = 0; i < contours.size(); ++i) {

// Can only fit an ellipse with 5 points, skip others

if (contours[i].size() >= 5) {

cv::RotatedRect result = cv::fitEllipse(contours[i]);

orientations->push_back(result.angle);

}

}

}
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Retrieving Statistics Around

Motion Blob

This is a snippet of code that relates to extract features as described in the Methods

chapter.

/**

* Get the histogram for the image around the motion.

*/

template <typename T>

void GetHistoAround(const T& thresholded_motion, int disk_size,

const T& gray_scale_image, T* bg_histogram) {

T dialated;

// Get disk

T disk = cv::getStructuringElement(cv::MORPH_ELLIPSE,

cv::Size(disk_size, disk_size));

// Dilate motion to get pixels around motion

cv::dilate(thresholded_motion, dialated, disk);
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T diff_image = dialated - thresholded_motion;

diff_image.convertTo(diff_image, CV_8U);

T background;

gray_scale_image.copyTo(background, diff_image);

// Get histogram of background intensity

constexpr int num_bins = 25;

constexpr float range[] = {0, 256}; // the upper boundary is exclusive

const float* hist_range = {range};

bool uniform = true;

bool accumulate = false;

T hist;

cv::calcHist(&background, 1, 0, T(), hist, 1, &num_bins, &hist_range, uniform,

accumulate);

if (bg_histogram->empty()) {

hist.copyTo(*bg_histogram);

} else {

(*bg_histogram) = (*bg_histogram) + hist;

}

}
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Example of Google Test

This snippet of code demonstrates how unit tests were performed on pieces of the

code that seemingly depended on reading a real file from the file system. This is

described in the Methods section.

#include "gtest/gtest.h"

#include "gmock/gmock.h"

#include "mock_reader.h"

#include "motion_estimation.h"

TEST(MotionEstimation, OnlyOneFrameInImageSequence) {

std::shared_ptr<MockReader> mock(new MockReader{"some_file.mov"});

MotionEstimation<MockReader, cv::Mat> me(mock);

std::shared_ptr<cv::Mat> a_ =

std::make_shared<cv::Mat>(cv::Mat(256, 256, CV_8U));

cv::randu(*a_, 0, 256);

std::shared_ptr<Image<>> frame1{new Image<>(a_)};

EXPECT_CALL(*mock, ReadFrameMat())
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.WillOnce(Return(frame1))

.WillOnce(Return(nullptr));

std::shared_ptr<MockFlow> mflow{new MockFlow()};

ASSERT_THROW(me.EstimateMotion<MockFlow>(mflow), MotionEstimationException);

}

67



Appendix D

R Code for SVM Classification

This sample code is the same code that was used in the master node for classification

of the features. It uses the leave one out strategy for training and testing the optimal

solution. This is referenced from the Methods chapter in this thesis.

ClassifyFeatures <- function(VideoHists){

NoOfSamples <- length(VideoHists$Classification)

# Build a factor of the correct classification:

All_cl <- unlist(VideoHists$Classification);

# Store 1 for wrong classification and 0 for correct.

knnResult <- rep(1, times=NoOfSamples);

svmResult <- rep(1, times=NoOfSamples);

# Remove classification

no_use = c("Filename", "Classification")

features = GetAllExcept(VideoHists, no_use)
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# Create a leave one out classification approach

for(i in 1:NoOfSamples)

{

# Set up training and testing data:

trainData = lapply(features, function(x) x[-i]) # Remove i.

testData = lapply(features, function(x) x[i]) # One left out.

#Combine data

trainData = t(CombineFeatures(trainData, names(trainData)))

testData = t(CombineFeatures(testData, names(testData)))

# Prepare the labels for the training set:

# Optimal: k=1

knnResult[i] <- knn (trainData, testData, All_cl[-i], k=3); # 3

#**** With tuning ****#

tune.out=tune(svm, trainData, All_cl[-i], , kernel="linear", ranges=list(cost=c(0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 100, 10000)) , scale=FALSE)

svmResult[i] <- predict(tune.out$best.model, testData);

#***** Without tuning *****#

# model <- svm(All_cl[-i] ~ ., data=trainData, scale=FALSE);

# svmResult[i] <- predict(model, testData);

cat("SVM result = ", round(svmResult), "\n");

cat("KNN result = ", knnResult, "\n")
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}
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