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ABSTRACT

The itlaymond Formation of the larathon basin, Texas consists
mainly of a sequence of more than 12,000 siltstone-shale couplets
which, combined with tane similar couplets of the older Tesnus
Formation, form a sequence of "flysch" sediments more than 10,000
feet thick deposited on the eastcrn slope of the subsiding
Llanoria geosyncline. 'he Haymond Formation contains no diagnostic
fossils; its age is known only as Lower Pennsylvanian, probably
Atokan,

The siltstone and shale of the Haymond Formation differ
'in the relative amounts of quartz and clay matrix. There are
also thin silty claystone layers which are closest to the shales
in composition but resemble the siltstone layers in weathering
charactcecristics. The silty claystone is believed to represent
the downslope decrease of silt witrin siltstone layers. The
calcium carbonate, magnesium carbonate, iron, and organic
(Kjeldahl) nitrogen composition show little or no trends through-
out the section,

The siltstone-shale couplets are the most obvious sedimentary
structures in the Haymond Formation. The contact between a silt
layer and the underlying clay layer is sharp, indicating rapid
deposition by a silt-laden current. The sradational contact
between tﬂe same silt layer and the overlying clay layer indicates
a waning of the current and a reduction in the amount of silt,
resulting in a sedimentologic silt-clay couplet.

Internal sedimentary structures, accentuated by X-radiographs

and hydrofluoric acid etching, include horizontal micro-







laminations, cross-laminations, convolute-laminations, and

graded bedding. The convolute-laminations are the result of

plastic gravity deformation of horizontal or cross laminations

in the upper nart of silt layers. Vertical graded bedding is

rarely noticeable except in the gradational contact between

the silt and clay layers. Lateral grading is indicated by a

45 percent increase in thickness and a 46 percent increase in

the number of silt layers within 5 miles in an upnslope direction.

Lateral persistence of the thickest layers is demonstrated by
+0.998 correlation coefficient over the 5 mile interval.

Directional measurements of 357 flute and groove casts on

the lower bedding planes of silt layers indicate current

el

azimuths, measured from south, ranging from 550 to 128
a mean of 653, implying an eastern source of material,

Thickness variations of the silt-clay couplets appear to
be random althouch zones of thick coupletes occur at the bottom
and ton of the section and exceptionally thick couplets were
separated by an average of 40 thinner couplets. Seventy-five
percent of all individual silt and clay layers are less than
0.2 foot thick.

The silt layers represent deposition by turbidity currents
that were probably trisgered by severe storms with an average
frecuency of less than 5 years. The downslope decrcase in
couvlets. . indicates ‘that not all of these’ storms were recorded

as silt-clay couplets in the area of study.







INTRODUCTION

Location

The Haymond Formation is exposed in several northeast-
trending synclinal valleys in the Marathon basin (Fiz. 1).
Located in the northern part of Brewster County in the Eig
Bend region of Texas, the 'larathon topograohic basin is 40
miles long and %0 miles wide and was formed by the erosion
of a broad dome of Cretaceous limestone. The basin is
bounded on the east, south, and west by zently dipping
Cretaceous limestone and on the north by the Glass !iountains.
#ithin thc‘baSin,‘tijhtly foidedlfaieéioié.sédimcnté‘form a
series of northeast-trending ridges and valleys. The ridges
are formed by the erosion of mnonresistant shale enclosing
two resistant formations, the Caballos Novaculite (Devonian ?)
and the Dimple Limestone (Pennsylvanian). The ilaymnond
Formation overlies the Dimple Limestone and forms several
valleys to the east of Dimple ridges. Because of the mantle
of alluvium, good exposures of the Haymond Formation are
lirited to cuts along U. 5. Hizhway 90 and the Southern
Pacific Railroad, and occasionally in stream banks., Two
exposures of the Haymond Formation were chosen for this study.
The first exposure is about 15 miles east of .arathon on U. 3.
lighway 90.  The second .exposure .is. in the type locality of
the Haymond Formation about 2 miles east of Hayuond station

on the Southern Pacific Railroad (Fig. 1).
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Purpose
The purpose of this investigation is to reconstruct the
environment of deposition of the shale and siltstone of the
o

Hlaymond Formation in order to understand the time relations

of stratification in a marine slope environment.
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STRATIGRAPHY AND STRUCTURE

The Haymond Formation was named by Baker (in Udden, Baker,
and Bose, 1916, p. 46) from two exposures east and west of
Haymond station on the Southern Pacific Railroad. Later,

Baker (1917, p. 107) suggested that the Haymond Formation
might actually be part of the Tesnus Formation that had been
thrust across the Dimple Limestone. !However, the validity of
the Haymond Formation as a separate unit was demonstrated by
King and King (1928, p. 113) with the discovery of boulders

of Tesnus and Dimple in the boulder-bed member of the Haymond.

General characteristics

The Haymond Formation contains six members totaling over
5,000 feet in some places (King, 1937, p. 65). At the base of
the formation, 300 feet of dark shale are followed by 1,000
feet of alternating siltstone and shale layers a fraction of
an inch to over a foot thick (Figs. 2 and 3). These siltstone
and shale layers are overlain by a thin (0-6 feet) layer of
massive arkose followed by another sequence of alternating
siltstone and shale 500 feet thick. This second siltstone-
shale sequence is overlain by a 300 to 900 fecet thick boulder-
bed containing boulders of older rocks as long as 130 feet.

At the top of the formation is a, third seguence. of alternating

siltstone and shale 1,000 feet thick.




Figure 2 - Photographs of the two sections of the
Haymond Formation studied in this report.

A, Cut in U. S. Highway 90, 15 miles
east of Marathon. Measured section
is indicated by solid lines; part
of the section used for correlation
is indicated by dashed lines.

B. Cut in Southern Pacific Railroad,
2 miles east of Haymond station.
Section used for correlation is

indicated by solid lines.,
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Age and stratigraphic relations

The fossil content of the Haymond Formation consists
mainly of abraded plant fragments a few of which were identified
by David White and C. B. Read as being of Pottsville age (in
King, 1957, p. 71). Fusulinids from the Haymond Formation
collected by E. H. Sellards and C. L. Baker were identified as
Fusulina by C. O. Dunbar (in King, 1937, p. 72). Fusulina
ranges no higher than the Upper Desmoinesian Series (Strawn
Series of central Texas). King concludes that the Haymond
Formation is Lower Pennsylvanian as suggested by Girty (King,
1937, p. 72). Dunbar (1960, p. 224) places the Haynond
Formation in the Atoka Series (Fig. 4). e e R B

The contact between the Haymond Formation and the under-
lying Dimple Limestone is vertically ~sradational for several
hundred feet (King, 1937, p. 64; Sellards, Adkins, and Plummer,
1932), The Dimple Limestone represents a reduction in the
supply of Tesnus material which was later resumed to produce
the remarkably similar siltstone-shale alternations of the
Haymond Formation. The contact between the siltstone and shale
of the Haymond Formation and the overlying Chaetetes-bearing
linestone of the Gaptank Formation is conformable and sharp
(King, 1932, . D 220,

Based on subsurface data and lithologic similarity, the
Haymond Formation has been correlated with, the Szithwick, and
Big Spring Groups of central Texas and the Atoka Formation of
southern Oklahoma (Plummer and lioore, 1921; Powers, 1928;
Cheney, 1929; !oore, 1929; Miser and Sellards, 1931; Plummer,
1931; van der Gracht, 1931; King, 1937; Bokman, 19533 Hall,

19563 Cline, 1960; Dunbar, 1960; !iser and Hendricks, 1960).
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MARATHON i I
SERIES ARATHON | cpNTRAL TEXAS | OKLAHOMA
T Vanoss Fm.
Virgilian Cisco Ada Fm.
| Series Vamoosa Fm.
!
|
Missourian |
Gaptank Canyon
Formation Series Francis Fm.
Wewoka Fm.
Desmoinesian Strawn Jetunka Shale
Series Boggy Shale
, : Savanna - 5S.
L]
Smithwick Gr. Atoka
Atokan Haymond g 4 : o
. e o i ormation
Formation Big Spring Gr.
PR plapke BEv. ¥ wdetie JBaiis PARSISEES S
i 7 w j Jackfork Ss.
A0S L. Limestone Stanley Shale

Figure 4 - Qorrelation of the Pennsylvanian System in south-

west Texas, central Texas, and southern Oklahoma (after
Dumbar, 1960, p. 224).

Sedimentation was essentially continuous in the

region during the Pennsylvanian.

Structural history

‘arathon

The sediments were deposited

in the Llanoria geosyncline which was probably an extension of

the Ouachita geosyncline of Oklahoma (Dunbar, 1960, p. 223;

Sellards, Adkins, and Plummer, 1932, p. 129).

The beginning of the Pennsylvanian was marked by strong

uplift of the hinterland (Llanoria) to the southeast exposing

the granite, slate, and phyllite which provided the sediments
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for the thick "flysch" segquence represented by the Tesnus and
Haymond Formations (King, 1230 and 1937). “The origin of the
boulder-bed memnber of the Haymond Formation is not clear. Hall
(1957 and 1959) susgests that the boulders are of tectonic
origin., Other supgestions include glaciation (Baker, 1932;
Carney, 1935), mudflow (King, 1937; Flawn, 1958), and subaqueous
landslip (King, 1958). Gaptank time began with the deposition
of the extensive Chaetetes-bearing limestone followed by
"molasse" sedimentation (King, 1937, p. 88). By the end of
Gaptank time, strong folding and overthrusting had produced a
series of tightly folded mountain ranges of Paleozoic rocks
(Baker and’ Bowman, 1917, p. 111). 'These ranges were eroded
throuzhout the Triassic and Jurassic and the remnants covered
by the Cretaceous Trinity and Fredericksburg Groups. During
the Tertiary, probably post-Oligocene (King, 1937, p. 140),
the Cretaceous sediments were unlifted to form the broad
arathon dome. The crest of the dome was eroded to expose
the remnants of the tishtly folded late Paleozoic mountain

ranges in a topographic depression called the llarathon basin.
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PETROLOGY

General description

The two sections of the Haymond Formation which were
studied are interbedded lentils of dense siltstone and clay
shale. l\any of the shales are separated by a thin, silty
claystone intermediate in composition between the siltstone
and shale. The siltstone occurs in layers 0.01 to 1.67 feet
thick with a mean of 0.3l feet for the road-cut section and
0.43 feet for the railroad-cut section. The associated shale
occurs in layers 0.01 to 1.26 feet thick. The siltstone-

shale couplets range in thickness from 0.05 to 2.12 feet.
Petrography

Oiltstone

The siltstone of the Haymond Formation has the composition
of a sub:raywacke although more than 70 percent of the grains
are smaller than very fine sand (Fig. 5). Summaries of the
chemical and nineralosical compositions are given in appendixes
I and II and Figures 6 and 7. A photomicrograph of a typical
siltstone is shown in Figure 8C. There is no siznificant
change in siltstone composition throughout the section studied,
with the possible exception of .a general increase .in. the
percent of organic nitrogen from the bottom of the secction to
the top (Fig. 9). The mineralogic composition of a typical
siltstone is approximately: 70 percent quartz; 25 percent

clay matrix; 3% percent plant fragments; 2 percent nicas 1 percens
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albite; 1 percent garnet. These constituents suggest igneous
and possibly metamorphic terranes. King (1937, p. 70) concluded
that the constituents of the Haymond siltstone were derived from
sranitic and metamorphic rocks with the granitic fragments
predominating. cBride (1962b) concluded that the chief source

area of the Haymond sediments was compnosed largely of plutonic
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Figure 5 - Grain size determinations of two siltstone samples of
the Haymond Formation. Percent clay was estimated; percent
silt and sand were determined by counting about 500 grains

in thinsection.

30% Feldspar + garnet

siltstone” silty il

shale clay + mica
claystone

Figure 6 - Composition of siltstone, silty claystone, ,and shale

of the Haymond Formation.




Figure 7 - Summary of composition and paleocurrent
analyses of the road-cut section of the

Haymond Formation.,



14

KJELDAHL TOTAL CaCOy
COMPOSITION NITROGEN IRON (THERMOGRAM CURRENT DIRECTION
(% x107) (%) in°C. BEDTA%)  (AZIMUTH FROM SOUTH)
SILTS | CLAYS  SILTS [cLAYS
'S o o o
250 S S hes BVE BT eh e
|zam Zam & K ® © 0~ @00 = d
QUARTZ : f
b= t—+
.8/
| 7%
. j
r J
|
‘ ‘ |
? \
3
P j— 12%
\
‘ |
|
: F 1
( | | | <>
\ i 8 ‘
d /49% D
— T <
|
e ‘ i E

"
|
VAY

{0 A O
:

v
oy ol
7
=1y
] |
gﬁﬁ
<3t

100 | 36%4} <\
- g :
| |
== b | | ™
é - - | | §>
50 ' S0 el
- EEJ Bl
= e t Lz Z>
o——ﬁ;_ e —.__ Tae% | N




Figure 8 - Photomicrographs of siltstone, silty claystone,

and shale of the Haymond Formation.

A.

Clay shale, crossed nicols, x300; linear

mineral is muscovite.

Same as A but rotated 450; note aggregate

extinction.

Siltstone, crossed nicols, x300; mainly
quartz in a clay matrix,

Silty claystone, ordinary light, x46; note
dark layers formed by concentration of
plant fragments and clay.

Silty claystone, ordinary light, x150;
enlargement of D,

Same as E but with crossed nicols.









quartz. - - Luartz occurs as angular, silt grains with numerous
e e -

inclusions and few overirowths. ‘here the «raii.s are elongate,
they are subnarallel to the parallel fabric of the mica and

clay minerals.

Plagioclase feldspar. - - Plagioclase occurs as angular, silt

grains easily distinguished from quartz by the nmultiple albité
extinction bands and lower index of refraction. The low
extinetion angles (17 degrees to 18 dejsrees) and low index of
refraction pnlace the plagioclase at the albite end of the

albite-anorthite series (Kerr, 1959, p. 258).

Garnet. - - Garnet occurs as angular, pale yellow and pale
pink silt grains., The grains are identified by their

isotropism and hizh relief,.

Juscovite., - - lluscovite occurs as colorless shreds parallel
to stratification. Under crossed nicols, these shreds have
a brilliant, high-order green or blue interference color and

parallel extinction.

Biotite. - - In some samples, shreds of biotite were distinguished

from muscovite shreds by their darker color and strong

pleochroism,
Clay. = = A clay matrix constitutes as much as 26 percent of

the siltstone. Positive identification of clay minerals other

than small amounts of sericite was not possible in thin-section
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but differential thermal analyses of 20 siltstone and shale
samples indicated a probable mixture of chlorite and illite
(Gridoy 2993. b GO8 I, ;
Because thin-sections were cut normal to stratification,
plates of clay and mica present an edzge view parallel to the
c-axis with consequent parallel extinction. This parallel
extinction of individual minerals produces an aggregate

extinction of the clay matrix as illustrated in Figures 8A and 8B.

Plant fragments. - - Six siltstone and shale samples were

treated with hydrochloric, hydrofluoric, and nitric acids.

The résidué consisted almnost erntirely of black vlant fragments.
The concentration of plant fragments with clay and mica into
layers parallel to stratification produces the laminated
appearance of the shale and siltstone (Figs. 8D, 85, and 8F).
The plant fragments are also concentrated along cross-

stratification planes in the siltstone.

Silty claystone

Intermediate in comnosition between the siltstone and shale
are a group of laminae, generally less than 0.05 feet thick,
classified as silty claystone. The quartz content of the silty
claystone varies from 25 vercent to 45 percent and the clay
content from 25 percent to 60 percent (Appendix I; Fig. 6).

<

Although the comnosition of the silty claystone is considerably
more variable than that of either the siltstone or shale, it is
closer to that of the shale, However, because the quartz content

of the silty claystone is higher than that of the shale, the
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weathering characteristics closely resemble those of the silt-
stone. Consequently, the silty claystone was counted as silt-
stone in statistical analyses. The feasibility of this grouping

will be demonstrated later in this report.

Shale

The mineralo-ical composition of a typical shale in the
Haymond Formation is avproximately: ' 73 percent clay minerals;
15 percent quartz; 5 percent micaj; 4 percent plant fragments;
240

percent garnet; <1 percent albite. Summaries of the chemical

and mineralogical compositions of the shale are given in

Appendixes I and II and Figures 6 and 7?. The descriptions of

the specific minerals 'iven for the siltstone also apply to

the minerals of the shale., There is no significant change in

the composition of the shale throushout the section with the

possible exception of a general decrease in organic nitrogen

content from bottom to top in the section (as opposed to an

increase in organic nitrogen in the siltstone) (Fig. 9).

Photomicrographs ©of a typieal shale are shown in Fipgures SA and 8B.
At the surface, the shale is fissile and erodes into small,

lenticular chips. On a fresh surface, however, the fissility

is obscure and the shale breaks into rounded discs several inches

in diameter which further spall into thin concentric sheets.

The tendency of ‘the ‘clays to 'split ihto thin sheets is the result

of parallel alisnment of the clay minerals and mica. The

curving of the sheets is probably a result of rotation of the

clay and mica during intense folding.,







Chemical Analyses

Calcium and Magnesium Carbonate

The amount of calcium and magnesium carbonate in 15 samples
was determined by titrating with disodium dihydrogen ethyl-
enediamine tetracetate (Na2EDTA or EDTA) (Bisque, 1961). As
calcium from gypsum and illite may go into solution during
treatment with hydrochloric acid, there is a certain amount of
error to be exvected by using this method to determine calcium
and magnesium carbonate., Sulfate tests were run on two samples
with results of 1.4 percent and 0.24 percent; thus the amount
of gypsun present is negligible for the purnose of this study.
Also, the amount of calcium derived from illite is probably
neglisible so that the results are probably correct to within
5 percent of the amount present. Neither calcium nor magnesium
content show a significant trend throughout the section. The
amount of calcium carbonate ranges from 0,9 percent to 11.7
percent. The awmount of magnesium carbonate ranges from a trace
to 1.0 percent. EDTA percentages of calcium and magnesium
carbonate are listed in Appendix II., EDTA vercentages of cal-
cium carbonate are also given in Figure 7 with the corresponding

thermogram peaks for calcium carbonate.

Iron
The amount of iron in 15 samples was determined by color- |

imetry. The results are expressed as ferric iron as all

ferrous iron is oxidized during the procedure (Appendix II;
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Formation. (See Figure 18 for location of samples. )







Sedimentary structures

Stratificarion

The alternations of siltstone and shale, repeat

o

thousands of times throughout several thousand feet

 Q

3 o

are the most obvious sedimentary structures in the H

Formation (1 2 and 3). At a distance, the bound

4

between the siltstone and ale appear sharp. . On cl
inspection, it is anparent that the contact between

'

1 the underlying shale is always sharp ereas the
tone grades more or less rapidly into the verlying

'he with

gradation is one of composition
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, Ficure 10 - Gradational contact (C) between siltst

| the overlying shale (D); note the sharp contact
{
the siltstone (B) and the underlying shale (A).

(

\

B) and

en

one

betw







&%

in clay and a decrease in quartz between the siltstone and
shale, As most of the quartz is silt, this gradation is

also one of size. As a consequence, the difference in bedding
of the siltstone and shale is the result of differences in
composition; however, the differences in composition are the
result of a decrease in silt, thereby increasing the relative
proportions of clay.

A variation in grain size can be the result of one or a
combination of two factors: 1. the anount and type of sodimeht
available and 2. the efficacy of the scattering agent. Because
of the frequency with which the siltstone layers recur, it does
not seem probable that the cyclic alternations are a function
of availability although the availability may effcct long term
cyclic or non-cyclic variations (Fig. 14). It is probable,
therefore, that the deposition of a silt layer is initiated by
a current capabtle of transporting silt and waning of the current

pernitting settling of clay.

Internal structures

Recognition of most internal sedimentary structures is
based on differences in color, composition, or texture which
are the result of physical processes operative at the time
of deposition. The siltstone and shale layers of the Haymond
Formation have sedimentary structures so subtile that they .are
barely visible even on polished surfaces. To accentuate these
structures, four techniques were applied to slabs of siltstone
cut normal to stratification: infra-red photogranhy, dye

staining, X-radiography, and etching with hydrofluoric acid.
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Only the last two technigues succeeded in accentuating the
internal sedimentary structures (Figs. 11 and 12). Exposing

a slab to infra-red sensitive film using only an infra-red

lizht source produced results no better than those obtained

using white light and panchromatic film. Compositional
differences apparently were not great enough to permit d4if-
ferential absorption of infra-red light. These small compos-
itional differences in addition to very low permeability prevented
the use of dye staining techniques (Hamblin, 1962a; Pantin, 1960).

Recently, application of X-radiograophy to the study of

consolldated (Hamblin, 1962b) and unconsolidated sediments
Calvert and V:evers, 1962). The technique is based on the
concept that there should be vertical as well as lateral
variations in every sedimentary rock. These variations should
produce corresponding variations in density even though there
may be no corresponding variation in color or texture. The
transmicsion of X-rays through a slab of a sedimentary rock
records density variations by differential absorption of
radiation, Slabs of several siltstone samples approximately
3 mm thick were placed directly on X-ray film and exposed at
a distance of about one meter at 50 kilovolts and 125 milliamperes
for one second using a General Electric mediecal X-ray unit.
Positive prints of radiographs ‘are shown in Figures 11C, 11D,
12B, and 12E. In most slabs, remarkably clear outlines of
internal sedimentary structures were obtained even though the
structures were invisible or only faintly visible on polished

slabs (Figs. 11A, 11B, 12A, and 12D). This technique was

particularly useful in accentuating cross-laminations.




Figure 11 - Sedimentary structures in two treated

siltstone slabs from the Haymond Formation,

A,
B.
C.
D.
B,

F.

Polished siltstone slab,
Polished siltstone slab.
X-radiograph of siltstone
X-radiograph of siltstone

Hydrofluoric acid etch of
slab in A.

Hydrofluoric acid etch of

gslab in B,

slab in A.
slab in B.

siltstone

siltstone
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In most slabs, internal structures, particularly convolute
folds, were emphasized by etching with hydrofluoric acid. This
was done be immersing a slab or a flat surface of siltstone in
concentrated hydrofluoric acid for several hours. After the
etched surfaces had been washed and dried, they were photographed
using a single low-angle light source. Photographs of etched

siltstones are shown in Figures 11E, 11F, 12C, and 12F.

Horizontal laminations. - - In addition to the zross stratification

or lamination, some of the individual siltstone or shale layers
are also laminated on a semi-microscopic scale. These micro-
laninations are the result of the concentration of plant fragments,
clay, and mica into dark bands parallel to stratification (Figs.,
8D, 8F, and 8F), licro-laminations in the shale are almost
always horizontal whereas those in the siltstone are more often
contorted into convolute folds (Figs. 11FE and 11F)., The micro-
laninations are not sedimentary units but represent "transitory
‘bhases' or minor chance fluctuations in the velocity of the

depositing current" (Pettijohn, 1957, p. 163).

Cross—laminations. = - Small-scale tabular cross-laminations

are present in mamy of the siltstone layers. Although cross-
laminations are usually confined to the lower part of the layer
(Figs. 11C to 11F), some layers are cross~laminated throughout
their entire thickness (Fig. 12C). The cross-laminations
represent deposition by unidirectional laminar current flow,.
Although most of the cross-laminations are tabular, several

scour-and-fill cross-laninations were also noted (Figs. 12D to 12F).
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Convolute-laminations. - - Convolute-laminations, as applied

here, refer to contorted or wavy laminae observed in the upper
part of many siltstone layers. The contortions range from
sentle crenulations to highly contorted folds which die out
downward into undisturbed cross-laminations in the lower part
of the layer (Figs. 11E and 11F). Folded patterns generally
consist of a series of steeply dipping, usually overturned
anticlines separated by broad shallow synclines. The convolute-
laminations were probably deposited as horizontal or cross-
laminations which were later contorted. Convolute-laminations

have been the subject of frequent discussions in the literature

19383 Lamont, 1938; Beets, 1946; Cope, 1946; Kuenen, 1949; Rich,
1950 and 19513 Kuenen, 1953; Greensmith, 1956; Stewart, 1956;
Ten Haaf, 1956; Sullwold, 1959; Holland, 1960; Prentice, 1960;
Sanders, 1960; Williams, 1960; Dott and Howard, 1962; lcBride,
1962a). Ilost agree that the contortions are the result of
plastic deformation in response to gravity. The uniform lateral
thickness of the siltstone layers, even though the laminae
within the layer are highly contorted, precludes mass downslope
translation or slump. OSaturated with water, thc silt layer was
essentially a viscous fluid with a tendency to flow downslope
under the influence of gravity. Adhesion and cohesion, resulting
from a combination of elecctrolytic attractions, van der Waals
forces, and surface adsorntion of water (Dott and Howard, 1962,
p. 115), prevented the mass from actually flowing. Instead, a

certain anount of internal adjustment took nlace producing

varying degrees of distortion. !ost of this adjustment took
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place before deposition of the overlying clay so that the upper
part of the silt layer was less confined than the lower part of
the layer. As a result, the upper part of the layer was more
distorted, the contortions dying out downward into the lower
part of the layer which remained in nlace due to increased
internal cohesion and adhesion and friction between the silt
layer and the underlying clay layer. This explanation seems

to fit best the origin of the convolute siltstone laninae in

the Haymond Formation.

Graded bedding. - - Graded bedding is present in the siltstone

most noticeable grading is in the upper part of the siltstone
which grades into the overlying shale by a decrease in silt.
Bailey (1930) concluded that cross bedding and graded bedding
represent deposition under two different conditions. Cross
bedding is a document of current deposition whereas graded
bedding is a document of gravity settling in still water,
Recent studies by Kuenen (Kuenen and iigliorini, 1950; Kuenen
and Menard, 1952; Kuenen, 1953), have led to the conclusion
that, in most cases, graded bedding implies turbidity currents.
Unfortunately, recent workers have frequently reversed this
implication, i.e. turbidity currents imply graded bedding.
This latter implication is dependent upon the nosition .of. the
particular section being studied with respect to the slope and
the bottom of the basin of deposition. At the bottom of the
basin, the turbidity current encounters a decrease in slope

and the suspended load is "dumped". Turbulence continues,
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however, with little lateral movement until downslope movement
has ceased. Because currents are absent, differential settling
in response to gravity produces a graded sequence. On the slope,
this "dumping" does not take place. Instead, the velocity of

the turbidity current gradually decreases until laminar flow
pernits settling of material wnhich is then deposited in cross-

laminations.

Sole markings
ilany of the lower bedding nlanes of siltstone layers of

the Haymond Formation contain subparallel flute casts (Crowell,

1955, p. 13%59) and sroove casts (Shrock, 1948, p, 163). The

flute and grcove marks or depressions were formed on the upper
surface of a clay layer by a silt-laden current. As the silt

was deposited, it filled in the depressions in the underlying
clay, forming a cast which was preserved on tue lower bedding
vlane or sole of the silt layer. Features which scem to fit

the descripntion of flute casts as suizested by Crowell (1955,

P. 1359) have been called lobate rill marks (Clarke, 1918;

Shrock, 1948), flow markings (Rich, 1950 and 1951; Kuenen and
Carozzi, 1953%; Kuenen and Sanders, 1956), flow-roll markings
(Rich, 1950), 8tromungs-Marken (Rlicklin, 193%8), Gefliess-

M arken (Richter, 1935), and spatulate casts (Pettijohn, 1957).
For additional information on the origin . and.classification .of
these and similar markings, see the works of Rich and Wilson
(1950), Prentice (195€ and 1960), Kelling and .alton (1957),
Kuenen (1957), Kuenen and Prentice (1957), Crowell (1958),
Glaessner (1958), Hsu (1958 and 1959), Kuenen and Ten Haaf (1958),
Sullwold (1959), Holland (1960), Johnson (1962), and TcBride‘(l962b).







31

The orientations of 357 flute and groove casts were measured
on the lower bedding planes of 107 siltstone layvers throughout
the road-cut section of the Haymond Formation., Strike and dip
of individual lavers were recorded along with the rake of each
flute or groove cast. Using stereonet, the layers were rotated
to horizontal 2nd the true orientations of the casts deternined,
(Billings, 1954, p.485)., DBecause the casts are linear features,
their orientations may have one of two directions. The correct
direction was deternined by noting the bulbose (upcurrent) end
of the flute cast.

Corrected directions of all flute and groove casts range
from 55 déﬁfeés tb‘12&‘défrees (éZinuth'frbm the south) with a
mean of 85.71 derrees and a standard deviation of 13,5 degrees,
The directions were divided into 15 class intervals of 5 degrces
each and the frequency distributions plotted as a histosram and
as a rose diagram (Fig. 13). In the rose diarram, the length
of each arrow, plotted on the midpoint of the class interval,
is proportional to the number of measurements within that class
interval., In addition, the mean direction was determined for
each siltstone from which measurements were obtained and plotted
in Figure 7. A summary tabulation of these measurements is
riven in Appendix III.

Figure 13 indicates an east to west paleocurrent direction
wit" relatively little variation.  These results confirm
llcBride's report (1962a) of an eastern source area with turbidity
current flow ranging from transverse to parallel to the basin
axis. Fach point on the current variation curve CElga %)

“

represents the dominant current direction during devnosition of
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u

that particular silt layer. Altnough the variations in

’ :

\
direction appear random, there is a noticecable trend from a
southwesterly to a northwesterly direction pcrhaps indicating

a minor change in the configuration of the edge of the basin
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STATISTICAL ANALYSES

The thickness of individual siltstone and shale layers of
767 couplets in the road-cut section were easured to the
nearest C.01 of a foot (Appendix IV) and plotted separately
along a uniform horizontal scale (Figs, 16 and ' 172). Couplen
thickness data were smoothed using a 3l-unit moving average
and plotted with the unsmoothed data in Figures 14 and 15.
The thickness of siltstone and shale layers were then plotted
as a two comnonent stratisraphic column and presented on a
cmall scale in Figure 7 and on a larger scale in 5 segments
in Ficure 18.
The thickness curves shown in Figures 14, 15, 16, and 17
all s em to indicate that although the thicliness of individual
couplets is variable, the variations are essentially random.
lowever, there are two broad zones where the couplets are
enerally tnicker; ome in the lower cuarter of the section and
one at the top. These zones are the prominant highs in Figure
14, ‘These "t:ick" zones may have some climatic significance,
or they may represent periods of more active uplift of the source
area or an increased efficiency of the scattering agent. In
addition to these "thick" zones, an individual thick layer
occurs on the average of every 40 couplets althousgh the variation
is erratic. These thick layers are represented by couvlets
thicker than one foot, siltstone layers thicker than 0.6 foot,
and shale layers tnicker than 0.5 foot (Figs. 15, 16, and 17).
The frecuency distributions of siltstone and shale thickness

for both the road-cut and railroad-cut sections are skewed to the
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Figure 18 - Stratigraphic columns of the rcad-cut
and railroad-cut sections of the Haymond

Formation.
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left (Fig. 19), The siltstone thickness distributions are
essentially the same for both the road-cut and railroad-cut
sections with more than 75 percent of the layers less than 0,2
foot thick and modes in the 0.0 to 0.1 foot class interval.

The shale‘thickness distributions are alike in that more than
75 vpercent of the layers are less than 0.2 foot thick but they
differ in that the mode for the road-cut shale falls in the

0.1 to 0.2 foot clnass interval while the mode for the railroad-

cut'shalie fallg dw the 0.0 ol " Hoptiiclass Siaverval
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CORRELATION

The part of the Haymond Formation which crops out along
the southern Pacific Railroad 2 miles east of Haymond station
was correlated 8 miles in the field with part ofthe Haymond
exposed in the road-cut in U. S. Highway 90 (Fig. 1). This
field correlation was hased on certain key beds and distinctive
groups of beds (Figs. 2 and 3).

The individual layers of the railroad-cut section were
plotted as a two component stratigraphic column to the correct

scale in Figure 18 (column B). For better visual comparison,

the section was reduced to 22 feet, the thickness of the as=-
suned corresponding part of the road-cut section, by multiplying
the thickness of each layer by 0.745, This reduced section is
plotted as column B' in figure 18,

As the railroad-cut section contains more couplets than
the corresponding part of the road-cut section, it was not
possible to obtain a correlation coefficient using raw thickness
data, As the thinner layers are oprobably the most variable

laterally (gsee p. 40), all siltstone layers thinner than one

standard deviation above the mean were grouped with the enclos-
ing shale layers., Nine siltstone layers remained in both the
railroad-cut section and the corresponding part of the road-
cut section which, combined with the intervals between (shale
plus siltstone layers less than the mean) gave 18 units in each
section,

These 18 units were used to compute a correlation coeffi-

cient between the two sections of +0.998, almost perfect positive







correlation (Mills, 1955). This relatively objective,
mathematical correl:ntion indicates that the assumed field
correlation was correct. To further strengthen this cor-
rclntion, three other areas within the road-cut section were

tecsted for correlstion usin: the same procedure (Fig. 18,

correlation test intervals A, B, and C). The following cor-

reclstion coefficients were obtained: test interval A, +C.563;
test interval B, +0.,3%37; test interval Cy +0,550, The
assumed field correl:tion is thus further substantiated.
Lateral grading would be expected as a result of downslope
size sorting, depositing relatively greater amounts of clay
further downslope. ' Theoretically, a greater amount 'of silt:
would be depnosited on the upper part of the slope so that any
silt layer would thicken in an upslope <irection. These lateral
variations in size and thickness can be used to explain two
features observed in the !liaymond Formation. The first feature
is the presence of silty claystone which has a composition
between that of the siltstone and shale. Fach silty claystone
probably represents a thicker siltstone further unslope and a
thinner shale layer downslope that is indistinguishable from
- the enclosing shale layers as a result of downslope decrease
in crain size. The second feature is the combined uvslope
increase in: 1., the number of siltstone layers, 2. the
thickness of the siltstone layers, and 3. the relative amount
of silt, Rased on valeocurrent analyses, the railroad-cut
section of the Haymond Formation is upslope and to the <south
of the road-cut section (Fig, 1), Table 1 summarizes some of

the silt-clay relationships between the road-cut section and







the railroad-cut section. As can be seen from the table, there
is an increase in number and thickness of both silt and clay
lzyers from the road-cut section to the railroad-cut scction
(upslope). However, the increase in clay is smaller, relative
to the increase in silt, so that the amount of =ilt increases
"rom 48 percent of the total thickness (silt:clay = 0.92) in

the road-cut section to 52 pcrcent of the total thickness (11

clay = 1.07) in the railroad-cut section. These upslope increases

are easily exnlained by lateral ;radation resulting in a downslope

increase in clay relative to silt.

SECTION THICKNESS MUMBER LAYERS SILT:CLAY

Road-cut D& i 0.92

silt 10.74

clay 11.6%

Railroad-cut S05H

silt 15.68

clay 14,63







ORIGIN OF STRATIFICATION

The siltstone-shale alternations of the Haymond Formation
have many of the characteristics of feosynclinal scquences
called "flysch"., The Flysch Formation of the Alps is a
Tertiary sequence over 10,000 feet thick, poor in fossils,

and composed of interstratified marl, shale, and sandstone

layers (Sujkowski, 1957). Van der Gracht (1931) described

the Flysch as "a marine sequence of poorly fossiliferous
clayey muds, with more or less sandy beds intercalated in
shales, laid down to a sreat thickness", The term "flvsch"
‘has -been -applied, ‘with slight variations™in meaning, to similar’
sequences of different countries and ages. ‘The term was first
applied to the Haymond Formation by van der Gracht (1931).
According to Sujkowski (1957, p. 543), "flysch" sequences
are characterized bv great thicknesses of geosynclinal slope
deposits, chiefly alternating n"arine shale and sandstone.,
Bokman (1953, p. 153) lists the following as charactceristics
of ~seosynclinal sediments: 1. sreat tiicknesses of sediments,
predominantly clastics, deposited in a rclatively shorl period
of time, 2. dark color, 3. scarcity of fossils, 4. rhyt mic
and/or zraded shale and graywacke, and 5. preseice of associated
volcanics and radiolarites., Rich (1350 and 1951) calls such
sequences slope or "clino" deposits characterized by beddins
waich is thin, persistent, and extremely even; alternating silt
and clay; thinning downslope away from the edge of tne shelf;
features of downslope movement; and svarsity of fossils. He

concludes that alternating silt and clay layers are the chief
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characteristics of slope denosits. IlicBride (1962b, p. 47)
reached the same conclusions for the lartinsburg Formation,
an Ordovician "flysch" sequence in the central Appalachians,

Several lines of evidence suggest that the couplets of
the Haymnond Formation and similar sequences were deposited by
storm-generated turbidity currents with an average frequency
of 2 to 10 years. Riveroll and Jones (1954) report a strong
22.8 year double sunspot cycle in the varved Puente (!iiocene)
Formation of California which they attribute to storm activity.
They also found a 7.5 year cycle similar to cycles widely
reported in weather, tree ring, and varve thickness data.
current layers in recent sediments of the Santa Barbara basin,
California using varves. Each of the diatom-detrital varve
groups separating turbidity current layers contains 1 to 43
couplets with a mean of about 5 indicating an average of about
5 years between turbidity currents., A similar calibration was
obtained by Anderson (report in preparation) for the Oligocene
Florissant lake beds of Colorado where the normal diatonmite-
sapropel varve couplets are interrupted by graded turbidity
layers on an average of every 4 or 5 years.

Studies on the characteristics of recent storms are
currently beings conducted by the Storm Surge Research Project
of the U. S. Weather Bureau. A storm surge is defined as
"the difference between the observed water level and that
which would have been expected at the same place in the absence

of the storm" (Harris, 1963, p. 2). The use of storm surge







analyses eliminates the cycles caused by normal astronomic
tides leaving only the effects on sea level caused by storms.
Variations in monthly mean sea level and the corresponding
storm surge charts for 3 U, 5. Coast and Geodetic Survey tide
stations on the Atlantic and Gulf coasts of the United States
are shown in Figure 20. The storm surge data were computed

by subtracting the normal sea level from the observed sca

level (Harris, 1963, Fig. 0.3) for a particular month. The
vertical lines sunerimposed on the storm surge charts represent
sea level anomalies greater than two feet. The actual size of
the anomaly is indicated wherever information was available.
Appendix VI for 17 U. S. Coast and Geodetic Survey tide stations
along the Atlantic and Gulf coasts. Regional means range from
1.57 to 3.87 years between anomalies.

Assuming that the turbidity currents which deposited the
silt layers of the Haymond Formation were generated by a storm
oprocess with a frequency of the same order of magnitude as the
above exanmples, then each silt-clay couplet in the Haymond
should represent a time interval of 2 to 5 years. Although
every silt layer may be a record of a storm, there are several
reasons why every storm would not be recorded by a silt layer.
It is possible that several severe storms could hawe occurred
within one year (Fiz. 20) with insufficient time between storms
for silt to accumulate. If we assume that the axes of structures
presently exposed in the llarathon basin are parallel to the axis
and edge of the Llanoria geosyncline, then the railroad-cut

section of the Haymond Formation is 5 miles uvslope from the




Figure 20 - Monthly mean observed sea level and
storm surge at 3 selected Coast and Geodetic
Survey tide stations. The year number is
plotted on June. Marks indicate the occurrence
of a storm which produced a tide anomaly as
much as 2 feet at any hourly observation; the
actual size of the anomaly is indicated by
the figures wherever information was available
(after Harris, 1963).
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road-cut section (distance corrected for folding and faulting).
In this 5 miles, the number of silt layers has increased 46
percent. If we further assume that the siltstone layers in

the railroad-cut section represent all storms capable of
generating a turbidity current, then each siltstone layer in
the railroad-cut section probably represents a time interval

of 2 to 5 years and each siltstone in the road-cut probably
represents a time interval of 4 to 10 years. These are

minimum time intervals as the siltstone layers in the railroad-
cut section probably represent only a fraction of the storms

capable of generating a turbidity current.







%2
CONCLUSIONS

.The silt-clay alternations of the Haymond Formation
accumulated rapidly without important interruption on the
slope of the Llanoria geosyncline. Paleocurrent and petro-
graphic analyses indicate that the sediments were derived
from an igneous and metamorphic terrane to the east. FEach
silt layer was deposited in a very short time by a turbidity
current. The frequency of the turbidity currents was probably
controlled by the storm frequency and availability of detrital

material. Applying what is known about the characteristics

of turbidity.currents, the followi
suzizested for the deposition of a typical silt-clay couplet
in the Haymond Formation:

1, ©Silt and clay on the shelf were continually worked
along the bottom by currents to the uvper part of the slope.
“aves and currents of a storm, stirred the accumulated sediments
into suspension and generated a turbidity current which scoured
and grooved the top surface of the underlying clay layer.

2. The turbidity current eventually lost momentum and
the suspended material began to settle. At first, the settling
was too rapid to permit size sorting. The current continued
as laminar flow, reworking the silt and clay and redepositing
them as cross laminations with a subparallel arrangement of
platy and elongate crains, At this phase of laminar flow,
scour-and-fill structures were formed by certain irregularities
in flow. As the current continued to wane, slight changes in
current velocity resulted in the periodic concentration of

clay and plant fragments into horizontal micro-laminations.
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3. Deformation of the cross and horizontal laminations
into convolute folds occurred in the upper part of the silt
layers in resvonse to the downslope vector of gravity on the
fluid silt mnass.

4, After most of the current had passed, the remaining
suspended clay and fine silt slowly settled to form a continuous

sequence grading from silt to clay.
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APPENDIX I

Summary of the mineralogic composition of 18 samples
from the Haymond Formation. Percentages were estimated from

thin sections.

tr. = one grain observed
-1 = more than one grain but less than 1 percent observed
PLART

SAMPLE # QUARTZ ALBITE GARNET MUSCOVITE BIOTITE CLAY FRAGMENTS
Siltstone:

5 67 -1 -1 1 {r 26 )

b %4 72 1 - 5 i o 20 2

ab 66 i A S Ll L Gog g N o
B TR e i g -l of tr. 23 .
3¢ F i -1 1 2 tr. 20 3

47 70 -1 ~1 2 75 o 20 7

52 5 -1 -1 -1 £r, 23 e

56 70 1 1 3 tr. 20 ”
Silty Claystone:

11 70 -1 -1 5 tri 60 6

18 2% 1 : § 3 {7 A" 60 12

56 45 4 3 2 3 25 20
40 40 2 1 3 T, 46 10

48 25 -1 1 S tr. 60 8
Shales

Y & 20 -1 1 8 tr. 69 2

18 10 -1 2 2 oy I 82 b

36 10 -1 3 5 tr, 80 4

40 i -1 N 8 tr. 67 5

48 15 -1 4 5 tr. i e







APPENDIX II

Determination of organic (Kjeldahl) nitrogen, CaCOB,

MgCO and total iron in the measured road-cut section of the

5,

Haymond Formation.

nd = no determination made
tr. = Lrace
SAMPLE  LITHOLOGY (Kg‘e’l‘ d;gli % caCcOy % MECO; o pe*3

1 siltstone 13 nd nd nd
2 shale 255 nd nd nd

5 siltstone A A 2.8 0.2 2.9
8 siltstone 2 nd nd nd
10 siltstone %540 nd nd nd
11 hale 5. LSRR R e
12 siltstone 148 4 el 0.6 5.0
15 siltstone 2.0 nd nd nd
14 siltstone I3 nd nd nd
16 shale g nd nd nd
i i siltstone 1.4 nd nd nd
18 shale PR o) 4,2 tr. 3.4
19 shale 4,0 nd nd nd
21 shale Sl nd nd nd
22 siltstone 1.4 nd nd nd
23 shale it L nd nd nd
24 siltstone k) nd nd nd
a5 siltstone vy nd nd nd
26 siltstone 1.4 255 05 2o
oy siltstone 0 nd nd nd
28 shale 245 s 0.6 3,0
29 siltstone : By nd nd nd
31 shale 1.4 nd nd nd
55 siltstone P nd nd nd
34 siltstone 2.4 nd nd nd
55 shale e nd nd nd
36 shale &30 3.6 0.4 565







40
41
9
Vit
A
47
48
W
50
51
52
54
56
2¢

o

S|

=

LITHOLOGY

siltstone
shale
shale
siltstone
shale
siltstone
siltstone
siltstone
shale
siltstone
shale
siltstone
siltstone
shale
siltstone
shale

9 N!'% yor?

(Kjeldahl)
2.0

ol SRR

Wit SN O O B e O
.

W g
=0 BYV-0 O, e Oy O

o
o

% CaCO

0.9
nd

5.0
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APPENDIX III

Summary of flute and groove cast measurements on the
bottom surfaces of silt beds of the Haymond Formation.

ns = no sample collected

N

(o) o
1 2220 3 92 10
5 0.41 6 82 28
8 Q5?7 12 80 29
12 0,35 5 86 a9
% 0.47 ;| 96 -
2 £, JAR gl 0.19 - R RS 73 IR~ R T T
ns 0.26 o] 78 23
ns 0.3%4 6 82 21
22 0.69 5 76 31
ns 0.%3% 5 96 24
24 0.55 4 92 11
ns 0.29 1 58 ~
ns 0.29 i 72 -
27 1,32 1 71 -
ns 0.66 i 5 95 -
ns e 1 2 80 18
29 0.63 3 81 18
30 0.94 5 65 2l
ns Q55 4 9% 95
ns 0.50 4 91 12
32 i M 10 80 231
55 0.28 4 82 19
ns 0.21 3 81 9
ns Qs 77 6 70 22
ns 0.46 4 76 Ly
ns (Ll 2 97 14
ns 0.30 5 69 12
ns 0,09 2 90 11







BED THICKNESS NUMBER OF MEAN

ANEN (feet) MEASUREMENTS ~ AZIMUTH  STRTAD
(o) (o)
ns 0430 o 81 7
34 1550 20 80 17
ns 0.48 5 85 26
ns 0.1l6 1 75 =
ns 0.26 5 92 19
ns 0,28 2 79 i 4 &
ns 0.38 7 85 7
ns 0.40 2 84 9
ns 0.63 6 89 7
ns 0.20 3 83 9
ns 0472 1 e *
ns O+15 2 88 8
ns. LR R R P AR AT  VER RS AR R S Tt o I B
ns 0,28 2 98 16
ns 0.20 5 82 25
ns 0.14 3 84 -
ns 0 -4 i h 63 -
ns 0.56 8 89 50
ns 0.15 2 88 8
ns Qi3 1 85 -
ns Os 0k 5 5 161 ]
ns 0.38 2 79 >
ns 0.45 5 yin 59
ns 0.28 3 88 27
ns Oser 2 67 Vg
42 O.34 7 34 20
ns 0.24 1 80 -
ns Qe25 2 81 2
ns 9 4 10% o
ns 0,35 3 9% 20
ns 0.36 2 79 10
ns 0.57 7 100 35
ns 0.10 3 9% 9
ns 0.10 2 66 12
ns 0,32 6 85 Bl







{ BED THICKNESS NUMBER OF MEAN
SAMPLE (feet) MEASUREMENTS AZIMUTH SPREAD
| (o) (o)
| 45 0.43 4 75 ik
| ns 0.24 2 86 1
ns 0.46 3 71 18
46 Jad¥ 2 88 42
ns 0.42 5 79 24
ns & PP 4 92 11
ns 0.30 2 o4 15
ns 097 2 % 12
47 0.35% 1 78 -
ns Q.25 1 100 -
ns 0.09 & 83 16
ns 0. 36 4 85 24
ns 0.65 4 79 29
ns 0. 30 4 85 15
ns 0,88 3 80 -
ns 0+30 o 114 5k
ns 0,38 3 g 44 25
ns O B ) 125 6
ns Q97 6 89 32
ns 0.65 ¥ Vb, 22
ns 0.20 s 89 21
ns 0.45 4 82 8
ns 0.15 2 98 57
ns 0.09 2 85 6
ns 0,28 S 100 16
ns Q.27 5 i 19
ns O.41 3 88 10
ns 0.16 §3 106 ~
51 0.69 5 [ 5
& Oeeh > 96 12
ns 0.24 3 90 L4
n PR Ey 2 89 "
25 0.23 &4 1O¥ 8
ns Qye? 3 99 17
ns () % 84 18







ns 0.50 4 o 0
e 0.27 = o it
ns 0.38 2 1 o
il 0.40 2 e i
ns 0.54 4 i G
v 0.60 5 0 a
S€ 0.72 g i g
i 0. /44 1 il i
58 ) o 34 5 g -
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Silt, clay and total couplet thickness (in feet) of the

road-cut section of the Haymond Formation.

silt clay couplet

1.10
0.05
0.03
0.03
0.10
0.07
0.05
0.03
0,02
C.41
0.04
0.07
0.05
0.32
O0.14
0.07
0.07
Ds 15
0.08&
0.13
0.08
8 0,
0,07
0.05
0,03
0.05
0.08
0.02
0.07

0.30
0.07
0.07
0.11
O0.14
0.153

1.40
0,12
0.12
O0.14
0.24
0.20

silt clay couplet

0.05
0.06
0.06
0.06
0.06
0.04
0.05
0.08
0.06
0.10
0.04
0.07
0.22
o 0
Q57
0.12
0.12
0.06
0.08
0.04
P, 3
0.14
O.47
0.04
0.05
0.06
0.04
0.32
0.06

0.05
0.15
0.24
0.21
0.3%6
0.04

0.10
0.21
0.30
e 27
O.42
0.08

silt clay couplet

0.15
0.05
0.02
0.04
0.04
0.03

0.20
0.16
0.16
0.08
0.06
0.19

025

0.35
0.21
0.18
0.12
0.10
D7







silt

0.22
0.04
0,05
0.33
0.06
3 P & &
0.55
0,07
0,07
0.23
0.07
0.08
0.38
.0.03
0.14
0,04
0,04
0.25
0.27
0,04
0,13
0,28
Q12
0,07
0428
O.41
0,05
0425
Q8
Q.14
0.21
0.10
0,13
0.08
0.12
0,09

clay couplet

0.45
B
Qa26
0.48
bW s
0.10
0.27
0,34
V27
0.23%
0.37
0.09
Dk
0.61
P
0.25
Qaid?
045
0.13
Qatlk
0.50
0,46
022
0.10
0,48
0,26
0.05
0.3%5%
Dis i
5 P9 B
0ed7
0.38
0,07
0.28
0.10
0437

67
Q3%
0.31
0.81
dvén
0.21
0.82
O.41
0.34
0.46
O.44
0.17
0.59

AT = AR

0.45
0.29
Gk
0.70
0.40
Gl D
0.63%
0,74
0.34
0.17
0.76
0.67
0.08
0.58
0.49
0.31
0.38
0.48
0.20
0.56
i22
0.46

silt clay couplet

0.13%
0.10
0.29
Q29
0.04
0.06
0.29
0.10
0,04
1.32
0.66
026
0.51
0.04
0.04
0.05
0.07
0.05
0,35
0439
0.04
0,12
O.14
0.11
0,05
0.10
0.28
0.06
0.04
0414
0.08
0.07
G4 &3
0.14
0.05
0.63

0.14
020
0.29
0.21
0.09
OheS
0.28
0L.28
0 3% 5
0.80
@ 9 7 |
0.26
0.31
0.05
0.09
0.16
Ol
0:sB5
0.31
0.45
Oecl
0.16
0.16
0.23
@.A%
0.28
0. 34
G 54
0.07
0432
0.06
0.30
6 30 b
0.18
Qa7
0.18

0.27
0.3%0
0.58
0.50
4 A
0.31
0.57
0.33
0.15
R
0.77
0.52
0.62
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clay couplet

0,09
0.18
0459
0.28
0.09
0.39
0.51
0,08
0.08
0.17
0.07
0.39
O.11

0.13
Q25
0.58
0.3%6
0.18
1¢33
1.06
0.13
0.15
0.2

0.14
0.49







silt clay couplet

0.05
0,28
0. Q8
0.04
0.07
0.09
0.23
0.09
0.07
0.07
0.06
0.77
0.0¢

0. 0%

020
O.46
0.04
Osdl
0:21
0.13%
0.07
0.17
0.30
0wk
0.07
019
0.08
0.09
0.30
Q.05
0.05
1.30
0533
0.10
0.06
0.0%
0.04

OxlY
V.19
0.10
G041
0.14
Ok
0,22
0.09
0.13
0,10
0.21
0.23
0.08

’ '\_} .20

04«39
0.37
0.18
0420
0.42
0,10
ORid6
O 38
0.18
0«18
0.28
0.09
0.19
G155 57
0.52
Owd?
0,32
0.16
70
OO &
0.06
0.09
0.09

Q16
0447
0.18
0+15
e
0.40
0.43%
§3 1 =
0.20
o b
Q27
1.00
0.16

Ot i

0.49
0.83
0.22
0.31
0.63
0.23
0.23%
055
0.48
0.3%9
Q455
0.24
0.27
0.28
0.82
Jut®
0.57
1.46
0.23%
0.18
D18
0.14
0y 15

silt

0.04
0.10
0.15
0.48
0.04
0.03%
017
0.16
0.05
0.04
1y !
0.26
0.09

0,06 .

0.06
0.09
0.10
0.05
0.06
0.16
Qs QY
0.28
o
0 0%
0.08
Gy 52
0.03%
0.08
0.13
0+0%
0.09
0.04
0,355
0.05
0.04
0.04
0.10

clay couplet

.12
0.28
0.52
0.28
0.07
0.11
0.23%
0.11
G20
O.12
0«29
0.08
0.20

8 ] K0

(3 % L,
0.06
0.08
6 0% b
0.10
0.09
0.06
B
O i
0.40
0.13
0.14
Q.1
0. 34
0.07
0.10
Q.10
Gixy
Q10
0.06
O.14
0.08
0. 44

0.16
0.3%8
0.67
0.76
Qell
O.14
0.3%6
0?7
Qe
0.16
0.40
0. 54
029
0.22
Des
025
0.18
0.22
0.16
0425
0.15
0.53
0.38
0.45
0.21
O.46
Dedl
0.42
D+20
0
0,19
0.21
0.53
0,11
0.18
0,12
C.54

silt

Qo2
0«05
0432
0. 38
0.14
0.0
0.08
0.10
0.,11
0.04
0.04
0.05
0.04
0.09
0.05
0.03
Qs k1
0.06
0.18
0.06
Q.0
0.40
0.04
0.05
0.37
0.05
0.07
041l
De1
0.05
O 183
0.04
0.06
0.08
Cu 19
0.05
0.63
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clay couplet

0.06
e 54
B R i
0.09
0.12
0,08
650 5 &
0.08
0409
0.1&
Qed8
09
0.04

w009,

0.19
Qul%
O.14
Q12

e
, &

e &

0.1l
D¢l
(a2 D
0.08
Q.11
Bl
505
0 h
0.10
0.10
Q.22
017
0.10
0.26
0.05
Qud 3
0.04
0.51

0.29
0.36
0.43%
0.47
B
0.15
0.19
0.186
0.20
(e 22
Qe
0% 10
0.08

g b

0.24
@430
0.25
0.18
0.43
0.17
Qe
Gy 33
0.12
0.16
0.50
s 35
0644
&
0.29
0,27
0435
O.14
) o
1
QB
0.09
1.14







silt clay couplet

0.08
0.06
0.20
0.06
012
@ B |
U, 0%
0.10
Q.05
012
el
0.04
0.09
0«03
0.04
0.06
0.78
0.05
0.08
0.07
O0.04
() 08
0.04
072
0.07
Q.l2
0.40
0.13%
0.09
0.09
0.08
0. 39
0/
0.04
0.08
0.10

0. 30
0.08
GelS
0.05
5 4
0,22
0.04
Q.47
0.04
0.19
0.06
0.04
0e1%
0.09
o G
0.09
0.31
) O4
Qo5
0.04
0.08
0.10
O% 21
O.34
0.19
0515
0l
0.10
5 f
0.08
0.05
011
0.25
0.31
0,42
0.04

0.38
O.14
0.35
0,11
0,27
0,32
0.07
0.57
0.09
0.31
0.18
0.08
0.22

0% -

3 50 §
0.15
1.09
0.09
0.4%
0,11
0.12
0.18
&Pl §,
1.06
0.26
0.25
0.66
0.23
0.26
&P g
N 5]
0.50
0.3%2
0.35
0.50
O.14

silt clay couplet

0.28
0.08
0.20
0.07
0.05
0.09
0,04
0.03
0.07
0.10
0,05
0.04
0.04

0,03 -

0.04
Ol
0.11
0.07
0.06
0.10
0.09
0.22
0.56
0.26
0.06
0.18
0.05
0.04
0.03
0.15
0.06
0.45
0.10
0.23
0.06
Qa3

0.24
T 2
0.10
0417
0.09
0.06
0.06
Q.03
0.09
O.14
0.23
0.05
0.11
0,09
0.30
0.12
0.09
0.06
I
0.11
0.06
0.3%4
Qe
0425
0.30
0.06
0.04
0.07
0.08
0.07
0.07
0.09
0.31
0413
Q.15
011

0.52
0.19
0.30
0.24
0.14
0.15
0.10
0.06
0.16
0.24
0.28
0.09
0.15

- 0,08

O.34
0.26
0.20
0«15
0.18
0.21
0.15
0.56
0.79
Q453
0.2%6
0.24
0.09
O.11
0.11
Oy 2d
0413
0.54
O.41
0.36
0,21
0,42
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silt clay couplet

0.06
0.38
0.07
0.08
0,04
0.14
0.07
0.35
0,04
0.04
0,18
e g
0,09

0,07

0.26
O.14
0.2

0.71
0.08
0.07
O. 54
0.03
0.08
0.24
0.23
0.05
0,32
0.09
0.09
0.09
0.07
0.15
0.1l
0.09
0,09
0.16

0.32
0.26
0.24
0.07
0.19
0.13
0.33
0.10
0.15
0.16
0.20
0.10
0.06

Oritlis

0.21
0.23
0.23
0.35
0.12
0.04
0.15
O0.14
0.04
Q.15
0.37
0.23%
0.18
O.14
0.06
0.06
0.10
Ol
013
0.08
0.10
0,08

0.38
O0.64
0.31
0415
Qw3
0427
0.40
0.45
0.19
0.20
0.38
0.38
0.15

85 Fy

0.47
087
0.50
1.06
0.20
0.11
0.49
0.17
0.12
0.39
0.60
0.28
0.50
0.23
£
Oel5
017
0.20
0.24
0,17
0.19
0.24







silt clay couplet

0.18
0.06
0,04
0.06
0.30
0.35
0.09
0.36
0.05
0,04
0,05
0,05
0,04

0.19
0.15%
0.03
0.16
0.06
0.19
0.51
0.26
023
0:2%
0.09
0.19
0.05

0.37
0.19
0,07
0.22
0. 36
0.54
0,60
0.62
0.28
Oe2?
O.14
O.24
0.09

silt clay couplet

0.06
0.13
0.05
0.07
0.21
O.42
0.07
0.10
0.06
0.11
0.08
0.06
0.25

0,07
0.08
0,18
0.97
0405
Q410
0.33
0.05
0.05
0.07
(e
0.05
QEh
0.08
0.48
0.06
0.12
0.09
0.07
0. 36
0.04
O, 05

0.18
0.15
0.10
0.05
0.10
0.20
0.23
0.10
0.14
0.12
0.28
0.09
0.15

. 0.,05.

0.03
0.15
0.13
0.10
g
0.25
0.11
[ &
0.16
1T
0.04
"0.21
0.05
0.13
B, a8
0.06
0.15
0.07
0.31
0.08
0.06
0.03

0.24
0.28
0.15
O.12
0.31
0.62
0.30
0.20
0.20
0.23
0.3%6
0.15
0,40

g T

0.10
0.23
8 s 4
1,07
0.37
0.35
O.44
0.17
0.21
0.18
0.11
0.26
0.28
0.21
0.60
0,12
0,27
0.16
0.38
O.44
0.10
0.08
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silt clay couplet

0.08
0.05
0.08
0.08
0.15
0.05
0.08
0.10
0,08
0.65
0. 30
0,05
0.10

0.88 .

0.06
0.06
0.05
0.30
0.08
0.1l
0.05
0,07
0,38
0.11
0,06
0.05
0.09
0.06
0.24
O.14
0.09
Q.47
0.05
0. 38
0.06
0.06

0.06
0.03%
0.19
0.16
0.08
0.05
0.12
Q413
O.34
0.15
0.06
0.09
0.25
0.33
0.48
0,22
0.02
0.28
0.26
0.08
0.03
0.07
0.21
O.14
0.04
0.06
0.08
O.11
0.61
0.05
0.08
0,10
0.07
0.31
0.09
0.03

O.14
0.08
0.27
C.24
0,25
0.08
0,20
Q.25
0.42
0.80
0.3%6
O.14
0.35
1,21
O.54
0.28
0.07
0.58
O0.34
0.19
0.08
O.14
0.59
Q.25
0.10
O.11
0.17
0417
0.85
0.19
0.17
0.57
0.12
0.69
O lb
0.09







silt

0.10
0.26
0.11
0.04
0.04
0.07
0.06
0.65
0,07
0435
0,20
0.10
0,08
0.10
0.19
0.05
0.09
0.45
0.08
0.04
0.05
0.15
0.06
0.09
0.28
0.27
0.09
0.21
0.09
0,07
0.05
0.11
0.06
0.16
0.05

clay couplet

0.07
0.08
0.07
0.04
0.08
0.13
0.13
0.48
0.07
0.33
0.17
0.17
0.05

0.10 .

0,17
0.37
O.24
0.16
0.18
0.13
0.07
0.42
0.05
0.17
0,27
0.21
0.14
0.29
O.24
0.08
0.07
0.20
0.07
O.14
0.13

0.17
0. 54
0.18
0.08
0.12
0.20
0.19
b 9N
O.14
0.68
0.37
&)
Oddi

De20..

0.36
O.42
0.33
0.61
0.26
0.17
0.12
0.57
0.11
0.26
0.55
0.48
0.23
0.50
0.%3
0.15
0.12
0.31
0.13
0.30
0.18

silt clay couplet

0.07
0.05
0.06
0.04
0.04
0.06
0.05
0.62
0.23
0.05
0.20
0.15
0.25

6150 1 i

0.04
0.05
.11
0.05
0.24
0.04
07
023
0.06
0.04
0.06
0.04
0.05
0.07
0.08
0.93
0.08
0.06
0.05
0.04
0.22

0.05
0.04
0.30
0.08
0.08
0.06
0.06
0.10
0.04
0.18
0.12
D25
0.18

0.1l

0.08
0.04
0.09
0.25
0.08
0.28
0.26
0.06
0.04
0.09
0.12
0.10
0.08
0.12
0.32
0.09
0.09
0.05
0.17
0.08
0.33

0.12
0.09
0.36
0.12
0.12
0.12
O0.11
0.72
0.27
0.23
0.32
0.40
0.43

W e L

0.12
0.09
0.20
0.30
0.32
0.32
0.33
0.19
0.10
0,13
0.18
0.14
0.13
0.19
0.40
1,02
0.17
0.11
0.22
0.12
0.55

silt clay couplet

0.23
0.10
0.22
0.09
0.06
0.30
0.08
0.20
0.08
0.05
0.05
0,10
0+27

0416 -

0.05
0.10
0.09
0.05
0.08
0.08
0.07
ed D
0.07
013
0.25
0.04
0.25
0.03
0.03%
0.06
0.17
0.05
0.07
0.08
0.05

0.47
0.3%6
0.25
0.42
0.28
0.17
0.09
0.10
0,08
0.05
0.02
.25
0.35

Oe 10

0.03
0.07?
0.05
0.07
0.05
0.08
0.17
0.23
0.11
0.10
0.10
0.28
0.12
0.17
0.06
0.04
0.17
0.28
0.07
0.23
0.06

0.70
0.46
0.47
0.51
O.%4
0.47
0.17
0.30
0.16
0.10
0.07
0.33
0.62

0.26 -+

0.08
0.17
O.14
0.12
0.13
0.16
0.24
0.3%8
0.18
0.2%
0.35
0.32
0.37
0.20
0.09
0.10
0.%4
0.33
O.14
0.51
0.11
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clay couplet

0.13
0.13
0.11
0.03
0.23
0.06
0.27
0.16
0.06
0.10
0.04
0.18
0.12
0.25
0,18
O.11
0,08
0,04
0.09
0.25
0.08
0.28
0.26
0.06
0.04
0.09
0.12
0.09
0.08
0.12
0.32
0.09
0.09
0.05
Q.47

0.18
0.19
0.24
0.10
0,28
0.13
O.41
0.38
0.16
0.25
027
023
0.32

OeR0

0.43
0.22
0.12
0.09
0.20
0.30
0.32
0.32
Q.33
0.19
0.10
0.3
Qs
0.14
Q543
0.19
0.40
1,02
40 b
0B & &
Qs 2

silt clay couplet

0.04
0.22
Oy 2%
0.10
0.22
0.09
0.06
0. 30
0.08
0.20
0.08
0.05
0.04

@ Nl R

0.27
0.16
0.05
0.10
0.09
0.05
0.08
0.08
0.06
015
0.07?
0.13
0.25
0.04
0.25
0.03
0.03
0.06
0.17
0.05
0.07

0.08
0.33
0.47
0.3%6
0.25
O.42
0.28
5 P9 o
0.09
0.10
0.08
0.05
0.03

0.23 .

0.35
0.10
0.03
0,07
0.05
0.07
0.05
0.08
0.18
0.23
0.11
0.10
0.10
0.28
012
0.17
0.07
0.04
0,17
0.28
0.07

0.12
0.55
0.70
0.46
0.47
0.51
O34
Q.47
o B
0.30
0.16
0.10
0.07
0.3%3
Ua®d
0.26
0.08
0.17
0.14
0.12
Qi3
0.16
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8ilt clay couplet
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0.05
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0.06
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0.04
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0.03
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10 16
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0.10
0.18
0.18
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0.16
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0.10
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Q.47
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0.17
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0.68
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0.40
0.29
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silt

0.10
0.05
0.05
0.08
0.14
0.07
0.12
0.17
0.08
0.22
0.08
0.09
0.28
0424
0.13
0.07
0.05
0.25
0.16
0.10
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0.28
0.09
0.04
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0.28
0.11
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0.26
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0.20
0.10
0.16
0.06
O.41
0.10

clay couplet

0.05
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0.21
0.21
.15
0.05
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0.20
0.12
0,07
0.10
0.04
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0.21
0.08
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0.11
0.07
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0.08
0.19
0.38
0.40
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0.08
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0.15
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0.31
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0.06
0.24
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0.17
0.14
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0,46
O.14
0.06
0.38
0.25
0.13
0.20
0.47
0.05
0.04
0.77
0.38
0.08
O.46
0.68
0.87
0.48
0.18
0.17
0.06
0.05
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0.26
0.33
0.24
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0.22
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0.54
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0.21
0.16
0.54
0.33
0.25
0.28
0.56
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1.20
0.32
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O.11
0.09
0.10

silt clay couplet
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0.06
0.07
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0.05
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0.06
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0.29
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0.15
0.5
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APPENDIX V

74

Silt, clay, and total couplet thickness (in feet) of the

railroad-cut section of the Haymond Formation.

silt clay couplet
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0.19
0.12
0.05
0.09
0.04

- 0.06

0.16
0,02
0.22
0.04
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0.04
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0.09
0.07
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0.09
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0.14
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0.05
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0.06
0.05
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0.09
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Qe
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O.14
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clay couplet

0.07
0.16
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AFPENDIX N E

Sunmary of the number of years between storms producing
a sea level anomaly greater than 2 feet for 17 U, Si Const and
Geodetic Survey tide stations on the Atlantiec and Gulf coasts

(data from Harris, 1963).

Number of years

Station between storms Rezional means
North Atlantic: 5 87
Fastport 4, %6
Portland 5.81
BAS Lok , 3,45 AR i ISR SO P R SO ot e S R
Newport 2.60
Battery .0 § &
Atlantic City 1.71
South Atlantic: d P
Hampton Roads 1.68
Southport 1.47
Charleston dii5E
llayport Xs 30
Miami 1.96
Gulf coast: 2,41
Key liest 2 v 50
Tampa 1.52
Ceder Keys 1.60
Pensacola 2y
Galveston 2 .84

Port Isabal D60
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